
Investigating Polyhedra by Oracles
and

Analyzing Simple Extensions of
Polytopes

Dissertation
zur Erlangung des akademischen Grades

doctor rerum naturalium
(Dr. rer. nat.)

von Dipl.-Comp.-Math. Matthias Walter
geb. am 24. September 1986 in Wolmirstedt

genehmigt durch die Fakultät für Mathematik
der Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr. Volker Kaibel
Otto-von-Guericke-Universität Magdeburg

Prof. Dr. Marc Pfetsch
Technische Universität Darmstadt

eingereicht am: 16. Dezember 2015
Verteidigung am: 29. März 2016

Dedicated to Sarah.

Zusammenfassung
Ein wichtiges Hilfsmittel der Polyedrischen Kombinatorik ist die computer-
gestützte Analyse von Polyedern, um deren strukturelle Eigenschaften
zu untersuchen. Aufgrund des enumerativen Charakters der klas-
sischen Algorithmen sind diese Ansätze bereits bei verhältnismäßig
kleinen Dimensionen nur noch mit enormen Ressourcen zu bewältigen.

Da oft die konvexen Hüllen der Lösungsmengen von Optimierungs-
problemen von Interesse sind und es sehr effiziente Software (zum
Beispiel im Falle gemischt-ganzzahliger linearer Optimierungsprobleme
(MIPs)) zur Lösung dieser Probleme gibt, stellt sich die Frage, inwieweit
man eine Analyse basierend auf solcher Software, oder formal einem
Optimierungsorakel, durchführen kann.

Dafür wurde im Rahmen der Arbeit die Softwarebibliothek IPO
(Investigating Polyhedra by Oracles) entwickelt. Der erste Schritt einer
Analyse ist in dem meisten Fällen die Bestimmung der affinen Hülle
eines Polyeders P ⊆ Rn, insbesondere der Dimension. Dazu wurde ein
Algorithmus entwickelt, der mit 2n Orakel-Aufrufen auskommt und in
der Praxis sehr effizient ist. Zudem wurde die Optimalität dieser Anzahl
für den allgemeinen Fall bewiesen. Unter Nutzung einer entsprechen-
den Implementation und des MIP-Lösers SCIP wurden Instanzen der
MIPLIB 2.0 betrachtet und Dimensionen verschiedener Polyeder be-
stimmt:

• Lineare Relaxierung und gemischt-ganzzahlige Hüllen vor und
nach Anwendung der Presolve-Routinen von SCIP.

• Optimale Seiten bezüglich der Zielfunktion der Instanz.

• Durch gegebene Ungleichungen induzierte Seiten.

Die Hauptanwendung von IPO ist die Bestimmung von Facetten von
P, da diese zu nicht dominierten Ungleichungen in einer Ungleichungs-
beschreibung korrespondieren und daher ein großes Potential besitzen,
bei der Lösung (mit Hilfe von MIP-Lösern) von Nutzen zu sein. Facetten-
definierende Ungleichungen, welche von einem gegebenen Punkt maxi-
mal verletzt werden, können mit Hilfe von Target-Cuts effektiv bestimmt
werden. Dies wird zum Beispiel für Linearisierungen von Matching-
Polytopen mit einem quadratischen Term demonstriert, indem mit Hilfe
von IPO eine bisher unbekannte Klasse von Facetten entdeckt wurde.

i

Zusätzlich zur Facetten- und Affine-Hülle-Bestimmung hat IPO eine
dritte Funktionalität, die die Überprüfung der Adjazenz zweier Ecken
von P betrifft. Diese ist äquivalent dazu, dass der Normalenkegel an
ihren Mittelpunkt (n − 1)-dimensional ist. Da man mit Hilfe eines
Optimierungsorakels für P – ähnlich zu Target Cuts – ein Optimierungs-
orakel für den betrachteten Normalenkegel konstruieren kann, reduziert
sich das Adjazenzproblem ebenfalls auf das Affine-Hülle-Problem. Zur
Demonstration wurden eine große Anzahl von Adjazenzen zufälliger
Ecken von TSP-Polytopen überprüft, wobei als Orakel die TSP-Software
concorde genutzt wurde.

Damit IPO grundsätzlich korrekt arbeitet, die Probleme jedoch mög-
lichst effizient löst, wird an vielen Stellen sowohl rationale als auch
Gleitkomma-Arithmetik verwendet. Dies ist besonders bei Dimensio-
nen größer als 500 enorm relevant, da hier gelegentlich exakte Zahlen
mit Kodierungslängen von über 106 Bits auftreten. Um weiterhin die
meist laufzeitintensiven Orakelaufrufe zu sparen, erlaubt IPO die Nut-
zung von Heuristiken, von denen außer der Zulässigkeit der ange-
gebenen Lösungen nichts verlangt wird. So können beispielsweise
die gerundeten Lösungen von SCIP als heuristisch betrachtet und die
exakte Version von SCIP zur “Verifikation” genutzt werden.

Der zweite Teil der Arbeit fällt in das Forschungsgebiet der Erweiter-
ten Formulierungen und basiert auf einem gemeinsam mit Volker Kaibel
veröffentlichten Artikel. In diesem Gebiet geht es im Wesentlichen
darum, ein gegebenes Polytop P als affine Projektion eines anderen Poly-
tops Q mit möglichst wenigen Facetten darzustellen. Die größte Moti-
vation hierfür ist die (in gewissem Sinne äquivalente) Frage, ob man ein
lineares Optimierungsproblem über P mit Hilfe von weiteren Variablen
als ein lineares Optimierungsproblem darstellen kann, welches mit sehr
wenigen Ungleichungen auskommt.

In der Arbeit wurde untersucht, inwieweit solche kompakten Dar-
stellungen möglich sind, wenn man noch zusätzlich fordert, dass das
Erweiterungspolytop Q ein einfaches Polytop ist, das gesuchte lineare
Optimierungsproblem also nicht (primal) degeneriert ist. Einerseits
haben bereits bekannte Klassen von Erweiterungspolytopen diese Eigen-
schaft, andererseits kann man für jedes Polytop zunächst ein einfaches
Erweiterungspolytop konstruieren. Die charakteristische Größe ist die
sogenannte simple extension complexity, die die minimale Facettenzahl

ii

eines solchen einfachen Erweiterungspolytops angibt.
Hierzu wurde eine Technik entwickelt, die es ermöglicht, aufgrund

von Eigenschaften des Graphen von P untere Schranken an diese Größe
zu bestimmen. Trotz der genannten positiven Beispiele stellt sich her-
aus, dass die Eigenschaft sehr selten ist: Bereits wenig komplizierte
Polytope, wie Hypersimplizes, die zudem nur schwach degeneriert
sind, haben eine simple extension complexity in der Größenordnung
der Anzahl der Ecken des Polytops, einer trivialen oberen Schranke.
Wenig überraschend ist da, dass dies auch für zahlreiche kombina-
torische Polytope der Fall ist, unter ihnen perfekte Matching-Polytope
vollständiger und vollständiger bipartiter Graphen, Flusspolytope un-
zerlegbarer azyklischer Netzwerke, Spannbaumpolytope vollständiger
Graphen, sowie zufällige 0/1-Polytope mit gewissen Eckenanzahlen.
Um die untere Schranke im Falle perfekter Matchings auf vollständigen
Graphen zu beweisen, wurde ein Resultat von Padberg & Rao über
Adjazenzbeziehungen entsprechender Polytope verbessert.

In einem kurzen Abschnitt dieses Teils wird charakterisiert, wann
zwei der (wenigen) bekannten Methoden zur Konstruktion von Er-
weiterten Formulierungen Einfachheit herstellen.

iii

Summary
An important tool of Polyhedral Combinatorics is the computer-aided
analysis of polyhedra for understanding their structural properties,
which are often related to an underlying optimization problem. Due
to the enumerative nature of the classical algorithms for polyhedral
analysis this approach can often only be pursued for relatively small
dimensions or using an enormous amount of resources.

Since many polyhedra of interest are convex hulls of feasible sets of
optimization problems and since there exists efficient software (e.g., in
case of mixed-integer linear optimization problems (MIPs)) for solving
these problems even in higher dimensions, it is a reasonable question
how to carry out an analysis based on such software, or more formally,
on an optimization oracle.

This thesis is accompanied by a software library IPO (Investigating
Polyhedra by Oracles) specifically designed for this approach. A first
step in such an analysis is typically the computation of the affine hull of a
polyhedron P ⊆ Rn, in particular its dimension. For this we developed
an algorithm that needs at most 2n oracle calls and is very efficient
in practice. We also prove that this number is the minimum in the
worst case. Using our implementation and the MIP solver SCIP we
investigated instances of the MIPLIB 2.0 and determined dimensions
of several polyhedra:

• Linear relaxations and mixed-integer hulls before and after apply-
ing presolve routines of SCIP.

• Optimal faces with respect to the objective of the instance.

• Faces induced by given inequalities.

The main application of IPO is the detection of some of P’s facets since
those correspond to undominated inequalities in an inequality descrip-
tion, and hence usually have great potential of being useful during the
solving process (using a MIP solver). Facet-defining inequalities that
are maximally violated by a given point can be found efficiently us-
ing Target Cuts. In particular, this is demonstrated for linearizations of
matching polytopes with one quadratic term, for which we determined
a new class of facets using IPO.

iv

In addition to facet- and affine-hull computations, IPO has a third
component that can check adjacency of two vertices of P. The latter
is equivalent to the property that the dimension of the normal cone at
their barycenter is equal to n − 1. Since we can – similar to Target Cuts
– construct an optimization oracle for this normal cone, this problem
reduces to the affine-hull problem. Again for demonstration purposes
we tested a huge number of vertex pairs of TSP polytopes for adjacency,
using the software concorde as an optimization oracle.

Since we strive for efficiency, but still want to ensure correct behavior
of IPO, we often use floating-point- and rational arithmetic. This is par-
ticularly important for dimensions greater than 500 as then sometimes
the occurring exact numbers have encoding lengths of more than 106

bits. In order to save costly oracle calls, IPO allows to use heuristics from
which we do not require optimality of returned solutions. This way we
can use, for instance, the rounded (potentially incorrect) solutions of
SCIP and use the exact version of SCIP for verification purposes only.

The second part of the thesis belongs to the field of extended formu-
lations and is based on a joint publication [41] with Volker Kaibel. The
field basically captures how to describe a given polytope P as an affine
projection of another polytope Q with only few facets. The main moti-
vation for this is the (in some sense equivalent) question of constructing
a linear optimization problem for P with additional variables, but only
few inequalities.

In this work we consider the additional restriction of the extension
polytope Q to be a simple polytope, that is, the linear optimization problem
over Q has to be (primal) non-degenerate. On the one hand, some of
the known classes of extension polytopes have this property, and on
the other hand, we can construct a simple extension for every polytope.
The characteristic quantity for this task is the so-called simple extension
complexity that measures the minimum number of facets of such a simple
extension polytope Q.

To get a hand on this quantity we developed lower bounds that de-
pend only on the graph of P. Despite the mentioned positive examples,
it turns out that this property is very rare: Even very basic polytopes
like hypersimplices, which are only slightly degenerate, have a very
high simple extension complexity in the order of P’s number of ver-
tices, a trivial upper bound. Having this in mind, it is not surprising

v

that this is also the case for other combinatorial polytopes, among them
perfect-matching polytopes of complete and complete bipartite graphs,
uncapacitated flow polytopes for nontrivially decomposable directed
acyclic graphs, spanning-tree polytopes of complete graphs and ran-
dom 0/1-polytopes with vertex numbers in a certain range. On our
way to obtain the result on perfect-matching polytopes we improve
on a result of Padberg and Rao’s on the adjacency structures of those
polytopes.

In a short section of this part we characterize when two of the (few)
known methods for constructing extended formulations actually yield
simple polytopes.

vi

Acknowledgements
This thesis would not have been possible without the inspiring envi-
ronment I found in the group of Volker Kaibel who guided me in the
right directions by spreading good ideas, finding faults in the proofs or
stopping me from wasting time on things that can’t work at all. He left
me a lot of room for my own research, but also spent a lot of time for
sharing knowledge as well as writing- and presentation skills. I want
to thank my colleagues, especially Stefan Weltge, Ferdinand Thein, Jan
Krümpelmann and Julia Lange for making IMO such a great place to
suspend research for a coffee break. It was a particular pleasure to work
in an office with Stefan who is the counterpart in a dream team in which
making math is true fun. Together with Volker at the blackboard we
often were completely absorbed, discussing with so much emotion that
other people on the floor surely suffered from our intensity. I also want
to thank Stefan and Volker for improving the quality of the manuscript
by thorough proofreading.

Traveling so much allowed me to get in touch with many remarkable
and bright people in the field of integer programming and combinatorial
optimization. It was a pleasure to collaborate with Michele Conforti,
Jon Lee and Klaus Truemper, and to have inspiring discussions with
many more. I particularly benefited from advice by Marc Pfetsch who
told me about an effective generation scheme for Target Cuts, previous
work on stabilized column generation and suggested the consideration
of presolved MIP instances for my computational studies. Attending
many great talks at several Aussois meetings, IPCOs and ISMPs clearly
coined my perspective on our field.

The computational aspect of this thesis builds on the work of many
people. I thank Roland Wunderling for creating SoPlex, Tobias Achter-
berg for creating SCIP and Ambros Gleixner for turning SoPlex into an
exact arithmetic LP solver to which I had access in early development
stages. Although I bothered Ambros with several bugs I could usually
find a corresponding fix at 5:331 the next day. General thanks go to
the whole development team of the SCIPOptSuite. I am grateful to Bill
Cook who provided me with code I could turn into an exact arithmetic
solver for the traveling salesman problem, and to him and his coau-

1See commit 8efd6801ef46039f85b75ad04b09d26b4b15b989 of the SoPlex-repository.

vii

thors for their work on the concorde TSP solver. For helping me with
statistical issues I want to thank Martin Radloff.

Finally I want to say thank you to all my family. To my parents
Gabriele and Karl-Heinz who always encouraged me to give way to my
mathematical interests, to my brother Tobias who taught me program-
ming when I was quite young, and to my wife Sarah and our son Lukas.
The two probably have the smallest mathematical contribution among
the people I listed here, but are nevertheless the most important ones in
my life, giving me nothing more than a home full of love.

viii

Contents
Zusammenfassung . i
Summary . iv
Acknowledgements . vii

1 Introduction 1
1.1 Polyhedral Combinatorics 3

1.1.1 Investigating Polyhedra by Oracles 4
1.1.2 Analyzing Simple Extensions of Polytopes 4

1.2 Preliminaries . 6
1.2.1 Basics . 6
1.2.2 Vectors, Matrices and Linear Algebra 7
1.2.3 Polyhedra . 7
1.2.4 Linear and Mixed-Integer Linear Optimization . . 9
1.2.5 Graphs . 9
1.2.6 Computational Complexity 10

2 Investigating Polyhedra by Oracles 11
2.1 Motivation: Mixed-Integer Hulls 13
2.2 The Software Library IPO 17

2.2.1 Outline . 18
2.2.2 IPO’s User Interface 20

2.3 Optimization Oracles . 21
2.3.1 Optimization Oracle for the Recession Cone . . . 22
2.3.2 Optimization Oracles for Projections of Polyhedra 22
2.3.3 Optimization Oracles for Faces of Polyhedra . . . 23
2.3.4 Corrector Oracle for Mixed-Integer Programs . . 25

2.4 Computing the Affine Hull 27
2.4.1 A Basic Scheme . 27
2.4.2 The Algorithm . 29
2.4.3 A Lower Bound on the Number of Oracle Calls . 36
2.4.4 Heuristic Optimization Oracles 38

ix

2.4.5 Implementation Details 40
2.5 Computing Facets . 43

2.5.1 Polarity and Target Cuts 43
2.5.2 An Equivalent Model 45
2.5.3 Extended Basic Solutions 48
2.5.4 Extracting Inequalities and Equations 49
2.5.5 Computing Multiple Facets 51

2.6 Identifying Vertices, Edges and Other Faces 53
2.6.1 The Smallest Containing Face 53
2.6.2 Detecting Vertices 56
2.6.3 Detecting Edges and Extreme Rays 57
2.6.4 Detecting Higher-Dimensional Faces 59
2.6.5 Strengthening Inequalities 60

2.7 Solving the Polar Linear Programs 61
2.7.1 The Separation Problem 62
2.7.2 Stabilization . 62
2.7.3 Cut Aging . 64
2.7.4 Effect of Stabilization and Cut Aging 64

2.8 Improving Readability of Equations and Inequalities . . 67
2.8.1 Manhattan Norm Problems 68
2.8.2 Two Vectors: An Exact Algorithm 69
2.8.3 A Fast Heuristic . 79
2.8.4 Implementation . 80

2.9 Computational Studies: Dimensions 81
2.9.1 Dimensions of Polyhedra from MIPLIB Instances 82
2.9.2 Dimensions of Optimal Faces 89
2.9.3 Faces Induced by Model Inequalities 93

2.10 Computational Study: Facets 99
2.10.1 Matching Polytopes with One Quadratic Term . . 99
2.10.2 Edge-Node-Polytopes 104
2.10.3 Tree Polytopes . 108

2.11 Computational Study: Adjacency 112
2.11.1 Heuristics and Oracles for TSP Polytopes 112
2.11.2 Experiment & Results 113
2.11.3 Adjacent Tours with Common Edges 115

x

CONTENTS

3 Analyzing Simple Extensions of Polytopes 121
3.1 Introduction . 123
3.2 Constructions . 127

3.2.1 Reflections . 127
3.2.2 Disjunctive Programming 130

3.3 Bounding Techniques . 133
3.4 Hypersimplices . 140
3.5 Spanning Tree Polytopes 142
3.6 Flow Polytopes for Acyclic Networks 147
3.7 Perfect Matching Polytopes 151

3.7.1 Complete Bipartite Graphs 153
3.7.2 Complete Nonbipartite Graphs 154
3.7.3 Adjacency Result 155

3.8 A Question Relating Simple Extensions with Diameters . 164

Bibliography 167

Appendix 173
A.1 Computational Studies: Dimensions 175

xi

xii

List of Figures
2.1 Traditional work-flow in polyhedral combinatorics . . . 14
2.2 Proposed new work-flow in polyhedral combinatorics . . 15
2.3 Illustration of Example 2.3.1 24
2.4 Projection of unstabilized and stabilized solutions onto

two variables . 66
2.5 Illustration of Lemma 2.8.5 71
2.6 Illustration of the instance from Example 2.8.9 74
2.7 Illustration of the transformed instance from

Example 2.8.9 . 75
2.8 Distribution of original and presolved MIPLIB 2.0

instances by dimension ratio of hull and relaxation 87
2.9 Different running time distributions for affine hull

computation . 88
2.10 Distribution of relaxations of original and presolved

MIPLIB 2.0 instances by relative dimension of the optimal
face . 93

2.11 Distribution of original and presolved MIPLIB 2.0
instances by relative dimension of the optimal face 94

2.12 Distribution of constraint dimensions for original
MIPLIB 2.0 instances . 96

2.13 Distribution of constraint dimensions for presolved
MIPLIB 2.0 instances . 97

2.14 ZIMPL model for matching problem with one quadratic
term . 101

2.15 Results for matching problem with one quadratic term . 101
2.16 Illustration of Case (b) of Theorem 2.11.3 117
2.17 Pair of tours not obtained from 2-matching adjacencies

by splitting . 119

3.1 Some reflections used for a 16-gon 129

xiii

3.2 The sets F andV in the face lattice 135
3.3 Polytope Q from Example 3.3.5 and its projection P . . . 138
3.4 Vertices of ∆n

k inV for a biclique 141
3.5 Case 2 of Lemma 3.5.1 . 143
3.6 Construction for Theorem 3.5.2 144
3.7 Construction for Case 1 in the proof of Theorem 3.6.1 . . 149
3.8 Construction for Case 2 in the proof of Theorem 3.6.1 . . 150
3.9 Lemma 3.7.5 for a 10-cycle and a 12-cycle 155
3.10 Construction in Lemma 3.7.7 with 3 outer cycles 158
3.11 A special case in the proof of Lemma 3.7.7 where M3 is

adjacent to M1 and M2 . 159
3.12 Modifications in Case 1 in the proof of Theorem 3.7.6 . . 161
3.13 Modifications in Case 2 in the proof of Theorem 3.7.6 . . 162

xiv

List of Tables
2.1 Effects of stabilization and cut aging 65
2.2 Dimensions for original MIPLIB 2.0 instances 84
2.3 Dimensions for presolved MIPLIB 2.0 instances 85
2.4 Dimensions of optimal faces for original MIPLIB 2.0

instances . 91
2.5 Dimensions of optimal faces for presolved MIPLIB 2.0

instances . 92
2.6 Running times for different caching strategies 98
2.7 Adjacency computation for random vertex pairs of TSP

polytopes . 115

A.1 Statistics for relaxations of MIPLIB 2.0 instances 176
A.2 Timings for relaxations of MIPLIB 2.0 instances 177
A.3 Statistics for MIPLIB 2.0 instances 178
A.4 Timings for MIPLIB 2.0 instances 179
A.5 Statistics for relaxations of presolved MIPLIB 2.0

instances . 180
A.6 Timings for relaxations of presolved MIPLIB 2.0

instances . 181
A.7 Statistics for presolved MIPLIB 2.0 instances 182
A.8 Timings for presolved MIPLIB 2.0 instances 183

xv

xvi

Chapter 1

Introduction

1

INTRODUCTION

2

1.1. POLYHEDRAL COMBINATORICS

INTRODUCTION:

1.1 Polyhedral Combinatorics

Many combinatorial optimization problems can be stated as the problem
to find a subset F ⊆ E of a finite ground set having certain properties
such that a given cost function is minimized. If the cost function is
linear, i.e., there exists a vector c ∈ RE such that the costs are

∑
e∈F ce,

then we can formulate this as a linear optimization problem (LP)

min cᵀx subject to x ∈ conv.hull
{
χ(F) ∈ {0, 1}E | F ⊆ E is feasible

}
,

where χ(F) is F’s characteristic vector, i.e, χ(F)e = 1 holds if and only if
e ∈ F holds and conv.hull (·) denotes the convex hull.

Such linear programming formulations are a standard tool to gain
structural insight, derive algorithms and to analyze complexity. In order
to solve such an LP we need to describe it by means of linear inequalities,
i.e., Ax ≤ b, which is a nontrivial task in general: For many polyhedra
for which the associated optimization problem is solvable in polynomial
time such a description is known, but of exponential size (in the dimen-
sion). Even worse, for NP-hard problems we should not expect that
we can characterize such a description in a certain nice way, since this
would imply NP = coNP, that is, every propositional tautology would
have a polynomial-size proof. Nevertheless, for practically solving these
problems, good linear relaxations are important. Understanding these
polytopes is (part of) the branch of discrete mathematics called Polyhe-
dral Combinatorics. This thesis contributes with new techniques, results
and software to this area.

3

INTRODUCTION

Investigating Polyhedra by Oracles

In the first part we address questions regarding the computer-aided
analysis of polyhedra that are only implicitly defined by means of a
black-box algorithm (a so-called oracle) solving the optimization prob-
lem. At first glance, this approach may seem rather complicated, but it
is quite effective in practice if we have access to a solver for mixed-integer
linear optimization problems (MIPs). In this situation we can simply give
a mathematical model as the input.

Fundamental work on this topic was done by Grötschel, Lovász
and Schrijver in 1981, when they established the famous theorem on
“equivalence of optimization and separation” [33]. It essentially states
that solving the linear optimization problems over a rational polytope
P is equivalent (with respect to polynomial-time solvability) to finding,
for a given rational point x̂, some hyperplane that separates x̂ from P.
From this result one can derive that one can carry out certain tasks like
finding facets, determining the dimension, or optimizing over faces in
a theoretically efficient way (see Chapter 14 in Schrijver’s book [62]).
Unfortunately, the result and its applications heavily depend on the
Ellipsoid method, a theoretically efficient, but practically almost useless
algorithm.

In Chapter 2, we will present practically efficient algorithms for some
of these problems, describe the underlying ideas, provide the reader
with proofs of correctness, and introduce a new software library IPO that
implements them. Finally, we carry out small computational studies on
different problems showing the software’s capabilities and limitations.

Analyzing Simple Extensions of Polytopes

Chapter 3, the second part of this thesis, deals with our contributions to
the theory of extended formulations, a recently very active area of Polyhe-
dral Combinatorics. Consider once again some polytope P associated
to a class of certain combinatorial sets. Even if a description of P by a
system of linear inequalities is known, it may still be impractically large.

Sometimes it is possible to write P as a projection of some other poly-
tope Q that needs fewer inequalities for the price of a higher dimension,
i.e., more variables. Then we call Q together with the projection map an
extension of P. The theory of extended formulations mainly deals with

4

1.1. POLYHEDRAL COMBINATORICS

the question of the minimum number of inequalities actually required to
describe P, its so-called extension complexity.

Inspired by this phenomenon, one may even dare to ask for an
extension polytope Q that is simple in the sense that every vertex of Q lies
in exactly d facets, where d denotes the dimension of Q. Unfortunately,
we should not be too optimistic when asking for few facets and non-
degeneracy at the same time. It turns out that several well-understood
combinatorial classes of polytopes do not have such an extension.

To prove such results we develop a technique for establishing lower
bounds on the extension complexity when only simple extensions are
permitted. In subsequent sections we apply it to different classes of
combinatorial polytopes. In one particular case, namely for perfect
matching polytopes of complete graphs, we have to improve a result
of Padberg and Rao’s on adjacencies of perfect matchings [52] (see The-
orem 3.7.6). All results of this chapter, except for Theorem 3.7.1, are
already published in the following article:

• Volker Kaibel and Matthias Walter: Simple extensions of polytopes.
Mathematical Programming Series B, 154(1-2): 381–406, 2015.

5

INTRODUCTION

INTRODUCTION:

1.2 Preliminaries

In this section we introduce our basic notation without going into details.
If appropriate, we point the reader to the relevant literature. Whenever
we focus on a combinatorial problem, we will introduce the necessary
concepts locally.

Basics

By R, Q, Z and N we denote the real numbers, the rationals, integers
and the natural1 numbers, respectively (resp.). Using a “+” or “−” in the
subscript (e.g., R+ or R−), we denote the corresponding restrictions to
non-negative (resp. non-positive) numbers. We write [n] := {1, 2, . . . ,n}.
The greatest common divisor of two integers a and b is denoted by
gcd(a, b). For two sets A,B we denote by A∆B := (A \ B) ∪ (B \ A) the
symmetric difference, and write A ∪· B for the disjoint union, i.e., we
implicitly require A∩B = ∅. As usual, the boundary, relative boundary,
the interior and the relative interior of a set A are denoted by bd (A),
relbd (A), int (A) and relint (A), respectively. By proj x(A) we denote
the orthogonal projection of a set A on the subspace indexed by the
x-variables (which are clear from the context).

To state asymptotic behavior, we use the usual Bachmann-Landau
notation O (·), Ω (·), Θ (·) and o (·).

1Ignoring DIN norm 5473, we consider 0 not to be a natural number.

6

1.2. PRELIMINARIES

Vectors, Matrices and Linear Algebra

We make use of the standard scalar product 〈·, ·〉 in the Euclidean space.
The zero vector in Rn and the m × n all-zeros matrix are denoted by
On and Om,n, respectively, where we omit the subscript whenever the
dimension is clear. Similarly, the all-ones vector is 1 := 1n, and the i-th
unit vector is denoted by e

(i). As already stated in the introduction, the
characteristic vector χ(F) of a subset F ⊆ E is the binary vector with
χ(F)e = 1 if and only if e ∈ F. For the product 〈v, χ(F)〉 we use the
notation v(F). The n × n unit matrix is denoted by In and transposition
of vectors and matrices by (·)ᵀ. For a matrix A ∈ Rm×n, a row subset
I ⊆ [m] and a column subset J ⊆ [n], we write AI,J for the submatrix
indexed by the corresponding rows and columns. Instead of AI,[n] and
A[m],J we also write AI,∗ and A∗,J, respectively, and for the single entries
A{i},{ j} we write Ai, j.

For the set of rows of a matrix A, considered as vectors, we write
rows (A) and for the nullspace of A we write ker (A). The dimension
dim (X) of a set X ⊆ Rn is defined as the dimension of its affine hull
(denoted by aff.hull (X)), i.e., the dimension of the smallest affine space
that contains X. We say that X is full-dimensional if dim (X) = n holds.
As usual, the linear hull (denoted by lin.hull (X)) is the set of all linear
combinations of elements of X.

Polyhedra

For precise definitions and basic properties of convex sets and polyhedra
we refer to [61] and [62], respectively. As already done in the introduc-
tion, we write conv.hull (X) for the convex hull and conic.hull (X) for
the convex conic hull of X, respectively. A polyhedron P ⊆ Rn is the
intersection of finitely many halfspaces, that is, P = {x ∈ Rn

| Ax ≤ b} for
some matrix A ∈ Rm×n and some vector b ∈ Rm. Polytopes are bounded
polyhedra or, equivalently, convex hulls of finitely many points. We
say that a direction v ∈ Rn is unbounded with respect to (w.r.t.) P if P is
non-empty and x + λv ∈ P holds for some x ∈ P and for all λ ≥ 0. The
set recc (P) := {v ∈ Rn

| v is unbounded w.r.t. P } is the so-called recession
cone of P (which is a polyhedral cone). By Minkowski-Weyl’s Theorem
(see Corollary 7.1b in [62]), every polyhedron P is the sum of a polytope

7

INTRODUCTION

and P’s recession cone, that is,

P = conv.hull (S) + conic.hull (R) for finite S ⊆ P and finite R ⊆ recc (P).

We call such a pair (S,R) an inner description of P, whereas we refer to
Ax ≤ b as an outer description. If S and R are sets of rational vectors,
we say that P is a rational polyhedron. The lineality space, defined as
lineal (P) := recc (P)∩ recc (−P), is the set of all directions corresponding
to lines contained in P. We say that P is pointed if lineal (P) = {O} holds.

Farkas’ Lemma (see Corollary 7.1e in [62]) states that either the system
Ax ≤ b (for A ∈ Rm×n and b ∈ Rm) has a solution or there exists a
nonnegative vector y with yᵀA = O and yᵀb < 0.

We say that an inequality 〈a, x〉 ≤ β (for a ∈ Rn and β ∈ R) is valid for a
polyhedron P if it is satisfied by all points in P. A face of a polyhedron P
is a subset F ⊆ P that is induced by a valid inequality 〈a, x〉 ≤ β in the sense
that F =

{
x ∈ P | 〈a, x〉 = β

}
holds. For non-empty faces F we also say that

F is the a-maximum face of P since then clearly F = arg max {〈a, x〉 | x ∈ P}
holds. The faces of a polyhedron P form a graded lattice L(P) (in the
sense of a partially ordered set), ordered by inclusion (see [70]). The
(d−1)-dimensional faces of a d-dimensional polyhedron are called facets
and the 0-dimensional faces are called vertices. Although vertices are
formally singleton sets {x} for some x ∈ P, we usually just write x.
The set of all vertices of a polyhedron P is denoted by vert (P). Note
that only pointed polyhedra actually have actually have vertices. As
motivated in the introduction, 0/1-polytopes, that is, polytopes whose
vertices have only 0/1-coordinates, are of special interest in Polyhedral
Combinatorics. The bounded (resp. unbounded) 1-dimensional faces of
pointed polyhedra are called edges (resp. extreme rays). The set of direc-
tion vectors corresponding to the extreme rays is denoted by ext.rays (P).
The irredundant (that is, inclusion-wise minimal) inner description of a
pointed polyhedron P is the pair (vert (P) , ext.rays (P)).

For a polyhedron P ⊆ Rn and a point x̂ ∈ P we will use the radial
cone, defined as rad.conex̂(P) := conic.hull (P − x̂), and its polar cone
nml.conex̂(P) :=

{
y ∈ Rn

|
〈
y, x − x̂

〉
≤ 0 for all x ∈ P

}
, called the normal

cone. Intuitively, the radial cone contains all directions one can go from
x̂ without immediately leaving P, whereas the normal cone consists of
all objective vectors whose maximum face contains x̂.

In order to use (sets of) inequalities or equations as input or output

8

1.2. PRELIMINARIES

of algorithms, we will often consider system Ax ≤ b or Cx = d as objects,
where we formally mean the pairs (A, b) and (C, d), respectively.

Linear and Mixed-Integer Linear Optimization
A linear optimization problem (LP) is an optimization problem of the form

max 〈c, x〉 subject to (s.t.) Ax ≤ b.

for a matrix A ∈ Rm×n and vectors b ∈ Rm and c ∈ Rn. Of course we can
also minimize, allow equations, “≥”-inequalities, or special inequalities
like x ≥ O, so-called variable bounds. We often use the phrase of “opti-
mizing over a polyhedron P” which means to solve linear optimization
problems with P as the feasible region and arbitrary linear objective
functions.

A mixed-integer optimization problem (MIP) is an LP with the addi-
tional restriction that a subset I ⊆ [n] of variables must be integral,
that is, x ∈ I := {x ∈ Rn

| xi ∈ Z for all i ∈ I} holds. The feasible points
are sometimes called integer-feasible to distinguish from LP-feasibility for
which we ignore the integrality constraints. The special case of I = [n]
is called just an integer program (IP).

A polyhedron P = {x ∈ Rn
| Ax ≤ b} is called a linear relaxation of a

set X ⊆ I (w.r.t. I) if P ∩ I = X holds. Its corresponding mixed-integer
hull is the set PI := conv.hull (P ∩ I), that is, PI = conv.hull (X).

Graphs
Most of the combinatorial optimization problems we are concerned with
are defined for graphs. We will only introduce notation here, and refer
to the books of Schrijver [63] and Korte and Vygen [47]. They are not
graph-theoretic, but introduce all concepts that are necessary to deal
with our problems.

We mostly deal with undirected graphs G = (V,E) consisting of a
set V of nodes2 and a set E of edges, where an edge is a 2-element set of
nodes. In particular, all our graphs are simple (no edge exists twice) and
loopless (edges connect distinct nodes). We often consider the complete
graphs Kn with n nodes and all

(n
2
)

possible edges. We denote for a set

2Note that we only use the term “vertices” for the 0-dimensional faces of polyhedra.

9

INTRODUCTION

S ⊆ V of nodes by E[S] the set of edges whose endpoints lie in S. By δ(S)
we denote the cut induced by S, that is, the set of edges having precisely
one endnode in S. We abbreviate δ({v}) by δ(v) for single nodes v ∈ V.
For an edge set F ⊆ E we denote by V(F) the set of all nodes of edges in
F.

In Section 3.6 we also consider directed graphs G = (V,A) with node
sets V and arcs A which are pairs of nodes. We will introduce suitable
notation locally.

Another type of graphs we consider is the so-called 1-skeleton of a
polytope whose nodes are the vertices and whose edges are the edges
(1-dimensional faces) of the polytope.

Computational Complexity
Although we do not directly touch the field of computational complex-
ity, we benefited a lot from it. As argued in the introduction we can use it
to guide expectations on the possibility to characterize facial structures
of polyhedra. We won’t define the complexity classes, P, NP and coNP
here, but refer to standard literature [29], [7].

10

Chapter 2

Investigating Polyhedra by
Oracles

11

INVESTIGATING POLYHEDRA BY ORACLES

12

2.1. MOTIVATION: MIXED-INTEGER HULLS

INVESTIGATING POLYHEDRA BY ORACLES:

2.1 Motivation: Mixed-Integer Hulls

As described in the introduction, one goal of Polyhedral Combina-
torics is to study (facial structures of) polytopes of which one implicitly
knows the extreme points. Since in most of the applications one also
knows some linear relaxation, a MIP solver can be used to optimize
over the polytopes. In general, it is advantageous for a MIP solver if
the relaxation approximates the corresponding mixed-integer hull very
well, where inequalities that are not dominated by others (e.g., within
a bounding box) are particularly interesting. Geometrically, this means
that the face induced by such an inequality is a facet. Hence, a typical
task for researchers is to identify such facets for a given linear relaxation.

One way of doing this is to first compute all extreme points X ⊆ Rn of
the mixed-integer hull, either by developing problem-specific software
or by using tools that do this automatically for a given relaxation. For
the latter task, there are many different types of algorithms and even
more different implementations. For an overview and a comparison we
refer to [8], where the authors compare all tools that are interfaced by
the polymake system [56]. Note that there are binary sets X ⊆ {0, 1}n

for which every linear relaxation in the original space has exponentially
many inequalities (see [42]), which is a problem for such tools since they
get such a relaxation as an input.

As a second step, this set X is usually given as input to some convex
hull tool which computes a set of linear equations defining aff.hull (X)
and one inequality representing each facet of conv.hull (X). Again, there
are many algorithms for this task, and we refer to [8] for a comparison.

13

INVESTIGATING POLYHEDRA BY ORACLES

Finally, the researcher has to analyze the output, understand why
the inequalities are valid for X, identify structure, classify them, and
prove validity. Establishing the facet-defining property of a class of in-
equalities is of course not necessary for a practical application, still it is
of interest since then the inequalities are not dominated by others. Of-
ten, such classes contain exponentially (in the dimension) many facets,
and hence, one is also interested in the investigation of the separation
problem for a class. The work-flow described above is visualized in
Figure 2.1.

Mixed-integer set:
Ax + By ≤ d

xi ∈ Z, y j ∈ R

All extr.

points:

∗

...
∗

∗

...
∗

∗

...
∗

∗

...
∗

∗

...
∗

∗

...
∗

∗

...
∗

. . .

All facets:

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

...

All equations:

(∗ . . . ∗)x = ∗

(∗ . . . ∗)x = ∗

...

Recognized class of facets:

〈a, x〉 +
〈
b, y

〉
≤ β for all (a, b, β) : . . .

Enumeration

Convex hull tool
(e.g., double-description, lrs

beneath&beyond,. . .)

Figure 2.1: Traditional work-flow in polyhedral combinatorics.

Motivated by the fact that this approach is limited by the shear
amount of data, namely extreme points and facets, we propose new
ideas how to still find new facet classes. Although the work-flow de-
scribed above usually fails for dimensions larger than 20, actually solving
the corresponding optimization problem using a MIP solver is nowa-

14

2.1. MOTIVATION: MIXED-INTEGER HULLS

days a matter of a second. The main goal of this part of the thesis is to
develop algorithms that make use of this observation to overcome some
of the issues mentioned before.

Mixed-integer set:
Ax + By ≤ d

xi ∈ Z, y j ∈ R

Only some
useful facets:

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

(∗ . . . ∗)x≤∗

...

All equations:

(∗ . . . ∗)x = ∗

(∗ . . . ∗)x = ∗

...

Recognized class of facets:

〈a, x〉 +
〈
b, y

〉
≤ β for all (a, b, β) : . . .

MIP
solver

Figure 2.2: Proposed new work-flow in polyhedral combinatorics.

For instance, in order to still obtain all structural information with
respect to an outer description consisting of facets, it offen suffices to
compute a dozen or a hundred of them. First, a researcher will not be
able to inspect all existing facets, anyway. Second, due to symmetry,
often the facets are also very similar to each other, hence it may well
be that all facet classes1 actually have a representative in our small
collection! This proposed new work-flow is visualized in Figure 2.2.

Sometimes one is interested in optimizing a specific class of objective
functions, e.g., nonnegative costs, or metric distance weights. In such a

1Note that there is no formal definition of a facet class, but in practice it consists of
facets that expose a similar structure.

15

INVESTIGATING POLYHEDRA BY ORACLES

case, there may exist many inequalities that define facets, but will never
be relevant for objective functions from the respective class. The method
for facet-detection we will present has the remarkable property that it
may be controlled by an objective vector. Hence, by choosing objective
vectors from the set of interesting ones we can at least slightly influence
which facets will be detected.

16

2.2. THE SOFTWARE LIBRARY IPO

INVESTIGATING POLYHEDRA BY ORACLES:

2.2 The Software Library IPO

Motivated by the observations from the previous section we developed
the software library IPO (Investigating Polyhedra by Oracles, [67]). We
now briefly describe its functionality, leaving the details for Sections 2.3–
2.8.

