
On the Impact of Clustering for IoT Analytics and Message
Broker Placement across Cloud and Edge
Daniel Happ

happ@tkn.tu-berlin.de
Technische Universität Berlin, Germany

Suzan Bayhan
s.bayhan@utwente.nl

University of Twente, The Netherlands

ABSTRACT
With edge computing emerging as a promising solution to cope
with the challenges of Internet of Things (IoT) systems, there is an
increasing need to automate the deployment of large-scale applica-
tions along with the publish/subscribe brokers they communicate
over. Such a placement must adjust to the resource requirements of
both applications and brokers in the heterogeneous environment
of edge, fog, and cloud. In contrast to prior work focusing only on
the placement of applications, this paper addresses the problem
of jointly placing IoT applications and the pub/sub brokers on a
set of network nodes, considering an application provider who
aims at minimizing total end-to-end delays of all its subscribers.
More specifically, we devise two heuristics for joint deployment
of brokers and applications and analyze their performance in com-
parison to the current cloud-based IoT solutions wherein both the
IoT applications and the brokers are located solely in the cloud.
As an application provider should consider not only the location
of the application users but also how they are distributed across
different network components, we use von Mises distributions to
model the degree of clustering of the users of an IoT application.
Our simulations show that superior performance of our heuristics
in comparison to cloud-based IoT operation is most pronounced
under a high degree of clustering. When users of an IoT application
are in close network proximity of the IoT sensors, cloud-based IoT
unnecessarily introduces latency to move the data from the edge
to the cloud and vice versa while processing could be performed at
the edge or the fog layers.

1 INTRODUCTION
Internet-of-Things (IoT) systems have evolved from single-sensor
systems serving a single user to complex systems collecting a mas-
sive volume of data frommultiple sensors. The value of this network
enfolds when deriving a deeper understanding of our surroundings
by processing the collected multimodal data. Use cases benefiting
IoT data analytics are broad, e.g, forest fire detection [13], smart city
video analytics [1], smart manufacturing [17], or step counting in
the health domain [15]. With this change and increasing complexity
of IoT systems, there is a need to reconsider the current practice of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EdgeSys ’20, April 27, 2020, Heraklion, Greece
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7132-2/20/04. . . $15.00
https://doi.org/10.1145/3378679.3394538

P1

S1

P2S2
S

2S2

Cloud Layer

Fog Layer

Edge Layer

High degree of clustering for IoT publisher P1 Low degree of clustering for publisher P2

Figure 1: IoT publishersmight have their subscribers in their
close proximity with a high degree of clustering as for Pub-
lisher 1 or the subscribersmight be uniformly distributed as
for Publisher 2.

cloud-based IoT deployments in which sensors communicate exclu-
sively with a cloud backend and all further processing is offloaded
to the cloud [17].

Today, sensor data is often sent to a cloud-based service tier,
which distributes the data to interested end-users and value-added
services. However, cloud-based IoT solutions suffer from several
shortcomings. First, many applications such as Augmented Real-
ity (AR) are sensitive to the latency introduced by relaying data
and processing over the cloud [12, 21]. Additionally, the upstream
bandwidth required for sending raw data might prohibit this ap-
proach where no broadband connection is available and alternative
technologies, e.g. cellular data links, have to be used. Other short-
comings of the cloud-based approach include unknown or ambigu-
ous privacy policies [17]. Last but not the least, it is undesirable
from the perspective of the network operators to transfer the high
volume of IoT data to the cloud while they are already facing the
challenge to serve an increasing amount of network traffic, referred
to mostly as data tsunami.

To mitigate the above-listed shortcomings, the emerging fog-
centered architecture [2, 19] offers IoT data processing at least
partially before reaching the cloud, e.g., within the core network
of an ISP. Conceptually, this approach presents an opportunity for
(additional) data peering closer to the data generators, e.g., IoT sen-
sors, reducing latency and network traffic, increasing reliability and
privacy. However, due to three key reasons, it is not straightforward
how an application provider should exploit this fog architecture
to achieve its performance goals. First, an IoT application might
be composed of smaller processing tasks with certain dependency

43

https://doi.org/10.1145/3378679.3394538

EdgeSys ’20, April 27, 2020, Heraklion, Greece Daniel Happ and Suzan Bayhan

and possibly with different resource requirements. Hence, the de-
ployment must account for this dependency in addition to the rate
and amount of data transferred from one task to the other. Sec-
ond, there might be many users of this IoT application spread over
different parts of the network. Finally, network nodes might ex-
hibit differences in terms of their resource availability, e.g., CPU or
bandwidth, and monetary cost. In addition to these three aspects,
communication approach between the IoT sensors and the users of
the sensor data has to be considered.

