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Currently, the clinical utility of taxane-based drug formulations in castration-
resistant prostate cancer (CRPC) is severely limited by acquired chemotherapy
resistance, dose-limiting toxicities, and nonresponders. Therefore, approaches
to improve taxane-based chemotherapy are desperately required. In this review,
we highlight the strategies that aim to overcome these limitations, such as
bypassing therapy resistance, targeted drug delivery, and adequate prediction
of therapy response. The involvement of the apoptotic pathway, ABC trans-
porters, the glucocorticoid receptor (GR) axis, androgen receptor (AR) splicing,
epithelial plasticity, and cancer stem cells in mediating taxane-resistance are
outlined. Furthermore, passive and active targeted nanomedicinal drug delivery
strategies and the use of circulating tumor cells in predicting docetaxel
responses are discussed. Finally, recent advances towards clinical translation
of these approaches in CRPC are reviewed.

Taxane-Based Chemotherapy in CRPC
Prostate cancer is one of the most common malignancies, with more than 1.1 million cases
worldwide, and, although death rates have declined over the past two decades, it is still a major
cause of death, with over 300 000 deaths worldwide in 2012 [1,2]. Prostate cancer is a
progressive disease with several stages that all warrant distinct treatment (Box 1). In this review,
we focus on the challenges and recent developments in the treatment of the most advanced
stage of the disease: CRPC (see Glossary).

CRPC is the most serious disease stage in prostate tumors, in which tumors progress despite
androgen-deprivation therapy. Taxane-based chemotherapeutic drugs are currently the most
common treatment of CRPC [3]. In 2004, docetaxel (Taxotere, marketed by Sanofi-Aventis) plus
prednisone was approved as a first-line treatment for CRPC after displaying potent clinical
activity in two landmark Phase III clinical trials (increased median survival versus control arm: 18.9
versus 16.5 months and 17.5 versus 15.6 months) [4,5]. More recently, a second-generation
taxane cabazitaxel (Jevtana, marketed by Sanofi-Aventis) plus prednisone was demonstrated to
exhibit superior antitumor activity over mitoxantrone plus prednisone in patients with CRPC
progressing on docetaxel (increased median survival versus control arm: 15.1 versus 12.7
months) [6] and, therefore, was positioned as a second-line treatment. Despite the prolonged
survival resulting from taxane chemotherapy, CRPC is still poorly managed, as illustrated by the
fact that most patients with CRPC die within 3 years of diagnosis [4]. Hence, strategies to
improve current taxane-based chemotherapeutics are urgently needed.

Trends
Preclinical evidence establishes the
therapeutic potential of reverting resis-
tance mechanisms in docetaxel-resis-
tant prostate cancer cells.

Targeted drug delivery of taxanes has the
potential to enhance the antitumor effi-
cacy, enhance tolerability, and permit the
administration of intensified dosages.

Changes in levels of circulating tumor
cells are indicative of responses to doc-
etaxel treatment and can be further
characterized to provide robust predic-
tive markers for personalized treatment.
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Recently, data from the phase III CHAARTED trial were published; this trial looked at whether the
addition of upfront chemotherapy (docetaxel) to androgen-deprivation therapy (ADT) improved
overall survival in patients with hormone-sensitive metastatic prostate cancer. Interestingly, this
trial showed that docetaxel treatment (combined with ADT) of patients with hormone-sensitive
metastatic prostate cancer increased overall survival by 13.6 months versus ADT alone, after a
median-follow up of 28.9 months [7]. Therefore, the beneficial effects of docetaxel may not be
restricted to the treatment of patients with CRPC.

Despite the extensive use of docetaxel as the first-line treatment for CRPC, major pitfalls still
undermine its clinical feasibility. First, prostate tumors may display initial resistance (decreased
levels of biomarker prostate-specific antigen is observed in only 45% of patients with CRPC
upon docetaxel treatment [4]) or tumors eventually acquire resistance to docetaxel treatment.
Second, treatment with taxanes commonly introduces serious adverse effects, such as anemia,
neutropenia, and neuropathy [4,5]. Third, the treatment response of individual patients is
variable, resulting in the overtreatment of patients and, therefore, improved prediction of
docetaxel response in individual patients with CRPC would strongly facilitate proper treatment
choices (i.e., personalized medicine).

Here, we discuss recent developments and novel strategies to optimize taxane use in CRPC,
including: (i) increasing the sensitivity for taxane-based chemotherapy (i.e., overcoming che-
motherapy-resistant disease); (ii) exploiting nanomedicinal drug delivery systems (to enhance
activity and prevent adverse effects); and (iii) predicting taxane-responsiveness to select the
suitable patient population for docetaxel treatment.

