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Classification with a disordered dopant-
atom network in silicon

Tao Chen1, Jeroen van Gelder1, Bram van de Ven1, Sergey V. Amitonov1, Bram de Wilde1,  
Hans-Christian Ruiz Euler1, Hajo Broersma2, Peter A. Bobbert1,3, Floris A. Zwanenburg1 & 
Wilfred G. van der Wiel1*

Classification is an important task at which both biological and artificial neural 
networks excel1,2. In machine learning, nonlinear projection into a high-dimensional 
feature space can make data linearly separable3,4, simplifying the classification of 
complex features. Such nonlinear projections are computationally expensive in 
conventional computers. A promising approach is to exploit physical materials 
systems that perform this nonlinear projection intrinsically, because of their high 
computational density5, inherent parallelism and energy efficiency6,7. However, 
existing approaches either rely on the systems’ time dynamics, which requires 
sequential data processing and therefore hinders parallel computation5,6,8, or employ 
large materials systems that are difficult to scale up7. Here we use a parallel, nanoscale 
approach inspired by filters in the brain1 and artificial neural networks2 to perform 
nonlinear classification and feature extraction. We exploit the nonlinearity of hopping 
conduction9–11 through an electrically tunable network of boron dopant atoms in 
silicon, reconfiguring the network through artificial evolution to realize different 
computational functions. We first solve the canonical two-input binary classification 
problem, realizing all Boolean logic gates12 up to room temperature, demonstrating 
nonlinear classification with the nanomaterial system. We then evolve our dopant 
network to realize feature filters2 that can perform four-input binary classification on 
the Modified National Institute of Standards and Technology handwritten digit 
database. Implementation of our material-based filters substantially improves the 
classification accuracy over that of a linear classifier directly applied to the original 
data13. Our results establish a paradigm of silicon-based electronics for small-
footprint and energy-efficient computation14.

Doping is a crucial process in semiconductor electronics, where impu-
rity atoms are introduced to modulate the charge carrier concentration. 
Conventional semiconductor devices operate in the band regime of 
charge transport, where the delocalization of the charge carriers gives 
rise to high mobility and a linear response to an applied electric field. 
At sufficiently low doping concentration and temperature9,15, however, 
delocalization is lost, and carriers move sequentially from dopant atom 
to dopant atom. This is referred to as the hopping regime10,11,16, which 
exhibits higher resistivity and nonlinearity. Nonlinearity is often unde-
sired, but it is a valuable asset for unconventional computing, that is, 
for systems that do not follow the Turing model of computation6–8,17–19. 
Rather than excluding nonlinearity, we can exploit it12 and manipulate 
our physical system with artificial evolution to solve computational 
problems17. This evolution in materio has been used, for example, for 
frequency distinguishing by liquid crystals18 and robot control with 
carbon nanotubes19. We recently showed that a disordered network of 
gold nanoparticles acting as single-electron transistors can be evolved 

into any Boolean logic gate at sub-kelvin temperatures12. By exploiting 
the physics of materials for computation at the nanoscale through 
evolution, we may realize systems with unprecedented computational 
density and efficiency that are too complex to design20.

Here, we fundamentally advance our previous work12 by expanding 
the functionality, exploiting the well established platform of silicon 
technology and demonstrating operation up to room temperature. 
According to Cover’s theorem4, complex, linearly inseparable classi-
fication problems, when nonlinearly and sparsely mapped to a higher-
dimensional space, can transform into linearly separable problems. 
The essence of this nonlinear mapping is illustrated in Fig. 1a for the 
XOR classification problem. To save resources, this projection is often 
done implicitly by using kernel functions in machine learning, that is, 
without explicit computation of high-dimensional coordinates3. In 
artificial neural networks (ANNs), the nonlinear projection is learned 
by adjusting internal weights, traditionally through back-propagation, 
leading to powerful feature extractors2. However, emulating ANNs with 
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conventional complementary metal–oxide–semiconductor (CMOS) 
technology is known to be power-inefficient21, and CMOS scaling is 
not keeping pace with ANNs14. To avoid the area and power costs of 
emulating neurons and synapses, reconfigurable2 material systems 
with intrinsic complexity and diversity of nonlinear operations6,22,23 
are strongly sought after.