With larger-scale IoT systems, the efficiency of the communi-
cation model between the IoT sensors and their subscribers also
becomes crucial. The publish/subscribe interaction pattern has
emerged as the de-facto standard for IoT messaging due to sev-
eral benefits enabled via decoupling the IoT publishers from their
subscribers by the help of brokers [5, 9]. To realize benefits of this
interaction mode, an IoT application provider has to decide on the
number and placement of the core analytic operators as well as the
pub/sub brokers to exchange messages over. Placing brokers, how-
ever, without considering the IoT analytics operators might lead to
suboptimal operation. For instance, fog and edge layers might be
constrained in their resources which can support a limited number
of users/services whereas the cloud tier is resourceful. Also, there
might be conflicting goals for the owner and the users of an IoT
platform that are not easily reconciled.

In contrast to prior work such as [2, 10], we analyze the joint
placement of operators and message brokers across cloud, fog, and
edge. Different than our recent work [8], we focus on the distribu-
tion of the IoT application users and use von Mises distributions to
model the degree of clustering which is a metric to reflect how the
users of an IoT application are distributed in the near or far network
proximity of the IoT sensor. Our analysis via simulations shows
that the current cloud-based IoT application results in significantly
longer application latency in comparison to our heuristics under a
high degree of clustering of the IoT application users.

2 SYSTEM MODEL
In this work, we consider the placement of IoT analytics appli-
cations and pub/sub brokers on a given set of connected nodes
from the perspective of an application provider. Therefore, assume
an application owner offers multiple IoT applications where each
application consists of a set of interdependent operators. An IoT
application takes as input the data published by an IoT sensor mea-
suring real world phenomena and processes this data to serve the
application users. Because of the benefits offered by the decou-
pling between producers, operators and consumers, we assume a
publish/subscribe-based IoT system with matchmaking brokers.

We consider a network of a fixed number of cloud-based virtual
machines at the cloud layer, fog virtual machines operated by Inter-
net service provider (ISP) at the fog layer, and on-premise sensor
gateways at the edge layer as in Fig.1. We assume that the applica-
tion owner can deploy operators and brokers on those nodes in an
on-demand pay-as-you-go fashion. To decide on the best placement,
the application owner needs to know the following properties of
each node 𝑘 : (1) the available maximum capacity 𝑅𝑘,𝑞 of a specific
resource 𝑞 ∈ 𝑄 (e.g., CPU or memory); (2) the available uplink (𝛽↑

𝑘
)

and downlink (𝛽↓
𝑘
) capacity of the node to the access network; (3)

Figure 2: Probability distribution considering von Mises
based clustering model for a fixed operator being located on
the node with the specific number.

a cost factor 𝑓𝑘 indicating a cost ratio with regard to a reference
machine representing the cost of deploying an IoT operator or a
broker at this node.

We define an operator as the smallest deployable software com-
ponent [6] corresponding to an arbitrary computation mapping a
set of input streams to a set of output streams. Using this abstrac-
tion, we can represent publishing sensor devices, processing tasks,
subscribing applications or services of all applications under the
same application owner as an operator 𝑜𝑖 . Moreover, we define an
application as a directed acyclic graph of operators.

To represent the relationship between the operators of an ap-
plication, we define a binary dependency matrix 𝐷𝑖, 𝑗 as follows:
𝐷𝑖, 𝑗 = 1 if 𝑜𝑖 depends on 𝑜 𝑗 and zero otherwise. As IoT sensors
have only output data stream but no input streams, they do not
depend on other operators, i.e., 𝐷𝑖,∗ = 0 for such 𝑜𝑖 . Similarly, IoT
subscribers have no other operators depending on them and no
output, i.e., 𝐷∗,𝑖 = 0 for such 𝑜𝑖 . Each operator 𝑜𝑖 is characterized
by an associated cost 𝑐𝑖 for calculating one output message, an av-
erage output rate 𝑟𝑖 (per seconds), and the resource demand𝑈𝑖,𝑞 for
several resources 𝑞 ∈ 𝑄 such as CPU and memory. They could also
include further requirements such as a certain type of hardware
that is required for the particular operator, e.g., a dedicated graphic
processor for machine learning or video encoding in hardware. Fi-
nally, we assume that each operator publishes to exactly one broker,
from where the data is disseminated to one or more subscribers.