Regaining Sensitivity to Taxane-Based Drugs in Docetaxel-Refractory CRPC
Taxanes are diterpenoid molecules derived from the Taxus genus and include the drugs
paclitaxel, docetaxel, and cabazitaxel. Paclitaxel is clinically used in the treatment of many
malignancies, although the semisynthetic analogs docetaxel and cabazitaxel are preferred as
treatment for prostate cancer [8]. Taxanes exert their antitumor activity via several modes of
action. First and foremost, taxanes prevent microtubule disassembly by the binding of beta-
tubulin. Microtubules are involved in numerous cellular processes, including mitosis, cell shape
maintenance, cellular transport, and cell signalling, and disturbance of these processes can lead
to G2/M cell cycle arrest and the induction of apoptosis (Figure 1A) [8,9]. In addition to this, some
of the antitumor actions of taxanes can be attributed to their effect on the AR axis (i.e., lowered
AR expression [10], inhibition of AR nuclear translocation [11], and FOXO1-mediated repression
of AR transcriptional activity) (Figure 1B) [12]. Effects on AR are dependent on the taxane used;
for example, AR activity is inhibited by docetaxel and paclitaxel [12] but not by cabazitaxel [13].
However, the concentrations of docetaxel that are required for inhibition of AR activity seem to
vary between publications. Finally, taxanes have also been reported to inhibit antiapoptotic Bcl-2
expression, which thereby favors apoptotic cell death through the relief of BAX-mediated
cytochrome c release (Figure 1C) [14]. Given that the expression of the AR, cell cycle proteins,
and apoptotic proteins oscillates over time, appropriate timing of treatment is key (Box 2).

Glossary
Androgen receptor (AR): a
receptor for androgens such as
testosterone and
dihydrotestosterone. Prostate cancer
is fundamentally AR driven.
Cancer stem cells (CSC): an
aggressive subset of cells that are
involved in many tumorigenic
processes, including survival,
invasion, metastasis, and resistance
to therapy.
Castration-resistant prostate
cancer (CRPC): an advanced
disease stage in prostate cancer in
which the tumor becomes resistant
to androgen-deprivation therapy.
Circulating tumor cells (CTC): cells
that have been shed from the tumor
and circulate in the bloodstream;
such cells can be isolated and
characterized to monitor and predict
treatment response.
Epithelial–mesenchymal transition
(EMT): a process that involves a
phenotypical switch from epithelial
cells to migratory mesenchymal cells;
often involved in metastasis and
associated with resistance to
chemotherapy.
Enhanced permeability and
retention (EPR) effect: a principle
that underlies targeted nanomedicinal
drug delivery; dependent on the
enhanced vascular permeability and
poor lymphatic drainage of tumors.
Glucocorticoid receptor (GR):
shown to be involved in resistance to
AR-targeting drugs and docetaxel.
Glucocorticoids (GC): a class of
corticosteroids that bind the GR. The
GCs prednisone and dexamethasone
are routinely given to patients with
advanced prostate cancer.
P-glycoprotein (P-gp): a drug efflux
pump associated with therapy
resistance. Docetaxel and paclitaxel
are substrates for P-gp, while
cabazitaxel is not.
Prostate-specific antigen (PSA): a
routinely used serum biomarker to
monitor prostate cancer progression
and response to therapy.
Prostate-specific membrane
antigen (PSMA): a membrane
antigen often overexpressed in
prostate cancer; can be used to
facilitate active targeting.

Box 1. The Clinical Course of Prostate Cancer

Prostate cancer is a disease that is defined by multiple disease stages. In early organ-confined prostate cancer,
therapeutic options include prostatectomy and radiotherapy, which is curative in 70–80% of patients. In 20–30% of
patients, prostate cancer will relapse after 5–10 years, commonly at a metastatic site. Given that prostate cancer is
fundamentally androgen receptor (AR) driven, therapies at this disease stage target the AR axis and are collectively
referred to as ‘androgen-deprivation therapy’ (e.g., AR antagonists, LHRH agonists, and antagonists). Although this is
initially effective, tumors will inevitably lose responsiveness to this therapy, starting a disease stage referred to as CRPC.
Here, taxanes are routinely used; docetaxel as first-line treatment, and cabazitaxel as one of the second-line treatment
options. Although all current treatment options for CRPC are life prolonging, most patients will eventually die from their
disease.
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Approximately half of patients with CRPC initially respond to docetaxel treatment, but, unfortu-
nately, tumors inevitably lose their sensitivity to docetaxel treatment. Therefore, many studies
were initiated to identify factors that influence docetaxel sensitivity and facilitate docetaxel
resistance (e.g., by proteomic analysis of docetaxel-sensitive and docetaxel-resistant prostate
cancer cells [15]). Identified mechanisms involved in docetaxel resistance include alterations in
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Figure 1. Mechanisms of Action of the Antitumor Activity of Taxanes. Taxanes have been described to exert their
antitumor efficacy via distinct modes of action. (A) Taxanes bind to microtubules and thereby prevent their disassembly,
resulting in G2/M cell cycle arrest and apoptosis [8,9]. (B) Alternatively, taxanes are able to inhibit androgen receptor (AR)
transcriptional activity by constraining AR expression [10], blocking AR nuclear translocation [11], and facilitating FOXO1-
mediated repression of AR transcriptional activity [12]. (C) Finally, taxanes may inhibit the expression of antiapoptotic Bcl-2,
favoring apoptotic cell death through the relief of BAX-mediated cytochrome c (cyt. C) release [14]. Abbreviation: CASP,
caspase.