The user has to provide IPO with a so-called optimization oracle,
which is a black-box procedure for maximizing any given linear objec-
tive function over a certain polyhedron. We will define this formally
in the next section. In principle this can be any algorithm that solves
a certain type of optimization problems, but in particular, it may be a
MIP model together with a solver. For the latter case, IPO already in-
terfaces the solver SCIP [1], which can solve an even broader problem
class than just MIPs. It does not matter whether the SCIP optimization
oracle was created for an explicit MIP or whether it uses so-called con-
straint handlers that dynamically enforce some of the constraints, e.g.,
by solving separation problems. Hence, one can also use oracles for
problems that allow no small LP relaxation. Since most of the MIP
solvers work with floating-point arithmetic, one may also use the exact
MIP solver ExactSCIP (see [20], [64] and [19] for details) for numerically
challenging problems, taking a considerable increase in running time
into account.

We assume that the oracle implicitly defines a polyhedron P :=
conv.hull (S) + conic.hull (R), where S is the set of all points that the
oracle may return as optimal, and R is the set of direction vectors that
the oracle may return as unbounded directions. Note that just by this

17

INVESTIGATING POLYHEDRA BY ORACLES

definition P could be any convex closed set, a generalization not con-
sidered here. A description of our requirements, including the one that
an oracle must not contradict its previous answers, can be found in
Section 2.3.

In addition to user-written optimization oracles and the predefined
SCIPOptimizationOracle and ExactSCIPOptimizationOracle (inter-
facing SCIP and ExactSCIP, respectively), the user can easily derive
new oracles from existing ones without much effort. Among those
“wrapper” optimization oracles are the ones for the recession cone, for
arbitrary faces and affine projections of the polyhedron defined by a
given oracle.

Outline

Using an optimization oracle for a polyhedron P ⊆ Rn, IPO can

• compute the affine hull of P in the sense that it returns (d + 1)
many affinely independent points in P and (n − d) many linearly
independent equations valid for P, where d is the dimension of P.
The details are discussed in Section 2.4,

• compute a facet-defining inequality that is violated by a given
point. The technique is based on Target Cuts developed by Buch-
heim, Liers and Oswald [15] in 2008, and presented in Section 2.5.

• compute facets that are “helpful” when maximizing a specified
objective vector c. More precisely, it iteratively solves LPs whose
inequalities correspond to some of P’s facets, until the current
optimum is in P. As long as this is not the case, the procedure
returns violated facet-defining inequalities and adds them to the
LP.

• check whether two given vertices of P are adjacent. In Section 2.6.2
we reduce this problem to the next one:

• compute the smallest face of P containing a given point by means
of an inequality defining this face. Check whether a given point
is a vertex of P. Section 2.6 is dedicated to this topic.

18

2.2. THE SOFTWARE LIBRARY IPO

Section 2.7 deals with an auxiliary problem that needs to be solved
for the facet-computation as well as for the computation of the smallest
containing face. It is essentially the separation problem for the cone of
inequalities valid for a polyhedron.

In Section 2.8 we develop methods that linearly combine two integer
vectors in order to produce one of minimum Manhattan norm (without
allowing the zero vector). This is useful to post-process IPO’s output:
first, equations may be combined to become more readable. Second, the
equations may be combined with a computed inequality to improve the
readability of the latter.

The capabilities of IPO are demonstrated in several small computa-
tional studies. For the affine hull computations we considered the linear
relaxations and the mixed-integer hulls for a subset of the MIPLIB 2.0
instances [14]. We computed their dimensions, the dimensions of their
optimal faces and for the mixed-integer hulls also the dimensions of
the faces induced by the inequality constraints specified in the model
instance. The results are presented in Section 2.9.

For the facet computation we investigated integer hulls for several
integer programs. First we considered polytopes associated to matching
problems with objective functions consisting of a linear term plus a
single product term. Section 2.10 shows how we used IPO to compute
several unclassified facets, and also contains proofs that the identified
classes indeed consists of valid facet-defining inequalities. As a second
example we considered inequality constraints that link node sets and
edge sets in different ways. We deal with outer descriptions of the
corresponding integer hulls and with computational complexity of the
associated optimization problems. IPO requires a fractional solution
to be cut off by a facet, and such a solution is sometimes hard to find.
Hence, in a third example we present a strategy to come up with such
solutions, in our case based on a polyhedral reduction from vertex cover
to tree polytopes.

In our last experiment we used the famous solver concorde [4] as an
oracle for the traveling salesman polytope to check many random vertex
pairs for adjacency. We present some statistics, and describe a technique
to produce adjacent pairs by node splitting.

19

INVESTIGATING POLYHEDRA BY ORACLES

IPO’s User Interface
In order to make IPO user-friendly, the following programs also belong
to the library:

• ipo-facets: Input is any instance that SCIP can read, in partic-
ular MIPs in LP or MPS format and models written in the ZIMPL
modelling language [45]. It uses the objective from the MIP to
compute “helpful” facets (see above).

• ipo-dimensions: Input is as for ipo-facets, together with a
choice of whether it shall compute the dimension of the linear
relaxation, of the mixed-integer hull, of the optimal face of either
of them, or of all faces induced by the inequality constraints given
in the model.

• ipo-smallest-face: Input is as for ipo-facets, together with a
point s ∈ P. It then computes the dimension of the smallest face
that contains s. This can be used to check adjacency of two vertices
(e.g., s is their midpoint), as discussed in Section 2.6.3.

20

2.3. OPTIMIZATION ORACLES

INVESTIGATING POLYHEDRA BY ORACLES:

2.3 Optimization Oracles

In this section we will specify what IPO requires from an optimization
oracle in order to work correctly. Then we discuss how to derive from an
optimization oracle for a polyhedron those for related polyhedra (e.g.,
faces and projections). In the last subsection we introduce a special
optimization oracle that is helpful when analyzing mixed-integer hulls
with the help of a floating-point based MIP solver.

A proper optimization oracle O for a rational polyhedron P ⊆ Rn is
an oracle that can be called for any direction c ∈ Qn (we denote this by
O(c)) and returns

• O(c).val = −∞ if P = ∅ holds,

• O(c).val = +∞ and a rational direction r := O(c).dir ∈ recc (P)
satisfying 〈c, r〉 > 0 if sup {〈c, x〉 | x ∈ P} = ∞,

• and δ := O(c).val ∈ Q and a rational point s := O(c).point ∈ P
satisfying 〈c, s〉 = δ = max {〈c, x〉 | x ∈ P} otherwise.

In an implementation, such an oracle usually also has functionality to
obtain P’s ambient dimension n, and hence we will always assume that
n is known.

We say thatO is finite if the set of all possible answers is finite, i.e., if

| {O(c).dir | c ∈ Qn with O(c).val = +∞} | < ∞ and
|
{
O(c).point | c ∈ Qn with O(c).val , ±∞

}
| < ∞

21

INVESTIGATING POLYHEDRA BY ORACLES

hold. We will often use finiteness of oracles in order to prove termination
of our algorithms. In several cases we will not be able to give proofs on
the actual running time since we make heavy use of the Simplex method
for which no polynomial-time version is known.

Many of the algorithms we present do not always require optimal-
ity of the solutions returned by an oracle. Hence it is useful to also
consider oracles that still guarantee to return feasible solutions but not
necessarily return optimal ones. We call such an oracle a heuristic op-
timization oracle (in contrast to proper optimization oracles). Often, our
algorithms require optimality only in certain steps, so we can some-
times make progress using a heuristic optimization oracle first without
losing correctness. A simple example is to use a standard MIP solver,
which is prone to rounding errors triggered by float-point arithmetic,
as a heuristic and a slower exact MIP solver as a proper optimization
oracle.

Optimization Oracle for the Recession Cone

Let O be an optimization oracle for a non-empty rational polyhedron
P ⊆ Rn and let C := recc (P) be its recession cone. We can very easily
derive an optimization oracle OC for C from O:

Given a direction c ∈ Qm, call O(c). If O(c).val = +∞ holds, then OC
also returnsO(c).dir since the latter lies in C. Otherwise, i.e., ifO(c).val ,
±∞holds, thenOC returnsO as the optimum point. The origin is optimal
since any point y ∈ C with a positive objective value would immediately
make max {〈c, x〉 | x ∈ P} unbounded because we have λy ∈ recc (P) for
any λ ≥ 0, i.e., Owould have returned O(c).val = +∞.

Optimization Oracles for Projections of Polyhedra

Let O be an optimization oracle for a rational polyhedron P ⊆ Rn. Let
furthermore A ∈ Qm×n be a matrix and b ∈ Qm be a vector defining the
projection map π : Rn

→ Rm via π(x) := Ax + b. Let Q := π(P) be the
image of the projection.

In this case an optimization oracle OQ for Q can be obtained in a
straight-forward way: Given a direction c ∈ Qm, call O(Aᵀc). Clearly,
P = ∅ holds if and only if Q = ∅ holds. If O(Aᵀc).val = +∞ holds, then
OQ also returns an unbounded direction Ar with r = O(Aᵀc).dir. To

22

2.3. OPTIMIZATION ORACLES

see that this is correct, observe 〈c,Ar〉 = 〈Aᵀc, r〉 > 0 and consider some
x ∈ P. For all λ ≥ 0 we have x + λr ∈ P, and hence (Ax + b) + λAr ∈ Q,
i.e., Ar ∈ recc (Q). In the last case, i.e., if O(Aᵀc).val , ±∞ holds, then
OQ also returns a point π(s) with s = O(Aᵀc).point. This is justified by
the fact that for any x, x′ ∈ Rn we have

〈Aᵀc, x〉 ≤ 〈Aᵀc, x′〉 ⇐⇒ 〈c,Ax + b〉 ≤ 〈c,Ax′ + b〉 .

Optimization Oracles for Faces of Polyhedra

In contrast to the construction of an optimization oracle for a projection
of a polyhedron P, it is harder to create one for a face F of P ⊆ Rn

without relying on the equivalence of optimization and separation (see
Chapter 14 in Schrijver’s book [63]). In contrast, note that creating a
separation oracle for a face from a separation oracle for the polyhedron
is trivial.

One idea for a direct construction is to tilt a given objective vector
such that an optimal point is contained in F or an unbounded direction
is also in the recession cone of F. Unfortunately, the last property is
too restrictive without further assumptions as shown in the following
example.

Example 2.3.1. Consider the polyhedron P = R×R− with its face F = R×{0},
and the objective c = (1, 0)ᵀ. Clearly, maximizing c over F is an unbounded
LP since recc (F) = lin.hull {c} holds. Unfortunately, for arbitrary M > 0,
when called with the tilted objective vector c̃ = 1

M c + (0, 1)ᵀ, an oracle for P
may answer with the unbounded ray (2,− 1

M)ᵀ ∈ recc (P) \ recc (F) since its
scalar product with c̃ is positive.

Schrijver’s proofs (see Chapter 14 in [62]) avoid this phenomenon by
requiring bounds on P’s encoding size, which even allows to compute
a sufficiently large constant M a-priori. We do not want to do this, in
particular because such an M would be impractically large, but instead
focus on finite oracles. Note that this is a generalization of the usual
strategy since an oracle whose answers have bounded encoding lengths
can only give finitely many different answers. Unfortunately, despite
finiteness of oracles, M can still be arbitrarily large, and hence we have
to determine it on the fly by the following algorithm:

23

INVESTIGATING POLYHEDRA BY ORACLES

a c

1
M c + a

(
2
−

1
M

)

Figure 2.3: Illustration of Example 2.3.1.

Algorithm 2.3.1: Optimization Oracle for a Face
Input: Optimization oracle O for a rational polyhedron P ⊆ Rn,

a rational inequality 〈a, x〉 ≤ β defining a non-empty face
F of P and an objective vector c ∈ Qn.

Output: A direction r ∈ recc (F) with 〈c, r〉 > 0 or a point s ∈ F
with 〈c, s〉 = max {〈c, x〉 | x ∈ F}.

1 for M := 1, 2, 4, 8, . . . do
2 Compute c̃ := c + Ma.
3 if O(c̃).val = +∞ and 〈a,O(c̃).dir〉 = 0 then
4 return O(c̃).dir.
5 end
6 if O(c̃).val , ±∞ and

〈
a,O(c̃).point

〉
= β then

7 return O(c̃).point.
8 end
9 end

Proposition 2.3.2. When called for a finite optimization oracle O, Algo-
rithm 2.3.1 works correctly and yields a finite optimization oracle.

Proof. On termination, the algorithm clearly returns correct answers as
ensured by the conditions in Steps 3 and 6. Furthermore, since it only
returns points and directions that were themselves returned by O, the
finiteness property is also clear. Hence we only have to prove that it
terminates.

24

2.3. OPTIMIZATION ORACLES

Let x ∈ F be some point in the non-empty face F and consider any

s ∈ P \ F. Define M(s) := 〈
c,s−x〉+1
β−〈a,s〉 (note that 〈a, s〉 < β holds). We now

observe that

〈
c + M(s)a, x − s

〉
=

〈
c, x − s

〉
+

〈
c, s − x

〉
+ 1

β − 〈a, s〉
(β − 〈a, s〉) > 0

holds, i.e., no M greater than M(s) will yield s as a (c + Ma)-maximum
point.

Also observe that for every direction r ∈ recc (P) \ recc (F) we have
〈a, r〉 < 0. Hence, there exists a number ~M(r) > 0 with 〈c + ~M(r)a, r〉 ≥ 0.

Now consider an M∗ (from the algorithm) that is greater than M(s)
for all (finitely many) points s that the oracle may return and greater
than ~M(r) for all (finitely many) directions r that the oracle may return.
For M∗, the conditions 〈a,O(c̃).dir〉 = 0 and

〈
a,O(c̃).point

〉
= β must be

satisfied by the arguments above. �

Corrector Oracle for Mixed-Integer Programs

Since the polyhedra of our main interest are mixed-integer hulls, we
often use MIP solvers as heuristics and oracles. It is not straight-forward
to use a floating-point precision MIP solver for such a task as our oracle
specification requires them to return results in exact arithmetic. Clearly,
for pure integer programs this is not an issue as we can simply round
the returned vectors component-wise2.

In order to handle at least explicitly given mixed-integer programs,
IPO implements a MixedIntegerProgramCorrectorOracle that does
the following: Given an approximate solution (x̃, ỹ) ∈ Rn

× Rd to the
MIP max

{
〈c, x〉 +

〈
d, y

〉
| Ax + By ≤ g, y ∈ Zd

}
, it rounds ỹ component-

wise to the nearest integer and obtains vector ŷ ∈ Zd. Then, the LP
max

{
〈c, x〉 | Ax ≤ g − Bŷ

}
(with fixed ŷ) is solved with SoPlex [68], which

can be configured to return exact solutions. This rational solution x̂ is
augmented by ŷ and returned. If the LP is unbounded, then the original
problem is unbounded as well. If the LP is infeasible, an exception

2In general rounding may produce infeasible points, but in such a case we probably
have numerical troubles, anyway.

25

INVESTIGATING POLYHEDRA BY ORACLES

is raised, since clearly the answer of the floating-point precision MIP
solver is not even approximately feasible.

26

2.4. COMPUTING THE AFFINE HULL

INVESTIGATING POLYHEDRA BY ORACLES:

2.4 Computing the Affine Hull

This section is dedicated to the following problem. Given an optimiza-
tion oracleO for a rational polyhedron P ⊆ Rn, we want to determine P’s
affine hull. A very obvious (and useful) certificate consists of an inner
description, i.e., an affine basis of aff.hull (P) and an outer description
of aff.hull (P), i.e, an (irredundant) set of equations valid for P. We first
present a simple algorithm that produces such a certificate using at most
2n + 1 oracle calls. In Section 2.4.2 we refine the algorithm to reduce this
number to 2n, also adding several other improvements. Section 2.4.3 is
dedicated to the proof that that no oracle-based algorithm can do better.
In order to exploit presence of heuristic optimization oracles we devel-
oped an algorithm that first runs our refined algorithm for a heuristic
oracle, and then tries to verify the k returned potential equations with
only k + 1 calls to a proper optimization oracle. This algorithm, together
with a proof that k + 1 calls are again best possible, is presented in Sec-
tion 2.4.4. In Section 2.4.5 we give some insight in details of the software
implementation.

A Basic Scheme

We begin with a simple iterative scheme. It maintains a set S ⊆ P
of affinely independent points (initialized with a single point s0) and a
non-redundant system Cx = d of equations valid for aff.hull (P) (initially
empty), and either enlarges the set S by one point or extends the system
of equations by an equation until aff.hull (S) = {x ∈ Rn

| Cx = d} holds.

27

INVESTIGATING POLYHEDRA BY ORACLES

For dimension reasons this process needs n iterations.
Finding an equation 〈c, x〉 = δ valid for aff.hull (P) means that c is

orthogonal to aff.hull (P), which in turn means that

(δ :=) max
x∈P
〈c, x〉 = min

x∈P
〈c, x〉

holds. Hence, suppose we have a good guess for such a c, two calls
of the oracle suffice to verify that 〈c, x〉 = δ is valid. In order to make
progress we require that c is linearly independent of already known
equation normals.

The next idea is to restrict c to be orthogonal to the affine hull of the
points S ⊆ P known so far. Under this restriction, if

max
x∈P
〈c, x〉 > min

x∈P
〈c, x〉

holds, i.e., we could not find an equation, then the maximizer or the
minimizer is affinely independent of S. Hence, in both cases we make
progress. This obviously leads to at most 2n oracle calls plus one initial
call to find s0.

Algorithm 2.4.1: Affine Hull Basic Scheme
Input: Optimization oracle O for a polyhedron P ⊆ Rn.
Output: An affine basis S of aff.hull (P), a non-redundant

system Cx = d with aff.hull (P) = {x ∈ Rn
| Cx = d}.

1 if O(O).val = −∞ then return (∅, 〈O, x〉 = 1).
2 else Initialize s0 := O(O).point, S := {s0}, Cx = d empty.
3 while |S| + | rows (C) | < n + 1 do
4 Find c ∈ Qn

\ {O}, c ⊥ (S − s0) and lin. indep. of rows (C).
5 if O(c).val = +∞ then s+ := s0 +O(c).dir.
6 else s+ := O(c).point.
7 if O(−c).val = +∞ then s− := s0 +O(−c).dir.
8 else s− := O(−c).point.
9 if 〈c, s+

〉 = 〈c, s−〉 then extend Cx = d with 〈c, x〉 = 〈c, s+
〉.

10 else if 〈c, s+
〉 > 〈c, s0〉 then S := S ∪ {s+

}.
11 else S := S ∪ {s−}.
12 end
13 return (S,Cx = d).

28

2.4. COMPUTING THE AFFINE HULL

We will not prove correctness of Algorithm 2.4.1, but do so for a
refined version in a moment. We will also present missing details like
how to determine the vector c in Step 4. Several other extensions are
also handled that add capabilities or improve the numerical behavior.

The Algorithm

Since we consider oracle calls as rather expensive operations we will
often cache their results, i.e., have sets of known points and known un-
bounded directions available. For simplicity, Algorithm 2.4.1 hides the
directions by just adding them on top of a known point and considering
the result as the new point. In the more elaborate algorithm we want
to handle unbounded directions explicitly. The orthogonal complement
of the affine hull aff.hull (S) + lin.hull (R) of S + R for a non-empty set S
of points and a set R of unbounded directions is clearly the intersection
of aff.hull (S)⊥ and lin.hull (R)⊥, and hence corresponds to the set of all
c ∈ Rn for which a δ ∈ R with

〈s, c〉 − δ = 0 for all s ∈ S and 〈r, c〉 = 0 for all r ∈ R (2.1)

exists. The (|S|+ |R|)× (n+1)-coefficient-matrix of (2.1) as a linear system
of equations in variables (c, δ) is subsequently denoted by A(S,R).

The basic scheme needs 2n + 1 oracle calls to determine the affine
hull, and the following algorithm improves this to 2n. Although this is
only a tiny improvement, it closes the gap to a lower bound of 2n that
we prove in Section 2.4.3. The improvement works as follows:

The set S is not initialized using an oracle call, but is empty at the
beginning. When the oracle yields a feasible point for the first time
by maximizing a direction c, the algorithm calls it a second time to
maximize −c, ensuring that c , O holds. This second call yields a
second piece of information: An unbounded direction, another point,
or a valid equation. This is in contrast to the later iterations, which only
result in one piece of information for the cost of two oracle calls in the
worst case.

An aspect left open in the basic scheme is the computation of the vec-
tor c. The requirement that c is orthogonal to aff.hull (P) is satisfied by
choosing

(c
δ

)
∈ ker(A(S,R)). For the second property one may be tempted

to model c’s linear independence of C’s rows by orthogonality, that is,

29

INVESTIGATING POLYHEDRA BY ORACLES

to add the corresponding rows to A(S,R) and then search for an element
in the null space. This would certainly yield a correct algorithm, but
computational experiments suggest that this has undesirable numerical
consequences: First, the underlying linear algebra has to handle rational
numbers with much higher encoding lengths that can increase the run-
ning time dramatically. Second, the normals of the final set of equations
then constitute an orthonormal basis. For several applications such a
requirement is not natural, and it is hard to post-process the equations
to make them easier to read (see Section 2.8). Instead of this direct
approach, the following algorithm iterates over a set of basis elements
of A(S,R)’s null space and checks every candidate direction c for linear
dependence of C’s rows. For this it maintains a column basis B ⊆ [n+1],
an LU-factorization3 of A(S,R)

∗,B and a list L ⊆ [n + 1] \ B of indices that
induce candidate directions. Since adding an equation does not change
A(S,R), the single loop of Algorithm 2.4.1 is split into two loops, where the
inner loop iterates over the candidate directions, and the candidate list
is reset in every iteration of the outer loop. This yields Algorithm 2.4.2.

Lemma 2.4.1. Given an optimization oracle for an empty polyhedron, Algo-
rithm 2.4.2 works correctly and needs one oracle call.

Proof. Clearly, both loop conditions are satisfied for the first time, and in
the first iteration of the inner loop the conditions of Step 7 are satisfied
since S = ∅ and L = [n + 1] hold. The solution of the system in Step 10
yields c = e

(j) and δ = 0 due to j , n + 1. Since Cx = d is empty, the
oracle is called with objective c in Step 12 and returns the correct answer
using precisely one oracle call. �

We will make use of the following well-known proposition in order
to show regularity of the basis matrices involved [36].

Proposition 2.4.2 (Schur Complement). Let A ∈ Rn×n be regular, b, c ∈ Rn

and δ ∈ R. Then
(

A b
cᵀ δ

)
is regular if and only if δ − cᵀA−1b , 0 holds.

3Writing A = L · U for lower-triangular matrix L and upper-triangular matrix U is an
efficient alternative to computing A’s inverse.

30

2.4. COMPUTING THE AFFINE HULL

Algorithm 2.4.2: Affine Hull
Input: Optimization oracle O for a polyhedron P ⊆ Rn.
Output: A tuple (S,R,B,Cx = d), where S ⊆ P are points and

R ⊆ recc (P) are directions such that A(S,R) has full
row-rank, B is a column basis of A(S,R) and the system
Cx = d is irredundant with
aff.hull (P) = aff.hull (S)+lin.hull (R) = {x ∈ Rn

| Cx = d}.

1 Initialize S := ∅, R := ∅, Cx = d empty, B := ∅.
2 while |S| + |R| + | rows (C) | < n + 1 do
3 Update LU-factorization of A(S,R)

∗,B .
4 L := [n + 1] \ B.
5 while L , ∅ do
6 if S , ∅ then let j ∈ L.
7 else if S = ∅ and L , {n + 1} then let j ∈ L \ {n + 1}.
8 else return (

{
O(O).point

}
,R,B ∪ {n + 1} ,Cx = d).

9 Set L := L \
{
j
}
.

10 Solve A(S,R)(c
δ

)
= O, (cᵀ, δ)[n+1]\B = e

(j).
11 if c ∈ lin.hull (rows (C)) then go to Step 5.
12 if O(c).val = −∞ then return (∅, ∅, ∅, 〈O, x〉 = 1).
13 if O(c).val = +∞ then
14 R := R ∪ {O(c).dir}, B := B ∪

{
j
}
, go to Step 2.

15 else if S = ∅ then
16 S := S ∪

{
O(c).point

}
, B := B ∪ {n + 1}, δ := O(c).val.

17 else if
〈
c,O(c).point

〉
> δ then

18 S := S ∪
{
O(c).point

}
, B := B ∪

{
j
}
, go to Step 2.

19 if O(−c).val = +∞ then
20 R := R ∪ {O(−c).dir}, B := B ∪

{
j
}
, go to Step 2.

21 else if
〈
c,O(−c).point

〉
< δ then

22 S := S ∪
{
O(−c).point

}
, B := B ∪

{
j
}
, go to Step 2.

23 else
24 Extend Cx = d with 〈c, x〉 = δ.
25 if Step 16 was just executed then go to Step 2.
26 end
27 end
28 return (S,R,B,Cx = d).

31

INVESTIGATING POLYHEDRA BY ORACLES

Proof. The fact that the first matrix in the multiplication(
A−1 O

cᵀA−1 1

)
·

(
A b
cᵀ δ

)
=

(
I A−1b
Oᵀ δ − cᵀA−1b

)
is regular immediately proves the result. �

Lemma 2.4.3. Given an optimization oracle for a non-empty rational polyhe-
dron P ⊆ Rn, then during the run of Algorithm 2.4.2, the following properties
are satisfied:

(A) S ⊆ P and R ⊆ recc (P).

(B) In Step 10, if B , ∅ holds, the matrix A(S,R)
∗,B is regular.

(C) The vector c computed in Step 10 satisfies c , O.

(D) R consists of linearly independent vectors.

(E) If S , ∅ holds, |S| + |R| = dim (aff.hull (S) + lin.hull (R)) is satisfied.

Proof. Property (A) is easy to check: S is initially empty and only ex-
tended with results of oracle calls in bounded directions in Steps 16, 18
and 22. The set R is also initially empty and only extended with results
of oracle calls in unbounded directions in Steps 14 and 20. In all cases,
B is extended, hence |B| = |S| + |R| also holds.

For the remaining properties, we will apply induction on the car-
dinality of B. For B = ∅, we also have S = R = ∅, proving Proper-
ties (B), (D) and (E). For Property (C), observe that c = e

(j) and δ = 0
hold for some j ∈ [n] since j , n + 1 by Steps 7 and 8.

So assume we are in an iteration of the inner loop, where B will
be extended. By induction hypothesis, A(S,R)

∗,B is regular, and hence the
system in Step 10 has a solution (c, δ).

We now prove Property (C), i.e., that c , O holds. Assuming the
contrary implies j = n + 1, which by Steps 7 and 8 in turn implies that
S is not empty. But then A(S,R)(c

δ

)
= A(S,R)

∗,n+1 = O, contradicting S , ∅ since
the last column of A(S,R) contains |S|many −1’s.

Property (D) is now easily verified: Since 〈r, c〉 = 0 holds for every
r ∈ R by Step 10, a new unbounded direction r̂ added in Step 14 or

32

2.4. COMPUTING THE AFFINE HULL

Step 20 must be linearly independent of R because 〈r̂, c〉 , 0 holds as
well.

If S = ∅ holds and the algorithm reaches Step 16, then after this
step Property (E) is satisfied since |R| = dim (lin.hull (R)) holds by Prop-
erty (D).

We now prove Property (E) if S , ∅ holds, including the case that
Step 16 was performed. In this case 〈c, s〉 = γ holds for all s ∈ S and
〈c, r〉 = 0 holds for all r ∈ R. A new point ŝ added in Step 18 or Step 22
must be affinely independent of aff.hull (S) + lin.hull (R).

It remains to show Property (B). Iterations in which B is extended
twice are handled one by one. Let B′ = B ∪

{
j
}

be the new basis and let
S′, R′ be the new sets of points and unbounded directions, respectively.
Note that we either have S′ = S and R′ = R ∪ {r̂} or S′ = S ∪ {ŝ} and
R′ = R. By induction we can assume that A(S,R)

∗,B is regular.

We first show regularity of A(S′,R′)
∗,B′ for the case when S = ∅ and a point

is added in Step 16. A(S′,R′)
∗,B′ is regular since it arises from A(S,R)

∗,B by adding
a row and a (negative) unit column with the −1 in the new row.

We now show regularity of A(S′,R′)
∗,B for the case when S = ∅ and

n + 1 < B hold and an unbounded directions r̂ is added in Step 14 or
Step 20. From O = A(S,R)(c

δ

)
= A(S,R)

∗,B cB + A(S,R)
∗, j we derive that

r̂ j − r̂ᵀBA(S,R)
∗,B

−1
A(S,R)
∗, j = r̂ j + 〈r̂B, cB〉 = 〈r̂, c〉 , 0

holds, where the last non-equality comes from the fact that r̂ is un-
bounded in direction c or −c. Thus, by Proposition 2.4.2, the matrix
A(S′,R′)
∗,B′ is regular.

We continue with the regularity of A(S′,R′)
∗,B for the case when S , ∅

and n + 1 ∈ B hold and an unbounded direction r̂ is added in Step 14 or
Step 20. From O = A(S,R)(c

δ

)
= A(S,R)

∗,B
(cB
δ

)
+ A(S,R)

∗, j we derive that

r̂ j −

(
r̂B

0

)ᵀ
A(S,R)
∗,B

−1
A(S,R)
∗, j = r̂ j +

〈(
r̂B

0

)
,

(
cB

δ

)〉
= 〈r̂, c〉 , 0

holds, where the last non-equality comes from the fact that r̂ is un-
bounded in direction c or −c. Again, by Proposition 2.4.2, the matrix
A(S′,R′)
∗,B′ is regular.

33

INVESTIGATING POLYHEDRA BY ORACLES

We finally show regularity of A(S′,R′)
∗,B for the case when S , ∅ and

n + 1 ∈ B hold and a point ŝ is added in Step 18 or Step 22. From
O = A(S,R)(c

δ

)
= A(S,R)

∗,B
(cB
δ

)
+ A(S,R)

∗, j we derive that

ŝ j −

(
ŝB

−1

)ᵀ
A(S,R)
∗,B

−1
A(S,R)
∗, j = ŝ j +

〈(
ŝB

−1

)
,

(
cB

δ

)〉
= 〈ŝ, c〉 − δ , 0

holds, where the last non-equality comes from the fact that ŝ has c-
value distinct from δ. Again, by Proposition 2.4.2, the matrix A(S′,R′)

∗,B′ is
regular. �

Lemma 2.4.4. Given an optimization oracle for a non-empty rational polyhe-
dron P ⊆ Rn, then during the run of Algorithm 2.4.2 the system Cx = d is
valid for P, and the rows of C are linearly independent.

Proof. We prove the lemma by induction on the number of equations in
Cx = d, being trivially satisfied at the beginning.

Let Cx = d be non-redundant and valid for P, and consider equation
〈c, x〉 = δ added in Step 24. Due to Step 11 we have that c is linearly
independent from rows (C), and from Steps 17 and 21 we derive that
〈c, x〉 ≤ δ and 〈c, x〉 ≥ δ are valid for P, which concludes the proof. �

Lemma 2.4.5. Given an optimization oracle defining a non-empty rational
polyhedron P ⊆ Rn, then during the run of Algorithm 2.4.2 we have

lin.hull(rows([C | d])) ⊆ ker(A(S,R)), (2.2)

and equality holds if and only if we have |S| + |R| + | rows (C) | = n + 1.

Proof. Since Cx = d is valid for P by Lemma 2.4.4 and since we have
S ⊆ P and R ⊆ recc (P) by Property (A) of Lemma 2.4.3, the relation
(2.2) holds. Then, by linear independence of C’s rows (Lemma 2.4.4)
and regularity of A(S,R)

∗,B (Lemma 2.4.3, Property (B)), we obtain the in-
equality | rows (C) | ≤ dim ker(A(S,R)) = n + 1 − |S| − |R|. Hence, equality
is equivalent to the given condition, which concludes the proof. �

Lemma 2.4.6. Given an optimization oracle defining a non-empty rational
polyhedron P ⊆ Rn, then whenever the inner loop of Algorithm 2.4.2 is left,
then the number of oracle calls made so far is bounded from above by the term
2(|S| + |R| + | rows (C) | − 1) if S , ∅ holds, by |R| + 1 if we are in Step 8 and
by |R| otherwise.

34

2.4. COMPUTING THE AFFINE HULL

Proof. We prove the lemma by induction on the number of times Step 13
has been reached at the point of consideration (not necessarily with the
condition satisfied). It trivially holds after initialization.

Case 1: S = ∅.
If Step 14 is executed, then both |R| and the number of oracle calls are
increased by 1. If Step 8 is executed, the number of calls is |R|+ 1 due to
the additional call in that step. Otherwise, S is for the first time extended
with a point. Let k := |R| denote the number of unbounded directions
at that time. In the same iteration of the inner loop another point or a
direction or an equation is added to S, R or Cx = d, respectively. Hence,
when this loop is left we have called the oracle k + 2 times and observe
|S| + |R| + | rows (C) | ≥ k + 2, which proves the claimed bound (using
k ≥ 0).

Case 2: S , ∅.
In every iteration of the inner loop in which the oracle is called, it is
called at most twice and S, R or Cx = d are extended, which proves the
claimed bound. �

Theorem 2.4.7. Algorithm 2.4.2 is correct and needs at most 2n calls to the
given optimization oracle for a rational polyhedron P ⊆ Rn.

Proof. By Lemma 2.4.1 we can assume P , ∅.
We first prove the upper bound on the number of oracle calls. After

2n oracle calls |S| + |R| + | rows (C) | − 1 ≥ n holds by Lemma 2.4.6, and
thus the condition of the outer loop in Step 2 is violated. Except for
Steps 16 and 24 the condition is always checked before the next oracle
call. Step 16 is only executed after at most n executions of Step 14 (since
then R already contains a basis of Rn), which takes only n oracle calls.
Suppose the (2n)’th oracle call results in the execution of Step 24. By the
above reasoning we have |S| + |R| + | rows (C) | = n + 1 and Lemma 2.4.5
then implies that for every

(c
δ

)
∈ ker(A(S,R)) the vector c is linearly depen-

dent of lin.hull (C). Hence, Step 11 ensures that no oracle call is triggered
before the condition in Step 2 is checked the next time. This concludes
the proof of the bound on the number of oracle calls.

We now show that the algorithm terminates. Suppose the contrary,
and observe that the inner loop does not run forever since L is finite
and an element is removed in each iteration in Step 9. Furthermore,

35

INVESTIGATING POLYHEDRA BY ORACLES

Step 13 can only be reached finitely many times since the number of
oracle calls is bounded. The only possibility to run forever is thus by
having |S| + |R| + | rows (C) | < n + 1 and c ∈ lin.hull (rows (C)) for every(c
δ

)
∈ ker

(
A(S,R)

)
satisfied such that the algorithm leaves the inner loop

via Step 11. But both conditions contradict each other by Lemma 2.4.5.
We finally show that the algorithm always returns the correct output

for P , ∅. If S = ∅ holds when we return, then it is in Step 8. We must
have Cx = d empty since adding an equation in Step 24 happens only if
S , ∅ holds. Hence, since c , O holds by Property (C) of Lemma 2.4.3,
whenever j was removed from L in Step 9, an unbounded direction
was added to R in Step 13. Thus we have [n + 1] \ B = {n + 1}, showing
|R| = n, i.e. recc (P) = Rn. The last oracle call in Step 8 then yields a
feasible point and the returned basis is [n + 1].

Otherwise we return due to the violation of the outer loop’s condition
|S|+ |R|+ | rows (C) | < n+1, i.e., (|S|−1)+ |R| ≤ dim (P) ≤ n−| rows (C) | is
satisfied with equality. Hence, the returned objects determine P’s affine
hull. Furthermore, by Property (B) of Lemma 2.4.3 the returned basis is
correct. �

A Lower Bound on the Number of Oracle Calls
The following theorem states that the number of oracle calls in Algo-
rithm 2.4.2 is best possible.

Theorem 2.4.8. Every algorithm that computes the affine hull of any polyhe-
dron P ⊆ Rn only by using an optimization oracle for P needs at least 2n oracle
calls in the worst case, even if the polyhedra are restricted to cones.

We will soon define the behavior of an oracle such that the algorithm
cannot determine the affine hull after calling the oracle only 2n−1 times.
The oracle then implicitly defines a polyhedron P that will be a cone
having the property in the following proposition.

Proposition 2.4.9. Let A ∈ Rm×n be such that 〈Ai,∗,A j,∗〉 ≥ 0 holds for every
i, j ∈ [m]. Then the cone C = {x ∈ Rn

| Ax ≤ O} is full-dimensional.

Proof of Proposition 2.4.9. Let 〈a, x〉 = 0 be an equation valid for C, i.e.,
max {〈±a, x〉 | x ∈ C} = 0 holds (note that O ∈ C). We want to prove that
a = O holds showing that 〈O, x〉 = 0 is the only equation valid for C.

36

2.4. COMPUTING THE AFFINE HULL

From strong LP duality (Corollary 7.1g in [62]) we obtain that there exist
dual multiplier vectors λ, µ ∈ Rm

+ such that aᵀ = λᵀA and −aᵀ = µᵀA
hold. Hence, for every j ∈ [m] we have〈

a,A j,∗

〉
=

m∑
i=1

λi

〈
Ai,∗,A j,∗

〉
≥ 0 and

〈
−a,A j,∗

〉
=

m∑
i=1

µi

〈
Ai,∗,A j,∗

〉
≥ 0,

which shows a ⊥ rows (A). But since a was combined from A’s rows,
this implies a = O, which concludes the proof. �

We now turn to the proof of the theorem above.

Proof of Theorem 2.4.8. We define an optimization oracle whose behavior
depends on the previous queries of an affine-hull algorithm. The oracle
implicitly defines a set of consistent polyhedra, i.e., those polyhedra with
which the answers are consistent. A correct affine-hull algorithm has
to perform queries (at least) until all the consistent polyhedra have the
same affine hull. Thus it suffices to prove that after less than 2n queries
there exist two consistent cones of different dimensions.

Our oracle maintains a set R ⊆ Rn of directions, which is initially
empty. It behaves as follows when called with direction a ∈ Rn to be
maximized.

• If there is a direction r ∈ R with 〈r, a〉 > 0, the oracle returns r as an
unbounded direction.

• Otherwise, the oracle returns the point O as the maximum and
adds −a to R.

Note that every direction r′ = −a that is added to R satisfies 〈r, r′〉 ≥ 0 for
every previously added direction r ∈ R. Hence, from Proposition 2.4.9
we obtain that the cone Y :=

{
y ∈ Rn

|
〈
a, y

〉
≥ 0 for all a ∈ R

}
is full-

dimensional.
We denote by X ⊆ R the subset of directions that were returned to

the algorithm. By construction of the oracle, a polyhedron C ⊆ Rn is
consistent if and only if X ⊆ C ⊆ Y holds. From this and from the fact
that Y is a cone we obtain conic.hull(X) ⊆ Y, i.e., conic.hull(X) and Y are
both consistent.

First, from dim(conic.hull(X)) ≤ |X| and from the fact that Y is full-
dimensional we obtain that the two cones can only have the same affine

37

INVESTIGATING POLYHEDRA BY ORACLES

hull if |X| = n holds. Second, during the algorithm, the number of oracle
calls is at least |X| + |R| ≥ 2|X| since for at most one of the two involved
sets the cardinality is increased by one in each oracle call. This implies
that the number of oracle calls must be at least 2n when the algorithm
correctly determined the affine hull, which concludes the proof. �

Heuristic Optimization Oracles

A major speed-up can be obtained by using heuristic oracles when
computing the affine hull. Clearly, in order for the sets S and R to
grow, we only need affine independence, which does not depend on the
oracle’s ability to produce optimal solutions. Hence, it is a good strategy
to run Algorithm 2.4.2 with a heuristic optimization oracle first, and then
verify the returned equations Cx = d using the (proper) optimization
oracle.