2.1 Clustering of fixed operators
When a service provider plans its deployment, it has to consider the
geospatial distribution of its users. Consider the two IoT sensors
denoted by P1 and P2 in Fig.1 as an example. All subscribers S1
of publisher P1 are in the same network area. We refer to such a
scenario as a highly clustered case in terms of proximity of the IoT
publisher and its subscribers. On the other hand, P2 has subscribers
S2 distributed over three network areas. We refer to such cases as a
scenario with low clustering.

More formally, to better quantify the clustering of fixed opera-
tors (publishers and subscribers), we propose a modified von Mises

44

On the Impact of Clustering for IoT Analytics and Message Broker Placement across Cloud and Edge EdgeSys ’20, April 27, 2020, Heraklion, Greece

distribution [14] as follows. Our clustering distribution is charac-
terized by the parameter 𝛽 ≥ 0. The parameter ^ of the von Mises
distribution is given as follows: ^ = 2𝛽 − 1. As von Mises distribu-
tions are usually defined on the interval [−𝜋, 𝜋], we only consider
twice positive side and scale the x-axis to the interval [0, 𝑛], where
𝑛 is the number of nodes that an IoT sensor or an IoT user might
be located at. Then, we can state the probability density function
as follows:

𝑓 (𝑥, ^, 𝑛) = 𝑒^ cos(𝑥𝜋
𝑛
)

𝜋𝐼0 (^)
(1)

where 𝑥 ∈ N0, 0 ≤ 𝑥 < 𝑛, and 𝐼0 (^) is the modified Bessel function
of order 0. Our modified von Mises distribution has several prop-
erties that make it very suitable as a metric for the clustering of
fixed operators on nodes. First, if 𝛽 and therefore ^ is zero, the dis-
tribution becomes a uniform distribution. So, we choose places for
fixed operators randomly across all nodes. Second, with increasing
^ , the distribution becomes concentrated around node zero and the
distribution approaches the positive half of a normal distribution
around zero and variance 1

^ .
Since von Mises distributions are continuous and we need to

choose a discrete node for each fixed operator, we sample on the
continuous interval of [0, 𝑛] and round the obtained value down to
the next integer. Fig. 2 shows the probability that a fixed operator is
placed on a certain node in a network with 20 nodes under different
𝛽 values. Using our distribution model, we generate scenarios with
a certain clustering factor and analyze the impact of clustering via
simulations in Sec.4.

3 IOT ANALYTICS PLACEMENT
Problem Statement: Given a network of nodes, the application
owner has to decide on which nodes to deploy its application opera-
tors and brokers. Since nodes have finite capacity, e.g., computation
power or bandwidth, the application owner has to ensure that the
placement is feasible by considering the capacity of each network
node and link, e.g., 𝑅𝑘,𝑞 , 𝛽

↑
𝑘
, and 𝛽↓

𝑘
of node 𝑛𝑘 . Using the location of

its customers, the application owner can formulate an optimization
problem to minimize the total cost of serving the IoT application
users in terms of total end-to-end delays of all subscribers. Formally,
we state the objective as follows:

𝑚𝑖𝑛
∑
𝑜𝑖 ∈𝑂

(1 − \𝑖)𝑑𝑖 , (2)

where binary auxiliary variable \𝑖 is 1 if the operator has an output
while 𝑑𝑖 represents the completion time of operator 𝑜𝑖 and depends
on the following three components. First, all other operators that
this operator 𝑜𝑖 depends on must finish their task and publish the
output data that this operator will use as its input. Second, the
published data will experience transmission delay on the paths to
this operator. Since the operator has to receive all the input before
it can start its execution, the slowest operator 𝑜 𝑗 ’s delay (sum of
its completion and published output transmission time) determines
this second component. Finally, once all the published data is re-
ceived, the operator 𝑜𝑖 has a specific execution time on its host.
Let us first introduce several variables needed to calculate 𝑑𝑖 : 𝑥𝑖,𝑘 ,
𝑧𝑖,𝑘,𝑖′,𝑘′ , 𝐶𝑘,𝑘′ , 𝑟𝑖 , 𝑓𝑘 and 𝑐𝑖 .