Box 2. The Proper Timing of Taxane Treatment

Circadian (i.e., 24-h) rhythms regulate a range of cellular functions. Indeed, clock-controlled genes have been shown to
influence several cancer-related pathways (e.g., cell cycle, DNA repair, and apoptosis) as well as proteins involved in drug
metabolism (e.g., transport, bioactivation, and elimination) [85]. Moreover, the expression of drug targets and proteins
involved in chemotherapy resistance may oscillate throughout the day. Based on this, circadian rhythmicity may largely
define antitumor response and adverse effects. Therefore, the proper timing of chemotherapeutic treatment is key and is
also referred to as ‘chronotherapeutics’.

Importantly, the expression and activity of one of the targets of docetaxel, the AR, is regulated by period circadian protein
homolog 1 (PER1) [86]. Hence, timing of treatment may benefit the antitumor activity of docetaxel. In addition,
misalignment of circadian rhythms in the tumor tissue from those in the rest of the body, which is often the case in
prostate cancer, can also be used to improve docetaxel tolerability. Thus, at certain times of the day, activity of docetaxel
targets may be high in tumor tissue but relatively low in healthy tissue. Furthermore, proteins that prevent toxicity in
healthy tissues (e.g. P-gp) oscillate over time [87]. Optimal docetaxel tolerance was identified to occur 7–11 h after light
onset, which coincides with the time of most potent antitumor activity [88]. Based on these findings, the proper timing of
treatment may result in a substantial increase in the therapeutic index of docetaxel in patients with advanced prostate
cancer. It is important to note that the circadian rhythms of tumors and healthy tissues may differ between individual
patients, highlighting the need for personalized timing of treatment.
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the docetaxel target beta-tubulin [15], differential expression of apoptosis modulators [16],
altered activity of drug influx and efflux pumps [17,18], enhanced GR expression [19], differential
expression of AR splice variants [20–23], and the selection of, or enrichment for, resistant
subpopulations of cells [24,25]. Here, we discuss the involvement and potential therapeutic
application of these main mechanisms (Table 1).

Recovering Docetaxel Sensitivity through the Reversal of Antiapoptotic Processes
Apoptosis is the tightly controlled process of programmed cell death that is characterized by
distinct morphological changes, including membrane blebbing, cell shrinkage, and nuclear
fragmentation [18,19]. Apoptosis can be triggered by either the intrinsic or the extrinsic apoptotic
pathway, ultimately leading to the cleavage and activation of a group of effector enzymes, the so-
called ‘caspases’. Apoptosis can be induced by a range of apoptotic stimuli, including taxanes,
and the balance between pro- and antiapoptotic factors generally determines the cellular fate of
tumor cells (i.e., survival versus programmed cell death). Consequently, the downregulation of
proapoptotic proteins or upregulation of antiapoptotic proteins is a dominant strategy of tumor
cells to avoid treatment-induced cell death, thus leading to resistance to chemotherapeutic
drugs.

A key step in the intrinsic apoptotic pathway is the release of cytochrome c from the mitochon-
dria to the cytoplasm, which leads to the formation of the apoptosome that triggers caspase
cleavage. The altered expression of several factors influencing mitochondrial release of cyto-
chrome c was described in docetaxel-resistant prostate cancer cells. For instance, expression of
proapoptotic Bax, a main component of the mitochondrial pore involved in cytochrome c
release, was downregulated in docetaxel-resistant cells [18]. Conversely, antiapoptotic proteins
Bcl-2 and Bcl-xL [18], known to neutralize the apoptosis-inducing activities of BAX, were found
to be overexpressed in docetaxel-resistant cells [19]. The expression of IkB/, a recently
established antiapoptotic protein, was enhanced in docetaxel-resistant prostate cancer cells
[18] and protein knockdown significantly sensitized prostate cancer cells to docetaxel treatment
[26]. IkB/ was shown to strengthen the antiapoptotic interaction between VDAC and hexoki-
nase II at the outer mitochondrial membrane [26], thereby preventing VDAC-mediated cyto-
chrome c release and, thus, heightening the threshold for apoptosis induction by docetaxel.
After cytochrome c release through the intrinsic apoptotic pathway or after caspase cleavage as
a consequence of extrinsic apoptotic pathway activity, a group of antiapoptotic proteins known