The simplest way to verify k equations Cx = d is to check whether

O(C∗,i).val = di and O(−C∗,i).val = −di

holds for every i ∈ [k] for the cost of 2k oracle calls. Since we are
optimistic that the heuristic determined the correct equations, we prefer
an algorithm for the verification that needs only k + 1 oracle calls, but is
not able to determine which equation is actually invalid.

Algorithm 2.4.3 does precisely this and calls Algorithm 2.4.2 again if
the verification fails. The next theorem states that this is correct.

Theorem 2.4.10. Algorithm 2.4.3 is correct and needs k + 1 calls to the given
optimization oracle for a rational polyhedron P ⊆ Rn to verify the validity of k
equations for P.

Proof. If Step 7 is reached, then the output of the algorithm is correct by
Theorem 2.4.7.

Otherwise, observe that S, R, and B obtained in Step 1 are valid, i.e.,
S ⊆ P and R ⊆ recc (P) hold and A(S,R)

B is regular. It remains to show that
Cx = d is valid for P. From Step 4 we obtain that Ci,∗x ≤ di is valid for P

38

2.4. COMPUTING THE AFFINE HULL

Algorithm 2.4.3: Affine Hull with Additional Heuristic Oracle
Input: Optimization Oracle O and heuristic optimization oracle

H for a polyhedron P ⊆ Rn.
Output: A tuple (S,R,B,Cx = d), where S are points and R are

unbounded directions such that A(S,R) has full
row-rank, B is a column basis of A(S,R), Cx = d is
irredundant with
aff.hull (P) = aff.hull (S)+lin.hull (R) = {x ∈ Rn

| Cx = d}.

1 Call Algorithm 2.4.2 with H and obtain (S,R,B,Cx = d).
2 Let k be the number of C’s rows.
3 for i = 1, 2, . . . , k do
4 if O(Ci,∗).val , di then go to Step 7.
5 end
6 if O(−

∑k
i=1 Ci,∗).val = −

∑k
i=1 di then return (S,R,B,Cx = d)

7 Call Algorithm 2.4.2 with O and obtain (Ŝ, R̂, B̂, Ĉx = d̂).
8 return (Ŝ, R̂, B̂, Ĉx = d̂)

for every i ∈ [n]. From Step 7 and Steps 4 for i ∈ [n] \
{
j
}

we obtain

−C j,∗x =

− n∑
i=1

Ci,∗

 x +

n∑
i=1
i, j

Ci,∗x ≤ −
n∑

i=1

di +

n∑
i=1
i, j

di = −d j,

i.e., C j,∗x ≥ d j is valid for P for every j ∈ [n], which concludes the
proof. �

The last theorem settles that k + 1 calls to the optimization oracle are
actually best possible for verification.

Theorem 2.4.11. LetO be an optimization oracle for a non-empty polyhedron
P ⊆ Rn, let C ∈ Qk×n and d ∈ Qk.

Every algorithm that verifies the validity of k equations Cx = d (or deter-
mines that at least one equation is invalid) for a polyhedron P ⊆ Rn only by
using an optimization oracle for P needs at least k + 1 oracle calls.

Proof. We define an optimization oracle whose behavior depends on
the previous queries of a verification algorithm, which has the task to

39

INVESTIGATING POLYHEDRA BY ORACLES

verify the k := n equations xi = 0 for i ∈ [n]. Similar to the proof of
Theorem 2.4.8, the oracle implicitly defines consistent polyhedra, i.e.,
those with which the oracle’s answers are consistent. We show that
after n queries there exist consistent polyhedra P and Q such that P does
not satisfy all n equations, but Q does.

For the first n query directions c1, . . . , cn, the oracle answers with
the origin as the optimal point, and thus reveals to the algorithm that
〈ci, x〉 ≤ 0 is a valid inequality for all i ∈ [n].

If the ci (i ∈ [n]) are linearly dependent, then there exists a nonzero
vector v with v ⊥ ci for every i ∈ [n]. We can now define the polyhedron
as P := conic.hull({v}) without contradicting previous answers.

Otherwise, let T ∈ Qn×n be the matrix whose rows are the vectors cᵀi .
We claim that v := −T−1

1n satisfies all inequalities 〈ci, x〉 ≤ 0. To see this,
observe that

〈ci, v〉 = −
〈
ci,T−1

1n

〉
= −

〈
e

(i),1n

〉
≤ 0

holds for all i ∈ [n]. Thus we can again define the polyhedron as
P := conic.hull({v}) without contradicting previous answers.

In both cases the polyhedra P and Q := {O} are consistent. Since P
does not satisfy all the given equations (note that dim P = 1 holds), but
Q does, the verification algorithm can not correctly terminate after the
first n queries. �

Implementation Details

We implemented Algorithms 2.4.2 and 2.4.3 and enhanced them in sev-
eral ways in order to improve the performance.

Reusing Known Data. Having in mind MIP solvers as optimization
oracles, the first improvement idea is certainly to use more of its output:
Usually, a MIP solver returns more than one (not necessarily optimal)
solution. We thus added the capability to the algorithm to check a set
of cached points or unbounded directions before actually calling the
oracle.

If the underlying MIP is known explicitly we can also extract the
given equations and pass them to the algorithm, which clearly saves
iterations and hence oracle calls.

40

2.4. COMPUTING THE AFFINE HULL

Similarly, if we computed the affine hull of a polyhedron P we may
afterwards compute the affine hull of one of its faces. In this case we
reuse all valid equations and fill the cache of points and directions with
those feasible for the face.

Precomputing With Floating Point Arithmetic. Computational evi-
dence shows that for larger dimensions the linear algebra part of the
algorithm can be quite time-consuming due to exact arithmetic. There
are several steps in Algorithm 2.4.2 in which we could improve the speed
by precomputing certain data with floating-point arithmetic followed
by an exact computation of the interesting parts.

A first application of this technique is the mentioned cache of points
and unbounded directions. We are given a set S′ ⊆ Qn of points, a
direction vector c ∈ Qn and a number δ ∈ Q, defining a hyperplane
H = {x ∈ Rn

| 〈c, x〉 = δ}. The task is to find out whether there exists
a point s′ ∈ S′ \ H. For this we first sort S′ by increasing sparsity
and compute the approximate scalar products in that order using the
floating-point representations c̃ of c and s̃′ of s′ for all s′ ∈ S′. If an
approximate scalar product satisfies |

〈
c̃, s̃′

〉
− δ| ≥ τ for some threshold

parameter τ > 0, then we recompute the scalar product exactly and, if
different from δ, return the current point. Otherwise we increase τ by a
factor of 10, that is, we do not trust floating-point results in this order of
magnitude anymore. Sorting S′ prior to searching allows us to stop the
search as soon as we find a suitable point since all points that we would
inspect later have no better sparsity. If we do not succeed with this
strategy, we also try the point with the largest approximate distance to
H. Of course it may happen that there exists a point s′ ∈ S′ \H, but our
algorithm is unable to find it. The algorithm for unbounded directions
is very similar and we refer to the source code.

A second application is the selection of the index j in Steps 6 and 7
of Algorithm 2.4.2. Different indices j yield different directions c and,
once again, we prefer sparse vectors for different reasons: On the one
hand, the oracle may be faster to maximize a sparse objective vector,
e.g., if c is a unit vector then the task is to check whether a variable
bound is tight. On the other hand, some of the directions may end up
as equation normals, and a user is probably more interested in a sparse
set of equations valid for P.

Since the computation of a single direction can be already be very

41

INVESTIGATING POLYHEDRA BY ORACLES

expensive (see Figure 2.9 in Section 2.9.1) we again compute all di-
rections using floating-point arithmetic and (approximately) determine
their sparsity. For this we declare a number with absolute value less
than 10−7 as zero4.

4This value was determined in order to get a good approximation of the true sparsity.

42

2.5. COMPUTING FACETS

INVESTIGATING POLYHEDRA BY ORACLES:

2.5 Computing Facets

This section is dedicated to the problem of finding facets of a polyhe-
dron P, again specified by means of an optimization oracle O. We first
describe the main idea from a geometric point of view and present an
equivalent model that is more attractive from a computational stand-
point. We only sketch how the oracle is actually used to solve the model,
since we need to solve a similar one for a related problem, and hence
discuss the details in Section 2.7, dedicated to this topic.

After establishing the correctness of the model we discuss a technical
problem that arises, suggest how to resolve it and finally consider details
concerning the actual derivation of the facets.

Polarity and Target Cuts
Since we want to start with a geometric intuition, we consider a full-
dimensional polyhedron P ⊆ Rn that contains the originO in its interior.
The polar P∗ of P is defined as the set

P∗ :=
{
y ∈ Rn

|
〈
y, x

〉
≤ 1 for all x ∈ P

}
.

From basic convex geometry we know several basic properties that will
turn out to be very useful for us.

Proposition 2.5.1 (Theorem 9.1 and Corollary 9.1a in [62]). Let P ⊆ Rn

be a full-dimensional pointed polytope with O ∈ int (P). Then

(i) P∗ is a again a full-dimensional pointed polytope,

43

INVESTIGATING POLYHEDRA BY ORACLES

(ii)
〈
x, y

〉
≤ 1 is valid for all y ∈ P∗ if and only if x ∈ P holds, and

(iii)
〈
y, x

〉
≤ 1 induces a facet of P if and only if y is a vertex of P∗.

Since we are interested in facets of P, Proposition 2.5.1 (iii) tells us
that we want to find vertices of P∗. In order to find a specific facet,
namely one that separates a point x̂ ∈ Rn from P, we can solve the
following problem.

max
〈
x̂, y

〉
(2.3)

s.t.
〈
x, y

〉
≤ 1 for all x ∈ P (2.4)

y ∈ Rn (2.5)

Note that formally this is not an LP since in general it contains infinitely
many constraints. It is not too hard to see that we can restrict Con-
straint (2.4) to those x ∈ P that are vertices. By Proposition 2.5.1 (iii)
a vertex solution ŷ of Problem (2.3)–(2.5) corresponds to a facet of P.
Furthermore, if the maximum objective is larger than 1, i.e.,

〈
x̂, ŷ

〉
> 1

holds, then the facet-defining inequality
〈
ŷ, x

〉
≤ 1 of P is violated by

x̂. On the other hand, if the maximum objective is at most 1, that is,〈
x̂, y

〉
≤ 1 holds for all y ∈ P∗, then again by Proposition 2.5.1 (iii) there

is no facet-defining inequality (and hence no valid inequality at all) that
separates x̂ from P.

Using Proposition 2.5.1 (ii) we can show that the separation problem
for Inequalities (2.4) is essentially the optimization problem over P,
which we can solve by means of our optimization oracle. More precisely,
if we have a partial outer description of LP (2.3)–(2.5), then we can decide
by one call to the optimization oracle for P whether the current solution
ŷ is feasible, obtaining a violated inequality if this is not the case. The
details of this procedure including the exact usage of our optimization
oracle are discussed in the dedicated Section 2.7.

Note that we do not require the oracle to return vertex solutions, since
our (partial) outer description of P∗ is allowed to contain non-facet-
defining inequalities, too. On the other hand, it is necessary that we
compute a vertex solution ŷ as only those correspond to facets of P.

If P does not contain O in its interior we can simply shift it by some

44

2.5. COMPUTING FACETS

vector o ∈ int (P), which yields the following LP

max
〈
x̂ − o, y

〉
(2.6)

s.t.
〈
s − o, y

〉
≤ 1 for all s ∈ S (2.7)

y ∈ Rn, (2.8)

where S ⊆ P is a (finite) superset of P’s vertices.
The ideas we just introduced are not new. To the best of our knowl-

edge, Applegate, Bixby, Chvátal and Cook [3] were the first to develop
cutting plane methods based on optimization oracles. Their Local Cut
procedure uses a different objective function, which does not necessarily
yield facet-defining inequalities. Hence, they describe a tilting proce-
dure that allows them to generate facets for small subproblems of the
traveling salesman problem (TSP), which are in turn lifted to inequali-
ties valid for the TSP-polytope. Later, Buchheim, Liers and Oswald [15]
revisited this idea and came up with the Target Cuts for which they used
a variant of LP (2.6)–(2.8).

An Equivalent Model
The LP (2.6)–(2.8) in principle works for our purposes, except that we
restricted ourself to full-dimensional pointed polytopes. Unfortunately,
interior points of (combinatorial) polyhedra are typically very dense
vectors, which implies that the matrix of the LP’s inequality system is a
very dense matrix in general. Since the running time of state-of-the-art
LP solvers critically depends on the number of nonzeros of the problem
matrix (see, e.g., [66] and [65]), it is obvious that this LP is numerically
not very attractive.

Luckily, there is a transformation, communicated by Marc Pfetsch,
that yields an equivalent LP in which the interior point o appears in only
one inequality.

max 〈x̂, a〉 − β (2.9)
s.t. 〈s, a〉 − β ≤ 0 for all s ∈ S (2.10)

〈r, a〉 ≤ 0 for all r ∈ R (2.11)
〈x̂ − o, a〉 ≤ 1 (2.12)

a ∈ Rn, β ∈ R (2.13)

45

INVESTIGATING POLYHEDRA BY ORACLES

We will eventually prove that this model can be used for facet-
separation, also in case of lower-dimensional (potentially unbounded)
polyhedra. Our proof is independent from the results on polar polytopes
discussed above. Since both models might be used for facet-separation
one may ask whether they compute the same facets. The next theorem
states that both LPs are indeed equivalent in the sense that the facets
corresponding to optimal solutions of the respective LPs are the same.

Theorem 2.5.2. Let S ⊆ Rn be finite sets such that P = conv.hull (S) is
full-dimensional. Let x̂ ∈ Rn

\ P and o ∈ int (P). Consider an inequality
〈a, x〉 ≤ β that is valid for P but violated by x̂, and the unique vector y such that〈
y, x − o

〉
≤ 1 is equal to this inequality up to multiplication with a positive

scalar. Then y is an optimal solution of LP (2.6)–(2.8) if and only if (a, β) is an
optimal solution of LP (2.9)–(2.13).

Proof. For the first LP we know that it is always bounded (see Proposi-
tion 2.5.1 (i)). For the second LP we write o =

∑
s∈S λss with

∑
s∈S λs = 1

and λ ∈ RS
+, and derive an upper bound on the objective value

〈x̂, a〉 − β ≤ 1 + 〈o, a〉 − β =
∑
s∈S

λs 〈s, a〉 + 1 − β =
∑
s∈S

λs (〈s, a〉 − β)︸ ︷︷ ︸
≤ 0

+1 ≤ 1,

where the first inequality holds due to (2.12), and the second due to
(2.10).

We now relate the inequalities 〈a, x〉 ≤ β valid for P to the vectors
y ∈ (P−o)∗. Given a and β, we can set y = π(a, β) := a/(β−〈o, a〉. Then the
normal vectors are positive scalar multiples of each other since 〈a, o〉 < β
holds (due to o ∈ int (P)). This scaled version of 〈a, x〉 ≤ β has right-hand
side β/(β − 〈o, a〉) = 1 + 〈o, a〉 /(β − 〈o, a〉) = 1 +

〈
o, y

〉
, which agrees with

that of
〈
x − o, y

〉
≤ 1.

Although it is rather clear from the definitions of the LPs and from
the observation above that y = π(a, β) is feasible for LP (2.6)–(2.8), we
still prove it formally. Assume (a, β) is an optimal solution of LP (2.9)–
(2.13). Then (a, β) satisfies (2.12) with equality, since otherwise we could
scale it, increasing its positive objective value 〈x̂, a〉 − β. From (2.10) we
obtain that for all s ∈ S,〈

s − o, y
〉

=
〈s − o, a〉
β − 〈o, a〉

=
〈s, a〉 − 〈o, a〉
β − 〈o, a〉

≤ 1

46

2.5. COMPUTING FACETS

holds (Note that β− 〈a, o〉 is positive). We conclude that our constructed
y = π(a, β) is feasible for LP (2.6)–(2.8). The objective value of y is equal
to 〈

x̂ − o, y
〉

=
〈x̂ − o, a〉
β − 〈o, a〉

=
〈x̂ − o, a〉

〈x̂ − o, a〉 − 〈x̂, a〉 + β
=

1
1 − (〈x̂, a〉 − β)

,

which is strictly monotone in (a, β)’s objective (using the fact that the
denominator is positive).

This already proves that π maps non-optimal solutions of LP (2.9)–
(2.13) that satisfy (2.12) with equality to non-optimal solutions of the
LP (2.6)–(2.8). It could still be that there exist solutions to the latter LP
that are better, but are no images (w.r.t. π) of feasible vectors (a, β).

To rule out this case, consider a vector y that satisfies (2.7)–(2.8) and
also has a positive objective

〈
x̂ − o, y

〉
. It suffices to prove that the vector

(a, β) with a =
y

〈x̂−o,y〉
and β =

〈o,y〉+1

〈x̂−o,y〉
is feasible for LP (2.9)–(2.13), since

it satisfies

π(a, β) =
a

β − 〈o, a〉
=

y

〈x̂−o,y〉

〈o,y〉+1

〈x̂−o,y〉
−
〈o,y〉
〈x̂−o,y〉

=
y〈

o, y
〉

+ 1 −
〈
o, y

〉 = y

From (2.7) we obtain that for all s ∈ S,

〈s, a〉 − β =

〈
s,

y〈
x̂ − o, y

〉〉 − 〈
o, y

〉
+ 1〈

x̂ − o, y
〉 =

〈
s − o, y

〉
− 1〈

x̂ − o, y
〉 ≤ 0

holds. Last but not least,

〈x̂ − o, a〉 =

〈
x̂ − o, y

〉〈
x̂ − o, y

〉 = 1

shows that (2.12) is satisfied with equality, which establishes that π de-
fines a bijection between the optimal faces of the two LPs, and concludes
the proof. �

Theorem 2.5.2 shows that it does not matter which of the two prob-
lems we actually solve, that is, none of the formulations prefers certain
inequalities more than the other. Since the Inequalities (2.10) and (2.11)

47

INVESTIGATING POLYHEDRA BY ORACLES

occur in another problem as well (see Section 2.6.1), we describe how to
actually separate this class of (typically exponentially many) inequali-
ties in a dedicated section, namely Section 2.7. Before we turn to the
proof that vertex solutions of LP (2.9)–(2.13) yield facets (or equations)
in Section 2.5.4 we briefly discuss technical details for actually obtaining
vertex solutions.

Extended Basic Solutions

Students in optimization courses are usually taught LPs in some stan-
dard form, e.g., max 〈c, x〉 s.t. Ax = b, x ∈ Rn

+ with A ∈ Rm×n of full row
rank, b ∈ Rm, c ∈ Rn. In this form, a basis is a set B ⊆ [n] for which A∗,B is
a regular submatrix. The corresponding basic solution x ∈ Rn

+ is defined
by setting xi := 0 for all i ∈ [n] \ B (nonbasic variables) and xB := A−1

∗,Bb.
If it is feasible, then it defines a vertex of the polyhedron of feasible
solutions.

In practice though, LPs are not brought into standard form, but
instead every variable has a lower bound `i ∈ R ∪ {−∞} and an upper
bound ui ∈ R∪ {∞}. Hence, for nonbasic variables we must distinguish
at which bound the variable is fixed. Additionally, if `i = −∞ and
ui = ∞ holds, the common implementations5 implicitly split xi into two
nonnegative variables xi = x+

i −x−i . This lifting allows both new variables
to be fixed at their lower bound 0, which in general does not correspond
to a basic solution in the original space. We call these solutions extended
basic solutions and denote the basic information by a partitioning of [n]
into L,U,Z,B with the following meaning for variable xi:

• i ∈ Z: xi = 0, i.e., x+
i and x−i are nonbasic. (“fixed at zero”)

• i ∈ L: xi = `i (“fixed at lower bound”)

• i ∈ U: xi = ui (“fixed at upper bound”)

• i ∈ B: xi is uniquely defined by requiring Ax = b. (“basic”)

Due to the artificial case of variables that are fixed at zero, an extended
basic solution need not be a vertex, a property that is essential for the

5For instance IBM ILOG CPLEX Optimization Studio, Gurobi Optimizer, FICO Xpress-
Optimizer and SoPlex.

48

2.5. COMPUTING FACETS

derivation of facet-defining inequalities. Fortunately, SoPlex, the LP
solver we use, has the following property6:

Assumption 2.5.3. During the run of the LP solver, the number of variables
that are fixed at zero never increases.

Thus, if we initialize the solver with a basis having sufficiently many
basic variables, then the returned optimal extended basic solution will
be a vertex. Having this behavior in mind we can continue with our
actual usage of LP (2.9)–(2.13) for facet-generation.

Extracting Inequalities and Equations
In this section we consider an arbitrary polyhedron P ⊆ Rn, which may
be lower-dimensional and need not be pointed. Let d be its dimension.
We assume that we know sets Ŝ ⊆ P of points and R̂ ⊆ recc (P) directions
with |Ŝ|+ |R̂| = d + 1 such that conv.hull(Ŝ) + conic.hull(R̂) is already a d-
dimensional polyhedron. Such sets can be computed by Algorithm 2.4.2,
together with a set I ⊆ [n + 1] of d + 1 variables such that the submatrix
of our LP indexed by columns I and by rows corresponding either to
(2.10) for all s ∈ Ŝ or to (2.11) for all r ∈ R̂ is a regular (d + 1) × (d + 1)
matrix.

We will warm-start our LP solver with this as a basis matrix, that is,
only (n+1)−(d+1) = n−d variables are fixed at zero. The corresponding
extended basic solution corresponds to a = O and β = 0, and is thus
primal feasible.

Assumption 2.5.3 guarantees that all subsequent bases will have at
most n− d many variables fixed at zero. Our next theorem then ensures
that we can either extract a facet-defining inequality or an equation from
the optimal basis.

Theorem 2.5.4. Let P ⊆ Rn be a polyhedron and let d be its dimension. Let
(a, β) ∈ Rn

×R be an extended basic feasible solution of LP (2.9)–(2.13) whose
extended basis has at most n− d variables fixed at zero. If 〈a, o〉 < β holds, then
〈a, x〉 ≤ β induces a facet, and otherwise 〈a, x〉 = β is valid for P.

Proof. We consider the LP in standard form, i.e., after adding slack vari-
ables for all inequalities. The associated constraint matrix has precisely

6Personal communication with Ambros Gleixner.

49

INVESTIGATING POLYHEDRA BY ORACLES

m′ := |S|+ |R|+ 1 rows, n′ := n + 1 + |S|+ |R|+ 1 columns and has full row
rank due to the identity submatrix of size m′.

Let S′ ⊆ S and R′ ⊆ R index the Inequalities 2.10 and (2.11) whose
corresponding slack variables are nonbasic. Since at most n − d of the
n + 1 original variables are fixed at zero and since these variables have
no lower or upper bounds, there must be at least d + 1 basic variables
among the original ones. Thus at most m′−(d+1) of the remaining (slack)
variables can be basic, i.e., at least d + 1 of them are nonbasic. Except
the slack variable for Inequality (2.12), all slack variables correspond to
Inequalities (2.10) and (2.11). Hence, |S′| + |R′| ≥ d holds. These points
and directions induce a polyhedron conv.hull(S′) + conic.hull(R′) ⊆ P
of dimension k with d − 1 ≤ k ≤ d = dim P. Since by definition of S′

and R′, all s ∈ S′ satisfy 〈a, s〉 = β and all r ∈ R′ satisfy 〈a, r〉 = 0, this k-
dimensional polyhedron is contained in the face F induced by 〈a, x〉 ≤ β,
and hence F is either a facet of P or equal to P.

Finally, we can distinguish between the two cases by checking whe-
ther o ∈ F holds, since a point in the relative interior is not contained in
any facet. �

For lower-dimensional polyhedra P, the set of feasible (a, β) is not
a pointed polyhedron. We clearly could have made it pointed, e.g.,
by requiring a ∈ lin.hull (P − o), also making inequality representations
unique up to scaling. This approach though has several disadvan-
tages. First, there exist points7 in Rn

\ aff.hull (P) that are not cut off
by such inequalities, leading to an infeasible LP. Second, requiring
a ∈ lin.hull (P − o) may be a canonical representative from a geomet-
ric point of view, but the typical inequalities known for combinatorial
polyhedra are usually not of this type. Third, having a certain amount of
coefficients fixed to zero increases sparsity of the inequality, a property
that is interesting for the user anyway.

It is interesting to analyze which facets are actually selected by the
outlined procedure. Consider an inequality 〈c, x〉 ≤ γ valid for P with
〈c, x̂ − o〉 > 0. It is clearly represented in LP (2.9)–(2.13) as (a, β) with
a = λc and β = λγ for λ > 0 such that 〈a, x̂ − o〉 = 1 holds, i.e., by setting

7For instance the point o, slightly moved outside of aff.hull (P).

50

2.5. COMPUTING FACETS

λ = 1/ 〈c, x̂ − o〉. Hence, its objective value is equal to

λ · (〈x̂, c〉 − γ) =
〈c, x̂〉 − γ
〈c, x̂ − o〉

=
〈c, x̂〉 −

〈
c, x

〉
〈c, x̂〉 − 〈c, o〉

=
||x̂ − x||
||x̂ − o||

, (2.14)

where x is the unique point on the line connecting x̂ and o that also
satisfies

〈
c, x

〉
= γ. Hence, LP (2.9)–(2.13) yields only facets of P that are

hit first when going straight from o to x̂.
We can make use of this observation when we are given a point x̃ ∈

relbd (P) and would like to find a facet F̃ that contains x̃ (see Section 2.6.5
for an application). Solving the LP with x̂ := x̃ may result in an equation
(with zero objective, since it is not violated). If we instead use x̂ := 2x̃−o,
then the mentioned unique point on the line connecting x̂ and o is clearly
x = x̃ because of x̃ ∈ relbd (P) and o ∈ relint (P). Hence, the same facets
correspond to optimal solutions as before, but now have objective 1/2.
On the other hand, since from x̃, o ∈ aff.hull (P) we obtain x̂ ∈ aff.hull (P),
all equations valid for P again have violation zero, and are thus not
optimal anymore.

Computing Multiple Facets

In the previous subsections we considered the problem to separate a
given point x̂ from our polyhedron P ⊆ Rn by a facet-defining inequality.
We now discuss an obvious way to compute such points based on an
objective vector c ∈ Rn. For this we consider a relaxation polyhedron
Q ⊇ P. Note that we do not care for integrality here, that is, it need not
be an LP relaxation for a certain integral polyhedron.

We start by optimizing 〈c, x〉 over x ∈ Q. If the optimum is finite, we
obtain an optimum solution x̂, which we can either cut off by a facet-
defining inequality or observe that x̂ ∈ P holds. In the former case we
add the inequality to the description of Q and repeat, and in the latter
case we stop our procedure. If the optimum is not bounded, e.g., if we
start with Q = Rn, then we obtain an unbounded direction r̂ ∈ recc (Q).
To separate a direction r̂ from P we also solve LP (2.9)–(2.13), except
that we set β’s coefficient in the objective to zero and use for o a point in
recc (P)’s relative interior. The proofs that the optimum is always finite
and that it is positive if and only if a separating inequality exists are very
similar to the ones for separating a point, and thus left to the reader.

51

INVESTIGATING POLYHEDRA BY ORACLES

Using this strategy we typically obtain several facets until we even-
tually find a point x̂ ∈ P. This iteration number clearly depends on the
tightness of the relaxation Q: If Q does not approximate P in a reasonable
way, then many iterations are needed, which is not bad by itself, but it
happens frequently that the procedure yields many trivial facets before
actually computing an interesting one. On the other hand, if the opti-
mum objective value (w.r.t. c) over Q is equal to that of P, then we might
not learn anything new. To cope with this problem there are two ways,
which can also be combined. One simple trick is to weaken the relax-
ation by simply relaxing right-hand side vectors. Although in this case
IPO may just return the original inequalities, it sometimes happens that
a different inequality is obtained. The other approach is to try different
objective vectors. In fact it may even require some mathematical work
in order to come up with such bad objective vectors, or at least useful
parameters to randomly generate them. For instance, in Section 2.10.3
we consider a polyhedral reduction of vertex cover polytopes to tree
polytopes that can be used to come up with objective vectors that yield
fractional solutions, and hence allow IPO to detect new facets of the
latter polytopes.

52

2.6. IDENTIFYING VERTICES, EDGES AND OTHER FACES

INVESTIGATING POLYHEDRA BY ORACLES:

2.6 Identifying Vertices, Edges and
Other Faces

The goal of this section is to devise practical algorithms that solve the
following problem. Given an optimization oracle O for a rational poly-
hedron P ⊆ Rn, as well as finite sets S ⊆ P and R ⊆ recc (P), decide
whether F := conv.hull (S) + conic.hull (R) is a face of P. A related task
is to ask for the smallest face F̂ containing F, and particular cases are to
check whether a given point s ∈ P defines a vertex and to check whether
two vertices s1, s2 of P are adjacent (i.e., conv.hull (s1, s2) defines an edge).

All these problems can be solved in time polynomial in n, the encod-
ing length of P and the running-time of O using the ellipsoid method
[62]. Schrijver presents algorithms for related problems, but – although
they run in polynomial-time – they make use of the equivalence of op-
timization and separation multiple times in a nested manner, which is
impractical even if one replaces the ellipsoid method by some practically
efficient method.

Let, throughout this section, S,R ⊆ Qn be given finite sets, and O be
given. We will always assume that ∅ , S ⊆ P and R ⊆ recc (P) hold.

The Smallest Containing Face

We begin with an algorithm that determines a vector ĉ whose associated
optimal face F̂ := arg max {〈ĉ, x〉 | x ∈ P} is the smallest face containing F.

A first useful observation, stated in the next lemma, is that it suffices

53

INVESTIGATING POLYHEDRA BY ORACLES

to find the smallest face containing some point from F’s relative interior,
e.g.,

x̂ :=
1
|S|

∑
s∈S

s +
∑
r∈R

r. (2.15)

Lemma 2.6.1. Let P ⊆ Rn be a polyhedron, and ∅ , S ⊆ P and R ⊆ recc (P)
be finite sets. Define F := conv.hull (S) + conic.hull (R) and x̂ by (2.15). Then
a face of P contains F if and only if it contains x̂. In particular, the smallest
face of P containing F is the smallest face of P containing x̂.

Proof. Every face of P that contains F clearly also contains x̂ ∈ F. It
remains to prove that if F̂ is a face of P containing x̂, then it contains F.

Because F̂ is a face of P, there exist a ∈ Rn and β ∈ R such that
〈a, x〉 ≤ β is valid for P, and F̂ =

{
x ∈ P | 〈a, x〉 = β

}
holds. In particular,

〈a, s〉 ≤ β holds for all s ∈ S and 〈a, r〉 ≤ 0 holds for all r ∈ R. Due to x̂ ∈ F
we obtain

β = 〈a, x̂〉 =
1
|S|

∑
s∈S

〈a, s〉︸︷︷︸
≤β

+
∑
r∈R

〈a, r〉︸︷︷︸
≤0

and conclude that all s ∈ S satisfy 〈a, s〉 = β and all r ∈ R satisfy 〈a, r〉 = 0.
It follows that 〈a, x〉 = β is valid for F, which proves F ⊆ F̂ and concludes
the proof. �

The next theorem states that our desired directions are precisely
those in the relative interior of the normal cone of x̂.

Theorem 2.6.2. Let P ⊆ Rn be a polyhedron and let x̂ ∈ P. Then the smallest
face containing x̂ is equal to the ĉ-maximum face for some vector ĉ if and only
if ĉ ∈ relint (nml.conex̂(P)) holds.

Proof. Denote by F̂ the smallest face of P containing x̂ and define the
cone C := nml.conex̂(P). Strong LP duality (Corollary 7.1g in [62]) states
that c ∈ C holds if and only if x̂ is c-maximum.

For sufficiency, let ĉ ∈ C and suppose the ĉ-maximum face F of P is
a strict superset of F̂, that is, there exists a point x ∈ F \ F̂. From x ∈ P
we get that

〈
x − x̂, c

〉
≤ 0 is valid for C and defines a face G. As x is

also ĉ-maximum, we have
〈
x − x̂, ĉ

〉
= 0 and hence ĉ ∈ G. On the other

54

2.6. IDENTIFYING VERTICES, EDGES AND OTHER FACES

hand, since F , F̂ holds, there exists a facet-defining inequality 〈a, x〉 ≤ β
satisfied with equality by F̂ (in particular by x̂), but not by x. This in
turn implies

〈
x − x̂, a

〉
< 0, i.e., a < G. Hence, G is a proper face of C and

we obtain ĉ < relint (C).
For necessity, let ĉ ∈ C \ relint (C), that is, there exists a proper face

G of C induced by the inequality 〈v, c〉 ≤ 0 valid for C with 〈v, ĉ〉 = 0.
This implies that v ∈ rad.conex̂(P), i.e., we can assume v to be scaled
such that x := x̂ + v ∈ P holds. Since G is a proper face, there exists a
direction a ∈ C \ G that is a normal vector of a facet of P containing x̂,
i.e., for some β ∈ R, 〈a, x〉 ≤ β is valid for P, 〈v, a〉 < 0, and 〈a, x̂〉 = β
hold. From 〈v, a〉 < 0 we obtain

〈
a, x

〉
< β, which proves x ∈ P \ F̂. Since〈

ĉ, x
〉

= 〈ĉ, x̂〉 holds, the ĉ-maximum face of P must be strictly larger than
F̂. This concludes the proof. �

Luckily, we can compute a relative interior point of a polyhedron if
we can optimize over it by invoking Algorithm 2.4.2 from Section 2.4.
Note that in the case of a cone, “optimizing” essentially means to com-
pute for a given objective vector an unbounded direction with positive
scalar product or return the zero vector as the optimal point. In order to
optimize a linear function 〈v, ·〉 over the normal cone of a given point x̂
we will use the following LP that is based on the definition of a normal
cone.

max 〈v, c〉 (2.16)
s.t. 〈s, c〉 − δ ≤ 0 for all s ∈ vert (P) (2.17)

〈r, c〉 ≤ 0 for all r ∈ ext.rays (P) (2.18)
〈x̂, c〉− δ = 0 (2.19)

c ∈ Rn, δ ∈ R (2.20)

Note that the projection of the set of feasible (c, δ) onto the c-space is an
isomorphism due to Equation (2.19), and hence the relative interior of
the feasible region is projected onto the relative interior of the normal
cone. Techniques to solve this LP efficiently are described in Section 2.7.

Suppose we know the inequality 〈ĉ, x〉 ≤ δ̂ that induces our desired
face and we want to determine its dimension (e.g., in order to check
whether a given point is a vertex). For this we could turn our optimiza-
tion oracle for P into one for F (see Section 2.3.3) and compute F’s affine

55

INVESTIGATING POLYHEDRA BY ORACLES

hull. The next proposition states that we can calculate the dimension
from that of the normal cone we used to compute ĉ.

Proposition 2.6.3. Let P ⊆ Rn be a polyhedron, let x̂ ∈ P, and let F̂ be the
smallest face of P containing x̂. Then lin.hull

(
F̂ − x̂

)
= nml.conex̂(P)⊥ holds

and hence the dimension of F̂ is equal to n − dim (nml.conex̂(P)).

Proof. Let v ∈ (F̂ − x̂). Since F̂ is the smallest face of P containing x̂, we
have x̂ ∈ relint(F̂), and hence there exists λ > 0 such that (x̂ − λv) ∈ F̂
holds, proving v,−v ∈ rad.conex̂(P), which implies v ⊥ nml.conex̂(P).

Let the equation 〈v, x〉 = 0 be valid for nml.conex̂(P). Hence, we
have v ∈ lineal (rad.conex̂(P)), which proves (x̂ + λv), (x̂ − λv) ∈ P for
sufficiently small λ > 0. Let a ∈ Rn, β ∈ R be such that 〈a, x〉 ≤ β
is valid for P, and F̂ = arg max {〈a, x〉 | x ∈ P} holds. From 〈a, x̂〉 = β,
〈a, x̂ + λv〉 ≤ β and 〈a, x̂ − λv〉 ≤ β it follows that 〈a, v〉 = 0 holds, that is,
v ∈ lin.hull(F̂ − x̂) holds, which concludes the proof. �

The results of this section, together with Theorem 2.4.7 directly yield
the correctness of the following algorithm:

Algorithm 2.6.1: Smallest Containing Face
Input: Optimization oracleO for a polyhedron P ⊆ Rn and x̂ ∈ P
Output: A vector ĉ whose maximum face F̂ of P is the smallest

face containing x̂, and the dimension dim F̂ of that face.

1 Using O and LP (2.16)–(2.20), construct an optimization oracle
OC for C := nml.conex̂(P) (see Section 2.7).

2 Call Algorithm 2.4.2 with OC and obtain (S,R,B,Ax = b).
3 Compute a relative interior point ĉ of C by Equation (2.15).
4 return (ĉ, | rows (A) | − 1).

Detecting Vertices
With Proposition 2.6.3 at hand we can easily check if a given point s ∈ P
is a vertex of P. For this we simply compute the dimension of the normal
cone at s, which is equal to the ambient dimension n if and only if s is
a vertex. The next observation shows that we still have to be careful,
though.

56

2.6. IDENTIFYING VERTICES, EDGES AND OTHER FACES

Observation 2.6.4. Let P ⊆ Rn be a polytope and let x̂ < P. Then

C :=
{
c ∈ Rn

| ∃δ satisfying (2.17), (2.18) and (2.19)
}

is full-dimensional.

Proof. From x̂ < P we conclude that there exists a separating hyper-
plane, i.e., there exists c ∈ Rn with 〈c, x̂〉 > max {〈c, x〉 | x ∈ P}. Since
P is bounded, any sufficiently small perturbation c̃ of c has the same
property. This concludes the proof since c and all c̃ are contained in
C. �

Suppose we accidentally call Algorithm 2.6.1 for a point x̂ < P. Then
we would conclude x̂ to be a vertex, although it is not even contained
in P. Hence we have to ensure x̂ ∈ P beforehand.

Detecting Edges and Extreme Rays
Suppose we are given two vertices s1 and s2 of P and want to test whether
F := conv.hull (s1, s2) is an edge of P. By Lemma 2.6.1 we just have to
determine the dimension of the smallest face containing x̂ := 1

2 s1 + 1
2 s2

since this smallest face is 1-dimensional if and only if F is an edge.
The situation is similar for extreme rays: For given vertex s ∈ P and

extreme ray r ∈ recc (P) we only have to check whether the smallest face
containing s + r is 1-dimensional.

We now discuss how to obtain certificates for the two situations.
Suppose the algorithm determines that F is indeed 1-dimensional, that
is, the normal cone C of x̂ is at least (n− 1)-dimensional (in fact dim C =
n−1 holds since 〈s1 − s2, c〉 = 0 is valid for C). The certificate for this fact
is a set of (n − 1) linearly independent rays r1, . . . , rn−1 ∈ C. Note that
Algorithm 2.4.2 actually computes these rays. In order to verify such
a certificate, the user has to test for linear independence and to check
that each of the ri’s is in the normal cone, which in turn can be done by
maximizing 〈ri, x〉 over P (and verifying that the maximum is equal to
〈ri, x̂〉).

Suppose the algorithm determines that F is higher-dimensional. A
very practical certificate, often used in proofs for non-adjacency, is to
write x̂ as a nontrivial convex combination of points in P plus a conic
combination of extreme rays of P. We now describe how to obtain such

57

INVESTIGATING POLYHEDRA BY ORACLES

a certificate while running Algorithm 2.6.1. Since F is not an edge, there
exists an equation 〈w, c〉 = 0 valid for all c ∈ C such that w is not parallel
to (s2 − s1). Algorithm 2.4.2 obtains this equation by maximizing and
minimizing 〈w, c〉 over C. According to the construction of OC in Step 1
of Algorithm 2.6.1, this is done by solving two of the LPs (2.16)–(2.20).
We now consider the dual of this LP:

min 0 (2.21)

s.t.
∑

s∈vert(P)

sλs +
∑

r∈ ext.rays(P)

rµr + x̂ξ = v (2.22)∑
s∈vert(P)

−λs − ξ = 0 (2.23)

λ ∈ Rvert(P)
+ , µ ∈ R

ext.rays(P)
+ , ξ ∈ R (2.24)

The next proposition states that the two sets of dual values obtained for
v ∈ {w,−w} yield our desired convex combination.