Our system consists of a disordered network of boron dopants in sili-
con (Si:B) and is illustrated in Fig. 2a, b. The boron atoms were implanted 
in n-type silicon with a concentration of 2 × 1019 cm−3 at the surface 
(Methods, Extended Data Fig. 1). A 300-nm-diameter active region 
was defined by eight electrodes. The central silicon region was etched 
(about 80 nm deep) so that the boron concentration at the receded sur-
face was reduced to about 5 × 1017 cm−3, as confirmed by secondary-ion 
mass spectroscopy. The current–voltage (I–V) characteristics (Fig. 2c, 
Extended Data Fig. 2) become increasingly nonlinear with decreasing 
T, and can be modelled as electric-field-activated hopping conduc-
tion at low temperatures (Supplementary Notes 1, 2). The network’s 
potential landscape (Fig. 1b) depends in a highly nonlinear way on the  
input and control voltages, and spans a high-dimensional space.  
The output current is determined by this complex potential landscape. 
The nonlinear projection is realized when a combination of two or more 
input voltages is converted to an output current.

To identify the charge transport regimes, we focus on the low-bias 
conductance11 G I V= d /d |VD SD =−10 mVSD

, where ID is the drain current and 
VSD is the source–drain voltage:

G T G G( ) = e + e (1)ε k T T T
b

(− / )
h

−( / )p
b B h

where the first term describes band (b) conduction and the second 
term describes hopping (h) conduction. Gb and Gh are pre-factors with 
a much weaker temperature (T) dependence than the exponential 
terms, εb is the dopant ionization energy, Th is a characteristic tem-
perature of hopping conduction and kB is the Boltzmann constant. The 
exponent p depends on the specific hopping model11. The resistance 
R = 1/G as a function of inverse temperature 1/T is shown in Fig. 2d. At 
T > 250 K, hole-band conduction dominates. The extracted εb is about 
130 meV, three times larger than the value of boron in bulk silicon, 
about 45 meV. We attribute this increased ionization energy to dopant 
deactivation24,25: for hydrogen-like dopants near the silicon surface, 
the decreased dielectric screening leads to stronger electron confine-
ment, and therefore a larger ionization energy.

We adopt the method proposed by Zabrodskii et al.15 to distinguish 
the hopping regime and extract p (Methods). For 70–160 K, we find 
p = 0.342 ± 0.023, in agreement with p = 1/3 predicted for two-dimen-
sional Mott variable-range hopping (Mott-VRH)11,26 (Fig. 2e). The two-
dimensional nature implies that the dopants participating in transport 
are located close to the silicon surface, because the hopping resistance 
increases exponentially with inter-dopant distance11, which is low-
est near the surface. This is consistent with the dopant deactivation 
observed in the band-conduction regime. Above about 160 K, band con-
duction starts to contribute, becoming dominant above about 250 K.

To demonstrate classification in the hopping regime (Supplementary 
Notes 3–7), we followed the evolutionary approach of ref. 12 (Methods) 
and configured the system into Boolean logic (Fig. 3a–c, Extended Data 
Figs. 3–5) at 77 K. The working-temperature window for a set of control 
voltages (about 30 K) is approximately 15 times wider than in our previ-
ous nanoparticle system12 (about 2 K). The retention period of the gates 
is over two months in liquid nitrogen, and the device characteristics 
remain virtually unchanged after thermal cycling, indicating the robust-
ness of the dopant network. Boolean logic represents a prototypical 
two-input binary classification problem3, and the XOR classification 
problem is a poignant example of a single-layer perceptron’s inability 
to solve problems with linearly inseparable vectors27. Hence, solving 
the linearly inseparable X(N)OR problem demonstrates the system’s 
separation ability3,22,23 (Fig. 1a).

As realizing all Boolean logic gates with a standard ANN requires at 
least one hidden layer of two neurons3 (corresponding to nine linear 
and three nonlinear operations), our dopant network can be considered 
to emulate at least such a neural network in hardware (Fig. 3d). Impor-
tantly, the dopant network has only a 300-nm-diameter footprint and 
an average power consumption of about 1 μW (Methods). Using estab-
lished monolithically integrated readout circuits (Methods, Extended 
Data Fig. 6), the bandwidth of the readout circuitry can be increased 
from 40 Hz in our current setup to over 100 MHz. With optimization 
(Methods and Supplementary Note 8), the energy efficiency of the 
dopant network at 77 K is projected to exceed 100 tera-operations 
per second per watt (TOP s−1 W−1, where OP is one typical linear operation 
of a neural network28), one order of magnitude higher than a state-of-
the-art customized CMOS neural network accelerator29 (Supplemen-
tary Notes 8, 9, Extended Data Fig. 7b).