Table 1. Therapeutic Strategies to Overcome Docetaxel Resistance in Prostate Cancer

Approach Result Stage of
Development

Refs

Antagonizing activity of
antiapoptotic proteins

Strong resensitization of docetaxel-resistant cells upon
Bcl-2/Bcl-xL antagonism; synergistic antitumor efficacy of
Mcl-1 antagonist and docetaxel in vivo; synergistic
antitumor efficacy of survivin antagonism and docetaxel in
vivo

Preclinical [27,29,30]

Blocking ABC transporter
activity

Robust resensitization to docetaxel in docetaxel-resistant
cells in vitro upon P-gp inhibition

Preclinical [34,35]

Blocking GR axis Complete resensitization to docetaxel in docetaxel-
resistant cells in vitro upon GR inhibition

Preclinical [19]

Targeting mesenchymal
cells

Partial resensitization to docetaxel in docetaxel-resistant
cells in vitro upon ZEB1 antagonism

Preclinical [50]

Targeting CSCs Complete blockage of xenograft growth upon docetaxel
treatment in combination with NOTCH and Hedgehog
inhibition; delayed xenograft growth upon treatment with
docetaxel and NOTCH inhibition

Preclinical [55,58]
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as inhibitors of apoptosis (e.g., XIAP, cIAP, and survivin) is able to neutralize caspase activity and,
thus, halt apoptotic cell death. The expression and activity of inhibitors of apoptosis may also
determine the apoptotic response to taxane-based chemotherapy.

Given that many antiapoptotic proteins are causally involved in prostate cancer docetaxel
resistance, it is crucial to determine whether these potential targets can be therapeutically
restrained to enhance or regain sensitivity to docetaxel. Few preclinical studies have addressed
this objective either in vitro or in vivo. Small molecules that disrupt the antiapoptotic interaction of
Bcl-2/Bcl-xL with BAX/BAK (ABT-263 and ABT-737) were shown to enhance the antitumor
efficacy of docetaxel in sensitive prostate cancer cell lines [27,28] and restored docetaxel
sensitivity in docetaxel-resistant cells [19,27]. In addition, therapeutic targeting of other anti-
apoptotic proteins through selective inhibition of Mcl-1 with sabutoclax [29] or downregulation of
survivin with rapamycin [30], resulted in enhanced docetaxel sensitivity in prostate cancer cells.
These studies encourage further exploration with antagonists of antiapoptotic proteins in models
of prostate cancer docetaxel resistance. Interestingly, a Phase II clinical trial evaluated the
effectiveness of docetaxel in combination with LY2181308, an antisense oligonucleotide against
the antiapoptotic protein survivin, but failed to demonstrate enhanced antitumor activity [31].
Interestingly, docetaxel-resistant cells may be targeted even if a molecule of interest is not a
cause of resistance. Recently, PIAS1 was found to be overexpressed in local and metastatic
prostate cancer and its expression was further elevated in tumors after docetaxel treatment as
well as in docetaxel-resistant cells [32]. PIAS1 knockdown led to the increased expression of
tumor suppressor p21 and declined expression of antiapoptotic protein Mcl1, which caused
diminished cell proliferation and tumor growth in vitro and in vivo. Therefore, it appears that
PIAS1 is crucial for docetaxel-resistant prostate cancer cell survival and may be a promising new
target for the treatment of primary, metastatic, and docetaxel-resistant prostate cancer.