Proposition 2.6.5. Let P ⊆ Rn be a pointed polyhedron, and let F ⊆ Rn be
a face of P of dimension at least 2. Let s1, s2 ∈ F be two vertices such that
their barycenter x̂ is in F’s relative interior, and let w ∈ lin.hull (F − x̂) be a
direction valid for F. Let furthermore (λ+, µ+, ξ+) and (λ−, µ−, ξ−) be optimal
solutions of LP (2.21)–(2.24) for v = +w and v = −w, respectively. Then

x̂ =
∑

s∈vert(P)

λ+
s + λ−s
−ξ+ − ξ−

s +
∑

r∈ ext.rays(P)

µ+
r + µ−r
−ξ+ − ξ−

r (2.25)

holds. Furthermore, if w is not parallel to (s2 − s1), then the combination is not
the trivial one x̂ = 1

2 s1 + 1
2 s2.

Proof. We will first prove that the LP (2.21)–(2.24) is feasible. Due to
x̂ ∈ relint (F), we have that for v ∈ {+w,−w}, v lies in the radial cone of
x̂ w.r.t. P, that is, there exist λ ∈ Rvert(P)

+ and µ ∈ R
ext.rays(P)
+ that satisfy∑

s∈vert(P)(s − x̂)λs +
∑

r∈ ext.rays(P) rµr = v. By setting ξ according to (2.23),
we obtain the two feasible solutions.

Let (λ+, µ+, ξ+) and (λ−, µ−, ξ−) be optimal solutions of LP (2.21)–
(2.24) for v = +w and v = −w, respectively. From (2.23) and (2.24)
we get that ξ+ and ξ− must be nonpositive. Furthermore, (ξ+ + ξ−) is

58

2.6. IDENTIFYING VERTICES, EDGES AND OTHER FACES

strictly negative, since otherwise λ+ = λ− = O would hold, implying
+w,−w ∈ recc (P) and contradicting the assumption that P is pointed.
Hence, the quotients in (2.25) are well-defined. Adding (2.22) for both
LPs yields∑

s∈vert(P)

(λ+
s + λ−s)s +

∑
r∈ ext.rays(P)

(µ+
r + µ−r)r + x̂(ξ+ + ξ−) = 0,

which proves Equation (2.22). Note that adding (2.23) for both LPs yields∑
s∈vert(P)(−λ+

s −λ
−
s) = ξ+ + ξ−, which shows that the equation expresses

x̂ as a convex combination of points in P plus a conic combination of
extreme rays of P.

Now suppose that the combination is the trivial one, i.e.,µ+ = µ− = O
holds, and λ+

s = λ−s = 0 holds for all s ∈ vert (P) \ {s1, s2}. From (2.22)
and (2.23) we obtain λ+

s1
(s1 − x̂) + λ+

s2
(s2 − x̂) = w, which shows that w is

parallel to (s2 − s1). This concludes the proof. �

In order to make use of the proposition algorithmically, we only
have to track when Algorithm 2.4.2 finds an equation different from
〈x̂, c〉−δ = 0. The two calls to the optimization oracleOC then yield dual
solutions that can be combined as in Proposition 2.6.5.

Detecting Higher-Dimensional Faces

We now come back to one of main motivations, namely to decide
for given finite non-empty S ⊆ P and finite R ⊆ recc (P) whether
F = conv.hull (S) + conic.hull (R) is a face of P. The cases of dim F ∈ {0, 1}
were handled explicitly in the previous subsections, and we now con-
sider the more general setting. If dim F ≥ 3 holds, the situation is more
complicated since it is not just a question of the correct dimension. Let
F̂ be the smallest face of P that contains F. Clearly, since F and F̂ are
polyhedra and F ⊆ F̂ holds, either equality holds or there exists a facet
〈a, x〉 ≤ β of F that is not valid for F̂, i.e., the maximum objective value
when optimizing a over F and F̂ differs. This justifies the following
algorithm.

59

INVESTIGATING POLYHEDRA BY ORACLES

Algorithm 2.6.2: Detecting a Face
Input: Optimization oracle O for a rational polyhedron P ⊆ Rn,

a non-empty finite rational set S ⊆ P, and a finite rational
set R ⊆ recc (P)

Output: A rational point x that is not in F but in the smallest
face F̂ of P containing F := conv.hull (S) + conic.hull (R),
if such a point exists.

1 Compute a relative interior point x̂ of F by Equation (2.15).
2 Call Algorithm 2.6.1 with O and x̂ to obtain ĉ ∈ Qn.
3 Using O and ĉ, construct an optimization oracle OF̂ for the

smallest face F̂ containing x̂ (see Algorithm 2.3.1).
4 Compute an outer description Ax ≤ b of F with m inequalities

using some external tool.
5 for i = 1, 2, . . . ,m do
6 if OF̂(Ai,∗).val > bi then
7 return OF̂(Ai,∗).point.
8 end
9 end

10 return // F is a face of P.

Strengthening Inequalities
Consider a face F of P ⊆ Rn induced by an inequality 〈a, x〉 ≤ β valid for
P. Suppose we want to find a facet F̂ containing this face F, that is, to
strengthen the valid inequality as much as possible. By Lemma 2.6.1,
a facet F̂ contains F if and only if F̂ contains the point x̂ ∈ relint (F)
obtained by Equation (2.15) for F being the smallest face with S ⊆ F
and R ⊆ recc (F). Such a facet can be found using the techniques from
Section 2.5.4.

Our suggested strategy is to create an optimization oracle OF for F
using Algorithm 2.3.1, and use it for Algorithm 2.4.2 to obtain S and R,
and compute x̂ ∈ relint (F) by Equation (2.15). As argued in Section 2.5.4,
we then try to separate the point (2x̂− o) for some point o in P’s relative
interior, to prevent the LP from returning an equation instead of a facet-
defining inequality.

60

2.7. SOLVING THE POLAR LINEAR PROGRAMS

INVESTIGATING POLYHEDRA BY ORACLES:

2.7 Solving the Polar Linear Programs

We already encountered two situations, namely the computation of
facets (see Section 2.5.2) and of the smallest containing face (see Sec-
tion 2.6.1), in which we searched for certain inequalities valid for a
rational non-empty polyhedron P using a linear program, where P is
given by an optimization oracle. In both applications the LP consisted
of the following inequalities in addition to only a few others.

〈s, a〉 − β ≤ 0 for all s ∈ S (2.26)
〈r, a〉 ≤ 0 for all r ∈ R (2.27)

Here, S ⊇ vert (P) is a finite superset of P’s vertices, while R ⊇ ext.rays (P)
is a finite superset of its extreme rays. We furthermore assume that the
origin (a, β) = (O, 0) is feasible, i.e., none of the additional constraints
cuts it off.

This section deals with different aspects for solving such linear pro-
grams in practice. We first settle how to solve the separation problem
for both constraints using O. It allows us to start with only a few (or
even none) of the inequalities, adding inequalities that are violated by
the current solution until all are satisfied. Despite this lazy addition,
the LPs may become very large in terms of rows, and hence we imple-
mented a so-called cut aging strategy that is described in the second part.
In the last part we discuss stabilization, a technique that is applied to
contain tailing-off effects.

61

INVESTIGATING POLYHEDRA BY ORACLES

The Separation Problem

The next simple lemma settles separability of (2.26) and (2.27) by means
of the oracle O.

Lemma 2.7.1. LetO be an optimization oracle for a rational non-empty poly-
hedron P ⊆ Rn. Then the separation problem for (2.26) and (2.27) can be
solved using a single invocation of O.

Proof. In order to separate a point (â, β̂) ∈ Rn
×R, we simply callOwith

â as an objective. If O(â) returns an unbounded direction r ∈ recc (P),
then 〈r, â〉 > 0 holds, i.e., 〈r, a〉 ≤ 0 is violated. Suppose O(â) returns a
point s ∈ P. If 〈â, s〉 > β̂, then 〈s, a〉−β ≤ 0 is violated by (â, β̂). Otherwise,
from max {〈â, x〉 | x ∈ P} ≤ β̂ we can easily deduce that both constraints
are satisfied. �

Stabilization

A common problem for cutting-plane based methods is unstable be-
havior of the intermediate solutions. It is the reason that a lot more
cutting-planes (in our case Inequalities (2.26) and (2.27)) are generated
than actually needed to prove optimality. In our case this corresponds
to too many oracle calls, which is typically our main bottleneck. To get
an idea of this behavior we ran IPO’s facet computation algorithm in its
pure form and projected the sequence of intermediate solutions on two
arbitrary variables. The result is depicted on the left side of Figure 2.4,
showing a lot of oscillation in the two coordinates. In the literature one
can find several approaches to stabilize the procedure, typically by pe-
nalizing oscillations in a certain way. Most recent work in that direction
was done in the context of column generation, where columns are added
to the LP instead of rows. By dualization, both cases constitute the same
problem. A simple stabilization technique that works by means of linear
programming is due to du Merle, Villeneuve, Desrosiers and Hansen
[22]. A more involved one is described in [2].

Du Merle et al. suggested to consider every variable xi (in our case
xi = ai for i ∈ [n] and xn+1 = β), set up an interval [δ−i , δ

+
i] (the so-called

trust region) and linearly penalize if xi is away from that region. More
precisely, one adds variables w+

i ,w
−

i ≥ 0 having nonpositive coefficients
−ε+

i ,−ε
−

i (we call ε+, ε− ∈ Rn
+ penalties) in the objective (note that we

62

2.7. SOLVING THE POLAR LINEAR PROGRAMS

maximize) and adds constraints xi ≤ w+
i + δ+

i and xi ≥ −w−i + δ−i . Now
if xi ∈ [δ−i , δ

+
i] holds, then both extra variables can be set to zero for no

cost. But if xi is outside the trust region, e.g., if xi > δ+
i , then the LP has

to pay the costs for each unit of w+
i = xi − δ+

i .
Clearly one has to come up with update strategies for the trust

regions (as we don not know the right value of xi in advance) and
for the penalty values. Moreover, in the mentioned papers the authors
can usually specify certain initial values since they consider specific
problems. We are not in this situation as we do not know the sizes of
our inequalities’ coefficients a priori. This is particularly important for
the penalties: If they are too large, the solution is bound to the trust
region, and if they are too small, we do not stabilize at all. In order to
calibrate the penalty values we decided to start with an initially large
uniform penalty value ε ≥ 0 (that is, every w±i -variable has objective
value −ε) and the trivial interval [0, 0]. This will lead to the origin (i.e.,
a = O, β = 0) as the optimal solution. As long as this is the case we
decrease ε by 50 %, until the optimum is different from the origin.

A very interesting observation that we made is that by just contin-
uing this “calibration” we can already reduce the number of iterations
significantly. So suppose we actually obtained an optimal solution that
is not equal to the origin. Then we separate inequalities as long as possi-
ble, that is, either until the optimum is again equal to the origin, or until
the current solution is indeed feasible. After this separation sequence
we decrease ε further and repeat. Finally, ε will be very small, having
no impact on the solution, we can set it to zero and obtain the original
LP.

Since a thorough investigation of stabilization approaches and corre-
sponding update strategies is out of the scope of this thesis, we decided
to keep this behavior. At the end of this section we will present compu-
tational results for an example instance that justify this decision.

In order to obtain correct solutions we eventually have to solve the LP
with exact arithmetic. But in fact we do not care about exactly computed
stabilization values w±i and also not about the precision of the computed
intermediate solutions. This motivates to run the described stabilization
procedure with floating-point precision only and then warm-start a non-
stabilized procedure that uses exact arithmetic. To carry out the warm-
start we only have to extract those points Ŝ and directions R̂ that were

63

INVESTIGATING POLYHEDRA BY ORACLES

required to prove optimality of the stabilization LP, i.e., those for which
the corresponding slack variables were nonbasic. In our experiments,
this strategy worked well in the sense that we rarely had to add more
inequalities to the LP after the warm-start.

Cut Aging

Despite stabilization, usually many cutting planes need to be separated,
in particular more than actually needed to assert optimality. According
to our knowledge, all state-of-the-art solvers implement an aging strat-
egy, which is a simple heuristic that removes inequalities from the LP
that were not useful for a certain number of cut rounds. For this, one
typically maintains a number called the age of a row. If a row is not “use-
ful”, its age is incremented, while the age is set to zero for useful ones.
The maximum age of a row is 20 by default, but can be specified by the
user. We do not maintain a cut pool, that is, we do not explicitly collect
the removed inequalities. Instead we store the set of known points and
directions returned by the oracle and search among those for violated
inequalities before calling the oracle. Hence, re-adding inequalities that
were removed due to aging is not a costly operation.

The cutting-plane procedure might get stuck in the sense that it
only adds back inequalities that were removed due to aging without
making any progress. If the number of rounds in which only known
inequalities are added and the objective did not improve exceeds the
maximum age, then this age is increased. This strategy guarantees that
we will eventually terminate. IPO considers a row as “useful” if its dual
is nonzero, which is the same strategy that is implemented in SCIP.

Effect of Stabilization and Cut Aging

We consider, as an example instance, an integer program with 105 vari-
ables over the master edge cover polytope, defined in Section 2.10.2, for the
complete graph with 14 nodes. For a fixed random objective, IPO de-
tected six facets and we report statistics for the whole facet-computation.
Note that we just want to illustrate the effect of stabilization and cut ag-
ing, and by no means claim that the effects will be the same (or similar)
for other polyhedra. In fact they will highly depend on the dimension
and the relative running times of heuristics and oracles.

64

2.7. SOLVING THE POLAR LINEAR PROGRAMS

Table 2.1: Effects of stabilization and cut aging for lazy separation of
Inequalities (2.26)–(2.27).

No stabilization Stabilization
Maximum age ∞ 30 20 10 ∞ 30 20 10

Overall time 286.7 257.4 248.7 260.6 46.9 47.8 50.2 49.6
Approx. LP time 173.3 126.2 120.4 133.8 21.0 21.4 20.6 22.4
Approx. LPs 2742 5102 5869 7956 804 865 1021 1169
Exact LP time 1.3 1.4 1.3 1.3 1.3 1.4 1.8 1.7
Exact LPs 7 7 7 7 9 9 11 10
Oracle time 1.5 1.3 1.1 1.2 4.1 4.0 5.1 4.1
Oracle calls 14 14 14 14 38 38 38 38
Heur. time 101.2 113.7 110.6 104.5 19.6 20.0 21.5 20.3
Heur. calls 1695 1883 1816 1825 429 402 443 407

Table 2.1 shows the results for stabilization turned on or off and
for different maximum ages. It contains the number of invocations
and running times for several parts. Here, the “approximate LP” is
the one that is solved with floating-point precision only, and used for
stabilization, while the “exact LP” is the final one that also produces
solutions in rational arithmetic. Clearly, stabilization pays off, while
the effect of cut aging is relatively small. The latter is probably due to
the fact that the running time portion used for solving the LPs is not
very large, e.g., compared to a MIP solver. Note that the number of
invocations of the exact LP is slightly higher if stabilization is turned on.
This is clearly due to a different warm-start of the exact LP, but apart
from this we have no good explanation.

For Figure 2.4 we considered the same instance, but just the gener-
ation of the first facet, with cut aging disabled. We compare the run
without stabilization (plot on the left) and the run with stabilization
(plot on the right). The plots show the projections of all LP solutions’
trajectories onto two variables. We selected the variables such that the
optimum has one variable fixed to zero and the other one nonzero. The
first solutions are colored blue, while the last ones are colored red, the

65

INVESTIGATING POLYHEDRA BY ORACLES

final solution being the same for both runs, namely (0,−0.38). When
stabilization is disabled, one can see many oscillations, but they are not
gone when we stabilize. Of course we cannot expect a smooth converg-
ing behavior due to the fact that the simplex method returns extreme
solutions.

−0.2 0 0.2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 200 400

−0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0 50 100

Figure 2.4: Projection of unstabilized and stabilized solution sequence
onto two variables. The trajectories show the solutions in sequence of
computation, colored by iteration number. Both cases are without cut
aging, stabilization disabled in the left, and enabled in the right plot.

66

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

INVESTIGATING POLYHEDRA BY ORACLES:

2.8 Improving Readability of
Equations and Inequalities

The main use case for IPO is the computation of equations and in-
equalities valid for a polyhedron of interest with the goal that the user
hopefully understands and generalizes them. As this final step is clearly
not mechanical, the actual representation of these objects matters a lot.
First we only consider integral representations, that is, all equations
and inequalities presented to a user must have integral normal vectors.
Second, we believe that verifying the validity of an equation or an in-
equality by hand usually requires a certain amount of time per nonzero,
and that the effort for larger (absolute values of) coefficients is higher.
In case of complicated coefficients a user may even think that there
are number-theoretic reasons for the validity, although there could be a
simple combinatorial explanation. This motivates our decision to prefer
sparse normal vectors over dense ones, but also try to avoid large co-
efficients. For equations we already designed the affine-hull algorithm
such that sparse objective vectors are preferred (see Section 2.4.5).

In this section we consider a simple technique to post-process equa-
tions and inequalities to find a nicer representation. For this we try to
minimize Manhattan norms ||a||1 :=

∑n
i=1 |ai| of the corresponding normal

vectors a ∈ Zn. It clearly avoids coefficients of large absolute value, but
also cares a bit for sparsity, e.g., in contrast to the maximum norm. Since
finding normal vectors with a global minimum norm is hard (and out
of the scope of this thesis), we present a local-improvement heuristic.

67

INVESTIGATING POLYHEDRA BY ORACLES

Manhattan Norm Problems
Improving the readability of a set of given equations as discussed above
is essentially the following problem.

Problem 2.8.1 (`1-shortest Basis). Given a vector space V ⊆ Qn by means
of a rational basis, find an integral basis v1, . . . , vk ∈ Z

n of V whose sum of
`1-norms

∑k
i=1 ||vi||1 is minimum.

Although we are not aware of an NP-hardness proof, there is a result
by Haviv and Regev [35], who showed that unless NP ⊆ RP8 holds, there
is no polynomial-time constant-factor approximation algorithm for the
shortest vector problem for the `1-norm. It is not too hard to see that an
optimum solution to Problem 2.8.1 always contains a vector of minimum
`1-norm since otherwise we could add to to the basis and remove any
other linearly dependent vector. Note that Haviv and Regev’s result
holds for any `p norm for 1 ≤ p ≤ ∞.

Short integral vectors in the span of the equations’ normal vectors
and the normal vector of a given inequality are only useful if we can
actually replace the latter by such a short vector. Let v1, . . . , vk be a basis
of any subspace V of Rn. We say that a vector v ∈ V depends on vi
(w.r.t. this basis) if the multiplier λi in the (unique) linear combination
v =

∑k
i=1 λivi is nonzero. Assuming that v2, . . . , vk are the equations’

normals, and that v1 is that of a given inequality, our problem of interest
is as follows.

Problem 2.8.2 (`1-shortest Vector with One Dependency). Given a vector
space V ⊆ Qn by means of a basis v1, . . . , vk ∈ Z

n, find a vector v ∈ Zn
\ {O}

of minimum `1-norm which depends on v1.

It is again not hard to see this new problem is not simpler than the
shortest vector problem: We reorder the vectors v1, . . . , vk in k ways such
that the first vector is always a different one, and solve Problem 2.8.2 for
each of these instances. Then, among the k solutions we will find our
shortest vector since it must depend on some of the vi.

Due to the hardness of these problems we decided to implement a
local improvement heuristic that we present in the next section.

8RP consists of those decision problems that can be solved in polynomial time on a
randomized Turing machine.

68

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

Two Vectors: An Exact Algorithm
Our main result in this section is the following theorem that enables us
to approximately reduce the `1-norm sum of a basis by iteratively con-
sidering pairs of basis vectors, solving the corresponding subproblem
to optimality and replacing one of the vectors by the solution.

Theorem 2.8.3. Problem 2.8.2 for k = 2 can be solved in polynomial time.

Let us first start with a simple lemma that tells us how to reduce the
problem to one where we only have to consider integral combinations of
the vectors. This is ensured by replacing them by a lattice basis of their
span.

Lemma 2.8.4. Let û, v̂ ∈ Zn be two linearly independent vectors, and let the

matrix H =

(
α 0
β γ

)
∈ Z2×2 be such that [H | O2×(n−2)] is the Hermite normal

form of
(
v̂ᵀ

ûᵀ

)
∈ Z2×n. Then v = 1

α v̂ and u = 1
αγ (αû − βv̂) are a lattice basis

of lin.hull (û, v̂) ∩ Zn and a vector (λu + µv) depends on û if and only if it
depends on u.

Proof. Let U ∈ Zn×n be the unimodular matrix such that we have[
H | O2×(n−2)

]
=

(
v̂ᵀ

ûᵀ

)
·Uᵀ,

which implies αe(1) = Uv̂ and βe(1) +γe(2) = Uû. From the first equation
we derive Uv = e

(1) and from both equations we obtain

Uu =
1
αγ

(αUû − βUv̂) =
1
αγ

(αβe(1) + αγe(2)
− αβe(1)) = e

(2).

Since U is unimodular (in particular, U−1
∈ Zn×n), the vectors u and v are

integral. Consider any pair of multipliersλ, µ ∈ R for which w = λu+µv
is an integral vector. Since then also Uw = λUu + µUv = λe(2) + µe(1)

is an integral vector, λ and µ must be integers and thus u and v form a
lattice basis.

We now prove the dependency property. A vector w does not depend
on û w.r.t. the basis û, v̂ if and only if it is a multiple of v̂. Similarly, w

69

INVESTIGATING POLYHEDRA BY ORACLES

does not depend on u w.r.t. the basis u, v if and only if it is a multiple of
v. Since v = 1

α v̂ holds, the dependency properties are also equivalent,
which concludes the proof. �

For the rest of this section we can now assume that u, v ∈ Zn are a
lattice basis and we want to find integral multipliers λ, µwith λ , 0 such
that

||λu + µv||1 =

n∑
i=1

|λui + µvi| (2.28)

is minimum. Since (λ, µ) and (−λ,−µ) have the same objective values,
we will even requireλ ≥ 1. One may be afraid of doing a case distinction
in order to resolve the n absolute value expressions in (2.28) since in
principle this results in 2n cases. It turns out that this combinatorial
explosion does not occur because the sign of λui + µvi depends on the
comparison of µ/λ with −ui/vi for every i ∈ [n]. This leaves at most
n + 1 intervals such that for all λ, µ (with λ ≥ 1) such that µ/λ is in one
interval, the objective function (2.28) is linear. This observation is made
precise in the following lemma.

Lemma 2.8.5. Let u, v ∈ Zn be two linearly independent vectors and let
−∞ = q0 < q1 < . . . < qk−1 < qk = ∞ be the sorted elements of the set
Q :=

{
−

ui
vi
| i ∈ [n] with vi , 0

}
∪ {±∞}. Then the sign pattern of λu + µv is

constant over all multiplier pairs (λ, µ) with λ > 0 for which µ/λ is in any
fixed interval [q j−1, q j] for j ∈ [k].

Proof. Let (λ, µ) and (λ′, µ′) with λ, λ′ > 0 be two such multiplier pairs
satisfying µ

λ ,
µ′

λ′ ∈ [q j−1, q j] for some j ∈ [k], but with different signs on
position i: λui + µvi < 0 < λ′ui + µ′vi. We have vi , 0 since otherwise
λui < 0 < λ′ui holds, contradicting λ, λ′ > 0.

Hence − ui
vi
∈ Q, that is, µλ and µ′

λ′ are either both less than or equal to

−
ui
vi

or both greater than − ui
vi

. This implies that µλ + ui
vi

and µ′

λ′ +
ui
vi

have the
same sign, which in turn implies that λui + µvi and λ′ui + µ′vi have the
same sign (using the fact that λ, λ′ > 0). This concludes the proof. �

70

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

λ

µ

10 u

15
u + v

15 2u − v

15
u − 3v

12
u − 2v

9
u − v

25 2u + v
u =

1
−1
2
6

0
1
4
2

 = v

Objective: |λu + µv|1

Figure 2.5: Illustration of Lemma 2.8.5.

Given q ∈ Q∪{±∞}, we define the ray r ∈ Z2 representing q as follows:

r =

(r1, r2) for q ∈ Q, q = r2

r1
with r1 ∈ Z+ and r2 ∈ Z coprime

(0, 1) for q = ∞

(0,−1) for q = −∞

(2.29)

The case distinction is shown in Figure 2.5 for two vectors u, v ∈ Z4.
The three colored rays emanating from the origin are the (scaled) rays
representing q1, q2 and q3. They partition the set of pairs (λ, µ) ∈ R+ ×R
into four cones each of which has a linear objective function. Note that
the λ-axis does not represent an element of Q, i.e, 0 < Q, since u has no
zero entry.

According to Lemma 2.8.5 we have to solve at most n + 1 integer
programs

min c1λ+ c2µ (2.30)
s.t. λ > 0 (2.31)
−q j−1λ+ µ ≥ 0 (2.32)
−q jλ+ µ ≤ 0 (2.33)

λ, µ ∈ Z, (2.34)

71

INVESTIGATING POLYHEDRA BY ORACLES

where c is a suitable objective function we will specify later and j ∈ [k].
Note that (2.31) is a strict inequality constraint that could also be replaced
by λ ≥ 1. Since integer programming is polynomial-time solvable in
fixed dimension (see [48]) these IPs can be solved in polynomial time,
which proves Theorem 2.8.3.

For efficiency reasons, instead of solving IP (2.30)–(2.34) by a general
algorithm we will now devise a problem-specific approach. Since we
can evaluate objective for the pairs (λ, µ) with µ/λ = qi for some i ∈
[k − 1] directly, we can restrict our search for (integral) λ, µ satisfying
−q j−1λ+µ > 0 and−q jλ+µ < 0, which impliesλ > 0. To see this, observe
that the cone whose extreme rays are the rays representing q j−1 and q j is
contained in R+ ×R, and hence its interior is contained in R>0 ×R. The
next lemma captures the objective function representing ||λu + µv||1 for
such a cone.

Lemma 2.8.6. Let u, v ∈ Zn be two linearly independent vectors and let
−∞ = q0 < q1 < . . . < qk−1 < qk = ∞ be as in Lemma 2.8.5. Consider a fixed
j ∈ [k] and define

I+
j :=

{
i ∈ [n] | vi > 0,−

ui

vi
≤ q j−1 or vi < 0,−

ui

vi
≥ q j or vi = 0,ui > 0

}
I−j :=

{
i ∈ [n] | vi < 0,−

ui

vi
≤ q j−1 or vi > 0,−

ui

vi
≥ q j or vi = 0,ui < 0

}
.

Then all (λ, µ) ∈ R>0 ×R with q j−1 ≤ µ/λ ≤ q j satisfy

||λu + µv||1 =
∑
i∈I+

j

(λui + µvi) −
∑
i∈I−j

(λui + µvi).

Proof. We have to prove that I+
j (resp. I−j) contains the set of i ∈ [n] for

which wi := λui + µvi is positive (resp. negative). Suppose λui + µvi > 0
holds. If vi = 0, then the sign of wi agrees with the sign of ui. Otherwise,
the condition is equivalent to vi(

ui
vi

+
µ
λ) > 0. For vi > 0 (resp. vi < 0) this

implies − ui
vi
<

µ
λ (resp. − ui

vi
>

µ
λ). Using the fact that − ui

vi
is equal to q`

for some ` ∈ [k − 1], we observe that this is equivalent to − ui
vi
≤ q j−1 for

vi > 0 and to − ui
vi
≥ q j for vi < 0. This proves the statement for positive

λui + µvi, the case of negative λui + µvi being similar. �

72

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

Having the objective function available, we can now turn to the
description of the algorithm that solves the modified version of IP (2.30)–
(2.34). For this, we are given two linearly independent rays q, r ∈ Q2

and an objective vector c ∈ Q2 satisfying
〈
q, c

〉
, 〈r, c〉 ≥ 0. The goal is to

find an integral point p ∈ int(conic.hull(
{
q, r

}
)) with minimum c-value.

Note that there always exists such a point since (q + r) is a rational
ray contained in the interior of conic.hull(

{
q, r

}
), and a suitable scaled

version is integral. Note also Lemma 2.8.6 implies that the objective
is nonnegative for the whole cone, proving that its extreme rays have
nonnegative scalar product with the objective vector.

For a direction a ∈ Z2 the width of a polytope P along a is defined
as wa(P) := max {〈a, x〉 | x ∈ P} −min {〈a, x〉 | x ∈ P}. The lattice width w(P)
of P is defined as the minimum of all widths over all integral directions
a , O. The mentioned theorem reads as follows:

Proposition 2.8.7 (Flatness Theorem for Dimension Two, see [44] and
[38]). Every polygon P ⊆ R2 with lattice width greater than 1 + 2/

√
3 ≈ 2.15

contains at least one lattice point in its interior.

In dimension two we can easily approximate the lattice width of
triangles by a factor of 2:

Proposition 2.8.8 (Section 2.3 in [24]). Let T = conv.hull
{
q, r,O

}
be a

triangle with q, r ∈ Q2. Then a vector a ∈ Z2
\ {O} with minimum∞-norm of(qᵀ

rᵀ
)
· a can be computed in polynomial time and w(T) ≤ wa(T) ≤ 2w(T) holds.

Assume for a moment
〈
c, q

〉
, 〈c, r〉 > 0 and scale r to r̂ :=

〈
c, q

〉
/ 〈c, r〉 r

in order to make the c-objectives of q and r̂ equal. In order to solve
our refined integer program we can now compute a “thin” direction a
for the triangle T = conv.hull

{
q, r̂,O

}
using Proposition 2.8.8. We can

then scale q and r̂ by a factor of τ > 0 such that wa(τT) = 5 holds. The
approximation factor then implies that τT satisfies the conditions of
Proposition 2.8.7, and hence contains an integer point. Furthermore, its
integer points can be covered by at most 6 lines that are orthogonal to a.
In order to solve the one-dimensional problem we apply a unimodular
transformation such that the “thin” direction a is mapped to a′ = e

(1),
which makes the covering lines vertical and thus easy to analyze. The
initial scaling of r ensures optimality, since the edge of τT connecting τq
with τr is orthogonal to c.

73

INVESTIGATING POLYHEDRA BY ORACLES

O

q

r

r̂

c

a

p∗

Figure 2.6: Illustration of the instance from Example 2.8.9.

Example 2.8.9. Consider the instance defined by q = 1
2
(5

2
)
, r =

(
−2
3
)
, and

c = 1
3
(
−3
17
)
. The scaled ray is r̂ = 19/6

57/3 r = 1
6
(
−2
3
)

and a “thin” vector minimizing

the ∞-norm of
(

5/2 1
−1/3 1/2

)
· a is a =

(
−1
2
)
. Figure 2.6 depicts these objects,

including the triangle T = conv.hull
{
q, r̂,O

}
.

The “thin” direction a induces the unimodular transformation with matrix

U =

(
−1 2
−1 1

)
and transposed inverse U−ᵀ =

(
1 1
−2 −1

)
. The transformed

objects are

q′ := Uq =
1
2

(
−1
−3

)
, r′ := Ur̂ =

1
6

(
8
5

)
,

a′ := U−ᵀa =

(
1
0

)
and c′ := U−ᵀc =

1
3

(
14
−11

)
.

This leads to a scaling factor of τ := 5/(r′1 − q′1) = 30
11 and the vertical covering

lines are chosen for integers x between the values xmin := τq′1 ≈ −1.36 and
xmax := τr′1 ≈ 3.64. Figure 2.7 depicts the situation after transformation and
scaling by τ.

74

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

O

τq′

τr′

c′

a′

p∗

xmin xmax

Figure 2.7: Illustration of the transformed instance from Example 2.8.9.

75

INVESTIGATING POLYHEDRA BY ORACLES

The following algorithm makes these ideas precise:

Lemma 2.8.10. Algorithm 2.8.1 is correct and runs in polynomial time.

Proof. By Proposition 2.8.8, Step 4 can be carried out in polynomial
time and the vector a satisfies w(T) ≤ wa(T) ≤ 2w(T) for the triangle
T := conv.hull

{
q, r̂,O

}
. By construction a is primitive, i.e., gcd(a1, a2) = 1

holds. Hence, Step 6 can be performed using the extended Euclidean
algorithm. The (unimodular) transformation in Step 7 transforms the
rays in such a way that the direction a corresponds to a′ := (1, 0). Observe
that

〈
U−ᵀc,Up

〉
=

〈
c, p

〉
holds for all points p, i.e., the new objective

vector c′ corresponds to c after the transformation.
If

〈
c, q

〉
, 〈c, r〉 > 0 does not hold, we can assume w.l.o.g. that 〈c, r〉 = 0

holds. In this case, every feasible point p with
〈
a, p

〉
= 1 is optimal.

Hence, after the transformation, any point (x, y) with x = 1 is suitable,
and the algorithm will find it since Step 17 is executed due to c′2 = 0.

If
〈
c, q

〉
, 〈c, r〉 > 0 holds, we have

〈
c′, q′

〉
= 〈c′, r′〉 due to the prelim-

inary scaling in Step 3. The factor τ > 0 computed in Step 11 ensures
that wa(τT) = 5 holds, ensuring that τT satisfies the condition of Propo-
sition 2.8.7 and hence contains an integer point. By unimodularity of
the transformation, also τT′ (with T′ :=

{
Up | p ∈ T

}
) contains an integer

point. Furthermore, the integer points in τT′ can be covered by at most
six vertical lines with x-coordinates between xmin and xmax. It is easy
to verify that Steps 14–17 find for a specified x ∈ Z an integer y such
that (x, y) ∈ int(conic.hull

{
q′, r′,O

}
) is of minimum c′-value (if such a

y exists). Note that by the definition of Y we do not necessarily have
(x, y) ∈ τT′. If a y exists, its objective value

〈
c,U−1(x, y)ᵀ

〉
=

〈
c′, (x, y)ᵀ

〉
is compared to that of an already known best solution.

It remains to show optimality, i.e., that an optimal point is among
those considered. Suppose an optimal point p∗ lies outside of τT′. Since
the line connecting q′ and r′ is orthogonal to c′ due to

〈
c′, q′

〉
= 〈c′, r′〉,

observe that c′ is the normal vector of this edge of τT′. Hence, any point
inside of T′ has better objective than p∗, which concludes the proof. �

76

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

Algorithm 2.8.1: Conic Integer Program in 2D
Input: Lin. indep. rays q, r ∈ Q2, vector c ∈ Z2

\ {O}with〈
c, q

〉
, 〈c, r〉 ≥ 0.

Output: An integer point p ∈ int(conic.hull
{
q, r

}
) ∩Z2

minimizing π :=
〈
c, p

〉
, together with the objective

value π.

1 if
〈
c, q

〉
= 0 or 〈c, r〉 = 0 then Compute a := 1

gcd(c1,c2) c and r̂ := r.
2 else

3 Compute r̂ := 〈
c,q〉
〈c,r〉 r.

4 Compute a ∈ Z2
\ {O}minimizing the∞-norm of

(qᵀ

r̂ᵀ
)

a.
5 end

6 Compute s, t ∈ Zwith 1 = sa1 + ta2 and let U :=
(
a1 a2
−t s

)
.

7 Compute q′ := Uq, r′ := Ur̂ and c′ := U−ᵀc.
8 if

〈
c, q

〉
= 0 or 〈c, r〉 = 0 then Let xmin := 1, xmax := 1, τ := 1, and

π := ∞.
9 else

10 Compute xmin := min
{
q′1, r

′

1, 0
}

and xmax := max
{
q′1, r

′

1, 0
}
.

11 Compute τ := 5/(xmax − xmin) and π := ∞.
12 end
13 for x ∈ [τxmin, τxmax] ∩Z do
14 Let Y :=

{
y ∈ R | (x, y) ∈ int(conic.hull

{
r′, q′

}
)
}
.

15 if c′2 > 0 then compute y := inf(Y ∩Z).
16 if c′2 < 0 then compute y := sup(Y ∩Z).
17 if c′2 = 0 then compute y ∈ Y∩Z, setting y := ∞ if Y∩Z = ∅.
18 if y , ±∞ and

〈
c′, (x, y)

〉
< π then let p := U−1(x, y)ᵀ and

π :=
〈
c, p

〉
.

19 end
20 return (p, π)

77

INVESTIGATING POLYHEDRA BY ORACLES

Algorithm 2.8.2: Exact `1-Shortest Vector for Lattice Bases in 2D
Input: Linearly independent vectors u, v ∈ Zn.
Output: Multipliers λ∗, µ∗ ∈ Zwith λ > 0 minimizing

π∗ := ||λu + µv||1.

1 Compute Q :=
{
−

ui
vi
| i ∈ [n] with vi , 0

}
∪ {±∞}.

2 Sort elements of Q as −∞ = q0 < q1 < . . . < qk−1 < qk = ∞.
3 Initialize (λ∗, µ∗, π∗) := (1, 0, ||u||1).
4 for j = 1, 2, . . . , k − 1 do
5 Let (λ, µ) ∈ Z2 be the ray representing q j and let

π := ||λu + µv||1.
6 if π < π∗ then set (λ∗, µ∗, π∗) := (λ, µ, π).
7 end
8 for j = 1, 2, . . . , k do
9 Compute the rays r, r′ ∈ Z2 representing q j−1 and q j,

respectively.
10 Let I+

j and I−j be defined as in Lemma 2.8.6.
11 Compute c := (v(I+

j) − v(I−j),u(I+
j) − u(I−j))ᵀ.

12 Call Algorithm 2.8.1 for r, r′ and c, obtaining (λ, µ) and π.
13 if π < π∗ then set (λ∗, µ∗, π∗) := (λ, µ, π).
14 end
15 return (λ∗, µ∗, π∗)

We can immediately turn to the verification of the algorithm’s cor-
rectness.

Theorem 2.8.11. Algorithm 2.8.2 is correct and runs in polynomial time.

Proof. By Lemma 2.8.5, the pair (λ, µ) minimizing ||λu + µv||1 can be
found among the k − 1 candidates tested in Steps 4–7 or in the interior
of one of the k cones defined by q j−1 < µ/λ < q j (and λ ≥ 0) for j ∈ [k].

Let us consider such a cone C for any j ∈ [k]. Then the vectors r, r′

computed in Step 9 are the extreme rays of C and Lemma 2.8.6 shows
that the vector c computed in Step 11 satisfies c1λ + c2µ = ||λu + µv||1
for all (λ, µ) ∈ C. Algorithm 2.8.1 correctly determines the c-minimum
pair (λ, µ) ∈ C by Lemma 2.8.10 and runs in polynomial time, which
concludes the proof. �

78

2.8. IMPROVING READABILITY OF EQUATIONS AND INEQUALITIES

Using Algorithm 2.8.2 as a subroutine, we can now easily provide
an algorithm that solves Problem 2.8.2 in dimension two.

Algorithm 2.8.3: Exact `1-Shortest Vector in 2D
Input: Linearly independent vectors û, v̂ ∈ Zn.
Output: Multipliers λ̂, µ̂ ∈ Qwith λ̂ > 0 minimizing

π̂ := ||λ̂û + µ̂v̂||1 such that λ̂û + µ̂v̂ is integral.

1 Compute the Hermite normal form
(
α 0
β γ

)
of

(
v̂ᵀ

ûᵀ

)
.

2 Call Algorithm 2.8.2 for 1
αγ (αû − βv̂) and 1

α v̂, and obtain
(λ∗, µ∗, γ∗).

3 return (1
γλ
∗, 1
αµ
∗
−

β
αγλ

∗, γ∗)

The next corollary just combines the results of this section to establish
the correctness of our final algorithm.

Corollary 2.8.12. Algorithm 2.8.3 is correct and runs in polynomial time.