To investigate the correlation between the functionality of our 
devices and the transport mechanism, we performed random searches 
with 10,000 sets of control voltages as a function of temperature. We 
define the total abundance A, representing the overall probability 
of finding Boolean logic, with two fitness F thresholds for each logic 
gate12 (Methods). For both fitness thresholds F > 1, 2, the total abun-
dance drops to below 5% when band conduction sets in at around 
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Fig. 1 | Simplifying classification by nonlinear projection. a, In the XOR 
classification problem two classes of data (red circles for (1,0), (0,1) and blue 
squares for (0,0), (1,1)) cannot be linearly separated in two dimensions (x1, x2; 
left). When nonlinearly transformed to three dimensions (φ1,  φ2,  φ3; middle), 
the data can be linearly separated according to their distances d (right) to a 
decision boundary (yellow plane in the middle panel). b, Schematic 
representation of the potential landscape of the dopant network. In the 
hopping regime, the potentials of N dopants (purple spheres) span a high-
dimensional feature space. Yellow spheres represent charge carriers. The 
voltage–time (V–t) diagrams on the left schematically show the voltage 
combinations applied to the input electrodes (red), affecting the potential 
landscape and projecting information nonlinearly to the feature space. Note 
the difference between the potential landscapes in the top and bottom panels 
for different input voltages. The characteristics of the output current (yellow 
electrode) are tunable by the control voltages (grey electrodes).
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160 K (Fig. 3e). Hence, functionality is highly correlated to the hop-
ping regime.

Led by this correlation, we tried to increase the operating tempera-
ture by suppressing band conduction. With increasing temperature, 
dopants near the p–n junction (Fig. 2b) are expected to be ionized first, 
as they are less subject to deactivation than dopants far away from 
the junction. By depleting the junction using a backgate, we indeed 
observe nonlinearity, and can evolve all six major logic gates at room 
temperature (Fig. 3f, Extended Data Fig. 8). The confirmed correlation 

between functionality and the charge transport mechanism can serve 
as a guiding tool towards robust functionality at room temperature.

To demonstrate the ability of our device to perform more compli-
cated classification tasks, we performed four-input binary classification 
in the form of filtering 16 2 × 2 black (1) and white (0) pixel features, as 
shown in the inset of Fig. 4a. The four pixel values are encoded as four 
input voltages to our dopant network, together with three control 
voltages and one output current. We use the three control voltages to 
evolve a single network into 16 different filters at 77 K. Each filter should 
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Fig. 2 | Device structure and charge transport 
mechanism. a, Scanning electron microscope 
image, indicating the source (S) and drain (D) 
contacts for I–V measurements. b, Schematic cross-
section, illustrating the doping profile and the p–n 
junction (yellow dashed line). c, I–V characteristics at 
different temperatures (T) showing nonlinear 
behaviour below about 250 K. d, Resistance R versus 
inverse temperature at VSD = −10 mV. Band transport 
is observed for 250–295 K (indicated by the red line in 
the main figure and the inset, which shows the high-T  
region). e, Logarithmic derivative of the low-bias 
conduction G with respect to T. The linear segment 
for 70–160 K indicates hopping conduction (blue 
line). Inset, semi-logarithmic plot of R versus 1/T1/3, 
indicating two-dimensional variable-range hopping 
for 70–160 K (blue line) with Th = 7.7 × 104 K, falling 
well within the range reported for Mott’s VRH 
model16.
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Fig. 3 | Evolution of Boolean logic. a, Schematic electrode configuration, 
indicating input voltages (Vin1, Vin2), control voltages (Vc1–Vc5) and output 
current (Iout). b, Input waveforms. The logic 0 and 1 are represented here by two 
different voltages, 0 V and 0.5 V, respectively (see also Supplementary Note 6). 
c, Major Boolean logic gates at 77 K (experimental current values in red, desired 
output normalized to the experimental data in black). We reproduced all 
Boolean logic gates in seven devices. d, ANN with two hidden neurons (green 

filled circles) emulated by the dopant network device. The ANN requires six 
(linear) weight multiplications, three (linear) summations and three 
(nonlinear) activations. e, Total abundance of logic gates (defined in Methods) 
as a function of temperature. The dashed line marks the onset of band 
conduction. The blue and red curves correspond to fitness thresholds of F > 1 
(noise level) and F > 2, respectively. f, XOR and XNOR gates evolved at room 
temperature with a backgate voltage of about 12 V.
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make one of the 16 features distinguishable from all the others, which is 
realized by evolving the dopant network such that it yields the maximal 
or minimal output current for that specific feature (Fig. 4a, Extended 
Data Fig. 9). If we feed a feature to a group of 16 filters, each of which 
distinguishes one feature, then the 4-dimensional data are mapped to 
a 16-dimensional vector, and each feature vector is separated from the 
others in one of the dimensions (Supplementary Note 9).

Our approach allows the separation of data by evolving filters that 
are capable of processing data in parallel and with high throughput. 
Compared with optical networks, which also allow parallel processing, 
our dopant networks feature tunability and have much smaller dimen-
sions: about 100 nm instead of centimetres7.