The binary decision variable 𝑥𝑖,𝑘 yields value 1 if 𝑜𝑖 is placed on
node 𝑛𝑘 while 𝑧𝑖,𝑘,𝑖′,𝑘′ yields 1 if 𝑜𝑖 is on 𝑛𝑘 and 𝑜𝑖′ publishes to a
broker on 𝑛𝑘′ . 𝐶𝑘,𝑘′ denotes the cost of sending one byte from 𝑛𝑘
to 𝑛𝑘′ and 𝑟𝑖 is the output rate of 𝑜𝑖 . Finally, 𝑓𝑘 represents the cost
factor of 𝑛𝑘 in comparison to some reference machine. Using the
aforementioned three delay components, we define 𝑑𝑖 recursively
as follows:

𝑑𝑖 = max
𝐷𝑖,𝑗=1

©«𝑑 𝑗 +
∑

𝑛𝑘 ∈𝑁

∑
𝑛𝑘′ ∈𝑁

𝑧 𝑗,𝑘,𝑗,𝑘′𝐶𝑘,𝑘′ + 𝑧𝑖,𝑘,𝑗,𝑘′𝐶𝑘′,𝑘
ª®¬

+
∑

𝑛𝑘 ∈𝑁
𝑟𝑖𝑥𝑖,𝑘 𝑓𝑘𝑐𝑖 . (3)

As solving this joint problem optimally does not scale for the size
of realistic topologies, we design two heuristics, namely GREEDY
and TABU, which we introduce next.

Greedy heuristic (GREEDY): First, GREEDY places fixed oper-
ators (i.e., publishers and subscribers) and fixed brokers (if any)
to their corresponding nodes. Next, GREEDY assigns a stratum
number to each operator where the stratum represents the number
of hops from a data source. GREEDY sorts operators according to
their stratum number and places operators with the lowest stratum
number first on the closest feasible node to their subscriber(s). In
this process, GREEDY ignores operators that are not yet placed as
well as the position of brokers. It searches the solution space in a
depth-first fashion: if an operator cannot be placed on any node
given the current assignment of already-placed operators, the most-
recently placed operator is moved to the second best node. This
step is repeated recursively until either a valid solution is found or
every possible combination is tried, which means that there is no
feasible assignment.

Once an operator is placed, GREEDY looks for a location for this
operator’s broker. GREEDY places the broker optimally considering
the already-placed operators and ignoring those that are yet to be
placed. After each operator is assigned an output broker, if there is
a constraint on the maximum number of brokers, GREEDY checks
if the placement violates this constraint. If it does, GREEDY merges
two brokers that are the closest in terms of latency to each other
until the constraint on the total number of brokers is satisfied.

Tabu-like search (TABU): Our second proposal is based on tabu
search [16]. Briefly, TABU starts with a feasible solution already
available and tries possible actions to improve the existing solution
iteratively by searching for a better solution in the neighborhood
of the current solution. As the initial solution, we take first the solu-
tion found by GREEDY and run TABU. Next, we run TABU taking
the solution by CLOUD as its initial solution. Then, TABU takes
the best of these two solutions. In each iteration, TABU might take
one of the following actions in an attempt to improve its existing
solution: (1) change operator position, (2) change operator/broker
assignment, and (3) change broker position. We choose the ac-
tions one after the other. For choice (1) and (2), TABU chooses an
operator randomly. For (1), the neighborhood is given by every
possible movement of the operator. For (2), the neighborhood is
every possible reassignment to an existing broker. Similarly, in
case of (3), TABU chooses a broker randomly and considers every
possible movement of the broker to find an improved solution. The

45

EdgeSys ’20, April 27, 2020, Heraklion, Greece Daniel Happ and Suzan Bayhan

0 3 6 9 12 15 18
Clustering Factor

0.0

0.5

1.0

1.5

2.0

2.5

C
lo

ud
 G

ap

GREEDY
TABU

(a) Random application graph

0 3 6 9 12 15 18
Clustering Factor

0.0

0.5

1.0

1.5

2.0

2.5

C
lo

ud
 G

ap

GREEDY
TABU

(b) Fanout application graph

0 3 6 9 12 15 18
Clustering Factor

0.0

0.5

1.0

1.5

2.0

2.5

C
lo

ud
 G

ap

GREEDY
TABU

(c) Sequence application graph

Figure 3: Cloud gap with increasing clustering factor (𝛽) for each application type.