Proof. By Theorem 2.8.11, Lemma 2.8.4 and the simple calculation

λ∗
(

1
αγ

(αû − βv̂)
)

+ µ∗
(1
α

v̂
)

=

(
1
γ
λ∗

)
û +

(
1
α
µ∗ −

β

αγ
λ∗

)
v̂,

we obtain that the returned multipliers are correct, establishing the
correctness of Algorithm 2.8.3. Since the Hermite normal form can be
computed in polynomial time (see [43]), and by Theorem 2.8.11, it also
runs in polynomial time. �

A Fast Heuristic

Solving Problem 2.8.2 using the ideas from the previous section can
be time-consuming for very large numbers. We highlight a few places
where, for the price of optimality, a significant speedup can be obtained.
The algorithm consists of three stages:

1. Replace (u, v) by a lattice basis of their span.

79

INVESTIGATING POLYHEDRA BY ORACLES

2. Find (at most n+1) regions for the multipliers (λ, µ) having a linear
objective.

3. For each region, solve the corresponding integer program with
two variables.

Clearly, if we skip Step 1, we do not reach all possible combinations
λu + µv ∈ Zn in general. Still, all produced solutions are valid.

The most time-consuming step is Step 3, and we can save a lot of
computation time if we restrict our search only to those pairs (λ, µ) with
λ/µ ∈ Q. Although this clearly limits the set of vectors w = λu+µv ∈ Zn

considered, every w having an entry wi = 0 with ui, vi , 0 is checked. In
particular, if there is a combination that is much sparser than u and v,
the heuristic will still consider it.

Implementation
The problem considered in this section is clearly not central to this thesis,
and hence we spent only a limited amount of time on the implementa-
tion. One of the simplest ideas for using the algorithms is to repeatedly
check pairs of vectors for possible norm reductions until no such im-
provement is possible. IPO contains precisely this functionality, except
that it works in two rounds: in the first round, the cheaper heuristic
is run, and in the second round, the more expensive Algorithm 2.8.3 is
tried.

We did not carry out a computational study, but would like to men-
tion that our observations are moderate: Running the heuristic does not
take a lot of time, which is why we sticked to the simple pair-checking
strategy described in the previous paragraph. Furthermore, for vectors
with less than 20 coefficients it produces good results in the sense that
we could not improve them by looking at the results. For dense vectors
usually not much changes, but in general it is hard to judge the results,
as we do not know the optimal bases.

80

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

INVESTIGATING POLYHEDRA BY ORACLES:

2.9 Computational Studies:
Dimensions

In this section we describe results of three experiments we conducted
on some well-known benchmark MIPs. In Section 2.9.1 we report on the
dimensions of polyhedra related to the instances, and discuss particular
cases that give insight into the capabilities and limitations of our im-
plementation. In Section 2.9.2 we consider the maximum faces for the
objectives specified in the respective instances. For the last experiment,
presented in Section 2.9.3, we use our code to analyze the inequality
constraints of the mentioned instances with respect to the dimensions
of the induced faces.

Hardware. The experiments were conducted on a 64-bit Intel i3-2310M
CPU at 2.1 GHz with 3 MB cache and 4 GB main memory.

Software. As an exact LP solver we used the development version
of SoPlex from January 2015. IPO was compiled with GCC 4.6.39 and
linked to the external libraries GMP 3.5.210. As an oracle we used the
exact MIP solver ExactSCIP 3.0.0 linked to GMP 4.3.1 (the recommended
version for ExactSCIP), MPFR 2.4.211, QSopt_ex 2.5.10 (see [6, 5]), and
EGlib-2.6.2012. Using IPO’s MixedIntegerProgramCorrectorOracle on

9GCC, the GNU Compiler Collection, available at http://gcc.gnu.org/
10The GNU Multiple Precision Arithmetic Library, available at http://gmplib.org/
11The GNU MPFR Library, available at http://www.mpfr.org/
12EGlib, available at http://www.dii.uchile.cl/~daespino/EGlib_doc/main.html

81

http://gcc.gnu.org/
http://gmplib.org/
http://www.mpfr.org/
http://www.dii.uchile.cl/~daespino/EGlib_doc/main.html

INVESTIGATING POLYHEDRA BY ORACLES

top of SCIP-3.1.1, the approximate oracle we used, we could turn the
floating-point solutions into rational ones (see Section 2.3.4).

Dimensions of Polyhedra from MIPLIB Instances

In order to demonstrate the capabilities and also the limitations of our
implementation of Algorithm 2.4.3 we computed the affine hulls for var-
ious polyhedra stemming from the MIPLIB 2.0. We selected all instances
with at most 1000 variables that are solved exactly within 5 minutes, since
the running time of the algorithm depends on the ambient dimension
and on the running time of the oracle. For each instance we considered
the linear relaxation P, the linear relaxation Q of the presolved instance
and their respective mixed-integer hulls PI and QI. The presolve was
done by SCIP using default settings in floating-point arithmetic.

First, we ran our implementation of the affine hull algorithm to
compute the dimensions of these polyhedra. One goal was to show
that we can compute the affine hull of polyhedra associated to MIPs
with several dozens – and in some cases also hundreds – of variables.
Second, we were curious about how well the affine hull of the mixed-
integer hull is actually known just from the model. To be more precise,
denote by n′ the initially known upper bound on the dimension, i.e.,
the ambient dimension n minus the number of irredundant equations
explicitly stated in the MIP (or −1 if a trivially violated equation is
given). The two simple inequalities

n′ ≥ dim P ≥ dim PI

are clearly valid, and we were curious how often they are actually tight.
Tables 2.2 and 2.3 report the main results of this experiment. For

more detailed statistics, e.g., time measurements for different parts of the
algorithm, we refer to Tables A.1–A.8. Note that all timings displayed
in tables and figures are in seconds.

The numbers showing dim P (resp. dim Q) are colored red if they
differ from n′, i.e., if an inequality (or bound) constraint of the relaxation
is satisfied with equality by all LP solutions. Similarly, the numbers
showing dim PI (resp. dim QI) are colored green if they differ from dim P
(resp. dim Q).

82

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

Original instances. We first discuss the qualitative results on the orig-
inal (i.e., not presolved) instance set. Unfortunately, the dimension of
PI for p0548 could not be computed, since in one of the oracle calls, the
exact MIP solver was unable to close the gap, even though we allowed
several additional hours of computation time.

First note that 12 of the 34 instances have no color at all, that is, only
the equations specified in the models13 are valid for the mixed-integer
hull PI. Except for two of these instances, there is in fact no equation at
all, i.e., PI is full-dimensional.

For the 10 instances highlighted in red at least one of the inequalities
in the model is an implicit equation, i.e., could have been set to equality
keeping the relaxation intact. From a modeling point of view there may
be different reasons for that. In addition to improper modeling it could
well be that a mathematical model in general has no equations missing,
but for specific data it does. Of course due to the nature of the instance
set it is hard to find out a specific reason since the underlying models
are not available.

Regarding the dimension of PI it is interesting to see in which range
it lies, relative to the dimension of P. The blue bars in Figure 2.8 show
this distribution14 and suggest that the instances fall into two problem
classes: Those for which PI is low-dimensional, even infeasible and
those for which PI’s dimension almost equals that of P. The majority
of the (admittedly very small) instance set falls into the second class
but still has a gap between dim PI and dim P. If it is indeed typical
that many practical problems have such a gap (but are not “feasibility
problems”), then looking for the missing equations using a tool like IPO
should be a natural part of model analysis. In fact, IPO could be used
to measure the impact of adding such missing equations to the model
on the running time of a MIP solver.

Presolved instances. We clearly see much less red in Table 2.3 com-
pared to Table 2.2. In fact, one of the three “red instances” should not
have been red: The table reports an initial upper bound of n′ = 0 for
diamond which should have been a n′ = −1 since the presolver had
detected the infeasibility. This error occurs because our code does not

13Of course all linear combinations of these equations are also valid.
14Note that since dim PI(p0548) could not be computed, this instance it is not repre-

sented.

83

INVESTIGATING POLYHEDRA BY ORACLES

Table 2.2: Dimensions for original MIPLIB 2.0 instances.

Instance n n′ dim P dim PI tP tPI

air01 771 750 732 617 63.5 49.5
bell3b 133 133 133 115 24.5 4.9
bell5 104 104 104 97 13.2 3.0
bm23 27 27 27 27 1.2 1.7
cracpb1 572 484 484 478 1,918.5 122.0
dcmulti 548 470 470 467 2,969.2 1,420.7
diamond 2 2 2 -1 0.0 0.0
egout 141 68 68 41 2.0 2.5
enigma 100 79 79 3 3.2 109.9
flugpl 18 12 12 9 0.1 3.3
gen 870 720 720 540 28,870.4 620.7
lseu 89 89 89 89 1.0 1.2
misc01 83 68 60 44 3.1 9.8
misc02 59 47 41 37 0.6 1.4
misc03 160 136 121 116 13.1 33.3
misc05 136 108 100 98 24.8 32.2
misc07 260 228 207 204 67.1 141.4
mod008 319 319 319 319 22.2 19.3
mod013 96 83 83 83 1.1 0.9
p0033 33 33 33 27 0.3 1.1
p0040 40 40 30 30 0.4 0.6
p0201 201 201 145 139 6.9 20.9
p0282 282 282 282 282 7.9 5.8
p0291 291 291 291 291 8.5 6.7
p0548 548 548 545 62.4
pipex 48 32 32 31 0.3 1.4
rgn 180 160 160 160 13.9 3.7
sample2 67 44 44 32 0.4 1.1
sentoy 60 60 60 60 0.4 0.3
stein15 15 15 15 15 0.1 0.1
stein27 27 27 27 27 0.3 0.3
stein45 45 45 45 45 0.7 0.7
stein9 9 9 9 9 0.1 0.1
vpm1 378 336 288 288 17.0 17.1

84

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

Table 2.3: Dimensions for presolved MIPLIB 2.0 instances.

Instance n n′ dim Q dim QI tQ tQI

air01 760 363 363 361 15.7 13.6
bell3b 113 91 91 86 9.4 1.9
bell5 87 56 56 56 0.9 0.8
bm23 27 27 27 27 1.3 1.8
cracpb1 518 478 478 478 1,346.3 108.1
dcmulti 548 469 469 467 3,161.6 368.8
diamond 2 0 -1 −1 0.0 0.0
egout 118 41 41 41 0.9 1.0
enigma 100 79 79 3 3.4 153.1
flugpl 16 10 10 7 0.1 1.8
gen 699 509 411 411 60.2 57.9
lseu 89 85 85 85 1.6 1.1
misc01 82 56 56 44 2.1 7.2
misc02 58 37 37 33 0.3 0.9
misc03 159 115 115 110 9.0 31.2
misc05 128 100 100 98 22.2 31.8
misc07 259 201 201 198 43.8 111.4
mod008 319 319 319 319 20.2 19.6
mod013 96 83 83 83 0.7 1.0
p0033 29 26 26 20 0.3 0.7
p0040 40 20 20 20 0.1 0.1
p0201 201 163 127 127 7.4 12.2
p0282 281 200 200 200 5.0 4.1
p0291 264 67 67 67 1.2 1.1
p0548 527 362 362 357 63.6 175.1
pipex 48 32 32 31 0.5 1.8
rgn 175 160 160 160 7.5 2.8
sample2 55 32 32 32 0.2 0.3
sentoy 60 60 60 60 0.4 0.4
stein15 15 15 15 15 0.1 0.1
stein27 27 27 27 27 0.3 0.3
stein45 45 45 45 45 0.8 0.8
stein9 9 9 9 9 0.1 0.1
vpm1 362 168 168 168 6.0 5.5

85

INVESTIGATING POLYHEDRA BY ORACLES

check explicitly whether the initial set of equations contains a trivially
violated equation. Hence, only the two presolved instances gen and
p0201 do not contain all equations necessary to describe the affine hull
of the relaxation. This is a sign that in general the presolver does a
good job in detecting inequalities that are satisfied with equality by all
solutions.

The red bars in Figure 2.8 correspond to the presolved instances. We
observe that almost two thirds of the instances have dim Q = dim QI.
This shows the effects of the so-called “dual tightening” and “dual fix-
ing” operations, which are the presolve techniques that are allowed
to cut off integer-feasible points as long as at least one optimal solu-
tion remains feasible15. For example, the dimensions of PI(air01) and
QI(air01) are 617 and 361, respectively, that is, many feasible solutions
have been cut off.

Large encoding lengths. We now turn to the quantitative results. The
most prominent case is clearly instance gen for which the computation
of dim P needed more than 8 hours, whereas the computation of dim PI
was performed in less than 11 minutes. This already indicates that the
issue cannot be the running time of the heuristic or the oracle.

Figure 2.9 displays the relative amounts of running time used for the
different components of Algorithm 2.4.3 for some instances and some
modifications of the algorithm.

Since the heuristic for P(gen) only has to solve an LP, the majority
of running time is spent for the linear algebra parts, in particular the
computation of the direction vectors, the most complicated one having
an encoding length of almost 20 million bits. In order to avoid many
computations with such huge numbers, IPO heuristically selects the
next nonbasic index in Steps 6 and 7 of Algorithm 2.4.2 such that the
corresponding direction vector becomes as sparse as possible. Sparsity
of the directions is also interesting for the user since sparse equations are
typically easier to understand. This is done by computing all directions
first in floating-point precision and estimating the number of nonzeros16.
First, observe that the overhead of this effort is relatively small, as in
only very few cases the time spent for the approximate directions is as

15The term “dual” comes from the fact that such an operation must take the objective
into account.

16Experiments suggested to consider numbers smaller than 10−7 as zero.

86

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

0 2 4 6 8 10 12 14 16 18 20 22

< 0

[0.0, 0.1)

[0.1, 0.6)

[0.6, 0.7)

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1.0)

1.0

Number of Instances

dim PI

dim P
and

dim QI

dim Q

Figure 2.8: Distribution of original and presolved MIPLIB 2.0 instances
by dimension ratio of hull and relaxation.

large as the time spent for the single exact direction (see Tables A.1–
A.8). Second, the encoding lengths become large much earlier if we
do not choose the index carefully. To demonstrate this, we compared
the run for P(air01) in the current implementation with one where
we instead chose the index uniformly at random. In the former case,
the sum of the encoding lengths of all computed directions vectors is
about 29 million, whereas it is about 56 million for the latter. The
effect on the running time for this instance is shown in Figures 2.9(c)
and 2.9(d), respectively. Although not visible in the figures, there is even
a difference in the running times of the heuristic: Complicated objective
vectors also degrade the LP solver’s performance, which may happen
solely since it has to (pre-)process large numbers, but it could have other

87

INVESTIGATING POLYHEDRA BY ORACLES

reasons as well.

E: 68.31%

F: 25.94%

H: 5.44%

28, 870 s

(a) P(gen)

A: 4.05%

H: 17.33%

O: 76.92%

621 s

(b) PI(gen)

A: 4.22%

E: 18.4%

F: 3.62%

H: 73.61%

66 s

(c) P(air01) with Approximate Directions

E: 43.64%

F: 17.65%

H: 38.64%

162 s

(d) P(air01) with Random Index

Approx. directions Factorizations Heuristic calls
Exact directions Cache searches Oracle calls

Figure 2.9: Different running time distributions for affine hull compu-
tation.

Slow oracles. Although encoding lengths can be a limiting factor for
our implementation, in many cases the linear algebra is no visible prob-
lem, and the algorithm spends most of the time with the heuristic and
oracle calls. In general, the quality of a heuristic and its running time rel-
ative to that of an oracle will greatly vary across problems and instances.
In our case, this variance is enormous: First, all equation verifications
were successful, that is, at least for the corresponding objectives our
heuristic MIP solver returned a truly optimal solution. Second, our

88

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

exact MIP solver ExactSCIP is very slow. Often, finding a primal so-
lution at all takes several minutes, if not hours. This is due to the fact
that ExactSCIP has no primal heuristics, i.e., it finds solutions only as
LP solutions during branch & bound. Furthermore, since IPO accesses
ExactSCIP using an external call, it cannot make use of warm-start fea-
tures. If linear algebra becomes no issue, then the typical running time
profile looks like the one in Figure 2.9(b).

We also tried to compute the affine hull for some instances without
a heuristic, but the results are not very surprising: For some easy in-
stances, there is almost no visible effect, for hard instances, it would have
taken days to compute the affine hull. Furthermore, since ExactSCIP
sometimes has trouble to close the gap17 or to find a feasible solution,
we observe dramatic running-time differences among the oracle calls
for single instances already.

Dimensions of Optimal Faces

In addition to the affine hull computations of P, PI, Q and QI we also use
IPO to compute the dimensions of the optimal faces of the four polyhe-
dra for the objectives specified in the respective instances. Clearly, for
the empty polyhedron associated to instance diamond, the optimal face
is also empty. In addition to this, several cells in the Tables 2.4 and 2.5 are
empty. Due to the maximum allowed time of 1 hour per oracle call, the
computations failed for PI(bell3b), PI(bell5), PI(dcmulti), PI(egout),
PI(p0548), QI(p0548) and QI(vpm1).

Tables 2.4 and 2.5 report the results of this experiment. In particu-
lar for the mixed-integer hulls the running times are very large. This
is mostly due to the fact that because of small resulting dimensions,
the algorithm has to verify many equations, most of them being fixed
variables. Despite the simplicity of the objective vectors the exact MIP
solver sometimes needs a lot of time. In fact, the dual bound is often
optimal very early, but the solver fails to find a feasible solution (which
is also optimal if the equation is correct).

A first observation is that, regardless of the instance type, most of the
optimal faces are either high-dimensional or very low-dimensional. To

17There are cases where SCIP states a gap of 0.0 % and still continues to branch, and we
verified that there is still a tiny difference between the primal and dual bounds.

89

INVESTIGATING POLYHEDRA BY ORACLES

make this more precise we produced Figures 2.11 and 2.10 for which we
grouped the instances according to the dimension of the optimal face
relative to the dimension of the host polyhedron.

Relaxations. For the linear relaxations P and Q we observe that 6 of
the 33 feasible18 instances have high-dimensional optimal faces, and the
remaining 27 instances have optimal faces of dimension less that one
third of that of P, or Q, respectively. In particular, 10 (resp. 12) of them
are even 0-dimensional, that is, they have a unique LP optimum. Rea-
sons for having high-dimensional optimal faces may be very symmetric
models or very simple (e.g., sparse) objectives.

Symmetry may be a disadvantage of an LP model, as for example
cutting planes may cut off several LP-optimal solutions, but as long as
they do not cut off all of them, there is either no dual improvement, or
one needs many cutting planes to make progress. Hence, in order to
analyze problems for which such a behavior is observed, a researcher
may use IPO to check the dimension of the optimal face of the linear
relaxation.

Mixed-Integer Hulls. As mentioned at the beginning of this section we
had trouble to compute the dimensions of the optimal faces for several
instances. For this reason we only used those 27 instances19 for which
we had results for both, the original and the presolved when creating
Figure 2.11. There are again only small differences between the original
and the presolved instances. During presolve the polyhedron itself and
the optimal face can be cut, reducing the respective dimensions. As
expected, there are no serious changes with respect to the dimension
ratio, since usually the presolvers cannot reduce the main dimension to
the order of magnitude of the optimal face if the latter is rather small.
Since there is no general relationship between the optimal faces of linear
relaxations and their mixed-integer hulls, it is somewhat interesting
that the four instances with largest ratio are also among the group of six
instances for which the relaxations had a ratio of more than 70 %. Among
the latter are enigma whose mixed-integer hull is only 3-dimensional,
reducing the ratio to a third, as well as cracpb1, for which the optimal
face dimensions for the mixed-integer hulls were 202, while those for

18We excluded the infeasible instance diamond.
19In addition to the infeasible instance diamond we excluded bell3b, bell5, dcmulti,
egout, p0548 and vpm1.

90

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

Table 2.4: Dimensions of optimal faces for original MIPLIB 2.0 instances.

Instance n dim F∗(P) dim P tF∗(P) dim F∗(PI) dim PI tF∗(PI)

air01 771 1 732 40.1 1 617 218.8
bell3b 133 15 133 8.8 115
bell5 104 10 104 7.7 97
bm23 27 0 27 0.4 0 27 5.6
cracpb1 572 430 484 794.1 202 478 1,079.2
dcmulti 548 0 470 41.6 467
diamond 2 0 2 0.0 −1
egout 141 0 68 2.7 41
enigma 100 63 79 3.3 1 3 80.1
flugpl 18 0 12 0.2 0 9 9.4
gen 870 35 720 492.8 7 540 51,253.1
lseu 89 11 89 1.8 1 89 277.2
misc01 83 3 60 1.9 5 44 31.9
misc02 59 8 41 1.0 3 37 8.0
misc03 160 18 121 6.7 10 116 249.3
misc05 136 4 100 7.8 17 98 445.3
misc07 260 22 207 21.4 21 204 8,177.5
mod008 319 0 319 11.6 4 319 3,001.6
mod013 96 0 83 1.4 0 83 135.3
p0033 33 12 33 0.6 4 27 4.0
p0040 40 0 30 0.4 0 30 1.9
p0201 201 2 145 6.6 3 139 487.9
p0282 282 0 282 11.6 0 282 702.1
p0291 291 0 291 9.9 0 291 101.1
p0548 548 132 545 55.0
pipex 48 0 32 0.6 0 31 15.0
rgn 180 36 160 6.4 36 160 251.7
sample2 67 14 44 1.2 0 32 13.2
sentoy 60 0 60 1.5 0 60 34.8
stein15 15 14 15 0.2 14 15 0.1
stein27 27 26 27 0.7 26 27 0.5
stein45 45 44 45 4.7 44 45 121.1
stein9 9 8 9 0.0 8 9 0.1
vpm1 378 28 288 22.1 288

91

INVESTIGATING POLYHEDRA BY ORACLES

Table 2.5: Dimensions of optimal faces for presolved MIPLIB 2.0 in-
stances.

Instance n dim F∗(Q) dim Q tF∗(Q) dim F∗(QI) dim QI tF∗(QI)

air01 760 0 363 19.0 0 361 96.5
bell3b 113 1 91 2.3 0 86 7,759.8
bell5 87 1 56 1.2 0 56 41.7
bm23 27 0 27 0.3 0 27 5.7
cracpb1 518 424 478 896.9 202 478 1,078.0
dcmulti 548 0 469 39.7 2 467 4,576.4
diamond 2 −1 −1
egout 118 0 41 1.5 0 41 90.6
enigma 100 63 79 3.4 1 3 70.8
flugpl 16 0 10 0.1 0 7 27.6
gen 699 12 411 59.6 7 411 1,089.2
lseu 89 7 85 1.5 1 85 119.7
misc01 82 3 56 1.4 5 44 28.6
misc02 58 4 37 0.7 3 33 6.1
misc03 159 12 115 3.9 10 110 163.0
misc05 128 4 100 5.1 17 98 172.4
misc07 259 16 201 14.1 21 198 5,452.6
mod008 319 0 319 11.1 4 319 753.3
mod013 96 0 83 1.2 0 83 44.5
p0033 29 6 26 0.3 4 20 1.7
p0040 40 0 20 0.3 0 20 1.4
p0201 201 5 127 7.3 3 127 379.3
p0282 281 0 200 6.6 0 200 418.9
p0291 264 0 67 3.7 0 67 28.1
p0548 527 17 362 37.8 357
pipex 48 0 32 0.5 0 31 16.7
rgn 175 36 160 6.3 36 160 355.8
sample2 55 2 32 0.7 0 32 7.2
sentoy 60 0 60 1.5 0 60 35.3
stein15 15 14 15 0.2 14 15 0.1
stein27 27 26 27 0.7 26 27 0.6
stein45 45 44 45 4.6 44 45 131.6
stein9 9 8 9 0.1 8 9 0.1
vpm1 362 26 168 14.6 168

92

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

0 2 4 6 8 10 12

0

(0.0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

[0.3, 0.4)

[0.4, 0.5)

[0.5, 0.6)

[0.6, 0.7)

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1.0)

1.0

Number of Instances (of 33)

dim F∗(P)
dim P

,

and
dim F∗(Q)

dim Q
,

Figure 2.10: Distribution of relaxations of original and presolved
MIPLIB 2.0 instances by relative dimension of the optimal face.

the two relaxations were equal to 430 (original) and 424 (presolved),
respectively.

Once again, due to the small instance set, we cannot deduce any
meaningful relationships, but demonstrated that we can compute opti-
mal faces with our software tool within reasonable time.

Faces Induced by Model Inequalities

Several classical integer programming models from the literature have
the property that their inequality constraints are facet-defining. With
IPO we are now able to check whether this holds for our benchmark

93

INVESTIGATING POLYHEDRA BY ORACLES

0 2 4 6 8 10

0

(0.0, 0.1)

[0.1, 0.2)

[0.2, 0.3)

[0.3, 0.4)

[0.4, 0.5)

[0.5, 0.6)

[0.6, 0.7)

[0.7, 0.8)

[0.8, 0.9)

[0.9, 1.0)

1.0

Number of Instances (of 27)

dim F∗(PI)
dim PI

,

and
dim F∗(QI)

dim QI
,

Figure 2.11: Distribution of original and presolved MIPLIB 2.0 instances
by relative dimension of the optimal face.

instances, too. For a subset of the previous instances we determined
the dimensions of the faces induced by model inequalities. We did
not consider bound constraints, but only proper inequalities, which is
counter-intuitive at first glance since from a polyhedral point of view
bounds are not different from other inequalities. On the other hand,
if a bound inequality is not facet-defining and attained by at least one
solution, then every strengthening does not lead to a bound, but a
“proper” inequality. In this case the model is best-possible in the sense
that the modeler could not have set up a better bound (at least without
considering the objective).

Starting from the instance set of the previous experiments, we ex-

94

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

cluded instances air01 and enigma since they do not have any such
inequality constraints, as well as instance diamond since its integer hull
is empty. Furthermore, we do not report results on gen, lseu, mod008,
p0201, p0282 and p0548 as for them the exact MIP solver exceeded the
maximum allowed time of 1 hour per oracle call. As before we ran the
experiment for the original and presolved instances.

Results. Figures 2.12 and 2.13 display the results. For every instance,
the corresponding bar is divided into parts of different color that show
the portion of the instances’ inequalities of a certain type. The type
is defined by the dimension k of the face F induced by the inequality,
relative to the dimension d of the integer hull. Special types are the
empty faces (k = −1), facets (k = d − 1) and equations (k = d). The
remaining faces are grouped in five groups by the ratio k/(d − 1).

The results are clearly non-uniform: While instances mod013, rgn and
sentoy only have facet-defining inequality constraints, for PI(p0033)
only 20 % are facet-defining, but 60 % define the empty-face. When we
move from original to presolved instances, we observe that the latter
have fewer inequalities that define an empty face or an equation. For
example, instance p0040 had 3 inequalities of the former, 20 inequalities
of the latter type and no further inequalities. After presolve, the 20
equation-defining inequalities are equations and 2 of the 3 remaining
inequalities were strengthened to be facet-defining. A similar improve-
ment was obtained for egout. To summarize, we once again observed
that SCIP’s presolve does a good job.

Cached Points and Directions. As explained in Section 2.4.5, we collect
known points and unbounded directions, and check the collection be-
fore we optimize over our polyhedra. Although this behavior slightly
improves the running time of a single run, its full power is demon-
strated in the following experiment. Before starting Algorithm 2.4.3
we check the set of known points (and similarly the set of known un-
bounded directions) and collect those that satisfy the current inequality
with equality. Depending on the inequality and the number of so-far
collected points, these can be many, which reduces the number of calls to
the heuristic. In fact, sometimes we can start with thousands of points,
and have to take care that searching the cache is fast enough. For these
situations we developed a floating-point based selection of candidate
points, which avoids to compute one scalar product per known point in

95

INVESTIGATING POLYHEDRA BY ORACLES

0 10 20 30 40 50 60 70 80 90 100

bell3b
bell5

bm23
cracpb1
dcmulti

egout
flugpl

misc01
misc02
misc03
misc05
misc07

mod013
p0033
p0040
p0291
pipex

rgn
sample2

sentoy
stein15
stein27
stein45
stein9
vpm1

Distribution of dim F/(dim PI − 1) for Constraint-Faces F of PI.

O
ri

gi
na

lI
ns

ta
nc

es

< 0 % [40 %, 60 %) facets
[0 %, 20 %) [60 %, 80 %) equations

[20 %, 40 %) [80 %, 100 %)

Figure 2.12: Distribution of constraint dimensions for original
MIPLIB 2.0 instances.

96

2.9. COMPUTATIONAL STUDIES: DIMENSIONS

0 10 20 30 40 50 60 70 80 90 100

bell3b
bell5

bm23
cracpb1
dcmulti

egout
flugpl

misc01
misc02
misc03
misc05
misc07

mod013
p0033
p0040
p0291
pipex

rgn
sample2

sentoy
stein15
stein27
stein45
stein9
vpm1

Distribution of dim F/(dim QI − 1) for Constraint-Faces F of QI.

Pr
es

ol
ve

d
In

st
an

ce
s

< 0 % [40 %, 60 %) facets
[0 %, 20 %) [60 %, 80 %) equations

[20 %, 40 %) [80 %, 100 %)

Figure 2.13: Distribution of constraint dimensions for presolved
MIPLIB 2.0 instances.

97

INVESTIGATING POLYHEDRA BY ORACLES

rational arithmetic. We refer to Section 2.4.5 for details.
We analyze the effect for instance PI(p0291), which has 252 inequal-

ity constraints, and for which the computation of the affine hull takes
roughly 9 seconds. We selected this instance since heuristic and oracle
are fast, and we expected a visible effect due to the rather large number
of inequalities and thus a large number of collected points.

We ran IPO without the cache (“Off”), with cache search by exact
arithmetic (“Exact”) and with the mentioned candidate selection using
floating-point arithmetic (“Approximate”). We measured (summing
over all affine hull computations) the overall running time t, the time
spent for the cache searches tcach, for heuristic calls theur and for oracle
calls torac, as well as the number of heuristic calls kheur. Table 2.6 shows
the results.

Table 2.6: Running times for PI(p0291) for different caching strategies.

Cache t tcach theur kheur torac

Off 4858 0 2019 85110 2491
Exact 3660 205 679 30251 2472
Approximate 3563 88 688 30251 2475

The number of oracle calls was always equal to 1559 since the num-
ber of verified equations only depends on the heuristically determined
dimensions, which were always correct. Hence, the times for the ora-
cle calls (which might have been for different objectives) are almost the
same. The cache reduces the number of heuristic calls (and thereby their
running time) by two thirds, for only a small cost of 200 s in the exact
case. In addition, our floating-point candidate selection furthermore
reduces this search time even more without any negative effect: Since
the number of heuristic calls agree for the rows “exact” and “approx”,
we can conclude that our candidate selection always found a suitable
point in the cache whenever one existed.

Having in mind the characteristics of this single instance, we want
to emphasize that one should not expect such a speed-up in general, but
it may be of advantage for some applications.

98

2.10. COMPUTATIONAL STUDY: FACETS

INVESTIGATING POLYHEDRA BY ORACLES:

2.10 Computational Study: Facets

Matching Polytopes with One Quadratic Term

Let ê, f̂ ∈ E be two disjoint edges of the complete graph K2n = (V,E)
on 2n ≥ 4 nodes, and let Ŝ := ê ∪ f̂ be the set of the four endnodes.
In their paper [37], Hupp, Liers and Klein considered the maximum-
weight matching problem with one quadratic term, that is, the weight
of a matching M is equal to

∑
e∈M we (for w ∈ RE) plus some extra weight

W ∈ R if ê ∈ M and f̂ ∈ M hold at the same time. This can be modeled
using an additional variable y = xê · x f̂ having W as a coefficient in the
objective. To obtain a valid IP formulation, the well-known McCormick
linearization [51] can be used:

y ≤ xê, y ≤ x f̂ , y ≥ xê + x f̂ − 1 (2.35)

Note that this linearization uses the fact that xê and x f̂ are binary vari-
ables. Unfortunately, the resulting LP formulation for the matching
problem is not exact anymore, i.e., the polyhedron of interest

PQMP0 := conv.hull{(χ(M), y) ∈ {0, 1}E × {0, 1} |M is a matching,

and y = 1 holds if and only if ê, f̂ ∈M holds.} (2.36)

99

INVESTIGATING POLYHEDRA BY ORACLES

is not just described by (2.35) and the linear inequalities

xe ≥ 0 for all e ∈ E (2.37)
x(δ(v)) ≤ 1 for all v ∈ V (2.38)

x(E[S]) ≤
|S| − 1

2
for all S ⊆ V with |S| odd and |S| ≥ 3 (2.39)

required for the matching polytope (see Edmonds [23]). Let ê = {û, v̂}
and f̂ = {ŵ, ẑ}. The authors describe several classes of facets valid for
PQMP0:

• (2.37) for all e ∈ E \
{
ê, f̂

}
• (2.38) for all v ∈ V

• y ≤ xê and y ≤ x f̂

• (2.39) for all S ⊆ V with |S| odd, |S| ≥ 3, and S * Ŝ

• x(E[S]) + y ≤ |S|−1
2 for all S ⊆ V with |S| odd and ê, f̂ ∈ δ(S)

• x(E[S]) + x(E[S \ ê]) + x f̂ − y ≤ |S| − 2 for all S ⊆ V with |S| odd,

ê ∈ E[S] and f̂ ∈ δ(S)

• x(E[S]) + xv̂,a + xŵ,a + xẑ,a + y ≤ |S|2 for all a ∈ V and all S ⊆ V with
|S| even with v̂, ŵ, ẑ ∈ S and û, a < S or with v̂, ŵ, ẑ < S and û, a ∈ S.

• x(E[S]) + x(E[{û, v̂, a}]) + x(E[{ŵ, ẑ, b}]) − y ≤ |S|2 + 1 for all S ⊆ V \ Ŝ
with |S| even and all a, b ∈ S.

They also note that the linear description of PQMP0 is not complete. In
fact in Example 1 in [37] they give a fractional point that satisfies all the
above inequalities, but is not in PQMP0. As an argument they provide
an objective vector such that the fractional point has objective 11, and
they claim that the maximum over PQMP0 is equal to 10, which would
have proved that the point lies outside the polytope. Unfortunately, the
maximum is equal to 12, that is, it does not prove anything. Neverthe-
less, the objective vector helped us to identify a yet unclassified facet
of PQMP0. In order to find such a facet we implemented the IP model

100

2.10. COMPUTATIONAL STUDY: FACETS

param n := 6;
set V := { 1 to n };
set E := { <u,v> in V*V with u < v };
set F := { <1,2>,<3,4>,<1,5>,<2,5>,<3,6>,<4,6>,<1,3>,<2,4> };
var x[E] binary;
var y binary;
maximize weights:
10*x[1,2] + 10*x[3,4] + 2*x[1,5] + 2*x[2,5] + 2*x[3,6]
+ 2*x[4,6] + 4*x[1,3] + 4*x[2,4] -10*y
+ sum <u,v> in E-F: -1000*x[u,v];

subto degree: forall <w> in V:
(sum <u,v> in E with u == w or v == w: x[u,v]) <= 1;

subto product1: y <= x[1,2];
subto product2: y <= x[3,4];
subto product3: y >= x[1,2] + x[3,4] - 1;

Figure 2.14: ZIMPL model for the matching problem with one quadratic
term in the objective.

Found a new facet: x#1#2 + x#1#3 + x#1#4 + x#3#4 - y <= 1,
Found a new facet: x#1#2 + x#1#4 + x#2#4 + x#3#4 - y <= 1,
Found a new facet: x#1#2 + x#1#5 + x#2#5 <= 1,
Found a new facet: x#3#4 + x#3#6 + x#4#6 <= 1,
Found a new facet: x#1#2 + x#1#3 + x#1#4 + x#2#3 + x#2#4
+ 2*x#3#4 + x#3#6 + x#4#6 - y <= 2,

Figure 2.15: Results for matching problem with one quadratic term in
the objective.

101

INVESTIGATING POLYHEDRA BY ORACLES

with the ZIMPL modeling language, and also incorporated the objective
vector from the paper (see Figure 2.14).

We then used IPO to compute facets that are violated by the opti-
mum of the LP relaxation given in the model. Figure 2.15 shows the
relevant lines of the output. It is not hard to check that the first four
facets in the list belong to the classes mentioned above, and that the last
facet does not. Furthermore, it was also not hard to find a whole class of
valid inequalities that generalizes this particular facet, and, using IPO
again, to compute the dimensions of the corresponding faces for other
members of the class. Using this approach we gained some computa-
tional evidence that all members of the class are in fact facet-defining.
A proof of this fact is about to follow.

A New Class of Facets. We now describe the class of facet-defining
inequalities that we found using IPO.

Lemma 2.10.1. Let S ⊆ V be a subset of nodes of odd cardinality such that
S ∩ Ŝ = {ŵ, ẑ} holds. Then the inequality

x(E[S]) + x(E[Ŝ]) − y ≤
|S| + 1

2
(2.40)

defines a facet of PQMP0.

Proof. Denote by y the binary-valued map that returns for a matching
M the corresponding y-value, i.e., y(M) = 1 holds if and only if ê, f̂ ∈M
hold.

We first show that the inequality is valid. Note that the inequality
x(E[S]) + x(E[Ŝ]) ≤ |S|−1

2 + 2 = |S|+1
2 + 1 holds by (2.38) and (2.39). Let, for

the sake of contradiction, M be a matching such that x = (χ(M), y(M))
does not satisfy (2.40). Hence, x(E[S]) = |S|−1

2 and x(E[Ŝ]) = 2 must
hold. The second equation implies that ŵ and ẑ must be matched to
nodes inside Ŝ, and the first equation then implies that they must be
matched by their common edge, i.e., f̂ ∈ M. But since û and v̂ must be
matched, too, ê ∈M holds as well. But this implies y(M) = 1, yielding a
contradiction to the assumption that (2.40) is violated.

To prove that the inequality is facet-defining, consider the setM of
matchings whose characteristic vectors satisfy (2.40) with equality. Let
F := E[S]∪E[Ŝ] be the support set of the inequality and V′ := V(F) be its

102

2.10. COMPUTATIONAL STUDY: FACETS

node set. Using the fact that the inequality is equal to x(F)+x f̂ −y ≤ |S|+1
2 ,

it is easy to see thatM contains all matchings M satisfying

(a) |M ∩ F| = |S|+1
2 , or

(b) |M ∩ F| = |S|−1
2 , f̂ ∈M and ê <M.

(2.41)

Let 〈c, x〉 + δy ≤ γ be an inequality that dominates (2.40), that is, it is
valid for PQMP0 and satisfied with equality by the vectors (χ(M), y(M))
for all matchings M ∈ M.

We first show that ce = 0 holds for edges e ∈ E \ F by specifying
a matching M̂ ∈ M with M̂ ∪ {e} ∈ M. We just describe the required
properties of M̂, and leave the actual constructions to the reader. We
distinguish three cases:

• e ∈ E[V \ V′]: Consider any near-perfect matching M̂ of F, that is, a
matching that matches all nodes except for one. It satisfies M̂ ∈ M
and M̂ ∪ {e} ∈ M by (2.41 a).

• e ∈ δ(V′): Let a ∈ e ∩ V′ be the connecting node and consider any
perfect matching M̂ of F[V′\{a}] It satisfies M̂ ∈ M and M̂∪{e} ∈ M
by (2.41 a).

• e ∈ E[V′] \ F: We can assume e = {û, a} for some node a ∈ S \ {ŵ, ẑ}
since the case of {v̂, a} is symmetric. Consider any perfect matching
M̂ of F[S \ {a}] that contains f̂ . It satisfies M̂ ∈ M and M̂ ∪ {e} ∈ M
by (2.41 b).

We now show that ce = c f holds for all pairs of (distinct) edges in F \
{

f̂
}
.

Since the line graph of F \
{

f̂
}

is connected, we only have to show this
property for edges that intersect. Denote by a ∈ e∩ f such a node and by
be, b f the endnodes of edges e and f , respectively. To prove the equation
it suffices to specify a matching M̂ with M̂ ∪ {e} ∈ M and M̂ ∪

{
f
}
∈ M.