Taking advantage of the separation ability of our nanomaterial 
system, we used the evolved filters as the core ingredient to classify 
the Modified National Institute of Standards and Technology (MNIST) 
digits13. The whole classification procedure consists of a feature map-
ping layer of the evolved filters inspired by the convolutional neural 
network2, followed by a linear classifier in a traditional computer, 
which can in principle also be realized in materio30 (Fig. 4b). The 
28 × 28 greyscale pixels of each MNIST digit are converted to black 
and white using a threshold and divided into 2 × 2 pixel receptive fields 
(overlapping in one row/column with neighbours). The receptive 
fields feed their signal to the cluster of 16 filters, each filtering out 
one of the features. The (28 × 28)-dimensional MNIST data are hence 
mapped onto (27 × 27 × 16)-dimensional feature vectors. The linear 
classifier then converts these high-dimensional feature vectors to 
a 10-dimensional output by a weight matrix MW (Fig. 4b), obtained 
by pseudo-inverse learning31 with the 60,000 MNIST training data 
(Methods). The largest of the ten outputs finally determines the rec-
ognized digit.

Application to 10,000 test digits shows 96.0% accuracy (Fig. 4c, Sup-
plementary Note 9, Extended Data Fig. 10), which is better than the 
accuracy obtained with state-of-the-art physical reservoir computing8 
and optical networks7. We note that differences in the output current 
scales of the different filters are irrelevant, because the weight matrix 
will automatically compensate for those (Supplementary Note 9). We 
also simulated feature filters with ideal characteristics, which are only 
activated when presented with its corresponding feature (output 1 
for target feature and 0 otherwise). The classification of the MNIST 
dataset with these ideal filters results in an accuracy of 96.2%. There-
fore, as long as the data mapped to the feature space are sufficiently 
separated, a linear classifier can learn the decision boundaries. The 
underlying reason is that every complete set of independent vectors, 
be it orthogonal (ideal) or not, can represent other vectors by linear 
combination. This shows the power of our dopant network in making 
data linearly separable, owing to its intrinsic nonlinear transformation. 
The ability to separate data, when combined with an adaptable linear 
readout in a scaled-up system, can achieve universal computational 
power8,22,23. For instance, in ANNs, perceptrons can be cascaded to 
solve more complex problems3. This analogy strongly suggests that a 
system of interconnected dopant networks can address a much wider 
range of tasks, particularly because the computational power of a single 
dopant network is larger than that of a single perceptron (it can solve 
XNOR whereas a single perceptron cannot).

At the system level, we anticipate a number of necessary develop-
ments. First, the total evolution time of the filters, which scales linearly 
with their number, can be reduced (by a factor 106; Methods and Sup-
plementary Notes 7, 8). Besides competitive evolutionary approaches32, 
we will also explore gradient-based methods33. Second, it will be highly 
advantageous to store the evolved control voltages locally, employing, 
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Fig. 4 | Feature filtering and handwritten digit classification. a, Current 
response of one of the 16 filters. The 2 × 2 pixel black/white patterns (inset) are 
represented by ‘0000’, ‘0001’, …, ‘1111’, with black (1) and white (0) mapped to 
input voltages 0.5 V and −0.5 V, respectively. The output current of this filter is 
maximal when the ‘1011’ pattern is presented. Error bars represent the standard 
deviation of ten tests. b, Feature mapping for digit recognition. Specific filters 
are activated (bold dark squares) depending on the features presented to them. 

For clarity, most of the 27 × 27 × 16 filters are not shown. The output of the filters 
is obtained from the experimental data shown in a and Extended Data Fig. 9. 
The ten output nodes, representing digits 0 to 9, are connected to the filters 
through a weight matrix MW of a linear classifier. c, Confusion matrix of 
classification with the 10,000 MNIST test dataset, showing that 96.0% of the 
digits are correctly classified.
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for example, memristors30 (Supplementary Note 8). Third, memristive 
technology is also suitable for in materio implementation of the linear 
classification step in our scheme with energy efficiency comparable to 
our material-based nonlinear feature filters. Fourthly, processing ana-
logue instead of binary signals would be more natural for our devices. 
To filter more complex, non-binary features, such as edge detection 
by the brain1, more electrodes per device are needed and/or multiple 
devices need to be interconnected, so that more input signals can be 
processed in parallel. This will also allow for more control voltages per 
filter (at present, three) to improve the signal-to-noise ratio. Lastly, for 
practical applications, room-temperature operation with long reten-
tion, low-voltage supplies and without a backgate is desired, which we 
deem possible by engineering the deactivation effect in a silicon-on-
insulator-based system.