Bypassing ABC Transporter-Mediated Docetaxel Resistance
To exert potent antitumor efficacy, it is vital to obtain appropriate intracellular drug concen-
trations in tumor cells. Intracellular docetaxel is dependent on the ratio of drug influx and efflux
pumps (the ABC transporters) and their expression was shown to correlate with sensitivity to
chemotherapeutic drugs [17]. The most widely studied ABC transporter in the context of CRPC
is P-glycoprotein (P-gp; also known as ABC-B1 and MDR1), which displays a high affinity for
docetaxel and, therefore, can rapidly and efficiently reduce intracellular docetaxel levels to
prevent their cytotoxic activities. Clinically, exosomal P-gp levels were found increased in
patients with docetaxel-resistant compared with patients with therapy-naïve prostate cancer
[33]. Inhibition or silencing of not only P-gp [34,35], but also of the efflux pumps MRP1 and LRP
[35], enhanced the antitumor efficacy of docetaxel in primary prostate cancer and in prostate
cancer cell lines. Interestingly, AR-targeting drugs that are clinically used in prostate cancer
treatment (i.e., abiraterone acetate and enzalutamide) also display inhibitory actions on the P-gp-
mediated efflux of taxanes and are thereby able to (re-)sensitize prostate cancer cells for
docetaxel treatment [36], endorsing the combination treatment of AR-targeting agents and
docetaxel in P-gp-overexpressing prostate cancer cells.

To circumvent ABC transporter-mediated efflux, cabazitaxel has been developed, which is a
drug that displays decreased affinity for P-gp [37] and ABC-C4 [38]. This renders cells unable to
efficiently facilitate the efflux of this chemotherapeutic agent. Consequently, cabazitaxel dem-
onstrates potent antitumor activity in cells with intrinsic or acquired docetaxel resistance [39] and
in patients with docetaxel-refractory CRPC [7]. In addition, it efficiently inhibits the growth of
prostate cancer cells resistant to AR-targeting agents [40] and displays antitumor activity in
patients with CRPC treated with AR-targeting agents following docetaxel treatment [13,41].
These findings suggest that cross-resistance between commonly used therapeutic agents and
cabazitaxel is only limited.
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Reversing Docetaxel Resistance through Inhibition of the GR Axis
Glucocorticoids (GC) are steroidal hormones that bind to the GR and are regularly used in
combination with docetaxel in the treatment of CRPC [42]. The rationales for GC use are plentiful.
First, GCs diminish the secretion of adrenocorticotropic hormone by the pituitary, leading to
decreased release of (protumorigenic) adrenal androgens. Second, GCs are commonly used as
antiemetics during chemotherapy to prevent nausea and vomiting. Third, GCs have strong anti-
inflammatory activities that may help reduce pain from distant metastases. Fourth, GCs silence
tumor-promoting inflammation and angiogenesis, and, finally, GCs can be directly cytotoxic to
prostate cancer cells [43]. Clearly, GC treatment has a range of benefits for patients with CRPC,
although recent studies have also indicated adverse effects. Enhanced GR activity (by either GC
exposure or stress induction) [44,45] or overexpression [19] are both associated with resistance
to taxane-based drugs. Active GR signaling has been shown to induce an upregulation of
antiapoptotic proteins [46], thereby preventing apoptosis and, thus, facilitating resistance to
docetaxel. Hence, GC use in advanced prostate cancer should approached with caution,
although, in this respect, it is reassuring that a recent meta-analysis showed similar overall
survival in patients with CRPC treated with docetaxel plus prednisone compared with docetaxel
without prednisone [47]. This suggests that the potential tumor-promoting effects of GC
(induction of therapy resistance) do not outweigh the antitumor and antiemetic effects in CRPC.

Targeting of Epithelial Plasticity and Cancer Stem Cells in Docetaxel Resistance
Epithelial plasticity, in particular the epithelial–mesenchymal transition (EMT), is a dynamic
process in which sessile epithelial cells switch to motile mesenchyme-like cells. Although this
reversible phenotypic process is a major determinant in the metastatic behavior of tumor cells, it
was also recently described to modulate cellular responses the chemotherapeutic drugs [24].
Treatment with docetaxel induces the expression of EMT inducers, such as TWIST1, SNAI1, and
SNAI2, which stimulates the acquisition of a mesenchymal phenotype [48] and, in this way,
docetaxel may in fact stimulate the metastatic spread of prostate cancer cells. Prostate cancer
cells with acquired resistance to docetaxel were shown to diminish expression of epithelial
markers (i.e., CDH1, CTNNB1, and E-cadherin), while mesenchymal traits (i.e., vimentin and
ZEB1) were promoted [48,49]. ZEB1 knockdown was shown to restore the initial epithelial
phenotype [48,50] and was accompanied by recovered docetaxel sensitivity [48]. In addition,
therapeutic targeting of ZEB1 with the inhibitor mocetinostat potentiated docetaxel treatment of
CRPC cells [50]. One of the hypotheses for the lack of long-term curative effects of current
chemotherapeutic treatments for CRPC may lie in the predominant targeting of more differenti-
ated, highly proliferative prostate cancer cells, while leaving the ‘root of prostate cancer’, the
cancer stem-like cells or CSCs, largely unaffected. In a variety of solid cancers, including
prostate cancer, cells that survive chemotherapy and radiation therapy showed an increased
number of cancer cells with stem-like characteristics and features of an EMT [48,49,51,52]. In
line with these data, Wnt and Notch signaling were shown to confer resistance of prostate CSCs
to radiation [53] and docetaxel [54,55]. More recently, ALDH1A1 expression was also found to
be correlated with resistance to radiation therapy and EMT in prostate cancer [56,57].