Using (2.41 a), one only has to verify the existence of a perfect matching
M̂ in F[V′ \ {a, be, b f }], since in this case we have |M̂| + 1 = |S|−1

2 + 1. This
step is straight-forward and left to the reader.

We now know that our dominating inequality is of the form

x(E[S] \ { f̂ }) + x(E[Ŝ] \ { f̂ }) + c f̂ x f̂ + δy ≤ γ.

103

INVESTIGATING POLYHEDRA BY ORACLES

We continue by showing that c f̂ = 2cû,ŵ holds. Let M̂ be a near-perfect
matching of E[S \ {ŵ, ẑ}]. Since it does not contain ê, by (2.41 b) we get
that M̂∪ { f̂ } ∈ M holds. From (2.41 a) we obtain M̂∪ {{û, ŵ}, {v̂, ẑ}} ∈ M.
Hence the two corresponding inequalities are satisfied with equality,
and their comparison yields the desired equation c f̂ − cû,ŵ + cv̂,ẑ = 0.

Let again M̂ be a near-perfect matching of E[S] that contains f̂ . Since
it does not contain ê, by (2.41 b) we get that M̂ ∈ M holds. From
(2.41 a) we furthermore get that M̂ ∪ {ê} ∈ M holds. From y(M̂) = 0 and
y(M̂ ∪ {ê}) = 1, comparing the corresponding inequalities, we get the
equation cê + δ = 0.

Hence, up to scaling, the coefficient vector of the dominating in-
equality is equal to the one of (2.40). This, together with the fact that
the right-hand side of (2.40) cannot be decreased further, proves that the
inequality is facet-defining. �

It is not clear whether we now have a complete description of PQMP0,
and we leave a proof or disproof of this fact to the authors of [37] and
to the interested reader.

Edge-Node-Polytopes
Many combinatorial optimization problems on undirected graphs con-
sider certain subsets of nodes or edges. This can be modeled with
0/1-variables in the edge space or in the node space. Sometimes one can
generalize them by adding variables of the other type and linking them
appropriately. Motivated by this we are interested in certain types of
links between edge- and node-subsets. More precisely, for nodes V and
edges E of the complete graph on n nodes we are interested in descrip-
tions of the convex hulls of characteristic vectors of pairs (F,W) ⊆ E×V
satisfying a subset of the following restrictions:

(i) f ∈ F for f = {u, v} implies u, v ∈W.

(ii) w ∈W implies f ∈ F for some edge f ∈ δ(w).

Clearly, the variables have to satisfy the trivial bound constraints:

0 ≤ xe ≤ 1 for all e ∈ E (2.42)
0 ≤ yv ≤ 1 for all v ∈ V (2.43)

104

2.10. COMPUTATIONAL STUDY: FACETS

If we just enforce Constraint (i), then we obtain a system with totally
unimodular problem matrix and an integral right-hand side,

xe ≤ yv for all v ∈ e ∈ E, (2.44)

that is, an integral polytope (see Chapter 19 in [62] for a definition and
properties). It is known as the subgraph polytope (see [18] for an extension
and applications).

On the other hand, if we just enforce Constraint (ii) using the obvious
inequalities

yv ≤ x(δ(v)) for all v ∈ V, (2.45)

then we observe that the resulting polytope is not integral. Its integer
hull is a polytope whose faces obtained by fixing all y-variables (to 0 or
1) and by fixing some of the x-variables to 0 are edge-cover polytopes, i.e.,
the convex hulls of characteristic vectors of edge covers. Hence, we call

P master
edge-cov (n) := conv.hull{(χ(F), χ(W)) ∈ {0, 1}E × {0, 1}V |

F ∩ δ(w) , ∅ for all w ∈W}

the master edge cover polytope, since by taking appropriate faces one ob-
tains the edge cover polytopes for all graphs with at most n nodes. Using
IPO we detected the following class of inequalities valid for P master

edge-cov (n):

y(S) ≤ x(δ(S) ∪ E[S]) +
|S| − 1

2
for all S ⊆ V with |S| odd (2.46)

As in the previous section, it is not hard to establish that these in-
equalities are even facet-defining:

Theorem 2.10.2. Let (V,E) be the complete graph on n nodes. Then Inequal-
ity (2.46) is facet-defining for P master

edge-cov (n) for every S $ V with |S| odd.

Proof. Let S $ V be an odd set and define H := δ(S) ∪ E[S]. To prove
validity of (2.46), consider a feasible point (x, y) ∈ {0, 1}E × {0, 1}V. For
each w ∈ S with yw = 1 there must exist an edge f ∈ H with x f = 1 that
can compensate this y-value in the sum y(S) − x(H). Since such an edge
has two endnodes, the edges f ∈ H with x f = 1 compensate at least half

105

INVESTIGATING POLYHEDRA BY ORACLES

of the overall y-values y(S), that is, y(S)− x(H) ≤ |S|2 . Since |S| is odd and
since the coefficient vector is integral we can round this number down
which yields Inequality (2.46).

To prove that the inequality is facet-defining, consider the set X of
feasible pairs (F,W) ⊆ E × V for which (χ(F), χ(W)) satisfies Inequal-
ity (2.46) with equality. Let 〈c, x〉 +

〈
d, y

〉
≤ γ be an inequality that

dominates Inequality (2.46) for S, that is, it is valid for P master
edge-cov (n), and

satisfied with equality by the vectors (χ(F), y(W)) for all pairs (F,W) ∈ X.
We first consider the zero coefficients. Let v ∈ V \ S, w ∈ S and

let e = {v,w} be the connecting edge. Let M ⊆ E[S \ {w}] be a perfect
matching of the nodes S \ {w}. We have (M ∪ {e} ,S) ∈ X as well as
(M ∪ {e} ,S ∪ {v}) ∈ X, because 〈χ(S), χ(S ∪ {v})〉 = 〈χ(S), χ(S)〉 = |S| and
〈χ(H), χ(M ∪ {e}〉 = |M|+ 1 = |S|+1

2 hold (note that |S| − |S|+1
2 = |S|−1

2 holds),
proving dv = 0.

Also note that this proves X , ∅, that is, the constant |S|−1
2 in (2.46)

cannot be decreased. Let f ∈ δ(v) \ H be an edge incident to v but
not to S. By a similar argument, we observe that (M ∪ {e} ,S) ∈ X
and (M ∪

{
e, f

}
,S) ∈ X holds, proving c f = 0. Next, consider an edge

e = {v,w} ∈ H with v ∈ S. Let M ⊆ E[S \ {v}] be a perfect matching of the
nodes S \ {v}. Similar to the above arguments we have (M ∪ {e} ,S) ∈ X
and (M,S \ {v}) ∈ X, proving that ce + dv = 0 holds. If w is also a node
in S, then this proves dw = −ce = dv, which in turn yields that du = −c f
for all u ∈ S and all f ∈ H. Hence, c and d are unique up to scaling, that
is, the inequality 〈c, x〉+

〈
d, y

〉
≤ γ cannot strictly dominate (2.46), which

concludes the proof. �

We would also like to mention that optimizing over P master
edge-cov (n) is an

easy problem using a reduction to minimum weight matching: we just
have to replace every edge e = {u, v} of our graph by a path u-(e,u)-(e, v)-v
of length three (adding two nodes (e,u) and (e, v) per edge). It is not too
hard to see that the matching polytope of this auxiliary graph projects
down to P master

edge-cov (n) using the projection defined by xe = 1− z(e,u),(e,v) for
all e = {u, v} ∈ E and yv =

∑
e∈δ(v) z(e,v),v for all v ∈ V, where z denotes

matching-variables for the auxiliary graph.
Hence, a complete description of P master

edge-cov (n) is conceivable, and
since the descriptions of edge-cover polytopes arise as special cases, we
believe that the following holds:

106

2.10. COMPUTATIONAL STUDY: FACETS

Conjecture 2.10.3. Let (V,E) be the complete graph on n nodes. We then have

P master
edge-cov (n) =

{
(x, y) ∈ [0, 1]E

× [0, 1]V
| (x, y) satisfies (2.46)

}
.

Finally, we show that enforcing Constraints (i) and (ii) at the same
time (which models that W consists of all nodes of the edges in F, i.e.,
W = V(F)), yields an NP-hard problem. For a given graph G = (V,E),
edge weights w ∈ RE and node weights p ∈ RV, the induced-nodeset
problem consists of finding a subset F ⊆ E of edges such that the sum of
the edge weights w(F) plus the node weights p(V(F)) is minimum. We
call (V(F),F) an induced-nodeset pair.

Theorem 2.10.4. The induced-nodeset problem is NP-hard.

Proof. We reduce the vertex cover problem that consists of finding, for a
given graph G = (V,E), a minimum cardinality vertex cover (a subset of
nodes W ⊆ V such that every edge in E is incident to at least one of the
nodes in W).

Let G = (V,E) be an instance of the vertex cover problem. Consider
the graph G̃ = (V∪E, Ẽ) with the edge set Ẽ := {{v, e} | v ∈ e ∈ E}, obtained
from G by splitting every edge. Define edge weights p := OẼ and node
weights qv := 1 for all v ∈ V, and qe := −|V| − 1 for all e ∈ E. We claim
that the size of the minimum cardinality vertex cover in G is equal to the
minimum weight of an induced-nodeset pair for the instance (G̃, p, q)
plus (|V| + 1) · |E|.

To this end, let W ⊆ V be a minimum vertex cover, in particular one
that contains no isolated nodes. For the node set W ∪ E there exists an
edge set F := {{w, e} | w ∈ e ∈ E and w ∈W} that induces it. The induced-
nodeset pair (W,F) clearly has weight |W| − (|V| + 1) · |E|.

Let (V(F),F) be a minimum weight induced-nodeset pair in G̃. It is
easy to see that due to the small weights, V(F) must contain all nodes
e ∈ E. Hence, for every {u, v} ∈ E, F must contain the edge {v, {u, v}} or
the edge {u, {u, v}} (or both). In the first situation, V(F) contains v, and
in the second, V(F) contains u. To summarize, for every edge e ∈ E of G,
V(F) must contain at least one endpoint, that is, V(F) is a vertex cover,
whose weight is equal to |V(F)|. This concludes the proof, since the
construction of the instance (G̃, p, q) can be done in polynomial time. �

107

INVESTIGATING POLYHEDRA BY ORACLES

Tree Polytopes
In this subsection we consider the tree polytopes for complete graphs
Kn = (Vn,En) on n nodes, defined as

Ptree (n) := conv.hull{(χ(F), χ(W)) ∈ {0, 1}En×{0, 1}Vn | (W,F) is a tree },

where we consider pairs ({v} , ∅) for nodes v ∈ Vn and also (∅, ∅) as trees.
Defining the pair of empty sets as a tree has not much effect, except that
it makes the polytope full-dimensional and hence the representation of
facets unique up to scaling. Such polytopes are interesting since the faces
obtained by setting some edge-variables to 0 and some node-variables
to 1 can be projected down to Steiner tree polytopes. Furthermore, the
well-known relaxation

x(E[S]) ≤ y(S \ {s}) for all s ∈ S ⊆ V (2.47)
x(E) ≥ y(V) − 1 (2.48)

xe ≥ 0 for all e ∈ E (2.49)
yv ≤ 1 for all y ∈ V (2.50)

is very strong, at least for solving Steiner tree problems. We refer to [32]
for a theoretical comparison of relaxations and to [46] for a computa-
tional study in which an equally strong model is used. The face of this
relaxation obtained by fixing a set of edge-variables to 0 such that the
remaining ones form a 2-tree (a graph constructed from a single edge
by successively adding nodes and connecting them to precisely two of
the previous nodes), is integral [49].

Clearly, optimizing over Ptree (n) is NP-hard since it subsumes solv-
ing Steiner tree problems. In a moment we will present a well-known
hardness reduction from the vertex cover problem that is “polyhedral”,
i.e., we can find for every graph G = (V,E) a number n that is polyno-
mial in |V| and |E| such that a certain face of Ptree (n) projects down to the
vertex cover polytope20 of G. Having the strength of the relaxation in
mind, this is a win-win situation in the following sense: Either the pro-
jection of the relaxation yields a relaxation of the vertex cover polytope
that is also strong in practice or we obtain an objective vector whose
maximization over (2.47)–(2.50) yields a fractional point. In the latter

20The vertex cover polytope is the convex hull of characteristic vectors of vertex covers

108

2.10. COMPUTATIONAL STUDY: FACETS

case we can use IPO to learn a new facet. Note that Bazzi et al. [12]
recently proved that no polynomial-size linear relaxation approximates
the vertex cover polytope very well in every direction. Our relaxation is
certainly not of polynomial size, but the same reduction works for the
Steiner arborescence polytope, which has a polynomial-size extended
formulation using flow variables (see [32]) and yields equally strong
LP solutions. Hence, the mentioned negative result also applies to tree
polytopes.

We now describe the mentioned reduction. For a graph G = (V,E)
we construct an auxiliary graph G̃ = (Ṽ, Ẽ) by replacing every edge by a
2-path and adding a root node r that is connected to all original nodes,
and define a set T̃ of “terminal nodes”.

Ṽ := V ∪ E ∪ {r}

Ẽ := {{v, e} | v ∈ e ∈ E} ∪ {{v, r} | v ∈ V}

T̃ := E ∪ {r}

We claim that for every tree (W̃, F̃) in G̃ satisfying W̃ ⊇ T̃ the set W̃ ∩ V
is a vertex cover of G. To prove this, we just have to convince ourselves
that every edge e ∈ E is covered. Clearly, since every split node e of G̃ is
a terminal, i.e., e ∈ T̃ holds, at least one of e’s endnodes must be part of
the tree.

Furthermore, for every vertex cover W ⊆ V of G we consider the set
W̃ := W ∪ T̃ and observe that G̃[W̃] is connected. This proves that there
exists a tree in G̃ whose node set is equal to W̃.

By embedding G̃ into the complete graph on n = |Ṽ|nodes we get that
the tree polytope Ptree (n) has a face (obtained by fixing edge-variables
for edges not in Ẽ to 0 and node-variables for nodes in T̃ to 1) that
projects to the vertex cover polytope of G. Clearly, the map is just the
projection onto the node-variables for nodes in V.

We implemented a separation routine for Inequalities (2.47), based
on the fact that the separation problem can be solved by optimizing
over the subgraph polytope defined in Section 2.10.2. Using SCIP and
IPO we computed facets of the image of the relaxation’s projection onto
the y-variables.

Unfortunately, computational evidence suggests that the projection
always yields a very weak relaxation for the vertex cover polytopes,

109

INVESTIGATING POLYHEDRA BY ORACLES

namely the one consisting of just the inequalities yu + yv ≥ 1 for every
edge {u, v} ∈ E. Hence we considered complete graphs G and the strong
clique inequalities y(V) ≥ |V| − 1. Since they are not valid for the projec-
tion of the relaxation, their lifted version is also not valid for the tree
polytope. Thus we were able to use the corresponding normal vector as
an objective for IPO’s facet computation.

For the clique with 3 nodes we obtained the following facet of Ptree (7)
(with nodes indexed from 1 to 7):

(x1,4 + x4,2) + (x1,5 + x5,3) + (x2,6 + x6,3) + x(E[{1, 2, 3, 7}])
≤ 2y1 + 2y2 + 2y3 + y7

For the clique with 4 nodes, IPO found more than a dozen facets of
Ptree (11), already with different types of coefficient patterns. Two of
them are very similar to the above inequality:

(x1,4 + x4,2) + (x1,5 + x5,3) + (x2,6 + x6,3) + x(E[{1, 2, 3, 7, 8, 9, 10}])
≤ 2y1 + 2y2 + 2y3 + y7 + y8 + y9 + y10

(x1,4 + x4,2) + (x1,5 + x5,3) + (x2,6 + x6,3) + x(E[{1, 2, 3, 7, 8, 9, 10, 11}])
≤ 2y1 + 2y2 + 2y3 + y7 + y8 + y9 + y10 + y11

This pattern suggests that the core of these inequalities is

(x1,4 + x4,2) + (x1,5 + x5,3) + (x2,6 + x6,3) + x(E[{1, 2, 3}])
≤ 2y1 + 2y2 + 2y3.

Taking one more computed inequality

(x1,5 + x5,2) + (x1,6 + x6,3) + (x1,7 + x7,4) + (x2,8 + x8,3) + (x2,9 + x9,4)
+ (x3,10 + x10,4) + x(E[{1, 2, 3, 4}]) ≤ 3y1 + 3y2 + 3y3 + 3y4

into account we can conjecture the following:

Conjecture 2.10.5. Let n, k,∈N and ` ∈ Z+ with k ≥ 2 and k + ` +
(k

2
)
≤ n.

Let v1, . . . , vk, u1, . . .u`, and wi, j for i, j ∈ [k] with i < j be distinct nodes of

110

2.10. COMPUTATIONAL STUDY: FACETS

Kn. Let U := {u1, . . . ,u`}. Then the inequality∑
i, j∈[k],i< j

(xvi,wi, j+xwi, j,v j)+x(E[{v1, . . . vk}∪U]) ≤ (k−1)·y({v1, . . . , vk})+y(U)

is valid and facet-defining for Ptree (n).

Note that for k = 1 and ` ∈ N this yields an inequality of type
(2.47). We conclude this section by leaving the proof (or disproof) to the
interested reader.

111

INVESTIGATING POLYHEDRA BY ORACLES

INVESTIGATING POLYHEDRA BY ORACLES:

2.11 Computational Study: Adjacency

In this section we consider the symmetric traveling salesman polytope
for the complete graph Kn = (V,E) on n nodes (for n ≥ 3), defined as

Pn := conv.hull
{
χ(T) ∈ {0, 1}E | T is a tour in Kn

}
,

where tours are cycles that visit every node exactly once. Using ap-
propriate heuristics and oracles we show how to test two tours (Hamil-
tonian cycles) for adjacency quickly using Algorithm 2.6.1 from Sec-
tion 2.6.1. This work is motivated by the question regarding the di-
ameter of (the 1-skeleton of) Pn, raised by Grötschel and Padberg [34]
in 1985. We do not make direct progress on this question, but make
an observation on the existence of adjacencies that do not belong to a
certain class.

Heuristics and Oracles for TSP Polytopes
The first oracle we use is the famous software concorde [4]. With a
simple Python21 wrapper that creates the instance file for each oracle
call we have access to this very fast oracle. Note that, since the traveling
salesman problem is usually stated as a minimization problem, we use
this notion as well, although in practice IPO’s oracles only maximize.

Unfortunately, concorde relies on 32-bit integer arithmetic and can
thus handle only integral objectives of small encoding length. In or-

21Python, available at http://www.python.org/

112

http://www.python.org/

2.11. COMPUTATIONAL STUDY: ADJACENCY

der to still allow correct behavior, we created another oracle that, if
the encoding lengths are small, calls concorde, and otherwise runs an
enumeration-based exact algorithm in exact arithmetic. An efficient
implementation (using limited precision) was available to us as a cour-
tesy of William J. Cook. Since the enumeration algorithm needs good
primal bounds, that is, tours with good objective value, for effective
pruning, it runs a heuristic beforehand. We turned this heuristic into an
IPO heuristic that allows us to speed-up our affine hull and adjacency
computations. The details are as follows:

Heuristic. For small numbers of nodes, a very simple heuristic works
quite well. Starting from some node s, a tour is built by always choosing
the nearest neighbor. Then, 2-opt local improvement steps, modifying
the tour by replacing two edges by two cheaper edges, are carried out
as long as possible. This is repeated for each possible starting node s,
and the best tour is taken.

Enumeration. The exact algorithm consists of a routine that, given a
simple path W in Kn and a primal bound δ ∈ R, enumerates all tours in
Kn that contain W as a subpath. It does this by connecting W’s endnode
t to every other node v that is not already covered by W, and calls itself
recursively with the path W ∪ {t, v}. In order to avoid exploration of
the whole search space, the algorithm stops searching for path W if the
weight of W plus the weight of the minimum-weight tree that spans the
nodes outside of W and the two endnodes of W is greater than or equal
to δ. This is correct since every tour T ⊇ W induces such a tree, and
thus, the weight of T \W is at least as large as the minimum value. If
the routine reaches a state where W covers all nodes, then the endnodes
s, t are connected and the resulting weight δ′ is compared to δ. If δ′ < δ
holds, δ is replaced by δ′ and the best known tour is replaced by W∪{s, t}.
In order to avoid spanning tree computations for the same node set, a
hash is used that maps the set of spanned nodes to the corresponding
weight.

Experiment & Results

We use our tool to estimate the degrees of Pn’s vertices, which are all the
same (for a certain n) for symmetry reasons.

113

INVESTIGATING POLYHEDRA BY ORACLES

Our experiment is designed as follows. First, we fix a tour T0.
Second, for N = 10000 repetitions, we sample a tour T , T0 in Kn
uniformly at random, and check whether it is adjacent to T0. We then
count the number k of positive answers, that is, detected edges.

In order to get a sense of how precise the approximations of the
degrees actually are, we apply some standard techniques from statistics.
As we select the candidate tours independently uniformly at random,
we have a binomial distribution X for N experiments with a success
probability p that is equal to the relative degree of each tour. Clearly,
our best estimate for p is the fraction p̂ := k/N. The expected value of
X is equal to p · N, and its standard deviation equals σ :=

√
p(1 − p)/N.

We can thus approximate X−pN
σ by the normal distribution with mean

0 and standard deviation 1. For the latter we know the confidence
intervals, from which we can compute the error intervals for X for
a certain confidence. The resulting interval for a confidence level of

99 % (with so-called Z-value 2.5759) is thus p ± 2.5759
√

p(1−p)
N . If we

approximate p by p̂, we obtain for the relative error the following formula:

εrel
99%(k,N) ≈

2.5759 ·
√

p̂·(1−p̂)
N

p̂
= 2.5759 ·

√
N − k

kN
(2.51)

Table 2.7 shows the results of this experiment, where τ is the number
of tours that were computed22 during the run of IPO and νn = 1

2 (n − 1)!
denotes the number of all tours. The column labeled t shows the time per
iteration (in seconds), and the columns labeled tLP, theur, torac, tcach denote
the proportions used for the LP computations, heuristic calls, oracle
calls and cache searches, respectively. Furthermore, εrel

99% was computed
by (2.51).

A first observation is that the relative degree k/105 decreases, but
quite slowly. In particular, it seems that k won’t get below

√
νn, which

would have been a simple reason for the diameter of Pn to be greater
than 2 (see [25]), disproving a conjecture by Grötschel and Padberg. We
can trust the values up to a certain error: For example, assume that the
relative degree for n = 15 is indeed equal to 0.59 %, then in 99 % of the

22Note that the tours corresponding to the input vertices are not considered here.

114

2.11. COMPUTATIONAL STUDY: ADJACENCY

Table 2.7: Adjacency computation for random vertex pairs of TSP poly-
topes.

n k/105 τ νn t tLP theur torac tcach εrel
99%

5 91.23 % 12 1.2 · 101 0.3 s 0.5 % 0.1 % 97.9 % 0.1 % 0.80 %
6 69.32 % 45 6.0 · 101 0.4 s 0.7 % 0.1 % 97.5 % 0.1 % 1.71 %
7 46.16 % 207 3.6 · 102 0.6 s 1.1 % 0.1 % 96.1 % 0.5 % 2.78 %
8 28.07 % 1,189 2.5 · 103 0.8 s 1.5 % 0.1 % 93.1 % 2.5 % 4.12 %
9 17.46 % 5,759 2.0 · 104 1.0 s 2.0 % 0.2 % 86.1 % 8.7 % 5.60 %

10 10.52 % 15,472 1.8 · 105 1.5 s 2.3 % 0.2 % 77.5 % 17.3 % 7.51 %
11 6.53 % 33,935 1.8 · 106 2.1 s 2.7 % 0.2 % 67.4 % 26.9 % 9.75 %
12 3.67 % 66,510 2.0 · 107 3.0 s 3.8 % 0.3 % 54.2 % 38.8 % 13.20 %
13 2.20 % 125,298 2.4 · 108 4.9 s 5.1 % 0.3 % 39.6 % 52.0 % 17.17 %
14 1.13 % 232,995 3.1 · 109 10.1 s 7.7 % 0.3 % 22.9 % 65.8 % 24.09 %
15 0.59 % 406,315 4.4 · 1010 24.3 s 12.9 % 0.2 % 11.0 % 71.6 % 33.43 %

repetitions of the experiment we would get a percentage that could be
a third smaller or larger, that is, between 0.39 % and 0.79 %.

Second, its is interesting to see how many tours were actually com-
puted in order to do the adjacency tests. As expected, the τ-values
increase for larger n, but not as rapidly as the number of vertices νn of
the polytopes. Note that for n = 15, the ratio τ/νn is already in the order
of 10−5.

Third, it is worth noting that due to the large number of collected
points, the running time for the cache search increased dramatically.
Although we do not report the details here, we checked the actual
number of invocations, and observed that the cache slowed down the
later computations, since searching takes a lot of time, whereas the
running time of the heuristic is constant (for fixed number of cites).

Adjacent Tours with Common Edges

We now present a structural result on adjacencies of the TSP polytope,
which is unrelated to the computations except that we were able to de-
rive it after inspecting several pairs of adjacent tours that were produced
by our implementation.

115

INVESTIGATING POLYHEDRA BY ORACLES

We start with a sufficient criterion for adjacency that the TSP polytope
inherits from the perfect 2-matching polytope since every tour is also a
perfect 2-matching.

Proposition 2.11.1 (Chvátal [17]). If for two vertices χ(T), χ(T′) ∈ {0, 1}En

of Pn, the edge set T∆T′ is a simple (alternating) cycle, then χ(T) and χ(T′)
are adjacent vertices of Pn.

There were several unsuccessful attempts to characterize adjacency
for Pn, until Papadimitriou established the following hardness result,
indicating that we shouldn’t expect the existence of (easily verifiable)
certificates for arbitrary adjacencies in the TSP polytopes.

Theorem 2.11.2 (Papadimitriou [53]). The problem to decide adjacency for
two given vertices of Pn is coNP-complete.

In order to prove upper bounds on the diameter of Pn we do not need
characterizations, but only strong sufficient conditions for adjacency.
Using our implementation, we searched for adjacencies that are not of
the type stated in Proposition 2.11.1. We only found adjacent tours T,T′

with common edges, i.e., T ∩ T′ , ∅, tried to find structural reasons for
the adjacency, and observed the result stated in the next theorem.

Let G = (V,E) be a graph. For an edge e ∈ E we denote by G/e the
graph we obtain by contracting edge e, i.e., by identifying e’s endnodes,
removing loops and merging double edges. Accordingly, for an edge
set F ⊆ E, F/e denotes the contracted edge set.

Theorem 2.11.3. Let T1 and T2 be two tours in Kn with a common edge
e = {u, v} ∈ T1 ∩ T2. If χ(T1/e) and χ(T2/e) are adjacent vertices of Pn−1, then

(a) either χ(T1) and χ(T2) are adjacent vertices of Pn,

(b) or there exist nodes x, y ∈ V such that T1 and T2 contain the paths
x-u-v-y and x-v-u-y, respectively.

The theorem essentially tells us that if we start with an adjacent
pair of tours and split a node, then we can reassign the incident edges
in a certain way to obtain an adjacent pair again. On the other hand,
reassigning them in a “crossing” way leads to a nonadjacent pair (see
Figure 2.16).

116

2.11. COMPUTATIONAL STUDY: ADJACENCY

u v

x y

Figure 2.16: Illustration of Case (b) of Theorem 2.11.3.

Proof. We can identify Kn/e with Kn−1 in a natural way, and hence con-
sider T1/e and T2/e as tours in Kn−1. Throughout the proof we will
denote by u&v the node to which e was contracted in Kn/e.

We consider the face F := {x ∈ Pn | xe = 1} of Pn and the projection
map π : RE

→ RE/{u,v} defined via

π(x)e =

xe if u&v < e
xw,u + xw,v if e = {w,u&v} .

It is not hard to see that π projects vertices of F to vertices of Pn−1, i.e.,
considering tours in Kn that contain e, and interpreting them as tours in
Kn/e. In fact every vertex of F is projected to a vertex of Pn−1 this way.

We claim that for any tour T in Kn/e there are precisely two tours T′

in Kn for which π(χ(T′)) = χ(T) holds. To see this, let W = x-(u&v)-y be
the 2-path in T with u&v as the inner node. Then T′ must be equal to
one of the tours

(T \W) ∪
{
{x,u} , e,

{
v, y

}}
and (T \W) ∪

{
{x, v} , e,

{
u, y

}}
, (2.52)

since e ∈ T′ must hold and there are only these two possibilities to
properly connect e to T \ W. Hence the preimage of χ(T) under π
(intersected with Pn) is an edge of F whose vertices correspond to the
two possible tours T′.

From the latter (observing thatπ : F→ Pn−1 maps vertices to vertices)
we get that the preimage of our given edge conv.hull {χ(T1/e), χ(T2/e)}

117

INVESTIGATING POLYHEDRA BY ORACLES

under π (again intersected with Pn) is a polytope G with four vertices.
These vertices must be the characteristic vectors of T1, T′1, T2 and T′2,
where T′1 and T′2 are tours such that the contraction of e maps T1,T′1 to
T1/e, and T2,T′2 to T2/e, respectively.

We will now prove that if (b) holds, then (a) cannot hold. So assume
that T1 = W1 ∪·

{
{x,u} , e,

{
v, y

}}
and that T2 = W2 ∪·

{
{x, v} , e,

{
u, y

}}
hold.

From T1/e = T′1/e we obtain T′1 = W1 ∪·
{
{x, v} , e,

{
u, y

}}
, while from

T2/e = T′2/e we obtain T′2 = W2 ∪·
{
{x,u} , e,

{
v, y

}}
. This already proves

W1 ,W2 since otherwise T1 = T′2 would contradict the fact that the four
tours correspond to distinct vertices of G. Counting edges immediately
yields

1
2
χ(T1) +

1
2
χ(T2) =

1
2
χ(T′1) +

1
2
χ(T′2), (2.53)

which proves the nonadjacency of χ(T1) and χ(T2).
Now suppose (a) does not hold, that is, χ(T1) and χ(T2) are not

adjacent. Since the only polytopes with four vertices are 3-simplices and
quadrilaterals, and since simplices have no non-adjacencies, G must be
a quadrilateral. Because G is also a 0/1-polytope, its diagonals intersect
in their barycenters, that is, Equation (2.53) holds, and in particular
T1∆T2 = T′1∆T′2 must hold. From (2.52) we know that T1∆T′1 and T2∆T′2
are 4-cycles having e as a chord. Now (2.53) implies that the cycles must
be the same, i.e., T1∆T′1 = T2∆T′2. Let x and y be the nodes of this cycle
that are not incident to e, ordered such that T1 contains the path x-u-v-y.
From (2.52) we obtain that T′1 contains the path x-v-u-y. In particular,
the edge {x,u} is contained in T1 \ T′1, and once again by (2.53), {x,u}
cannot be contained in T2. Hence, T2 must contain the path x-v-u-y. �

There are adjacencies that are not inherited from the perfect 2-
matching polytope, but can be explained using Proposition 2.11.1 and
Theorem 2.11.3. One may be brave to conjecture that maybe all adja-
cencies of the TSP polytope are either of 2-matching type or stem from
those by splitting. But once again, since a series of contractions would
be a short certificate, the hardness result in Theorem 2.11.2 states that
we should not expect such a result. In other words we might expect
that there exist pairs of adjacent vertices χ(T1) and χ(T2) of Pn (for some
n ∈ N) that are not adjacent in the 2-matching polytope, and no mat-

118

2.11. COMPUTATIONAL STUDY: ADJACENCY

ter which edge we contract, the resulting tours do not correspond to
adjacent vertices of Pn−1.

In order to find such a pair, we extended our implementation in
the obvious way. For every adjacent pair χ(T1), χ(T2) and every edge
e ∈ T1 ∩ T2 we check whether χ(T1/e) and χ(T2/e) are adjacent in Pn−1
using a second set of oracles and heuristics. Using this method we
found that the tour (1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 1) together
with the tour (1 → 4 → 3 → 8 → 7 → 2 → 6 → 5 → 1), depicted in
Figure 2.17, have this property.

1

2

3

45

6

7

8

Figure 2.17: Pair of TSP tours that cannot be obtained from a 2-matching
adjacency by splitting.

Contracting the common edges {3, 4}, {5, 6}, {7, 8} yields pairs of ver-
tices whose smallest containing faces have dimensions 2, 3 and 2, re-
spectively.

119

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

120

Chapter 3

Analyzing Simple
Extensions of Polytopes

121

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

122

3.1. INTRODUCTION

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.1 Introduction

With respect to both structural and algorithmic aspects, linear optimiza-
tion over a polytope P can be replaced by linear optimization over any
(usually higher dimensional) polytope Q of which P can be obtained as
the image under a linear map (which we refer to as a projection). Such a
polytope Q (along with a suitable projection) is called an extension of P.

Defining the size of a polytope as its number of facets, the smallest
size of any extension of the polytope P is known as the extension com-
plexity xc (P) of P. It has turned out in the past that for several important
polytopes related to combinatorial optimization problems the extension
complexity is bounded polynomially in the dimension, although outer
descriptions in the original space require exponentially many inequali-
ties. One of the most prominent examples is the spanning tree polytope
of the complete graph Kn on n nodes, which has extension complexity
O(n3) [50].

After Rothvoss [58] showed that there are 0/1-polytopes whose exten-
sion complexities cannot be bounded polynomially in their dimensions,
in 2012, Fiorini, Massar, Pokutta, Tiwary and de Wolf [27] could prove
that the extension complexities of some concrete and important exam-
ples of polytopes like traveling salesman polytopes cannot be bounded
polynomially. Similar results have then also been deduced for several
other polytopes associated with NP-hard optimization problems, e.g.,
by Avis and Tiwary [9] and Pokutta and van Vyve [55]. Rothvoss [59]
recently showed that also the perfect matching polytope of the com-
plete graph (with an even number of nodes) has exponential extension

123

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

complexity, thus exhibiting the first polytope with this property that is
associated with a polynomial-time solvable optimization problem.

The first fundamental research with respect to understanding exten-
sion complexities was Yannakakis’ seminal paper [69] of 1991. Observ-
ing that many of the nice and small extensions that are known (e.g., the
polynomial size extension of the spanning tree polytope of Kn mentioned
above) have the nice property of being symmetric in a certain sense, he
derived lower bounds on extensions with that special property. In par-
ticular, he already proved that both perfect matching polytopes as well
as traveling salesman polytopes do not have polynomial size symmetric
extensions.

It turned out that requiring symmetry in principle actually can
make a huge difference for the minimum sizes of extensions (though
nowadays we know that this is not really true for traveling sales-
man and perfect matching polytopes). For instance, Kaibel, Theis and
Pashkovich [40] showed that the polytope associated with the match-
ings of size blog nc in Kn has polynomially bounded extension complex-
ity although it does not admit symmetric extensions of polynomial size.
Another example is provided by the permutahedron, which has exten-
sion complexity Θ

(
n log n

)
[31], while every symmetric extension of it

has size Ω(n2) [54].
These examples show that imposing the restriction of symmetry may

severely influence the smallest possible sizes of extensions. In this chap-
ter, we investigate another type of restrictions on extensions, namely the
one arising from requiring the extension to be a non-degenerate poly-
tope. A d-dimensional polyhedron is called simple if every vertex is
contained in exactly d facets. We denote by sxc (P) the simple extension
complexity, i.e., the smallest size of any simple extension of the poly-
tope P.

From a practical point of view, simplicity is an interesting property
since it is the geometric interpretation of primal non-degeneracy of lin-
ear programs. In addition, large parts of combinatorial/extremal theory
of polytopes deal with simple polytopes. Furthermore, as with other
restrictions like symmetry, there indeed exist nice examples of simple
extensions of certain polytopes relevant in optimization. For instance,
generalizing the well-known fact that the permutahedron is a zonotope,
Wolsey showed in the late 80’s (personal communication) that, for ar-

124

3.1. INTRODUCTION

bitrary processing times, the completion-time polytope for n jobs is a
projection of an O(n2)-dimensional cube. The main results of this chap-
ter show, however, that for several polytopes relevant in optimization
(among them both perfect matching polytopes and spanning tree poly-
topes) insisting on simplicity enforces very large sizes of the extensions.
More precisely, we establish that for the following polytopes the sim-
ple extension complexity equals their number of vertices (note that the
number of vertices of P is a trivial upper bound for sxc (P), realized by
the extension obtained from writing P as the convex hull of its vertices):

• Perfect matching polytopes of complete graphs (Theorem 3.7.3)

• Perfect matching polytopes of complete bipartite graphs (Theo-
rem 3.7.1)

• Uncapacitated flow polytopes of non-decomposable acyclic net-
works (Theorem 3.6.1)

• (Certain) random 0/1-polytopes (Theorem 3.3.8)

• Hypersimplices (Theorem 3.4.1)

Furthermore, we prove that

• the spanning tree polytope of the complete graph with n nodes has
simple extension complexity at least Ω(2n−o(n)) (Theorem 3.5.2).

The chapter is structured as follows: We first focus on known con-
struction techniques, and characterize when reflections and disjunctive
programming yield simple extensions (Section 3.2). We continue with
some techniques to bound the simple extension complexity of a polytope
from below (Section 3.3). Then we deduce our results on hypersimplices
(Section 3.4), spanning tree polytopes (Section 3.5), flow polytopes (Sec-
tion 3.6) and perfect matching polytopes (Section 3.7). The core of the
latter part is a strengthening of a result of Padberg and Rao’s [52] on ad-
jacencies in the perfect matching polytope (Theorem 3.7.6), which may
be of independent interest.

Let us end this introduction by remarking that the concept of simpli-
cial extensions is not interesting. To see this, observe that any d-polytope
Q with N vertices has at least d · N facet-vertex incidences since every
vertex lies in at least d facets. On the other hand, if Q is simplicial (i.e.,

125

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

all facets are simplices) and has f facets, the number of facet-vertex in-
cidences is equal to d · f , proving f ≥ N. For every polytope P with N
vertices, every extension polytope has at least N vertices, and hence a
smallest possible simplicial extension polytope of P is the simplex with
N vertices.

126

3.2. CONSTRUCTIONS

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.2 Constructions

There are three major techniques for constructing extended formula-
tions, namely dynamic programming, disjunctive programming and
reflections. Extensions based on dynamic programs yield network flow
polytopes for acyclic graphs, which are not simple in general and also
have large simple extension complexities (see Section 3.6).

In this section we characterize for the other two techniques men-
tioned above in which cases the produced extensions are simple.

Reflections

Let P = {x ∈ Rn
| Ax ≤ b} be a polytope and let H≤ =

{
x ∈ Rn

| 〈a, x〉 ≤ β
}

be a halfspace in Rn (in particular we assume a , O). Denoting by
P1 := P ∩H≤ the intersection of the polytope with the halfspace and by
P2 the image of P1 under reflection at the boundary hyperplane H= of
H≤, we call conv.hull(P1 ∪ P2) the reflection of P at H≤. The technique in
[39] provides an extended formulation for this polytope.

Proposition 3.2.1 (Kaibel & Pashkovich [39]). The polytope Q defined by

Q = {(x, y) ∈ Rn+n
| Ay ≤ b,

〈
a, y

〉
≤ 〈a, x〉 ≤ 2β −

〈
a, y

〉
,

(x − y) ∈ lin.hull (a)}

together with the projection onto the x-space is an extension of the polytope
conv.hull (P1 ∪ P2).

127

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

Our contribution is the next theorem that clarifies under which cir-
cumstances Q is a simple polytope.

Theorem 3.2.2. Let Q be the extension polytope for the reflection of P at H≤
as defined in this subsection, let P1 := P ∩ H≤, and let F := P1 ∩ H= be the
intersection of P1 with the reflection hyperplane. Then Q is simple if and only
if P1 is simple and either P1 = F, or F is a facet of P1 or F = ∅.