Our silicon-based system provides a powerful platform for carry-
ing out machine learning tasks in hardware. By material learning, we 
harness the intrinsic nonlinearity and tunability of a nanomaterial 
system to efficiently realize functional tasks without the need to design 
circuitry for the underlying elementary operations. The small foot-
print and silicon-compatible fabrication process facilitates scaling 
up for massively parallel, high-throughput information processing 
platforms for complex computational tasks. Whereas the random-
ness and discreteness of dopants pose challenges on conventional 
silicon electronics, we have presented a computational paradigm that 
takes full advantage of these properties. When integrated with other 
technologies, complex classification problems can be solved fully in 
materio, potentially achieving ultrahigh computational density and 
energy efficiency14.
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Methods

Samples
300 nm of thermal oxide was grown on an n-type silicon substrate 
(Extended Data Fig. 1a), in which 26 × 60 μm2 implantation windows 
were defined by photolithography and wet etching. Another 35 nm 
of oxide was thermally grown in the implantation window to serve 
as a stopping layer (Extended Data Fig. 1b). After boron implantation 
(9 keV equivalent, 3.5 × 1014 cm−2), and activation via rapid thermal 
annealing (1,050 °C, 7 s; Extended Data Fig. 1c), the 35-nm stopping 
layer was removed by wet etching. The boron concentration near the 
silicon surface exceeds 2 × 1019 cm−3 to ensure Ohmic contact with the 
electrodes, and decreases monotonically with depth (Extended Data 
Fig. 1h). After lift-off of the wire-bonding pads (1.5 nm Ti/40 nm Pd) 
defined by photolithography (Extended Data Fig. 1d), eight 1.5 nm 
Ti/40 nm Pd nanoelectrodes were patterned on top of the silicon by 
electron-beam lithography (Extended Data Fig. 1e). The devices were 
annealed at 160 °C for 10 min to promote the metal/silicon contact 
quality. The silicon surface was further etched by reactive ion etching 
to reduce the boron concentration in the active gap area (Extended 
Data Fig. 1f, g; see also Supplementary Note 6). The surface was finally 
treated with mild oxygen plasma, followed by 1% HF etching to remove 
possible contaminants.

Charge transport
Following Zabrodskii et al.15, we introduce the logarithmic derivative 
w = d(logG)/d(logT). From equation. (1), we see that if the hopping term 
G e T T

h
−( / )p

h  dominates, logw ≈ logp + p(logTh − logT), and p can be derived 
from the slope of the logw–logT curve (Fig. 2e), thus allowing us to 
identify the exact hopping conduction model. For T < 70 K, the meas-
urement noise level prevents unambiguous identification of the charge 
transport mechanism (Fig. 2d), but probably VRH continues34. The 
charge transport behaviour described in the main text has been 
observed in the two devices we characterized.

Measurements
We conducted the charge transport measurements and evolution of 
logic gates at different temperatures in a customized flow cryostat. 
The cryostat is equipped with 12 coaxial cables to reduce capacitive 
cross-talk. We use a battery-powered electronics rack (IVVI rack and 
matrix rack; http://qtwork.tudelft.nl) composed of digital-to-ana-
logue converters (DACs) and I/V converters for low-noise measure-
ments (Extended Data Fig. 6). The output range of the DACs is from 
−2 V to 2V. The I/V converter has four amplification settings, 1 GΩ, 
100 MΩ, 10 MΩ and 1 MΩ, each corresponding to a different meas-
urement range. For measurements at cryogenic temperatures, 1 GΩ 
amplification is chosen as default, by which currents from −3.4 nA to 
3.4 nA can be measured. The output of the I/V converter is sampled 
by a multimeter (Keithley 2000) or digitizer (ADwin-Gold II). For 
room-temperature evolution, the I/V converter amplification is set 
to 10 MΩ, resulting in a current measurement range from −340 nA to 
340 nA. The measurements are automated with either LabVIEW or 
Python scripts. For fixed-temperature measurements, the devices 
were inserted into a liquid-helium (4.2 K) or liquid-nitrogen (77 K) 
dewar with a customized dipstick.

Readout speed
In our system, the relaxation time of hopping conduction is less than 
10 ns at 77 K and even smaller at higher temperatures (Supplementary 
Note 8), so it is not the dominant timescale in our present devices. Like 
in all measurements on resistive devices35, the readout speed of our 
dopant networks is constrained by a large capacitive load (Extended 
Data Fig. 6b). The long, twisted pairs (about 3 m) as well as the filters of 
the matrix rack amount to a large load capacitance CL (about 4 nF) that 
limits the signal speed. With the existing setup, we have a bandwidth 

(cutoff frequency of the resistor–capacitor (RC) circuit in Extended 
Data Fig. 6b)

πC R R
BW =

1
2 ( || )

≈ 40 Hz
L out IV

where RIV = 1 MΩ is the input resistance of the I/V converter at 1 GΩ 
amplification, and the dopant network output resistance Rout is typi-
cally hundreds of MΩ (Extended Data Fig. 7d).