Recently, the importance of CSCs was established in many processes throughout prostate
tumorigenesis [25]. In addition to their role in survival, growth, invasion, and metastasis, the
involvement of CSCs in mediating chemotherapy and radiation resistance is increasingly being
recognized. Treatment with docetaxel was shown to specifically select for a subpopulation of
cells that exhibit a CSC-like phenotype and display enhanced resistance to docetaxel [55]. As a
result, cell lines with acquired docetaxel resistance are strongly enriched for the prostate CSC
marker CD44HIGH [48,49,55] and display enhanced activity of CSC-associated pathways (e.g.,
NOTCH [53,55,58,59] and Hedgehog [55]). Knockdown of factors that drive prostate CSC (i.e.
NOTCH1 [59], BMI-1 [60], EpCAM [61], and TR4 [62]) strongly sensitizes prostate cancer cell
lines for docetaxel treatment. Interestingly, therapeutic targeting of NOTCH with PF-03084014
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or dibenzazepine and antagonizing Hedgehog signaling with cyclopamine, as well as combined
NOTCH and hedgehog inhibition, strongly decreased the CSC subpopulation and thereby
largely restored sensitivity to docetaxel treatment both in vitro and in vivo [55,58].

Targeted Drug Delivery
Over the past few decades, extensive research has focused on targeted drug delivery systems
with the purpose of improving current anticancer drugs. Targeted drug delivery comprises the
use of nanomedicinal systems that are designed to preferentially and efficiently deliver a drug
payload to the site of disease (i.e., the tumor microenvironment), with the aim of increasing the
therapeutic index. The use of targeted drug delivery systems also avoids the use of excipients to
solubilize taxanes (e.g., Cremophor in Taxol and Tween-80 in Taxotere), thereby effectively
preventing excipient-associated toxicity [63].

In prostate cancer studies, multiple nanomedicinal systems have been used, and these encom-
pass drug-containing nanoparticles based on liposomes, polymeric micelles, and proteins.
While some formulations merely provide solubilization (e.g., Abraxane and Cellax), other nano-
carrier systems share the property of prolonged circulation kinetics (due to reduced clearance
from the circulation) and increased tumor accumulation. The latter is predominantly mediated by
the increased permeability of the tumor vasculature and most passive targeting systems are
dependent on this so-called ‘enhanced permeability and retention’ (EPR) effect [64].
Recently, distinct nanomedicinal strategies were pursued to investigate their utility for targeted
delivery of taxanes in prostate cancer models (Table 2). For these approaches, a clear distinction
should be made between nontargeting and tumor-targeting nanomedicines.

The first class of (nontargeting) formulations includes docetaxel-carboxymethylcellulose nano-
particles (Cellax) [65,66] and albumin-bound paclitaxel (Abraxane or nab-paclitaxel) [67]. These

Table 2. Overview of Nanomedicinal Strategies Used to Improve Taxane Treatment in Prostate Cancer

Formulation Xenograft Model
and Dosea

Principal Findings Stage of
Development

Refs

Albumin-bound
paclitaxel
(Abraxane)

SC: 30 mg/kg/day Improved tolerability and increased
antitumor efficacy in vivo, PSA responses
(95%) in neoadjuvant treatment setting

Phase II [67,69]

Docetaxel-
carboxymethylcellulose
nanoparticle (Cellax)

SC and intrabone:
170 mg/kg single
dose

Enhanced antitumor efficacy and
reduced weight loss in vivo

Preclinical [65,66]

Micellar paclitaxel SC: 10–20 mg/kg Enhanced antitumor efficacy in vivo Preclinical [71,72]

Micellar docetaxel SC: 15 mg/kg every
2 days for three
doses

Enhanced antitumor efficacy and
reduced weight loss in vivo

Preclinical [70]

Liposomal docetaxel – Tolerability at 85–90 mg/m2 in patients
with solid tumors; increased docetaxel
exposure upon liposomal encapsulation

Phase I [73,74]

PSMA-targeted
paclitaxel micelles

SC: 15 mg/kg every
2–3 days for four
doses

Enhanced uptake and cytotoxicity in
22Rv1 cells, enhanced antitumor efficacy
in vivo