Proof. We first observe that the faces

Q1 := Q ∩
{
(x, y) ∈ Rn

×Rn
|
〈
a, y

〉
= 〈a, x〉

}
Q2 := Q ∩

{
(x, y) ∈ Rn

×Rn
| 〈a, x〉 = 2β −

〈
a, y

〉}
of Q are both affinely isomorphic to P1. Thus Q can only be simple if
P1 is so. If P1 ⊆ H= holds, Q = Q1 = Q2 and Q is simple if and only
if P1 is simple, proving the equivalence in case P1 = F. Otherwise, let
d := dim P1 and observe that dim Q = d + 1 holds because Q1 and Q2
are proper faces of Q and Q’s dimension cannot be larger than d + 1.
Furthermore, (x, y) ∈ Q1 ∩ Q2 holds if and only if 〈a, x〉 = β is satisfied,
hence Q1 ∩Q2 is affinely isomorphic to F. Define k := dim F.

We now assume that Q is simple and F , ∅, i.e., k ≥ 0 holds. Let
v be any vertex of Q1 ∩ Q2. Since Q is simple and of dimension d + 1,
v has d + 1 adjacent vertices, k of which lie in Q1 ∩ Q2 (isomorphic to
F). Furthermore, v has d neighbors in Qi for i = 1, 2. Hence, k of these
vertices lie in Q1 ∩ Q2, d − k lie in Q1 \ Q2 and d − k lie in Q2 \ Q1. The
resulting equation k + (d − k) + (d − k) = d + 1 yields k = d − 1, i.e., F is a
facet of P1. This proves necessity of the condition.

To prove sufficiency, from now on assume that P1 is simple and
dim Q = d + 1 holds. We prove that every vertex (x, y) of Q not lying in
Q1∩Q2 lies in at most (thus, exactly) d + 1 facets of Q. First, y can satisfy
at most d inequalities of Ay ≤ b with equality because P1 is simple.
Second, (x, y) can satisfy at most one of the other two inequalities with
equality since otherwise, 〈a, x〉 = β would hold, contradicting the fact
that (x, y) < Q1 ∩Q2. Hence, the vertex lies in at most d + 1 facets, which
proves the claim. This already proves that Q is simple in the case F = ∅,
since then there are no further vertices.

It remains to show that if F is a facet of P1 then every vertex (x, y) of
Q1 ∩Q2 has at most d + 1 neighbors in Q. In this case, Q1 ∩Q2 is a facet
of Q1 and of Q2, which in turn are facets of Q. Since Q1 ∩Q2 is a facet of

128

3.2. CONSTRUCTIONS

the simple polytope Qi for i = 1, 2, the vertex (x, y) has d − 1 neighbors
in the (simple) facet Q1 ∩Q2 and one neighbor in Qi \ (Q1 ∩Q2). In total,
(x, y) has d + 1 neighbors, because all vertices of Q are vertices of Q1 or
Q2 since for fixed y with Ay ≤ b, any x with (x − y) ∈ lin.hull (a) must
satisfy one of the other two inequalities with equality if it is an extreme
point. �

An interesting observation is that in case of a reflection at a hy-
perplane H= that does not intersect the given polytope P, the resulting
extension polytope is combinatorially equivalent to P×[0, 1]. This yields
a (deformed) cube if such a reflection is applied iteratively if the initial
polytope is a cube. One example is are the extension of size 2 log m for
a regular m-gon for the case of m = 2k with k ∈N.

Theorem 3.2.3. Let k ∈ N. The simple extension complexity of a regular
2k-gon is at most 2k.

H(2)
=

H(1)
=

H(0)
=

v1

v2

v3

v4
v5

v6

v7

v8

(0, 0)

Figure 3.1: Some reflections used in the proof of Theorem 3.2.3 for a
16-gon.

129

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

Proof. We recursively define a series of polytopes as follows: The initial
(simple) polytope is P(0) := {(1, 0)ᵀ}, i.e., a single point. Since the exten-
sions we construct are located in increasingly higher-dimensional spaces
we write coordinates as (x, y, z)ᵀ ∈ R ×R ×R∗, where the dimension of
the z-space increases, initially being zero.

We now define for i = 0, 1, 2, . . . , k − 1 the polytope P(i+1) as the
reflection of P(i) at the halfspace

H(i)
≤

:= {(x, y, z) ∈ R ×R ×R∗ |

− sin((2i
− 1) · π/2k)x + cos((2i

− 1) · π/2k)y ≤ 0}.

Theorem 3 in [39] shows that P(k) is an extension of a regular 2k-gon. If we
label the vertices of this 2k-gon with v1, v2, . . . , v2k in counter-clockwise
order starting with v1 = (1, 0)ᵀ, the proof even shows that the projection
of P(i) onto the first two coordinates equals the convex hull of the vertices
v1, v2, . . . , v2i . Now for every i = 0, 1, . . . , k − 1, the polytope P(i) does not
intersect H(i)

= since the projection of such an intersection point would lie
outside the mentioned convex hull.

This ensures that by induction all polytopes P(i) for i = 0, 1, 2, . . . , k
are simple by Theorem 3.2.2 and that the last polytope P(k) is a simple
extension of the regular 2k-gon. �

Disjunctive Programming

The third major technique to construct extended formulations is by
means of disjunctive programming, introduced by Balas [10],[11]. We only
consider the special case of a disjunction of two polytopes P1,P2 ⊆ Rn

and are interested in an extension of the convex hull of the union of the
two.

A helpful tool is the homogenization homog(P) of a polytope P, defined
as homog(P) := conic.hull (P × {1}). We say that a pointed polyhedral
cone C is weakly simple if every extreme ray of C lies in exactly dim (C)−
1 facets and strongly simple if C is a simple polyhedron. Clearly, a
strongly simple cone is also weakly simple. Furthermore, if we have
C = homog(P) then C is weakly simple if and only if P is simple and C is
strongly simple if and only if P is a simplex. We will need the following
lemma about weak simplicity of cartesian products of cones.

130

3.2. CONSTRUCTIONS

Lemma 3.2.4. Given two pointed polyhedral cones C1 ⊆ Rn1 , C2 ⊆ Rn2 , their
product cone C := C1 × C2 ⊆ Rn1+n2 is weakly simple if and only if both C1
and C2 are strongly simple.

Proof. It is easy to check that C1 ×C2 = {(x1, x2) ∈ Rn1+n2 | xi ∈ Ci i = 1, 2}
is a pointed polyhedral cone again. Furthermore, the faces of C1 × C2
are exactly the products of faces of C1 and C2, their dimensions add up,
and a face F1 × F2 of C1 × C2 is contained in another face G1 × G2 if and
only if F1 ⊆ G1 and F2 ⊆ G2 hold.

Hence, the extreme rays of C1×C2 are either products of extreme rays
of C1 withOn2 or products ofOn1 with extreme rays of C2. Similarly, the
facets of C1 × C2 are either products of facets of C1 with C2 or products
of C1 with facets of C2.

We consider an extreme ray of C, w.l.o.g. of the form r ×On2 , where
r is an extreme ray of C1. It is clearly contained in the facets F1 × C2,
where F1 is a facet of C1 containing r. For every facet F2 of C2, we have
On2 ⊆ F2 and hence C1 × F2 contains r ×On2 .

Thus, if r is contained in k facets of C1 and C2 has ` facets then r×On2

is contained in k + ` facets of C1 × C2.
We always have k ≥ dim C1 − 1 and ` ≥ dim C2 since C1 and C2 are

pointed polyhedral cones. Hence, k + ` ≥ dim C1 + dim C2 − 1 holds
and we have equality if and only if k = dim C1 − 1 and ` = dim C2 are
satisfied, and hence C1 and C2 are strongly simple. �

We now turn to the mentioned extension of P = conv.hull (P1 ∪ P2)
using disjunctive programming. Define

Q =
{
(x1, λ1, x2, λ2) ∈ homog (P1) × homog (P2) | λ1 + λ2 = 1

}
.

It is well-known that Q together with the projection (x1, λ1, x2, λ2) 7→
x1 +x2 yields an extension of P. We now characterize when Q is a simple
polytope.

Theorem 3.2.5. The extension polytope Q of the disjunctive program for
the polytope P = conv.hull (P1 ∪ P2) is simple if and only if P1 and P2 are
simplices.

131

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

Proof. As Q is the intersection of the pointed cone C = homog (P1) ×
homog (P2) with the hyperplane defined by λ1 +λ2 = 1 (which does not
contain any of C’s extreme rays), we know that Q is simple if and only
if C is weakly simple. Now Lemma 3.2.4 yields the result. �

132

3.3. BOUNDING TECHNIQUES

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.3 Bounding Techniques

Let P ⊆ Rn be a polytope with N vertices.

Clearly, P is the set of all convex combinations of its vertices, imme-
diately providing an extended formulation of size N:

P = proj x{(x, y) ∈ Rn
×Rvert(P)

+ | x =
∑

v∈vert(P)

yvv,
∑

v∈vert(P)

yv = 1}

Note that this trivial extension is simple since the extension is an (N − 1)-
dimensional simplex.

An easy observation for extensions P = π(Q) with Q ⊆ Rd and
π : Rd

→ Rn is that the assignment F 7→ π−1(F) ∩Q =
{
y ∈ Q | π(y) ∈ F

}
defines a map j which embeds L(P) into L(Q), i.e., it is one-to-one
and preserves inclusion in both directions (see [26]). Note that this
embedding furthermore satisfies j(F ∩ F′) = j(F) ∩ j(F′) for all faces F,F′

of P (where the nontrivial inclusion j(F) ∩ j(F′) ⊆ j(F ∩ F′) follows from
π(j(F)∩ j(F′)) ⊆ π(j(F))∩π(j(F′)) = F∩F′). We use the shorthand notation
j(v) := j({v}) for vertices v of P.

We consider the face-vertex non-incidence graph GN (P), a bipartite
graph having the faces and the vertices of P as the node set and edges
{F, v} for all v < F (where v is a vertex and F is a face of P). Every facet
f̂ of an extension induces two node sets of this graph in the following

133

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

way:

F (f̂) :=
{
F face of P | j(F) ⊆ f̂

}
V(f̂) :=

{
v vertex of P | j(v) * f̂

} (3.1)

We call F (f̂) and V(f̂) the set of faces (resp. vertices) induced by the facet
f̂ (with respect to the extension P = π(Q)). Typically, the extension and
the facet f̂ are fixed and we just write F (resp.V). It may happen that
V(f̂) is equal to the whole vertex set, e.g., if f̂ projects into the relative
interior of P. IfV(f̂) is a proper subset of the vertex set we call facet f̂
proper.

For each facet f̂ of an extension of P the face and vertex sets F (f̂),
V(f̂) together induce a biclique (i.e., complete bipartite subgraph) in
GN (P). It follows from Yannakakis [69] that every edge in GN (P) is
covered by at least one of those induced bicliques. We provide a brief
combinatorial argument for this (in particular showing that we can
restrict to proper facets) in the proof of the following proposition.

Proposition 3.3.1. Let P be a polytope and Q be an extension with P = π(Q).
Then the subgraph of GN (P) induced by F (f̂) ∪· V(f̂) is a biclique for every
facet f̂ of Q. Furthermore, every edge {F, v} of GN (P) is covered by at least one
of the bicliques induced by a proper facet.

Proof. Let f̂ be one of the facets and assume that an edge {F, v} with
F ∈ F (f̂) and v ∈ V(f̂) is not present in GN (P), i.e., v ∈ F. From v ∈ F we
obtain j(v) ⊆ j(F) ⊆ f̂ , a contradiction to v ∈ V(f̂).

To prove the second statement, let {F, v} be any edge of GN (P), i.e.,
v < F. Observe that the preimages G := j(F) and g := j(v) are also
not incident (i.e., g * G) since j is a lattice embedding. As G is the
intersection of all facets of Q it is contained in (the face-lattice of a
polytope is coatomic), there must be at least one facet f̂ containing G
but not g (since otherwise g would be contained in G), yielding F ∈ F (f̂)
and v ∈ V(f̂).

If F , ∅, any vertex w ∈ F satisfies j(w) ⊆ G ⊆ f̂ and hence f̂ is a
proper facet. If F = ∅, let w be any vertex of P distinct from v. The
preimages j(v) and j(w) clearly satisfy j(v) * j(w). Again, since the face-
lattice of Q is coatomic, there exists a facet f̂ with j(w) ⊆ f̂ but j(v) * f̂ .

134

3.3. BOUNDING TECHNIQUES

Hence, f̂ is a proper facet, and (since ∅ , F ⊆ f̂ holds) F ∈ F (f̂) and
v ∈ V(f̂) holds. �

Before moving on to simple extensions we mention two useful prop-
erties of the induced sets. Both can be easily verified by examining the
definitions of F andV. See Figure 3.2 for an illustration.

Lemma 3.3.2. Let F and V be the face and vertex sets induced by a facet of
an extension of P, respectively. Then F is closed under taking subfaces and
V =

{
v vertex of P | v <

⋃
F∈F F

}
holds.

P

∅

facets

vertices

edges

F < F ∪V V F maximal
elements
in F

Figure 3.2: The sets F andV in the face lattice.

For the remainder of this section we assume that the extension poly-
tope Q is a simple polytope and that F and V are face and vertex sets
induced by a facet of Q.

135

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

Theorem 3.3.3. Let F andV be the face and vertex sets induced by a facet of
a simple extension of P, respectively. Then

(a) all pairs (F,F′) of faces of P with F∩F′ , ∅ and F,F′ < F satisfy F∩F′ < F ,

(b) the (inclusion-wise) maximal elements in F are facets of P,

(c) and every vertex v <V is contained in some facet F of P with F ∈ F .

Proof. Let f̂ be the facet of Q inducing F and V and F,F′ two faces of
P with non-empty intersection. Since F ∩ F′ , ∅, we have j(F ∩ F′) , ∅,
thus the interval in L(Q) between j(F ∩ F′) and Q is a Boolean lattice,
i.e., isomorphic to the face-lattice of a simplex, (because Q is simple, see
Proposition 2.16 in [70]). Suppose F ∩ F′ ∈ F (f̂). Then f̂ is contained in
that interval and it is a coatom, hence it contains at least one of j(F) and
j(F′) due to j(F)∩ j(F′) = j(F∩ F′). But this implies j(F) ∈ F or j(F′) ∈ F ,
proving (a).

For (b), let F be an inclusion-wise maximal face in F but not a facet
of P. Then F is the intersection of two faces F1 and F2 of P properly
containing F. Due to the maximality of F, F1,F2 < F but F1 ∩ F2 ∈ F ,
contradicting (a).

Statement (c) follows directly from (b) and Lemma 3.3.2. �

In order to use the Theorem 3.3.3 for deriving lower bounds on the
sizes of simple extensions of a polytope P, one needs to have good
knowledge of parts of the face lattice of P. The part one usually knows
most about is formed by the vertices, and edges of P. Therefore, we
specialize Theorem 3.3.3 to these faces for later use.

Let G = (V,E) be a graph. Define for node subsets W ⊆ V the common
neighbor operator Λ (·) by

Λ (W) := W ∪
{
v ∈ V | v has at least two neighbors in W

}
. (3.2)

A set W ⊆ V is then a (proper) common neighbor closed (for short Λ-closed)
set if Λ (W) = W (and W , V) holds. We call sets W with a minimum
node distance of at least 3 (i.e., the distance-2-neighborhood of a node
w ∈ W does not contain another node w′ ∈ W) isolated. Isolated node
sets are clearly Λ-closed. Note that singleton sets are isolated and hence
proper Λ-closed. In particular, the vertex sets induced by the facets of
the trivial extension (see beginning of Section 3.3) are the singleton sets.

Using this notion, we obtain the following corollary of Theorem 3.3.3.

136

3.3. BOUNDING TECHNIQUES

Corollary 3.3.4. The vertex set V induced by a proper facet of a simple
extension of P is a proper Λ-closed set.

Proof. Theorem 3.3.3 implies that for every {u, v} , {v,w} of (distinct) ad-
jacent edges of P, we have

{u, v} , {v,w} < F ⇒ {v} < F .

Due to Lemma 3.3.2,V = {v vertex of P | v <
⋃
F }, where F is the face

set induced by the same facet. Hence, v < V implies {u, v} ∈ F or
{v,w} ∈ F , thus u <V or w <V and we conclude thatV is Λ-closed.

Furthermore, V is not equal to the whole vertex set of P since the
given facet is proper. �

We just proved that every biclique F ∪· V induced by a (proper)
facet from a simple extension must satisfy certain properties. The next
example shows that these properties are not sufficient for an extension
polytope to be simple.

Example 3.3.5. Define m1, . . . ,m7 ∈ R3 to be the columns of the matrix

M :=

1 5 1 0 −1 −5 −1
1 0 −1 0 1 0 −1
0 −4 0 1 0 −4 0

 ,
and let Q := conv.hull {m1, . . . ,m7} ⊆ R3 be their convex hull. The vertex
m4 has 4 neighbors, that is, Q is not simple. Let P be the projection of Q onto
the first two coordinates. Observe that P is a 6-gon and that the only relevant
types of faces F,F′ are adjacent edges of P. It is quickly verified that all induced
face and vertex sets satisfy Theorem 3.3.3 and Corollary 3.3.4, respectively (see
Figure 3.3).

Note that this example only shows that we cannot decide from the
biclique covering whether the extension is simple. It may still be true
that for such biclique coverings there always exists a simple extension.

The polytope Q from the example can be used to show that Corol-
lary 3.3.4 is indeed a specialization of Theorem 3.3.3 (a). To see this, con-
sider the set F of faces consisting of the triangles conv.hull {m1,m4,m5},
conv.hull {m3,m4,m7} and all their subfaces. Lemma 3.3.2 implies that

137

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

m1

m2

m3

m4m5

m6

m7

π

Q

P = π(Q)

Figure 3.3: Polytope Q from Example 3.3.5 and its projection P.

V = {m2,m6} holds, which is proper Λ-closed. But F does not sat-
isfy Theorem 3.3.3 (a) for the choice F := conv.hull {m1,m2,m3,m4} < F ,
F′ := conv.hull {m4,m5,m6,m7} < F since F ∩ F′ = {m4} ∈ F .

Nevertheless we can obtain useful lower bounds from Theorem 3.3.3
and Corollary 3.3.4.

Corollary 3.3.6. The vertex set of a polytope P can be covered by sxc (P) many
proper Λ-closed sets.

Lemma 3.3.7. Let P be a polytope and G its graph. If all proper Λ-closed sets
in G are isolated then the simple extension complexity of P is greater than the
maximum size of the neighborhood of any node of G.

Proof. Let w be a node maximizing the size of the neighborhood and let
W be the neighborhood of w. Since no isolated set can contain more
than one node from W ∪ {w}, Corollary 3.3.6 implies the claim. �

Using knowledge about random 0/1-polytopes, we can easily estab-
lish the following result.

138

3.3. BOUNDING TECHNIQUES

Theorem 3.3.8. There is a constant σ > 0 such that a random d-dimensional
0/1-polytope P with at most 2σd vertices asymptotically almost surely has a
simple extension complexity equal to its number of vertices.

Proof. One of the main results of Gillmann’s thesis (See Theorem 3.37
in [30] for k = 2) is that there is such a σ ensuring that a random d-
dimensional 0/1-polytope P with at most 2σd vertices asymptotically
almost surely has every pair of vertices adjacent. Since in this situation
the only proper Λ-closed sets are the singletons, Corollary 3.3.6 yields
the claim. �

139

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.4 Hypersimplices

Let ∆n
k denote the k-hypersimplex in Rn for some k ∈ {0, 1, 2, . . . ,n},

i.e., the 0/1-cube intersected with the hyperplane 〈1n, x〉 = k. Note that
its vertices are all 0/1-vectors with exactly k 1’s, since the above linear
system is totally unimodular (a row of ones together with two unit
matrices). It follows from the knowledge about edges and 2-faces of
the cube that two vertices of ∆n

k are adjacent if and only if they differ in
exactly two coordinates. In other words, all neighbors of a vertex x can
be obtained by replacing a 1 by a 0 at some index and a 0 by a 1 at some
other index. Observe that ∆n

k is almost simple for 2 ≤ k ≤ n − 2 in the
sense that its dimension is n− 1, but every vertex lies in exactly n facets.
With this in mind, the following result may seem somewhat surprising.

Theorem 3.4.1. Let 1 ≤ k ≤ n − 1. The simple extension complexity of
∆n

k ⊆ R
n is equal to its number of vertices

(n
k
)
.

Proof. The case of k = 1 or k = n − 1 is clear since then ∆n
k is an (n − 1)-

dimensional simplex.
Let 2 ≤ k ≤ n − 2 and F andV be face and vertex sets induced by a

proper facet of a simple extension of ∆n
k .

Since every vertex v of ∆n
k has vi = 0 or vi = 1, at most one of the

facets xi ≥ 0 or xi ≤ 1 can be in F for every i ∈ [n] (otherwiseV would
be empty). We can partition [n] into L ∪· U ∪· R such that L (resp. U)
contains those indices i ∈ [n] such that the facet corresponding to xi ≥ 0
(resp. xi ≤ 1) is in F and R contains the remaining indices. Lemma 3.3.2

140

3.4. HYPERSIMPLICES

yields
V =

{
v vertex of ∆n

k | vL = 1, vU = O
}
. (3.3)

We now prove that a node setV of this form is proper Λ-closed only if
|V| = 1. Then, Corollary 3.3.6 yields the claim.

L U R

1, 1, . . . , 1, 1

...
...

1, 1, . . . , 1, 1

0, 0, . . . , 0, 0

...
...

0, 0, . . . , 0, 0

. . . , 0, . . . , 1, . . .

. . . , 1, . . . , 0, . . .

0, 1, . . . , 1, 1 0, 0, . . . , 0, 0 . . . , 1, . . . , 1, . . .
1, 1, . . . , 1, 1 1, 0, . . . , 0, 0 . . . , 0, . . . , 0, . . .

V

u =

w =

i j

v <V

s

Figure 3.4: Vertices of ∆n
k inV for a biclique.

Indeed, if we have |V| > 1, then there exist vertices u,w ∈ V and
indices i, j ∈ R such that ui = w j = 1, u j = wi = 0 and u` = w` for all
` < {i, j} (see Figure 3.4). Choose any s ∈ L ∪· U and observe that, since
u,w ∈ V, us = ws = 1 if s ∈ L and us = ws = 0 if s ∈ U. The following
vertex is easily checked to be adjacent to u and w (min and max must be
read component-wise):

v :=

max(u,w) − e(s) if s ∈ L
min(u,w) + e

(s) if s ∈ U

As vs = 0 if s ∈ L and vs = 1 if s ∈ U, v <V. This contradicts the fact that
V is Λ-closed. �

141

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.5 Spanning Tree Polytopes

In this section we bound the simple extension complexity of the span-
ning tree polytope Pspt (Kn) of the complete graph Kn with n nodes. In
order to highlight different perspectives we mention three equivalent
adjacency characterizations that all follow from the fact that the span-
ning tree polytope is the base polytope of a graphic matroid (see [63],
Theorem 40.6.). The vertices corresponding to spanning trees T and T′

are adjacent in the spanning tree polytope if and only if . . .

• . . . |T∆T′| = 2 holds.

• . . . T′ arises from T by removing one edge and reconnecting the
two connected components by another edge.

• . . . T′ arises from T by adding one additional edge and removing
any edge from the cycle that this edge created.

From the third statement it is easy to see that the maximum degree
of the 1-skeleton of Pspt (Kn) is in O(n3), since there are O(n2) possible
choices for the additional edge, each of which yields O (n) choices for a
cycle-edge to remove.

Lemma 3.5.1. All proper Λ-closed sets in the graph of Pspt (Kn) are isolated.

Proof. Throughout the proof, we will identify vertices with the corre-
sponding spanning trees.

142

3.5. SPANNING TREE POLYTOPES

Suppose V is a proper Λ-closed set that is not isolated. Then there
are spanning trees T1,T2 ∈ V and T3 < V, such that T1 is adjacent to
both T2 and T3, but T2 and T3 are not adjacent.

X′ X′′

Y

e f

g

h

j

Figure 3.5: Case 2 of Lemma 3.5.1.

Let e be the unique edge that is in T1 but not in T2, i.e., {e} = T1 \ T2.
Analogously, let

{
f
}

= T2 \ T1,
{
g
}

= T1 \ T3 and {h} = T3 \ T1. Since
T2 and T3 are not adjacent in the polytope, their symmetric difference
T2∆T3 ⊆

{
e, f , g, h

}
must have cardinality greater than 2. Because the

symmetric difference of two spanning trees consists of an even number
of edges, this cardinality must be equal to 4, proving e , g. Let us define
F := T1 \

{
e, g

}
, which is a tree with two edges missing, i.e., a forest with

three connected components X′,X′′,Y. W.l.o.g., g connects X′ with X′′

and e connects X′′ with Y. Then T2 and T3 can be written as F ∪
{
f , g

}
and F ∪ {e, h}, respectively. There are two possible cases for h:

Case 1: h connects Y with X′ or X′′.
Let T′ := F∪

{
g, h

}
and observe that T′ is a spanning tree since g connects

X′ with X′′ and h connects one of both with Y. Obviously, T′ is adjacent
to T1, T2 and T3. Since T′ is adjacent to T1 and T2, T′ ∈ Λ (V) = V.
Since T3 is adjacent to T1,T′ ∈ V, this in turn implies the contradiction
T3 ∈ V.

143

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

Case 2: h connects X′ with X′′ (see Figure 3.5).
Let j be any edge connecting X′ with Y (recall that we dealing with a
complete graph) and let T′ := F∪

{
g, j

}
, which is a spanning tree adjacent

to T1 and T2 and hence T′ ∈ Λ (V) = V. Clearly, T′′ := F ∪
{
e, j

}
is a

spanning tree adjacent to T1 and T′ and hence T′′ ∈ V. Finally, let
T′′′ := F ∪

{
h, j

}
be a third spanning tree adjacent to T′ and T′′. Again,

we have T′′′ ∈ V due to Λ (V) =V.
Since T3 is adjacent to T1 and T′′′, exploiting Λ (V) = V once more

yields the contradiction T3 ∈ V. �

Using this result we immediately get a lower bound of Ω(n3) for the
simple extension complexity of Pspt (Kn) since the maximum degree of
its graph is of that order. However, we can prove a much stronger result.

Theorem 3.5.2. The simple extension complexity of the spanning tree polytope
of Kn is in Ω(2n−o(n)).

U

s w1 x

y

z wk t

v1

v2

...a

b

c

W

T(W) T′

Figure 3.6: Construction for Theorem 3.5.2.

144

3.5. SPANNING TREE POLYTOPES

Proof. Assume n ≥ 5 and let s, t be any two distinct nodes of Kn. Consider
the following set of subsets of the nodes V \ {s, t}

W := {W ⊆ V \ {s, t} | |W| = bn/2c} .

Let k := bn/2c, fix some ordering of the nodes w1,w2, . . . ,wk ∈W for each
W ∈ W and define a specific tree T(W)

T(W) := {{s,w1} , {wk, t}}
∪ {{wi,wi+1} | i ∈ [k − 1]}
∪ {{t, v} | v < (W ∪ {s, t})}

as depicted in Figure 3.6. We will now prove that for each simple
extension of Pspt (Kn) every such T(W) must be in a different induced
vertex set (w.r.t. the facets of a simple extension).

Let W ∈ W be some set W with tree T(W). Let F and V be the
face and vertex sets, respectively, induced by a proper facet of a simple
extension such that T(W) is in V. Construct an adjacent tree T′ as
follows.

Choose some vertex y ∈W and let x-y-z be a subpath of the s-t-path
in T(W) in that order. Note that

{
x, y, z

}
⊆ W ∪ {s, t}. Define a :=

{
x, y

}
,

b := {x, z} and c :=
{
y, z

}
.

Let T′ = T(W) \ {a}∪ {b}. Because T′ is adjacent to T(W), Lemma 3.5.1
implies T′ < V. Hence, due to Lemma 3.3.2, there must be a facet
F ∈ F defined by x(E[U]) ≤ |U| − 1 (with |U| ≥ 2) which contains T′.
Furthermore, this facet does not contain T(W) because T(W) ∈ V holds.
Hence, we have |T(W)[U]| < |U| − 1 and |T′[U]| = |U| − 1. This implies
|T(W) ∩ δ(U)| ≥ 2 and |T′ ∩ δ(U)| = 1. Obviously, a ∈ δ(U) and b < δ(U).

Then x, z ∈ U if and only if y < U because a ∈ δ(U) and b < δ(U).
Hence, c ∈ δ(U), i.e., T ∩ δ(U) = {c}. Due to |U| ≥ 2, this implies
U = V \

{
y
}
.

As this can be argued for any y ∈W, we have that the facets defined
by V \

{
y
}

are in F for all y ∈ W. Hence, V contains only trees T for
which |T ∩ δ(V \

{
y
}
)| = |T ∩ δ(

{
y
}
)| ≥ 2, i.e., no leaf of T is in W.

This shows that for distinct sets W,W′
∈ W, any vertex setV induced

by a proper facet of a simple extension that contains T(W) does not
contain T(W′) because any vertex v ∈ W \W′ is a leaf of T(W′). Hence,

145

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

the number of simple bicliques is at least

|W| =

(
n − 2
bn/2c

)
∈ Ω(2n−o(n)).

�

146

3.6. FLOW POLYTOPES FOR ACYCLIC NETWORKS

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.6 Flow Polytopes for Acyclic
Networks

Many extended formulations model the solutions to the original formu-
lation via a path in a specifically constructed directed acyclic graph. A
simple example is the linear-size formulation for the parity polytope by
Carr and Konjevod [16], and a more elaborate one is the approximate
formulation for 0/1-knapsack polytopes by Bienstock [13].

Let D = (V,A) be a directed acyclic graph with fixed source s ∈ V
and sink t ∈ V (t , s). By Ps,t (D) we denote the arc-sets of s-t-paths in
D. For some path P ∈ Ps,t (D) and nodes u, v ∈ V(P), we denote by P|(u,v)
the subpath of P going from u to v if it exists.

For acyclic graphs, the convex hull of the characteristic vectors of all
s-t-paths is equal to the uncapacitated s-t-flow polytope Ps-t-flow (D) with
flow-value 1, since the linear description of the latter is totally unimod-
ular. The inequalities in this description correspond to nonnegativity
constraints of the arc variables, and a vertex corresponding to the path
P is obviously non-incident to a facet corresponding to ya ≥ 0 if and
only if a ∈ P holds. Adjacency in the path polytope was characterized
by Gallo and Sodini [28], and can be stated as follows: Two s-t-paths
P,P′ correspond to adjacent vertices of the polytope if and only if their
symmetric difference consists of two paths from x to y (x, y ∈ V, x , y)
without common inner nodes. In other words, they must split and
merge exactly once.

Such a network formulation can be easily decomposed into two

147

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

independent formulations if a node v exists such that every s-t-path
traverses v. We are now interested in the simple extension complexities
of flow polytopes of s-t-networks that cannot be decomposed in such a
trivial way. Our main result in this section is the following:

Theorem 3.6.1. Let D = (V,A) be a directed acyclic graph with source s ∈ V
and sink t ∈ V such that for every node v ∈ V \ {s, t} there exists an s-t-
path in D that does not traverse v. Then the simple extension complexity of
Ps-t-flow (D) ⊆ RA

+ is equal to the number of distinct s-t-paths |Ps,t (D) |.

Proof. Let F and V be the face and vertex sets induced by a proper
facet of a simple extension of Ps-t-flow (D), respectively. The goal is to
prove |V| = 1. Let us assume for the sake of contradiction |V| ≥ 2. By
Theorem 3.3.3 (b), the (inclusion-wise) maximal faces inF are facets. Let
∅ , B′ ⊆ A be the arc set corresponding to these facets. By Lemma 3.3.2,
V is the set of (characteristic vectors of) paths P ∈ Ps,t (D) satisfying
P ⊇ B′. Let B ⊆ A be the set of arcs common to all such paths and note
that B ⊇ B′ , ∅ by definition of B′.

By construction, for any path P ∈ V and any arc a ∈ P \B, there is an
alternative path P′ ∈ V with a < P′.

Let us fix one of the paths P ∈ V. Let, without loss of generality,
(x′, x) ∈ B be such that the arc of P leaving x (exists and) is not in B. If
such an arc does not exist, since B , P, there must be an arc (x, x′) ∈ B
such that the arc of P entering x is not in B. In this case, revert the
directions of all arcs in D and exchange the roles of s and t, and apply
the following arguments to the new network. Let y be the first node
on P|(x,t) different from x and incident to some arc in B or, if no such y
exists, let y := t. Paths in V must leave x and enter y but may differ
in-between. The set of traversed nodes is defined as

S :=
{
v ∈ V \

{
x, y

}
| ∃ x-v-y-path in D

}
.

By construction, x < {s, t} and by the assumptions of the Theorem there
exists a path P′ ∈ Ps,t (D) that does not traverse x. Let s′ be the last node
on P|(s,x) that is traversed by P′. Analogously, let t′ be the first node of
V(P|(x,t)) ∪ S that is traversed by P′. Note that t′ , x since t′ is traversed
by P′ but x is not. We now distinguish two cases for which we show
thatV is not Λ-closed yielding a contradiction to Corollary 3.3.4:

148

3.6. FLOW POLYTOPES FOR ACYCLIC NETWORKS

S

s tx ys′

t′

t′′

s s′ x t′′ yt′ t

s s′ x yt′′ t

s s′ t′ t′′ y t

B P P′

W W′

P1 :

P2 :

P3 :

Figure 3.7: Construction for Case 1 in the proof of Theorem 3.6.1.

Case 1: t′ ∈ S.
By definition of S there must be an x-t′-y-path W. Note that t′ could be
equal to y and then W could agree with P|(x,y) as well. Let (z, t′) ∈ W be
the arc of W entering t′. By definition of y, we conclude that (z, t′) < B.
Hence, there is an alternative x-y-path W′ , W that does not use (z, t′).
We choose W′ such that it uses as many arcs of W|(t′,y) as possible.
Construct the following three paths (see Figure 3.7):

P1 := P|(s,x) ∪W ∪ P|(y,t)
P2 := P|(s,x) ∪W′

∪ P|(y,t)
P3 := P|(s,s′) ∪ P′|(s′,t′) ∪W|(t′,y) ∪ P|(y,t)

By construction P1,P2 ∈ V but P3 < V. P1 and P3 are adjacent in
Ps-t-flow (D) since they only differ in the disjoint paths from s′ to t′. Anal-
ogously, P2 and P3 are adjacent and thus, contradicting the fact that V
is Λ-closed.

Case 2: t′ < S.
Let W := P|(x,y) and let W′ be a different x-y-path that must exist by
definition of y. Construct the following three paths (see Figure 3.8):

P1 := P = P|(s,x) ∪W ∪ P|(y,t)
P2 := P|(s,x) ∪W′

∪ P|(y,t)
P3 := P|(s,s′) ∪ P′|(s′,t′) ∪ P|(t′,t)

149

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

S

s tx ys′ t′

s s′ x y t′ t

s s′ x y t′ t

s s′ t′ t

B P P′

W W′

P1 :

P2 :

P3 :

Figure 3.8: Construction for Case 2 in the proof of Theorem 3.6.1.

By construction P1,P2 ∈ V but P3 < V since it does not use (x′, x) ∈ B.
P1 and P3 as well as P2 and P3 are adjacent in Ps-t-flow (D) since they only
differ in the disjoint paths from s′ to t′. Again, this contradicts the fact
thatV is Λ-closed. �

150

3.7. PERFECT MATCHING POLYTOPES

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.7 Perfect Matching Polytopes

The matching polytope and the perfect matching polytope of a graph G =
(V,E) are defined as

Pmatch (G) := conv.hull
{
χ(M) |M matching in G

}
and

Pperf
match (G) := conv.hull

{
χ(M) |M perfect matching in G

}
,

where χ(M) ∈ {0, 1}E is the characteristic vector of the set M ⊆ E, i.e.,
χ(M)e = 1 if and only if e ∈ M. Edmonds [23] showed that Pperf

match (G) is
the set of x ∈ RE satisfying

xe ≥ 0 for all e ∈ E (3.4)
x(δ(v)) = 1 for all v ∈ V (3.5)

x(δ(U)) ≥ 1 for all U ⊆ V with |U| odd. (3.6)

If G is bipartite then only the nonnegativity constraints (3.4) and degree
constraints (3.5) are required because the constraint matrix is totally
unimodular.

Clearly, the symmetric difference M∆M′ of two perfect matchings
is always a disjoint union of alternating cycles, so-called M-M′-cycles.
Chvátal [17] showed that (the vertices corresponding to) two perfect
matchings M and M′ are adjacent if and only if M∆M′ forms a single
alternating cycle.

This section establishes the simple extension complexities of the per-
fect matching polytopes (yielding lower bounds for the correspond-

151

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

ing matching polytopes’ simple extension complexities) of two graph
classes: Subsection 3.7.1 addresses the complete bipartite graphs Kn,n
with n nodes on both sides of the bipartition. Subsection 3.7.2 reduces
the question for complete graphs K2n with 2n nodes to an adjacency
result on Pperf

match (K2n). The latter is then established in Subsection 3.7.3.

152

3.7. PERFECT MATCHING POLYTOPES

Complete Bipartite Graphs
Our main theorem here reads as follows:

Theorem 3.7.1. The simple extension complexity of the perfect matching
polytope of Kn,n is equal to the number n! of its vertices.

Proof. Let V and E denote the node and edge sets of Kn,n, respectively.
Let F and V be the face and vertex sets induced by a proper facet of
a simple extension of Pperf

match

(
Kn,n

)
, respectively. The goal is to prove

|V| = 1, so let us assume for the sake of contradiction |V| ≥ 2. By
Theorem 3.3.3 (b), the (inclusion-wise) maximal faces in F are facets.
Since Kn,n is bipartite, every facet is of the type xe ≥ 0 for some edge
e ∈ E. Let ∅ , D′ ⊆ E be the edge set corresponding to these facets. By
Lemma 3.3.2,V is the set of (characteristic vectors of) perfect matchings
M ⊆ E satisfying M ⊇ D′. Let D ⊇ D′ be the set of fixed edges, i.e., edges
common to all such matchings, and note that D is not the empty set,
since D′ is not.

Let M1 be a perfect matching with χ(M1) ∈ V, let e0 ∈ D be some
fixed edge, and let e1, e2 ∈ M1 \D be two of its edges that are not fixed.
Note that e1 and e2 exist because otherwise |M1 \ D| ≤ 1 and then M1
would be the only perfect matching containing D. Let u0,u1,u2 ∈ V be
the endnodes of e0, e1 and e2 that are on one side of the bipartition and
v0, v1, v2 ∈ V be the other endnodes of e0, e1 and e2, respectively.

Define R := M1 \ {e0, e1, e2} and the two new perfect matchings M2 :=
R ∪ {e0, {u1, v2} , {u2, v1}} and M3 := R ∪ {{u0, v1} , {u1, v2} , {u2, v0}}. We
clearly have χ(M2) ∈ V because D ⊆ M2 holds and χ(M3) < V, because
e0 <M3.

Furthermore, we have that M1∆M3 is the cycle u0-v0-u2-v2-u1-v1-
u0 and that M2∆M3 is the cycle u0-v0-u2-v1-u0, that is, M3 (satisfying
χ(M3) <V) is adjacent to both M1 and M2 (satisfying χ(M1), χ(M2) ∈ V).
This contradicts Corollary 3.3.4, i.e., the fact thatV is Λ-closed. �

Since Pperf
match

(
Kn,n

)
is a face of Pmatch

(
Kn,n

)
and simple extensions of

polytopes induce simple extensions of their faces we obtain the follow-
ing corollary for the latter polytope.

Corollary 3.7.2. The simple extension complexity of the matching polytope of
Kn,n is at least n!.

153

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

Complete Nonbipartite Graphs
From Theorem 3.7.1 and from the fact that the perfect matching poly-
tope of the Kn,n is a face of the perfect matching polytope of K2n we
immediately obtain the exponential lower bound of n! on the simple
extension complexity of the perfect matching polytope of K2n.