search uses a short term memory that stores the last 𝑢 solutions as
a tabu list. The algorithm in general chooses the best solution of
the neighborhood as the next candidate, except if the solution was
already tried recently, which is a tabu. In that case, the next best
solution that was not tried recently is chosen, which makes the
algorithm consider sub-optimal solutions to avoid getting trapped
in a local optimum. The candidate is chosen as the starting point
for further iterations. TABU stops when it has tried a fixed number
𝑣 consecutive iterations without improvements.

4 PERFORMANCE EVALUATION
Weevaluate the performance of the proposed approaches via system-
level simulations on our custom-made Python simulator. Different
than our previous work [8], we analyze the placement of opera-
tors and brokers for a given quantifiable metric for the clustering
of publishers and subscribers. Moreover, we want to verify that
our heuristics are scalable and efficient also for larger network
topologies.

We take the cloud-based IoT operation as our baseline (CLOUD)
and report the performance of our proposals (i.e., GREEDY and
TABU) in comparison to this baseline. In CLOUD, all brokers and
analytics operators are hosted in the cloud. We define the cloud
gap metric as the ratio of the utility function in (3) obtained by the
deployment according to our heuristic(s) over the utility function
obtained by CLOUD. Our key goal is to develop insights on the per-
formance of our heuristics under an increasing degree of clustering
and under an increasing network size. More importantly, we aim at
finding the cases where our heuristics outperform the baseline sig-
nificantly. In the following, we will first briefly discuss the models
used for the underlying topology and the application graphs. Next,
we will present the results of our simulations of two scenarios. In
the first scenario, we evaluate the impact of the degree of clustering
on the cloud gap achieved by our heuristics. The second scenario
provides a closer look to the impact of the network size. A more
detailed explanation with the exact parameters and the reasoning
behind them is provided in [8].

Network topology:We model the latency between different net-
work nodes considering a country or region of a similar size as the
continental United States. For the available edge-to-fog bandwidth,
we set the minimum and maximum bandwidth to be 1MBit/s and
100MBit/s respectively. Since residential connections are usually

asymmetric, we set the uplink bandwidth to one fourth of the down-
link bandwidth. For the bandwidth in the fog and between fog and
cloud, we use common values for 100BASE-TX, 1000BASE-T and
10GBASE-T Ethernet. Regarding the round-trip-time (RTT), we
consider a uniform distribution in [10ms, 30ms] for links between
edge and fog, [5ms, 70ms] for fog-fog links, and [5ms, 35ms] for
the connection between fog and cloud. To model the CPU com-
putation resources available at each layer, we take the Passmark
score1 as an indicator. Passmark scores for edge and fog are chosen
between 420 and 3800 for edge, and between 5500 and 12000 for
fog. The amount of memory available is between 1GB and 4GB,
and 8GB and 32GB respectively. The cloud has practically infinite
resources.
IoT analytics applications: An IoT application is typically mod-
eled as a dependency graph with additional attributes for output
rates, CPU and memory requirements, and other constraints such
as a fixed network location. While some real-world application
graphs are available in the literature, such as [1, 15, 17], we pre-
fer to keep our analysis as generalizing as possible representing
a broader spectrum of applications. Hence, we consider the fol-
lowing three topologies as our IoT application graphs: i) a ran-
dom topology with no cycles; ii) a fanout topology where a set of
processing operators needs the input of every publisher in the
system and gives its output to every subscriber; iii) a sequence
topology where the processing operators form a chain of opera-
tors that must run as a sequence. To represent the resource re-
quirements of an application, we set the following parameters:
CPU score∼ 𝑈 (100, 2000), RAM∼ 𝑈 (0.05GB, 1GB), and output
rate∼ 𝑈 (0.001MBit/s, 1MBit/s). Publishers and subscribers are
fixed across the topology. In the following scenarios, we consider
six applications with eight operators. We consider both cases where
all applications are of the same type or a mixture of the three types.