Preclinical [76]

– Enhanced uptake and cytotoxicity in
LNCaP cells in vitro

Preclinical [75]

PSMA-targeted
docetaxel
nanoparticles

SC: 5 mg/kg/every
4 days for four
doses

Enhanced antitumor efficacy and
reduced weight loss in vivo

Phase I [77]

aAbbreviation: SC, subcutaneous.
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formulations mainly provide solubilization and enhanced tolerability (e.g., 170 mg/kg for Cellax
compared with 25 mg/kg for conventional docetaxel), but do not display tumor-targeting
properties. The enhanced tolerability does allow administration of intensified doses, which
could subsequently result in enhanced antitumor efficacy [65–67]. Abraxane is already clinically
approved for the treatment of breast cancer (after superior efficacy and a favorable safety profile
were demonstrated in a Phase III trial) [68] and, in prostate cancer, the administration of
Abraxane as a neoadjuvant treatment (before prostatectomy) resulted in frequent declines in
the serum levels of biomarker prostate-specific antigen (PSA) (95%) [69]. Despite this, the
clinical development of Abraxane in prostate cancer was halted after Phase II clinical trials.

The second class of formulations exhibits tumor-targeting properties, and these can be further
divided into passive and active targeting nanomedicines. The rationale behind passive targeting
approaches is a combination of increased tumor localization (site-specific delivery) [70–72] and
decreased adverse effects (site-avoidance delivery) [70]. Micellar formulations of docetaxel [70]
and paclitaxel [71,72] yielded enhanced therapeutic efficacy in preclinical prostate cancer models,
but were not further explored in a clinical setting. Liposome-encapsulated docetaxel was assessed
in a clinical (Phase I) study in patients with advanced solid tumors [73,74]. These clinical studies
reported favourable pharmacokinetics of liposomal docetaxel, acceptable tolerability (less edema
and cumulative neuropathy), and hints of clinical activity. Phase II clinical studies are needed to
determine the potential benefit of liposomal docetaxel in patients with advanced prostate cancer.

In addition to the above-mentioned strategies, a range of studies used ‘active targeting’
approaches, by coupling a targeting moiety to the outer surface of the nanoparticles to facilitate
tumor localization and uptake. The prostate-specific membrane antigen (PSMA) provides a
suitable target in prostate cancer, because it is often overexpressed in these tumors. PSMA-
targeted systems display enhanced cellular uptake by PSMA-positive prostate cancer cells in
vitro [75,76] and enhanced in vivo antitumor efficacy in prostate cancer xenografts [76,77]. In
clinical studies, PSMA-targeted docetaxel-loaded nanoparticles exhibited improved pharmaco-
kinetics in human subjects; approximately 100-fold higher plasma concentration of docetaxel at
12–24 h post-injection in the PSMA formulation compared with free docetaxel [77]. A Phase II
clinical trial with this formulation in metastatic CRPC with the aim of determining safety and
efficacy is currently ongoing (NCT01812746).

Personalized Medicine Based on Adequate Prediction of Taxane Antitumor
Activity and Toxicity in Individual Patients
Approximately 55% of patients with CRPC are unresponsive to docetaxel treatment [4] and,
despite the risks associated with taxane treatment, docetaxel is still routinely given to almost all
patients with CRPC. This clearly stresses the need for robust predictive markers for docetaxel
response to stratify patients who will benefit from this chemotherapeutic agent, and to provide an
alternative treatment modality for (predicted) nonresponders. Over the past few years, research
has focused on circulating tumor cells (CTCs) and the presence of CTCs was shown to predict
overall survival in patients with metastatic prostate cancer [78]. CTCs are cells that have shed from
the tumor and circulate in the bloodstream. To date, several assays and devices have been
developed to detect, analyze, and isolate CTCs from the blood, providing a method to monitor
therapy response in prostate cancer [79]. The level of CTCs after three courses of docetaxel
treatment was shown to predict overall survival of patients with CRPC. Patients with <5 CTCs/
7.5 ml blood had an overall survival of 25.0 months on docetaxel treatment compared with 10.5
months overall survival in patients with >5 CTCs/7.5 ml blood [80]. The predictive value of
pretreatment CTC levels as a measure for docetaxel response has not yet been addressed.