By monolithically integrating a transistor-based readout circuitry 
close to the dopant network35 (Extended Data Fig. 6c), we can reduce the 
capacitive load for fast readout, and also enable interconnection with 
other devices. With existing CMOS technology, the load capacitance 
can be easily reduced to below 1 fF, and the RC-related bandwidth can 
reach 160 MHz, or even more, by reducing RIV.

Given a signal intensity (the difference between high and low output 
current levels; see ‘Fitness functions’ below), the signal-to-noise ratio 
(SNR) is predominantly set by the Johnson–Nyquist noise from RIV, 
because its noise power is proportional to the bandwidth. Therefore, 
for a required SNR (computation precision), the bandwidth and the 
subsequent energy efficiency, are determined by the signal intensity 
(Supplementary Note 8). The signal intensity of our devices ranges from 
the order of 0.1 nA to the order of 1 nA (Supplementary Note 6), thus 
allowing over 100 MHz bandwidth (Extended Data Fig. 7a).

Fitness functions
For Boolean logic gate evolution, the input sequences, representing 
the four input entries of truth tables (Fig. 3b), were fed to the input 
electrodes (Fig. 3a) after the control voltages were set. We monitored 
the output current waveform Y  and fitted it with Y mX C= + , where X  
is the expected output waveform of a logic gate (logic high and low 
taking numerical values of 1 and 0, respectively). m is the proportion-
ality factor and its value thus equals the separation of the high and low 
levels (signal intensity). C represents the offset. For each set of control 

voltages, a fitness is evaluated by ( )F m r kC= / +ss , with rss being the 
fitting residual12 and k an empirical constant. A larger k puts more 
emphasis on minimizing the offset C in the evolution process. For the 
evolution of logic gates, we found that there is minimal offset for k = 0.2 
(Fig. 3c). In the random search of logic gates at different temperatures, 
k has been set to 0.01 to give the waveform shape more weight than 
the offset. Then, a fitness value of F = 1 implies that the signal intensity 
(related to m) almost equals the noise intensity (related to rss ), and a 
fitness value of F = 2 corresponds to more robust logic gates. Based on 
the fitness, we define the abundance of each gate. For the 10,000 out-
put waveforms from a random search, we assessed the fitness of each 
output waveform for six major logic gates. In this way, each logic gate 
is associated with 10,000 fitness values. The abundance of a gate Ai 
(where i is AND, OR, NAND, NOR, XOR, XNOR) is defined as the number 
of fitness values larger than a threshold, divided by 10,000. The total 
abundance is then defined as A A= 1/∑ (1/ )i i . The fitness function for 
the feature filter evolution was defined as F = |Iout,i|/[avg(|Iout,j≠i|) + std(I
out,j≠i)], where Iout,i is the output current corresponding to feature fi, and 
avg and std stand for the average and standard deviation, respectively, 
of all the other feature outputs Iout,j≠i. Here, i runs from 1 to 16.

Genetic algorithm
The genetic algorithm mimics natural evolution. An initial generation 
of 20 genomes, with the length of each genome equal to the number of 
control electrodes, is first randomly generated and mapped to control 
voltages. The fitnesses of the 20 genomes are evaluated and ranked. 
Then the off-spring generation of 20 genomes is produced in the fol-
lowing way: (1) inheriting the five elite genomes (with highest fitnesses) 
from the previous generation; (2) cross-breeding of the elite genomes to 
produce five off-spring genomes; (3) mutation of the five elite genomes 

http://qtwork.tudelft.nl


by a probability of 0.1, then cross-breeding with the five elite genomes 
to generate five other genomes; (4) cross-breeding of the five elite 
genomes with five random genomes to generate five other genomes. 
The genetic algorithm keeps iterating until it reaches a satisfactory 
fitness value (Extended Data Fig. 4a; see also Supplementary Note 7). 
A more detailed description of the evolution procedure is given in our 
previous work12.

Power consumption
To estimate the power consumption and energy efficiency of our device, 
we measured the static power consumption of the six major Boolean 
logic gates for four different input voltage combinations, so in total 
24 configurations. To measure the current of the ith (i running from 1 
to 8) electrode, the voltage Vi (current Ii) is set (measured) by a source 
meter (Keithley 2401), while the voltages on the other electrodes are 
set by either the DACs (control voltages and input voltages) or an I/V 
converter (output electrode). For each of the 24 configurations, the 

total power P is calculated as P V I= ∑i i i=1
8 . The average power of the 24 

configurations is found to be about 1 μW. Under operational conditions, 
the voltage changes on the electrodes are accompanied by charging 
and discharging of wire capacitances. As mentioned above (‘Readout 
speed’ section), the capacitances can be reduced to below 1 fF, making 
the dynamical power consumption negligible compared with the static 
power consumption. The static power consumption could be substan-
tially reduced by using electrostatic electrodes (see also Supplementary 
Note 8).