4.1 Impact of Clustering
First, we analyze the impact of degree of clustering 𝛽 on the cloud
gap metric for a network with 300 nodes. We use clustering factor
𝛽 = {0, 3, 6, 9, 12, 15, 18}.When 𝛽 = 0, publishers and the subscribers
are distributed uniformly while setting 𝛽 = 18 results in almost all
publishers and subscribers being connected to the same node in
the network.

1https://www.passmark.com/

46

On the Impact of Clustering for IoT Analytics and Message Broker Placement across Cloud and Edge EdgeSys ’20, April 27, 2020, Heraklion, Greece

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

re

Random Fanout Sequence

(a) Clustering factor 𝛽 = 0

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

re

Random Fanout Sequence

(b) Clustering factor 𝛽 = 12

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

C
LO

U
D

TA
B
U

G
R
E
E
D
Y

0.0

0.2

0.4

0.6

0.8

1.0

S
ha

re

Random Fanout Sequence

(c) Clustering factor 𝛽 = 18

Figure 4: Operator location for clustering factor 𝛽 = {0, 12, 18} across cloud, fog, and edge.

Fig. 3 depicts the cloud gap with increasing clustering for each
application type. In the figures, a horizontal line at 𝑦 = 1 shows
the point where CLOUD and other approaches have the same per-
formance, i.e., cloud gap equals 1. Hence, values below this line
represents the scenarios where our heuristics outperform CLOUD
as they result in lower total delay for the considered IoT application
subscribers. From the figures, we have the following observations.
First, for every type of application, CLOUD performs at least as
good as and usually better than a GREEDY for 𝛽 < 9. With 𝛽 ⩾ 12,
however, GREEDY starts to outperform CLOUD.

While for the sequence application graph, the clustering has
to be 15 or higher to benefit from fog or edge deployment, the
results indicate a lower threshold of about 12 for random applica-
tion graphs. For the fanout case, even a clustering factor of 9 can
in certain cases benefit from a deployment across edge and fog.
The possible improvement is quite widespread at higher clustering
factors, ranging from no improvement (cloud gap equals 1) to sig-
nificant improvement with gaps as low as 0.19, which translates
to around 80% lower latency. In a nutshell, under high clustering,
CLOUD with its high delay becomes inefficient compared to our
proposals. Comparing TABU and GREEDY, unsurprisingly, TABU
outperforms GREEDY as it takes the best of the two solutions driven
from GREEDY and CLOUD as the initial solution. While GREEDY
becomes a promising solution only under high clustering cases,
TABU offers improvements over CLOUD under almost all settings.
However, the achieved improvement becomes the most visible un-
der high clustering.

We now want to develop a deeper understanding on which layer
is preferred for the operators and brokers. Since the placement of the
brokers show similar results, we depict only the operator locations.
Fig. 4 depicts the distribution of operators across each layer for
clustering factors 0, 12, and 18 representing the following cases:
no clustering, a medium degree, and a high degree of clustering,
respectively.

Since our deployment algorithms have no control over the lo-
cations of the fixed operators, i.e. publishers and subscribers, we
exclude them from this analysis. For no-clustering case, we observe
that TABU resorts to the provided solution of placing all the op-
erators to the cloud and does not find a better solution. For the

3 9 30 95 300
Topology Size

0

5

10

15

20

25

C
lo

ud
 G

ap

Cluster Factor 0
Cluster Factor 18

Figure 5: Cloud gap for different topology sizes.

random application graph, GREEDY has about 60% of the operators
placed at the fog and even about 10% at the edge. For the other
graphs, GREEDY also prefers the cloud for the majority of operators.
With increasing clustering factor, we observe that GREEDY starts
to favor nodes closer to the edge and places an increasing amount
of operators across the edge and fog for all application topologies.
Meanwhile, TABU improves on the placement by shifting operators.
However, there is no general trend on which network layer is pre-
ferred for operator deployment. For example, in the random case
at 𝛽 = 12, less operators are placed in the edge and fog, while more
are placed in the cloud. On the other hand, for the random case at
𝛽 = 18, more operators are placed in the fog. In other words, there
is no rule-of-thumb to place the operators on a specific layer. It de-
pends on the dependency graph, network topology, node resources,
and also the placement of the brokers.