Prostate cancer cells can be further characterized (e.g., for the expression of AR splice variants)
and this information may be used to optimize treatment selection. Recently, AR splice variants
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were identified that display constitutive active AR signaling in a ligand-independent matter [81].
Importantly, prostate tumors expressing the AR-V7 splice variant appear to be unresponsive to
AR-targeting drugs [82]. Taxanes have also been described to (partially) exert their antitumor
activity via interference with AR signaling, and preclinical studies suggest that expression of AR-
V7 diminishes the antitumor activity of docetaxel [20,21]. It was found that the clinically relevant
AR splice variant ARv7 differentially associates with microtubules and the dynein motor protein,
thereby resulting in decreased taxane sensitivity in vitro and in vivo. Therefore, it may be that AR
variants in CRPC cells utilize distinct pathways of nuclear import that affect the antitumor efficacy
of taxanes, suggesting a mechanistic rationale to customize treatments for patients with CRPC,
which might improve outcomes [20].

However, the exact role of AR variants such as ARv7 in taxane resistance has remained elusive
since clinical studies revealed similar response rates upon taxane treatment in patients with AR-
V7-positive and AR-V7-negative CTCs [22,23]. Given that taxanes still result in clinical responses
in patients with AR-V7-positive CTCs, AR-V7 screening may be a valuable tool for treatment
selection (Figure 2).

Concluding Remarks
Although the introduction of taxanes in the clinic for the treatment of CRCP has led to advanced
overall survival, many challenges remain to improve its clinical utility (see Outstanding Questions).
A persisting obstacle is the ability of tumors to acquire resistance, but the exposure to docetaxel
may also introduce additional risks, because it yields more aggressive (highly metastatic) cells.
Despite the identification of targetable mechanisms of resistance, these efforts were arrested in a
preclinical stage. To further evolve these strategies, future efforts should focus on toxicology and
pharmacokinetic studies in animals, thereby paving the way for further clinical investigation in
patients with docetaxel-refractory CRPC.

Improving taxane-based chemotherapy

1
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reversing resistance
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response and adverse effects
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Figure 2. Strategies to Improve Taxane-Based Chemotherapy. The different strategies to improve taxane-based
chemotherapy encompass: (1) increasing the sensitivity and/or reversal of resistance; (2) the use of nanomedicine; and (3)
the prediction of therapy response and toxicity. Abbreviations: AR, androgen receptor; CSC, cancer stem cells; EMT,
epithelium–mesenchymal transition; GR, glucocorticoid receptor.

Outstanding Questions
Recent preclinical studies indicate
great therapeutic potential for the
reversal of taxane-resistance mecha-
nisms. Can these therapeutic strate-
gies also be applied in clinical practice?

Nanomedicine was shown to have the
potential to enhance antitumor efficacy
and reduce adverse effects of taxanes.
Do preclinical model systems ade-
quately represent the actual human sit-
uation (i.e., enhanced permeability and
retention effects, interstitial fluid pres-
sure, and microenvironment)?

To stimulate clinical translation of nano-
medicine, it is vital to carefully address
the toxicity of both excipient and drug-
loaded vehicles. Does the excipient
carrier on its own induce toxicity?

Does nanomedicinal encapsulation of
taxanes change the toxicity profile of
the drug by inducing altered tissue dis-
tribution, thereby potentially giving rise
to unexpected toxicities?
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Nanomedicine research in prostate cancer routinely addresses the critical balance between
antitumor efficacy and adverse effects (see Outstanding Questions). Typically, a reduction in
adverse effects was observed as a result of nanomedicinal formulation of taxanes, permitting
intensified treatment. In combination with an enhanced antitumor activity (due to increased
maximum tolerated dose allowing the administration of higher doses), this can lead to an
increased therapeutic index obtained by nanomedicinal encapsulation of taxanes. To date,
few taxane nanomedicine formulations have been introduced in the clinical setting. However, the
clinical evidence obtained strongly hints at therapeutic superiority over the conventional taxane
formulations, thus encouraging further efforts to develop nanomedical drug delivery systems for
the treatment of patients with advanced prostate cancer.

It is crucial to stratify patients who are eligible for novel and existing therapeutic agents and
protocols (see Outstanding Questions). This is especially important because cross-resistance
between chemotherapeutic drugs and AR-targeting drugs have been described. Therefore,
first-line treatment may undermine subsequent second-line treatment and this calls for careful
consideration of the sequence of treatments in CRPC [83,84]. The identification of reliable, easy-
to-use predictive markers will facilitate personalized treatment approaches (i.e., administration of
docetaxel if predicted to be effective; and enzalutamide, abiraterone acetate, or cabazitaxel as
alternative treatment options).

In conclusion, a broad range of strategies has been described that may lead to improvement of
taxane-based chemotherapy in CRPC. Further identification of proteins involved in taxane
resistance, the development of efficient and well-tolerated tumor-targeted nanomedicines,
and the establishment of appropriate biomarkers are expected to become of great benefit
to patients with CRPC.
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