Weight matrix training and test
In the digit classification task, each 28 × 28 pixel digit is divided into 27 × 27 
receptive fields of 2 × 2 pixels, overlapping by one row/column of pixels. 
The pixels of each receptive field are mapped to the 4 inputs of 16 filters 
(with their experimentally determined response), each of which  
filters 1 of the 16 distinctive 2 × 2 pixel features shown in the inset of 
Fig. 4a. For the dth digit in the Nd = 60,000 MNIST training database, we 
stack the Nf = 27 × 27 × 16 = 11,664 outputs of the filters in a feature vec-
tor O ⋯O O= ( , , )d d d N,1 , f

. Combining the vectors Od of 60,000 training 
digits together, we obtain an Nd × Nf output matrix O O O⋯= ( , , )N1

T
d

.
The true label of each digit is represented by a ten-dimensional label 

vector Ld, whose elements are all zeros except for the (l + 1)th entry 
being 1, where l ∈ {0, …, 9} is the true label of the dth MNIST digit.  
Ideally, the weight matrix MW converts the feature vector of a digit to 

its corresponding label vector OdMW = Ld. So, in matrix form, OMW = L, 
where L L L⋯= ( , , )N1

T
d

. The weight matrix MW has a dimension of Nf × 10, 
and is simply obtained by MW = O+L, where O+ is the pseudoinverse of 
matrix O. Once the weight matrix is trained, we test it with the 
Nt = 10,000 MNIST test data. The feature vector of each test digit Ot, 
(t = 1, …, Nt), is multiplied by the weight matrix to acquire the predicted 
label vector Pt, OtMW = Pt.

The index of the maximal element of Pt minus one gives the predicted 
label. The accuracy is calculated as the ratio of the total counts of the 
correctly classified digits, that is, the sum of diagonal entries in Fig. 4c, 
to the total number of test digits Nt.

Data availability
Data are available from the corresponding author upon reasonable 
request.
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Extended Data Fig. 1 | Fabrication steps and dopant concentration.  
a, Thermal oxidation. b, Implantation window definition and growth of 35 nm 
oxide. c, Ion implantation. d, Photolithography and contact pads lift-off.  
e, Electron-beam lithography and nanoelectrodes lift-off. f, Reactive ion 
etching (RIE) of silicon. g, Height profile of the metal electrodes with respect to 
silicon before (black) and after (red) RIE etching. The etch depth of silicon is 
estimated by measuring the height change of the metal electrodes with respect 

to the silicon surface (indicated by the black line on the atomic force 
microscopy image in the inset, not to scale). Assuming that the metal is not 
etched by RIE, the etch depth of silicon is around 83 nm. h, Secondary ion mass 
spectroscopy of the boron dopant depth profile after implantation. On the 
basis of the etch depth, the boron concentration near the recessed silicon 
surface is of the order of 5 × 1017 cm−3.



Extended Data Fig. 2 | Nonlinear and tunable hopping conduction. a, I–V 
characteristics at 4.2 K with different total etching time by RIE. As the total 
etching time increases, the nonlinearity becomes increasingly prominent, 
signalling the dominance of hopping conduction. b, Drain current versus 
control voltage for constant source–drain voltage VSD = 1.2 V at 4.2 K. The 
source (S), drain (D) and control (C) electrodes are shown in the inset. The 
hysteresis for negative gate voltage is probably due to charging of the other 
five floating electrodes. c, Schematic plot of electrochemical potential µ 

versus position r, illustrating the tunability. The solid lines represent impurity 
states and the arrows represent hopping of carriers among states. See 
Supplementary Note 3 for detailed discussion. d, Fitting the temperature-
dependent I–V curves with the model described by equation (2) in 
Supplementary Note 2. Black dashed lines represent the fitted curves.  
e, Conductance versus the reciprocal of the cube root of the source–drain 
voltage at different temperatures. The black circle groups data at temperatures 
below 140 K. See also Supplementary Note 2 for more discussion.
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Extended Data Fig. 3 | Evolved logic gates at 77 K. a, Abundance plot of 14 non-
trivial truth tables at 77 K. From a search with 10,000 sets of randomly 
generated control voltages, we found all 16 possible truth tables that can be 
realized for a two-input–one-output configuration. b, Thermal stability of a 
NAND gate evolved at 77 K. Above 140 K, the output current clipped to 
compliance, and therefore the fitness was not extracted. The error bars 
represent the standard deviation of ten tests (see also Supplementary Note 4). 

c, Boolean logic gates evolved at 77 K in a device other than the one in Fig. 3c. 
Red circles are experimental output currents, and black lines represent the 
normalized desired output currents. The left six panels show the six major 
logic gates evolved with input voltage levels 0 V and 0.5 V. The right two panels 
show a NAND and a XNOR gate evolved with input voltage levels of −0.25 V and 
0.25 V, showing the adaptability of the dopant network to different voltage 
levels (see also Supplementary Note 6).