4.2 Impact of Network Size
Next, we study the impact of the network size on the cloud gap of
GREEDY to answer the question if our observations on the impact
of clustering is valid also for smaller networks. We use a mixture
of the three application graphs and vary the network size from 3 to
300. In Fig. 5, we observe that the improvements at a high degree of

47

EdgeSys ’20, April 27, 2020, Heraklion, Greece Daniel Happ and Suzan Bayhan

clustering seem to be independent of the network size for GREEDY.
However, GREEDY does not provide any performance improve-
ments over CLOUD for small networks under uniform distribution
of the IoT application users. But, with increasing network size,
the performance of GREEDY starts to approach to that of CLOUD.
On the other hand, under high clustering, GREEDY outperforms
CLOUD in all cases. For example, the cloud gap for a topology with
300 nodes and a clustering factor of 18 varies between 0.48 and
1.09 with the median at 0.80. This validates the benefit of joint
placement even using a simple heuristic.

5 RELATEDWORK
To the best of our knowledge, ours is the first and only solution
providing a joint placement of brokers and IoT applications. While
there is significant research on broker-based IoT systems or opti-
mization of broker operation [11], joint placement of brokers with
other components is largely overlooked. Hong et al. [10] show
the NP-hardness of the operator deployment problem and propose
a heuristic for maximizing the number of satisfied IoT analytics.
Considering the QoS and resource requirements of different IoT
applications, [10] first identifies the scarcest resource and allocates
as many IoT operators as possible with the least demand for this
scarce resource. Moreover, [10] aims at keeping the distance be-
tween dependent operators minimal and limited to a certain number
of hops. Brogi et al. [3] take the latency and bandwidth require-
ments of each application into account and deploy applications
with more resource requirements the first on the nodes with the
highest resources. FogFlow [4] and Foggy [20] are fog computing-
based frameworks enabling IoT application providers to deploy
their IoT services over cloud and edges. Different than all these
centralized schemes, Guerrero et al. [7] propose a decentralized
service-popularity based placement running at each fog device
wherein the goal is to favor more popular services and migrate
them closer to the clients in terms of hop counts. Finally, Renart et
al. [18] propose a solution in which the placement objective is to
minimize an aggregate cost consisting of the application latency,
the network traffic, and the message overhead. Our paper differs
from all these prior work in that it considers the joint placement of
brokers and IoT applications and highlights the impact of the clus-
tering of the IoT users on the performance of current cloud-based
IoT service operation.

6 CONCLUSION
With the growing number of IoT applications, it becomes para-
mount to reconsider the cloud-based IoT operation which might
not only fall short of meeting the delay requirements of some ap-
plications but also may yield a huge volume of network traffic. In
this paper, we proposed two heuristics to place an IoT application
consisting of multiple operators with certain dependency on the
available network nodes at the edge, fog, and the cloud. Different
than the prior work, we considered broker and IoT application
placement jointly as broker-based IoT communication offers scal-
ability and energy efficiency to resource-constrained IoT devices.
Simulation results show that the cloud-based IoT operation starts to
become inferior in its performance with increasing clustering of the
users of an IoT application: when the IoT application users are in the

close proximity of the IoT sensor, it becomes inefficient to deploy
the IoT application and the broker in the cloud despite the cloud’s
high resource availability. Given the impact of clustering factor,
we leave design of such a clustering-aware placement to a future
work. Another potential research direction is the design of adap-
tive schemes that might change the application deployment based
on certain performance observations and change in the network
dynamics, e.g., number and location of users.

REFERENCES
[1] Ganesh Ananthanarayanan, Victor Bahl, Landon Cox, Alex Crown, Shadi Nog-

bahi, and Yuanchao Shu. 2019. Video Analytics - Killer App for Edge Computing.
In ACM MobiSys (MobiSys). 695–696.

[2] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In MCC Workshop on Mobile
Cloud Computing. 13–16.

[3] Antonio Brogi and Stefano Forti. 2017. QoS-aware deployment of IoT applications
through the fog. IEEE Internet of Things Jrnl. 4 (2017), 1185–92.

[4] Bin et al. Cheng. 2017. Fogflow: Easy programming of iot services over cloud
and edges for smart cities. IEEE Internet of Things Journal 5, 2 (2017), 696–707.

[5] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and Xavi Masip-Bruin. 2019.
A survey of communication protocols for internet of things and related challenges
of fog and cloud computing integration. ACM Computing Surveys (CSUR) 51, 6
(2019), 1–29.

[6] H. J. Hong et al. 2017. Supporting Internet-of-Things Analytics in a Fog Comput-
ing Platform. In IEEE International Conference on Cloud Computing Technology
and Science (CloudCom). 138–145.

[7] Carlos Guerrero, Isaac Lera, and Carlos Juiz. 2019. A lightweight decentralized
service placement policy for performance optimization in fog computing. Journal
of Ambient Intelligence and Humanized Computing 10, 6 (2019), 2435–2452.

[8] Daniel Happ, Suzan Bayhan, and Vlado Handziski. 2020. JOI: Joint Placement
of IoT Analytics Operators and Pub/Sub Message Brokers in Fog-centric IoT
Platforms. Future Generation Comp. Sys. (2020). under review.

[9] Daniel Happ, Niels Karowski, Thomas Menzel, Vlado Handziski, and Adam
Wolisz. 2017. Meeting IoT Platform Requirements with Open Pub/Sub Solutions.
Annals of Telecommunications 72, 1 (2017), 41–52.

[10] Hua-Jun Hong, Pei-Hsuan Tsai, An-Chieh Cheng, Md Yusuf Sarwar Uddin, Nalini
Venkatasubramanian, and Cheng-Hsin Hsu. 2017. Supporting internet-of-things
analytics in a fog computing platform. In 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). IEEE, 138–145.

[11] Michael A. Jaeger, Helge Parzyjegla, Gero Mühl, and Klaus Herrmann. 2007. Self-
Organizing Broker Topologies for Publish/Subscribe Systems. InACM Symposium
on Applied Computing (SAC ’07). 543–550.

[12] Qiang Liu and Tao Han. 2018. Dare: Dynamic adaptive mobile augmented reality
with edge computing. In 2018 IEEE 26th International Conference on Network
Protocols (ICNP). IEEE, 1–11.

[13] Liyang Yu, Neng Wang, and Xiaoqiao Meng. 2005. Real-time forest fire detection
with wireless sensor networks. In Proceedings. 2005 International Conference
on Wireless Communications, Networking and Mobile Computing, 2005., Vol. 2.
1214–1217.

[14] KV Mardia and PJ Zemroch. 1975. Algorithm AS 86: The von Mises distribution
function. Journal of the Royal Statistical Society. Series C (Applied Statistics) 24, 2
(1975), 268–272.

[15] P. Michalák and P. Watson. 2017. PATH2iot: A Holistic, Distributed Stream
Processing System. In 2017 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). 25–32.

[16] R. Mijumbi, J. Serrat, J. L. Gorricho, N. Bouten, F. De Turck, and S. Davy. 2015.
Design and evaluation of algorithms for mapping and scheduling of virtual
network functions. In IEEE Conference on Network Softwarization (NetSoft).

[17] Pankesh Patel, Muhammad Intizar Ali, and Amit Sheth. 2017. On using the
intelligent edge for IoT analytics. IEEE Intelligent Systems 32, 5 (2017), 64–69.

[18] Eduard Gibert et al. Renart. 2019. Distributed operator placement for IoT data
analytics across edge and cloud resources. In IEEE/ACM Int. Symposium in Cluster,
Cloud, and Grid Computing (CCGrid).

[19] Shusen Yang. 2017. IoT stream processing and analytics in the fog. IEEE Commu-
nications Magazine 55, 8 (2017), 21–27.

[20] Emre Yigitoglu, Mohamed Mohamed, Ling Liu, and Heiko Ludwig. 2017. Foggy:
A framework for continuous automated IoT application deployment in fog com-
puting. In IEEE AIMS.

[21] Ben Zhang, Nitesh Mor, John Kolb, Douglas S. Chan, Ken Lutz, Eric Allman,
John Wawrzynek, Edward Lee, and John Kubiatowicz. 2015. The Cloud is Not
Enough: Saving IoT from the Cloud. In USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud).

48

	Abstract
	1 Introduction
	2 System Model
	2.1 Clustering of fixed operators

	3 IoT Analytics Placement
	4 Performance Evaluation
	4.1 Impact of Clustering
	4.2 Impact of Network Size

	5 Related Work
	6 Conclusion
	References