Extended Data Fig. 4 | Convergence of genetic algorithm in the 
configuration space. a, Genetic algorithm convergence for the six major 
Boolean logic gates at 77 K. The best fitness of the 20 genomes is plotted 
against generation. b, Histograms of the control voltages that configure the 
dopant network to the XNOR gates with fitness F larger than 1.5. The first 
control voltage is prominently concentrated in a small range, but the others do 

not show a favourite range. The ranges of the five control voltages are (−600, 
600), (−1,200, 1,200), (−1,200, 1,200), (−1,200, 1,200) and (−600, 600).  
c, Control voltages for the six major logic gates. d, Control voltages for the 16 
filters, which are visualized in e. The filters ‘0110’ and ‘0010’ have the smallest 
separation. See Supplementary Notes 3 and 7 for more discussion.
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Extended Data Fig. 5 | Evolution of logic gates at two ends of hopping 
conduction. a, Evolved logic gates at 4.2 K, at which the charge transport 
mechanism is still VRH (Methods). b, Evolved logic gates at 140 K. Red circles 

are experimental output currents and black lines represent the normalized 
desired output currents. See Supplementary Note 5 for a detailed discussion.



Extended Data Fig. 6 | Measurement setup. a, Schematics of the existing 
measurement setup. b, Equivalent circuit of the current measurement setup. 
Iout and Rout represent the output current and output resistance of the device. CL 
is the parasitic capacitance of about 4 nF. RIV and RF are the input resistance and 

feedback resistance of the I/V converter, respectively. c, Schematic of an 
integrated high-speed current reading circuit. Here, RIV is a resistor to convert 
current to voltage, CL is the parasitic capacitance that can be reduced to below 
1fF. RO is a resistor that sets the amplification.
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Extended Data Fig. 7 | Bandwidth and energy efficiency scaling. a, The 
scaling of allowed bandwidth with signal intensity in a log–log plot. The back, 
blue and red solid lines represent three different indicated cases. Larger 
required SNR (red) and smaller RIV (blue) lower the bandwidth. The horizontal 
black dashed line represents the limit set by the hopping relaxation time at 
77 K, which increases with temperature. b, The scaling of equivalent energy 
efficiency with signal intensity in a log–log plot. Larger SNR (red) and smaller 
RIV (blue) lowers the energy efficiency. The horizontal black dashed line 
represents the limit at 77 K and fixed power consumption. If the dopant 
network power consumption is lowered, then the limit and all three scaling 
trends shift upwards. The three black dotted lines mark three representative 

computational technologies, the most energy efficient high-performance 
computer36, the neural network (NN) accelerator29 and memristors37 
(Supplementary Note 8). c, Current flow pattern of a NAND gate (NAND10 in d) 
with inputs 500 and 0 mV. There is a large parasitic current flowing from input 1 
to control electrode 2 (black curved arrow). This parasitic current limits the 
energy efficiency. This can be solved by using electrostatically coupled 
electrodes (Supplementary Note 8). d, Measured power consumption of a 
NAND gate for the four input combinations. The standard deviations in the 
current are calculated from ten measurements. The differential resistances Rdiff 
are measured around the voltages in the second column.



Extended Data Fig. 8 | Backgate-induced nonlinearity and evolved logic 
gates at room temperature. a, A positive voltage VSub with respect to the drain 
voltage is applied to the n-type substrate (Fig. 2b) to make the depletion region 
wider at the p–n junction, and to suppress the band conduction. b, Evolved 
gates at room temperature. Red circles are experimental outputs, and black 
lines represent the normalized desired outputs. The output current levels, and 
also the separation between these levels, are more than one order of magnitude 
larger than those of the logic gates evolved at 77 K, owing to the increased 
hopping conductance (Supplementary Note 3). The increased noise intensity is 
mainly due to the settings of the current measurement circuit (Methods).
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Extended Data Fig. 9 | Experimental response of the 16 filters. Each of them is 
evolved to filter the feature given in blue. The output currents corresponding 
to features other than the desired one are not zero, but the output current of 

the targeted feature is clearly separated from the other currents. Error bars 
represent the standard deviation obtained from ten tests.



Extended Data Fig. 10 | Enhancing robustness of the linear classifier against 
noise. Besides optimizing the SNR, the linear classifier’s tolerance to noise can 
also be increased by taking noise into account during the training phase. The 
accuracy remains over 92% at 0.05 nA noise amplitude (see Supplementary 
Note 8 for a detailed discussion).
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