Our main theorem of this section improves this bound drastically,
and reads as follows:

Theorem 3.7.3. The simple extension complexity of the perfect matching
polytope of K2n is equal to its number of vertices (2n)!

n!·2n .

We first give a high-level proof that uses a structural result presented
in Subsection 3.7.3, since the latter may be interesting on its own.

Proof. The proof is based on Theorem 3.7.6. It states that for any three
perfect matchings M1, M2, M3 in K2n, where M1 and M2 are adjacent (i.e.,
the corresponding vertices are adjacent), M3 is adjacent to both M1 and
M2 or there exists a fourth matching M′ adjacent to all three matchings.

Let P = Pperf
match (K2n) and suppose thatV is a proper Λ-closed set with

|V| ≥ 2. Since the polytope’s graph is connected there exists a perfect
matching M1 withχ(M1) <V adjacent to some perfect matching M2 with
χ(M2) ∈ V. Let M3 be a perfect matching with χ(M3) ∈ V \ {χ(M2)}. As
V is Λ-closed and χ(M3) ∈ V holds, {M1,M2,M3} cannot be a triangle.
Hence, by Theorem 3.7.6 mentioned above, there exists a common-
neighbor perfect matching M′. Since M′ is adjacent to M2 and M3 we
conclude χ(M′) ∈ V. But then M1 (satisfying χ(M1) < V) is adjacent to
the two matchings M2 and M′whose characteristic vectors are contained
inV, which contradicts the fact thatV is Λ-closed.

Hence all proper Λ-closed sets are singletons, which implies the
claim due to Corollary 3.3.6. �

Since Pperf
match (K2n) is a face of Pmatch (K2n) and simple extensions of

polytopes induce simple extensions of their faces we obtain the follow-
ing corollary for the latter polytope.

Corollary 3.7.4. The simple extension complexity of the matching polytope of
K2n is at least (2n)!

n!·2n .

154

3.7. PERFECT MATCHING POLYTOPES

Adjacency Result
We now turn to the mentioned result on the adjacency structure of the
perfect matching polytope of K2n. It is a generalization of the diameter
result of Padberg and Rao’s in [52].

For an edge set F we denote by V(F) the set of nodes covered by the
edges of F. We start with an easy construction and modify the resulting
matching later.

v0 v1

v2

v3

v4

v5v6
v7

v8

v9

v10

v11v0
v1

v2

v3

v4
v5

v6

v7

v8

v9

Figure 3.9: Lemma 3.7.5 for a 10-cycle and a 12-cycle.

Lemma 3.7.5. For any adjacent perfect matchings M1, M2 there exists a perfect
matching M′ adjacent to M1 and M2 that satisfies

V(M1∆M2) = V(M1∆M′) = V(M2∆M′)

and M′ ∩ (M1∆M2) = ∅.

Proof. Let v0, v1, . . . , v2`−1, v2` = v0 be the set of ordered nodes of the
cycle M1∆M2 and identify v2`+1 = v1. If ` is odd,

M′ := {{vi, vi+3} | i = 0, 2, 4, 6, . . . , 2l − 2}

induces Mi-M′-cycles visiting the nodes in the following order:

M1∆M′ : v0, v3, v2, v5, v4, v7, v6, . . . , v2`−1,
v2`−2, v1, v0

M2∆M′ : v0, v3, v4, v7, v8, . . . , v2l−3, v2`−2,
v1, v2, v5, v6, . . . , v2`−4, v2`−1, v0

155

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

If ` is even,

M′ := {{vi, vi+3} | i = 4, 6, . . . , 2` − 2}
∪· {{v0, v2} , {v3, v5}}

induces Mi-M′-cycles visiting the nodes in the following order:

M1∆M′ : v0, v2, v3, v5, v4, v7, v6, . . . , v2`−1,
v2`−2, v1, v0

M2∆M′ : v0, v2, v1, v2`−2, v2`−3, . . . , v6, v5, v3,
v4, v7, v8, . . . , v2`−4, v2`−1, v0

Figure 3.9 shows examples for both cases. It is easy to see that the node
sets of the cycles equals the node set of M1∆M2 and that M′∩(M1∆M2) =
∅ holds. In order to produce a perfect matching on all nodes we simply
add M1 ∩ M2 to M′, which does not change any of the two required
properties. �

Suppose there is a third perfect matching M3 and we want to make
M′ adjacent to this matching as well. The remainder of this section is
dedicated to the proof of the following result.

Theorem 3.7.6. Let M1 and M2 be two adjacent perfect matchings and M3
a third perfect matching. Then the three matchings are pairwise adjacent or
there exists a perfect matching M′ adjacent to all three.

Before we state the proof, we introduce the notion of good perfect
matchings. The first part of the proof is dedicated to proving their
existence, while the second part shows that good perfect matchings
that are minimal in a certain sense satisfy the properties claimed by
Theorem 3.7.6.

We first fix some notation for the rest of this section. Let M1, M2 and
M3 be three perfect matchings such that M1 and M2 are adjacent. Denote
by V∗ := V(M1∆M2) the node set of the single alternating M1-M2-cycle.

For a perfect matching M′ we denote by M3-M′-components the con-
nected components of M3 ∪M′ and by c(M3,M′) their number. We call
a perfect matching M′ good if the following five properties hold:

(A) M′ is adjacent to M1 and M2.

156

3.7. PERFECT MATCHING POLYTOPES

(B) All M3-M′-components touch the node-set V∗ of M1∆M2.

(C) All M′-edges that also belong to the M1-M2-cycle, i.e., the edges
from M′ ∩ (M1∆M2), are contained in the same M3-M′-component.

(D) M3 ,M′ and c(M3,M′) ≤ 1
2 |M1∆M′| + 1

2 |M2∆M′| − 3 holds.

(E) c(M3,M′) ≤ 1
2 |M j∆M′| holds for j = 1, 2 and equality holds only if

we have V(Mk∆M′) ⊇ V∗ for k = 3 − j, i.e.,
{
M j,Mk

}
= {M1,M2}.

We first establish the existence of good perfect matchings.

Lemma 3.7.7. Let M1, M2, M3 be three perfect matchings of K2n such that
M1 ∩M2 ∩M3 = ∅ holds and such that M1 and M2 are adjacent, but M3 is
not adjacent to both of them. Then there exists a good perfect matching M′.

Proof. Let M be the perfect matching adjacent to M1 and M2 constructed
in Lemma 3.7.5.

Note that it satisfies M∩(M1∆M2) = ∅ as well as |M1∆M| = |M2∆M| =
|M1∆M2| = |V∗| ≥ 4. We now enlarge the Mi-M-cycles (i = 1, 2) in order to
remove M3-M-cycles that do not touch V∗ in order to satisfy Property (B).

Let {u0, v0} be an M-edge with u0, v0 ∈ V∗. Let C1,C2, . . . ,Cs be all
M3-M-cycles with V(Ci)∩V∗ = ∅ and let, for i = 1, 2, . . . , s, {ui, vi} ∈ Ci∩M
be any M-edge of Ci. Define M′ to be

M′ :=
(
M \ {{ui, vi} | i = 0, 1, . . . , s}

)
∪ {{ui, vi+1} | i = 0, 1, . . . , s} ,

(3.7)

where vs+1 = v0 (see Figure 3.10).
We now verify Property (A), i.e., that M′ is adjacent to Mi (i = 1, 2).

Since the cycles C1, . . . ,Cs do not touch V∗, M and Mi coincide outside V∗.
Hence, the modification replaces the M-edge {u0, v0} by an alternating
M-Mi-path from u0 to v0 that visits exactly 2 nodes of each Ci, thus
indeed M′ is adjacent to both M1 and M2.

In order to prove Properties (B) and (E), let us recall some properties
of the M3-M′-components: The M3-M′-cycle constructed above contains
nodes u0 and v0. All other M3-M′-cycles were also M3-M-cycles, and
hence, by definition of the Ci above, have at least two nodes of V∗ in

157

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

v1

u1

C1

v2

u2

C2

v3

u3

C3

V∗

u0

v0 = v4

M1 M2 M3 M′

Figure 3.10: Construction in Lemma 3.7.7 with 3 outer cycles.

common since one of their M-edges has both endpoints in V∗. All edges
in M3 ∩M′ must also lie in V∗ since outside V∗ ∪ V(C1) ∪ . . .V(Cs) the
matchings M′, M1 and M2 are the same and M1 ∩M2 ∩M3 = ∅ holds.

Hence all M3-M′-components have at least two nodes in V∗, in par-
ticular, Property (B) holds. It also proves the inequality statement of
Property (E) because V(M j∆M′) ⊇ V∗ for j = 1, 2. Furthermore, the con-
tainment statement is due to Lemma 3.7.5, since we have V(Mk∆M′) ⊇
V(Mk∆M) = V∗ for k = 1, 2.

In order to verify Property (C), observe that M ∩ (M1∆M2) is empty.
Since all edges in M′ that were not in M have at least one endpoint
outside V∗, we also have M′ ∩ (M1∆M2) = ∅. Hence, Property (C) is
satisfied trivially.

It remains to show that Property (D) holds. Clearly, since M3 is ad-
jacent to at most one of M1, M2, we have M3 ,M′. Since we established
as part of Property (E), that c(M3,M′) ≤ 1

2 |M1∆M′| holds, it suffices to
show that |M2∆M′| is at least 6. Suppose, for the sake of contradic-

158

3.7. PERFECT MATCHING POLYTOPES

tion, that this is not the case, i.e., |M2∆M′| ≤ 4 holds, which in turn
implies c(M3,M′) ≤ 2. Also |M2∆M′| ≥ 4 holds since both matchings
are adjacent. This implies that we have equality in the containment
V(M2∆M′) ⊇ V(M2∆M) = V∗, from which we conclude that s = 0 holds,
i.e., M′ = M. These properties already prove that the M′-edges that
match the nodes of V∗ are exactly the two chords of the M1-M2-cycle
(see Figure 3.11). It is now easy to verify that then M1, M2 and M3 must
be pairwise adjacent, a contradiction to the assumptions of this lemma.

u1

u2

v1

v2

f1

f2

e

M1 M2 M3 M′

Figure 3.11: A special case in the proof of Lemma 3.7.7 where M3 is
adjacent to M1 and M2.

�

Proof of Theorem 3.7.6. Let M1,M2,M3 be as stated in the Theorem. We
assume, without loss of generality, that M1 ∩M2 ∩M3 = ∅ holds, since
otherwise we can restrict ourself to the graph with the nodes of this set
deleted. We also assume that M1, M2 and M3 are not pairwise adjacent,
since otherwise there is nothing to prove.

159

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

In this situation, Lemma 3.7.7 guarantees the existence of a good
perfect matching. Let M′ be a good perfect matching with minimum
c(M3,M′). If c(M3,M′) = 1 holds, M′ is adjacent to M3 (and also adjacent
to M1 and M2 by Property (A)) and we are done. Hence, for the sake
of contradiction, we from now on assume that c(M3,M′) is at least 2.
The strategy is to construct another good matching M∗ with c(M3,M∗) <
c(M3,M′).

Due to Property (C), there exists an M3-M′-component Ĉ containing
all edges (if any) from M′ ∩ (M1∆M2). M1∆M2 is a single cycle visiting
all nodes in V∗ all of which are in some M3-M′-component as they are
matched by M′. Thus, by Property (B), the component Ĉ is connected
to at least one other M3-M′-component by an edge from M1-M2. Let us
choose such an edge e ∈ M j \Mk for some j = 1, 2 and k = 3 − j, and
if such edges exist for both values of j, choose e such that |M j∆M′| is
maximum.

We claim that |M j∆M′| ≥ 6 holds. Suppose, for the sake of contradic-
tion, |M j∆M′| = 4. Property (E) implies that c(M3,M′) ≤ 2 holds. Since
c(M3,M′) ≥ 2 also holds, we have equality and then Property (E) implies
that the Mk-M′-cycle covers all nodes in V∗. This cycle connects the only
two M3-M′-components Ĉ and C′ via at least two Mk-edges f , f ′ since the
M′-edges of the cycle are inside their respective components. Note that
|Mk∆M′| ≥ 2c(M3,M′) + 6 − |M j∆M′| ≥ 6 holds by Property (D). Hence,
by the maximality assumption for the choice of edge e, this implies that
there is no edge in Mk \ M j that connects Ĉ to C′. Since f , f ′ ∈ Mk

both connect Ĉ to C′, it follows that f , f ′ ∈ M j holds as well. Because
|M j∆M′| = 4 holds we have M j \M′ =

{
f , f ′

}
. Hence, the alternating

M j-M′-cycle of length 4 is also an alternating Mk-M′-cycle. But the latter
has at least length 6 as argued above, which yields a contradiction.

To summarize, we now have two distinct M3-M′-components Ĉ and
C′ connected by an edge e ∈M j\Mk for some j = 1, 2 such that |M j∆M′| ≥
6 holds and all edges from M′ ∩ (M1∆M2) (if any) are in Ĉ.

Let u1 ∈ V(Ĉ) and u2 ∈ V(C′) be the endpoints of edge e. Let f1 =
{u1, v1} , f2 = {u2, v2} ∈ M′ be the edges matching u1 and u2. We clearly
have v1 ∈ V(Ĉ) and v2 ∈ V(C′) as well since f1 and f2 are contained in
their respective M3-M′-components. In particular we have f1, f2 , e and
u1,u2, v1, v2 are pairwise distinct nodes. Because f2 < M j (e ∈ M j and

160

3.7. PERFECT MATCHING POLYTOPES

e∩ f2 , ∅) and f2 * V(Ĉ) hold, Property (C) implies f2 <Mk (note that Ĉ
is the component mentioned in Property (C)).

If also f1 < Mk holds, f1 and f2 belong to Mk∆M′, which is a single
cycle by Property (A), and hence there exists a walk W on Mk∆M′ starting
in u1 with edge f1 that visits nodes u2 and v2 (in some order).

We are now ready to create a new good perfect matching M∗ related
to M′ by small changes. For this, we distinguish two cases. For each
case we establish Property (A) separately, and afterwards prove the
remaining properties for both cases in parallel.

M′ M∗

u1

u2

v1

v2

e
f1

f2

Ĉ

C′

u1

u2

v1

v2

e

M j Mk M3 M′, M∗

Figure 3.12: Modifications in Case 1 in the proof of Theorem 3.7.6.

Case 1: f1 <Mk holds and u2 comes before v2 on walk W.
Let M∗ :=

(
M′ \

{
f1, f2

})
∪ {{u1,u2} , {v1, v2}} (see Figure 3.12). We now

prove Property (A) for M∗. The symmetric difference Mk∆M∗ consists of
a single cycle that arises from the cycle Mk∆M′ by removing edges f1, f2

161

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

and adding edges {u2,u1} and {v2, v1}. For M j, the situation is different,
since there is a new component e ∈ M j ∩M∗. The new M j-M∗-cycle is
now 2 edges shorter than the M j-M′-cycle was before since it visits the
edge {v1, v2} instead of the path v1−u1−u2−v2. But because we ensured
|M j∆M′| ≥ 6 before, we have |M j∆M∗| ≥ 4, that is, M∗ is also adjacent to
M j.

M′ M∗

u1

u2

v1

v2

e
f1

f2

Ĉ

C′

u1

u2

v1

v2

e

M j Mk M3 M′, M∗

Figure 3.13: Modifications in Case 2 in the proof of Theorem 3.7.6.

Case 2: f1 ∈Mk holds or f1 <Mk and u2 comes after v2 on walk W.
Let M∗ :=

(
M′ \

{
f1, f2

})
∪ {{u1, v2} , {u2, v1}} (see Figure 3.13). We now

prove Property (A) for M∗. The symmetric difference Mk∆M∗ consists
of a single cycle that arises from the cycle Mk∆M′ by removing edges
f1, f2 and adding edges {v2,u1} and {u2, v1}. There is also only one M j-
M∗-cycle, which is essentially equal to the M j-M′-cycle, except that the
path v1 − u1 − u2 − v2 was replaced by the path v1 − u2 − u1 − v2.

162

3.7. PERFECT MATCHING POLYTOPES

In Case 1 as well as in Case 2, M∗ is again a perfect matching since
M′ was a perfect matching and they differ only in the way the nodes
u1,u2, v1, v2 are matched. Furthermore, M∗ connects the two components
Ĉ and C′, that is, c(M3,M∗) = c(M3,M′)−1. In order to create the desired
contradiction to the minimality of c(M3,M′), it remains to prove that M∗

satisfies Properties (B),(C), (D) and (E).
Property (B) is satisfied for M∗ because V(Ĉ) is contained in an M3-

M∗-component and all edges in M∗ \M′ are contained in the same com-
ponent.

Property (C) is also satisfied for M∗ since all M∗-edges that were not
M′-edges before, are contained in cycle Ĉ (which was by definition the
only M3-M′-cycle containing edges in M′ ∩ (M1∆M2)).

We now prove that Property (D) is satisfied for M∗. We have

c(M3,M∗) + 3 = c(M3,M′) + 3 − 1 ≤
1
2
|M1∆M′| +

1
2
|M2∆M′| − 1

=
1
2
|Mk∆M′| +

1
2
|M j∆M′| − 1

≤
1
2
|Mk∆M∗| +

1
2

(
|M j∆M∗| + 2

)
− 1

=
1
2
|M1∆M∗| +

1
2
|M2∆M∗|,

where the first inequality is due to Property (D) for M′ and the last
inequality comes from the fact that in Case 1, M j∆M∗ has two fewer
edges than M j∆M′ and in Case 2, the cardinalities agree.

By similar arguments, c(M3,M∗) ≤ 1
2 |Mi∆M∗| holds for i = 1, 2. In or-

der to prove that Property (E) is satisfied for M∗, assume that c(M3,M∗) =
1
2 |Mi∆M∗| holds for some i ∈ {1, 2}. Due to c(M3,M∗) = c(M3,M′)− 1, this
implies i = j and we are in Case 1 since only there |Mi∆M∗| is less than
|Mi∆M′|, and also have c(M3,M′) = 1

2 |M j∆M′|. Property (E) of M′ guar-
antees that V(Mk∆M′) ⊇ V∗ holds. But since the node sets of Mk∆M′

and Mk∆M∗ are the same, we also have V(Mk∆M∗) ⊇ V∗.
We proved that M∗ is a good perfect matching, yielding the required

contradiction to the minimality assumption of c(M3,M′) which com-
pletes the proof. �

163

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES:

3.8 A Question Relating Simple
Extensions with Diameters

Let us make a brief digression on the potential relevance of simple exten-
sions with respect to questions related to the diameter of a polytope, i.e.,
the maximum distance (minimum number of edges on a path) between
any pair of vertices in the graph of the polytope. We denote by ∆(d,m)
the maximum diameter of any d-dimensional polytope with m facets.
It is well-known that ∆(d,m) is attained by simple polytopes. A neces-
sary condition for a polynomial time variant of the simplex-algorithm
to exist is that ∆(d,m) is bounded by a polynomial in d and m (thus by a
polynomial in m). In fact, in 1957 Hirsch even conjectured (see [21]) that
∆(d,m) ≤ m − d holds, which has only rather recently been disproved
by Santos [60]. However, still it is even unknown whether ∆(d,m) ≤ 2m
holds true, and the question, whether ∆(d,m) is bounded polynomially
(i.e., whether the polynomial Hirsch-conjecture is true) is a major open
problem in Discrete Geometry.

In view of the fact that linear optimization over a polytope can be
performed by linear optimization over any of its extensions, a reason-
able relaxed version of this question might be to ask whether every
d-dimensional polytope P with m facets admits an extension whose size
and diameter both are bounded polynomially in m. Stating the relaxed
question in this naive way, the answer clearly is positive, as one may
construct an extension by forming a pyramid over P (after embedding P
into Rdim(P)+1), which has diameter two. However, in some accordance

164

3.8. A QUESTION RELATING SIMPLE EXTENSIONS WITH DIAMETERS

with the way the simplex algorithm works by pivoting between bases
rather than only by proceeding along edges, it seems to make sense
to require the extension to be simple (which a pyramid, of course, in
general is not). But still, this is not yet a useful variation, since our
result on flow polytopes (see Theorem 3.6.1) shows that there are poly-
topes that even do not admit a polynomial (in the number of facets) size
simple extension at all. Therefore, we propose to investigate the follow-
ing question, whose positive answer would be implied by establishing
the polynomial Hirsch-conjecture (as every polytope is an extension of
itself).

Question 3.8.1. Does there exist a polynomial q such that every simple
polytope P with m facets has a simple extension Q with at most q(m) many
facets and diameter at most q(m)?

In order to make progress on this question, one might want to inves-
tigate the face-lattice embeddings for projections of simple extensions
of simple polytopes. On the one hand, all lower bounds we obtained
in this chapter are for a non-simple polytope. On the other hand, all
constructive results are for simple polytopes, e.g., the completion-time
polytopes mentioned in the introduction (see Corollary 4.5 in [57] for a
proof of this fact).

165

ANALYZING SIMPLE EXTENSIONS OF POLYTOPES

166

Bibliography
[1] Tobias Achterberg. SCIP: Solving constraint integer programs.

Math. Program. Ser. C, 1(1):1–41, 2009.

[2] Hatem Ben Amor and Jacques Desrosiers. A proximal trust-region
algorithm for column generation stabilization. Computers & Oper-
ations Research, 33(4):910 – 927, 2006.

[3] David Applegate, Robert Bixby, Vašek Chvátal, and William Cook.
Computational Combinatorial Optimization: Optimal or Provably Near-
Optimal Solutions, chapter TSP Cuts Which Do Not Conform to the
Template Paradigm, pages 261–303. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001.

[4] David L. Applegate, Robert E. Bixby, Vasek Chvátal, and William J.
Cook. Concorde TSP solver,
http://www.math.uwaterloo.ca/tsp/concorde.html, 2006.

[5] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G.
Espinoza. QSopt_ex,
http://www.dii.uchile.cl/daespino/ESolver_doc/main.html,
2007.

[6] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G.
Espinoza. Exact solutions to linear programming problems. Oper-
ations Research Letters, 35(6):693 – 699, 2007.

[7] Sanjeev Arora and Boaz Barak. Computational complexity: a modern
approach. Cambridge University Press, 2009.

[8] Benjamin Assarf, Ewgenij Gawrilow, Katrin Herr, Michael
Joswig, Benjamin Lorenz, Andreas Paffenholz, and Thomas Rehn.
polymake in linear and integer programming. arXiv preprint
arXiv:1408.4653, 2014.

167

http://www.math.uwaterloo.ca/tsp/concorde.html
http://www.dii.uchile.cl/daespino/ESolver_doc/main.html

[9] David Avis and Hans Raj Tiwary. On the extension complexity
of combinatorial polytopes. In Fedor V. Fomin, Rusins Freivalds,
Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Lan-
guages, and Programming, volume 7965 of Lecture Notes in Computer
Science, pages 57–68. Springer Berlin Heidelberg, 2013.

[10] Egon Balas. Disjunctive programming: Properties of the convex
hull of feasible points. MSRR 348, Carnegie Mellon University,
1974.

[11] Egon Balas. Disjunctive programming. In P.L. Hammer, E.L. John-
son, and B.H. Korte, editors, Discrete Optimization II, volume 5 of
Annals of Discrete Mathematics, pages 3 – 51. Elsevier, 1979.

[12] Abbas Bazzi, Samuel Fiorini, Sebastian Pokutta, and Ola Svensson.
No small linear program approximates vertex cover within a factor
2 − ε. arXiv:1503.00753, 2015.

[13] Daniel Bienstock. Approximate formulations for 0-1 knapsack sets.
Operations Research Letters, 36(3):317 – 320, 2008.

[14] Robert E. Bixby, E. Andrew Boyd, and Ronni R. Indovina. Miplib:
A test set of mixed-integer programming problems. SIAM News,
25, 1992.

[15] Christoph Buchheim, Frauke Liers, and Marcus Oswald. Local cuts
revisited. Operations Research Letters, 36(4):430 – 433, 2008.

[16] Robert D. Carr and Goran Konjevod. Polyhedral combinatorics.
In H. J. Greenberg, editor, Tutorials on Emerging Methodologies and
Applications in Operations Research, volume 76 of International Series
in Operations Research & Management Science, chapter 2, pages 1–46.
Springer, 2005.

[17] Vasek Chvátal. On certain polytopes associated with graphs. J.
Combin. Theory Ser. B, 18(2):138 – 154, 1975.

[18] Michele Conforti, Volker Kaibel, Matthias Walter, and Stefan
Weltge. Subgraph polytopes and independence polytopes of count
matroids. Operations Research Letters, 43(5):457 – 460, Sep 2015.

168

BIBLIOGRAPHY

[19] William Cook, Thorsten Koch, Daniel E Steffy, and Kati Wolter.
A hybrid branch-and-bound approach for exact rational mixed-
integer programming. Mathematical Programming Computation,
5(3):305–344, 2013.

[20] William Cook, Thorsten Koch, DanielE. Steffy, and Kati Wolter.
An exact rational mixed-integer programming solver. In Oktay
Günlük and GerhardJ. Woeginger, editors, Integer Programming and
Combinatoral Optimization, volume 6655 of Lecture Notes in Computer
Science, pages 104–116. Springer Berlin Heidelberg, 2011.

[21] George B. Dantzig. Linear Programming and Extensions. Princeton
landmarks in mathematics and physics. Princeton University Press,
1963.

[22] Olivier du Merle, Daniel Villeneuve, Jacques Desrosiers, and Pierre
Hansen. Stabilized column generation. Discrete Mathematics,
194(1–3):229 – 237, 1999.

[23] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-
vertices. Journal of Research of the National Bureau of Standards B,
69:125–130, 1965.

[24] Friedrich Eisenbrand and Sören Laue. A faster algorithm for two-
variable integer programming. In Algorithms and Computation,
pages 290–299. Springer, 2003.

[25] Paul Erdös, Siemion Fajtlowicz, and Alan J Hoffman. Maximum
degree in graphs of diameter 2. Networks, 10(1):87–90, 1980.

[26] Samuel Fiorini, Volker Kaibel, Kanstantsin Pashkovich, and
Dirk Oliver Theis. Combinatorial bounds on nonnegative rank
and extended formulations. Discrete Math., 313(1):67–83, 2013.

[27] Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Ti-
wary, and Ronald de Wolf. Linear vs. semidefinite extended for-
mulations: exponential separation and strong lower bounds. In
Howard J. Karloff and Toniann Pitassi, editors, STOC, pages 95–
106. ACM, 2012.

169

[28] Giorgio Gallo and Claudio Sodini. Extreme points and adjacency
relationship in the flow polytope. Calcolo, 15:277–288, 1978.

[29] Michael R. Garey and David S. Johnson. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[30] Rafael Gillmann. 0/1-Polytopes Typical and Extremal Properties. PhD
thesis, Technische Universität Berlin, 2007.

[31] Michel Goemans. Smallest compact formulation for the permuta-
hedron. http://www-math.mit.edu/~goemans/publ.html, 2009.

[32] Michel X. Goemans and Young-Soo Myung. A Catalog of Steiner
Tree Formulations. Networks, 23(1):19–28, 1993.

[33] Martin Grötschel, László Lovász, and Alexander Schrijver. The
ellipsoid method and its consequences in combinatorial optimiza-
tion. Combinatorica, 1(2):169–197, 1981.

[34] Martin Grötschel and Manfred W. Padberg. Polyhedral theory.
In E. L. Lawler, Jan Karel Lenstra, A. H. G. Rinnooy Kan, and
D. B. Shmoys, editors, The traveling salesman problem: a guided tour
of combinatorial optimization, Wiley Interscience Series in Discrete
Mathematics, page 476. John Wiley & Sons, Inc., 1985.

[35] Ishay Haviv and Oded Regev. Tensor-based hardness of the short-
est vector problem to within almost polynomial factors. In Proceed-
ings of the thirty-ninth annual ACM symposium on Theory of computing,
pages 469–477. ACM, 2007.

[36] Emilie V. Haynsworth. On the schur complement. Basel Mathemat-
ical Notes, 20, 1968.

[37] Lena Hupp, Laura Klein, and Frauke Liers. An exact solution
method for quadratic matching: The one-quadratic-term technique
and generalisations. Discrete Optimization, 18:193 – 216, 2015.

[38] Cor A. J. Hurkens. Blowing up convex sets in the plane. Linear
Algebra Appl., 134:121–128, 1990.

170

http://www-math.mit.edu/~goemans/publ.html

BIBLIOGRAPHY

[39] Volker Kaibel and Kanstantsin Pashkovich. Constructing extended
formulations from reflection relations. In O. Günlük and G. Woeg-
inger, editors, Integer Programming and Combinatorial Optimization.
Proceedings of IPCO XV, New York, NY, volume 6655 of Lecture Notes
in Computer Science, pages 287–300. Springer, 2011.

[40] Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis.
Symmetry matters for sizes of extended formulations. SIAM J.
Disc. Math., 26(3):1361–1382, 2012.

[41] Volker Kaibel and Matthias Walter. Simple extensions of polytopes.
Math. Program. Ser. B, 154(1-2):381–406, 2015.

[42] Volker Kaibel and Stefan Weltge. Lower bounds on the sizes of
integer programs without additional variables. Math. Program. Ser.
B, 154(1-2):407–425, 2015.

[43] Ravindran Kannan and Achim Bachem. Polynomial algorithms
for computing the smith and hermite normal forms of an integer
matrix. siam Journal on Computing, 8(4):499–507, 1979.

[44] Ravindran Kannan and László Lovász. Covering minima and
lattice-point-free convex bodies. Annals of Mathematics, 128:577–
602, 1988.

[45] Thorsten Koch. ZIMPL user guide. Technical report, Konrad-Zuse-
Zentrum für Informationstechnik, 2001.

[46] Thorsten Koch and Alexander Martin. Solving Steiner Tree Prob-
lems in Graphs to Optimality. Networks, 32(3):207–232, 1998.

[47] Bernhard Korte and Jens Vygen. Combinatorial Optimization, vol-
ume 21. Springer, fifth edition, 2012.

[48] Hendrik W. Lenstra, Jr. Integer programming with a fixed number
of variables. Mathematics of Operations Research, 8(4):538–548, 1983.

[49] François Margot, Alain Prodon, and Thomas M. Liebling. Tree
polytope on 2-trees. Mathematical Programming, 63(1-3):183–191,
1994.

171

[50] R. Kipp Martin. Using separation algorithms to generate mixed
integer model reformulations. Oper. Res. Lett., 10(3):119–128, 1991.

[51] Garth P. McCormick. Computability of global solutions to fac-
torable nonconvex programs: Part i — convex underestimating
problems. Mathematical Programming, 10(1):147–175, 1976.

[52] Manfred W. Padberg and Mendu Rammohan Rao. The travelling
salesman problem and a class of polyhedra of diameter two. Math.
Program., 7:32–45, 1974. 10.1007/BF01585502.

[53] Christos H. Papadimitriou. The adjacency relation on the travel-
ing salesman polytope is np-complete. Mathematical Programming,
14(1):312–324, 1978.

[54] Kanstantsin Pashkovich. Tight lower bounds on the sizes of sym-
metric extensions of permutahedra and similar results. Mathematics
of Operations Research, 39(4):1330–1339, 2014.

[55] Sebastian Pokutta and Mathieu Van Vyve. A note on the extension
complexity of the knapsack polytope. Oper. Res. Lett., 41(4):347–350,
2013.

[56] The polymake team. polymake, http://www.polymake.org, 2015.

[57] Maurice Queyranne. Structure of a simple scheduling polyhedron.
Math. Program., 58(1-3):263–285, 1993.

[58] Thomas Rothvoss. Some 0/1 polytopes need exponential size ex-
tended formulations. Mathematical Programming, 142(1-2):255–268,
2013.

[59] Thomas Rothvoss. The matching polytope has exponential exten-
sion complexity. In Proceedings of the 46th Annual ACM Symposium
on Theory of Computing, STOC ’14, pages 263–272, New York, NY,
USA, 2014. ACM.

[60] Francisco Santos. A counterexample to the hirsch conjecture. An-
nals of Mathematics. Second Series, 176(1):383–412, 2012.

[61] Rolf Schneider. Convex bodies: the Brunn–Minkowski theory. Number
151. Cambridge University Press, 2013.

172

http://www.polymake.org

BIBLIOGRAPHY

[62] Alexander Schrijver. Theory of linear and integer programming. John
Wiley & Sons, Inc., New York, NY, USA, 1986.

[63] Alexander Schrijver. Combinatorial Optimization – Polyhedra and
Efficiency. Springer, 2003.

[64] Daniel E. Steffy and Kati Wolter. Valid linear programming bounds
for exact mixed-integer programming. INFORMS Journal on Com-
puting, 25(2):271–284, 2013.

[65] Leena M. Suhl and Uwe H. Suhl. A fast LU update for linear
programming. Annals of Operations Research, 43(1):33–47, 1993.

[66] Uwe H. Suhl and Leena M. Suhl. Computing Sparse LU Factoriza-
tions for Large-Scale Linear Programming Bases. ORSA Journal on
Computing, 2(4):325–335, 1990.

[67] Matthias Walter. IPO – Investigating Polyhedra by Oracles,
http://polyhedra-oracles.bitbucket.org/, 2016.

[68] Roland Wunderling. Paralleler und objektorientierter Simplex-
Algorithmus. PhD thesis, ZIB, 1997.

[69] Mihalis Yannakakis. Expressing combinatorial optimization prob-
lems by linear programs. J. Comput. Syst. Sci., 43(3):441–466, 1991.

[70] Günter M. Ziegler. Lectures on Polytopes (Graduate Texts in Mathe-
matics). Springer, 2001.

173

http://polyhedra-oracles.bitbucket.org/

APPENDIX

174

A.1. COMPUTATIONAL STUDIES: DIMENSIONS

APPENDIX:

A.1 Computational Studies:
Dimensions

As in Section 2.9, the linear relaxations of the instances are denoted by P,
the linear relaxations of the presolved instances are denoted by Q, and
the respective mixed-integer hulls by PI and QI. Tables A.1–A.8 display
the following measurements of our implementation of Algorithm 2.4.3
for these four polyhedra:

n Ambient dimension of the polyhedron.
maxbit Maximum encoding length of a direction vector.

t Overall time.
kcach / tcach Number of / time spent for the cache searches.
kheur / theur Number of / time spent for the heuristic calls.
korac / torac Number of / time spent for the oracle calls.
kapx / tapx Number of / time spent for approximate directions.
kexct / texct Number of / time spent for exact directions.
kfact / tfact Number of / time spent for factorization updates.

As before, all times are given in seconds. Note that for the linear
relaxations, since the heuristic always returns an optimal solution, the
values korac and torac were zero for all instances and hence are omitted in
the tables. Also note that the affine hull of p0548’s mixed-integer hull
could not be computed due to a timeout in one of the oracle calls.

175

APPENDIX

Table A.1: Statistics for relaxations of MIPLIB 2.0 instances.

Instance n maxbit
P kcach

P kheur
P kapx

P kexct
P kfact

P

air01 771 544,192 750 769 296,827 768 733
bell3b 133 511,962 133 149 8,912 133 134
bell5 104 287,557 104 117 5,461 104 105
bm23 27 40,650 27 28 379 27 28
cracpb1 572 2,749,540 484 484 159,963 557 485
dcmulti 548 4,434,537 470 479 147,346 547 471
diamond 2 2 2 1 4 2 3
egout 141 12,458 68 103 7,311 131 69
enigma 100 181,576 79 80 4,820 90 80
flugpl 18 1,365 12 13 151 18 13
gen 870 19,784,443 720 726 367,561 869 721
lseu 89 25,093 89 99 4,006 89 90
misc01 83 30,118 68 79 3,211 82 61
misc02 59 2,882 47 58 1,600 54 42
misc03 160 106,686 136 152 12,101 159 122
misc05 136 289,569 108 117 8,651 131 101
misc07 260 291,163 228 256 32,760 255 208
mod008 319 2 319 638 51,041 319 320
mod013 96 1,646 83 131 4,566 91 84
p0033 33 7,699 33 48 562 33 34
p0040 40 9,200 40 50 776 40 31
p0201 201 49,114 201 259 18,706 201 146
p0282 282 3,611 282 323 39,904 282 283
p0291 291 1,104 291 337 42,487 291 292
p0548 548 1,484,208 548 612 150,421 548 546
pipex 48 22,575 32 28 1,041 47 33
rgn 180 265,958 160 168 16,081 179 161
sample2 67 347 44 50 2,003 62 45
sentoy 60 2 60 60 1,831 60 61
stein15 15 2 15 30 121 15 16
stein27 27 2 27 54 379 27 28
stein45 45 2 45 90 1,036 45 46
stein9 9 2 9 18 46 9 10
vpm1 378 106,491 336 411 67,537 377 289

176

A.1. COMPUTATIONAL STUDIES: DIMENSIONS

Table A.2: Timings for relaxations of MIPLIB 2.0 instances.

Instance tP tcach
P theur

P tapx
P texct

P tfact
P

air01 64 0.1 46.3 2.6 12.1 2.4
bell3b 25 0.1 12.1 0.1 8.3 3.9
bell5 13 0.1 6.9 0.1 4.2 2.0
bm23 1 0.0 1.1 0.0 0.1 0.0
cracpb1 1,919 0.4 288.8 9.8 1,182.2 437.2
dcmulti 2,969 1.9 261.7 13.6 1,924.3 767.6
diamond 0 0.0 0.0 0.0 0.0 0.0
egout 2 0.0 1.9 0.1 0.0 0.0
enigma 3 0.0 2.6 0.0 0.5 0.2
flugpl 0 0.0 0.1 0.0 0.0 0.0
gen 28,870 17.9 1,573.9 72.6 19,715.8 7,489.9
lseu 1 0.0 0.9 0.0 0.0 0.0
misc01 3 0.0 2.7 0.0 0.2 0.1
misc02 1 0.0 0.6 0.0 0.0 0.0
misc03 13 0.0 9.5 0.1 2.5 1.0
misc05 25 0.0 18.1 0.0 4.8 1.8
misc07 67 0.0 38.9 0.4 20.0 7.8
mod008 22 0.0 20.0 0.5 0.2 1.3
mod013 1 0.0 1.0 0.0 0.0 0.0
p0033 0 0.0 0.3 0.0 0.0 0.0
p0040 0 0.0 0.4 0.0 0.0 0.0
p0201 7 0.0 6.2 0.1 0.5 0.1
p0282 8 0.0 6.5 0.3 0.3 0.6
p0291 9 0.0 6.9 0.5 0.4 0.7
p0548 62 0.2 48.8 3.3 6.3 3.8
pipex 0 0.0 0.3 0.0 0.0 0.0
rgn 14 0.1 7.2 0.1 5.1 1.5
sample2 0 0.0 0.3 0.0 0.0 0.0
sentoy 0 0.0 0.4 0.0 0.0 0.0
stein15 0 0.0 0.1 0.0 0.0 0.0
stein27 0 0.0 0.2 0.0 0.0 0.0
stein45 1 0.0 0.7 0.0 0.0 0.0
stein9 0 0.0 0.1 0.0 0.0 0.0
vpm1 17 0.1 13.0 1.9 1.0 1.1

177

APPENDIX

Table A.3: Statistics for MIPLIB 2.0 instances.

Instance n maxbit
PI

kcach
PI

kheur
PI

korac
PI

kapx
PI

kexct
PI

kfact
PI

air01 771 9,859 750 876 134 285,672 770 618
bell3b 133 145,456 133 123 19 8,741 133 116
bell5 104 47,613 104 99 8 5,537 104 98
bm23 27 221 27 16 0 379 27 28
cracpb1 572 103,921 484 435 7 159,414 553 479
dcmulti 548 2,790,396 470 251 4 147,106 547 468
diamond 2 2 1 1 1 3 1 0
egout 141 7,029 68 120 28 5,103 129 42
enigma 100 2 79 155 77 398 83 4
flugpl 18 14 12 23 4 127 18 10
gen 870 49,509 720 962 181 324,271 869 541
lseu 89 4,393 89 77 0 4,006 89 90
misc01 83 241 68 88 25 2,707 82 45
misc02 59 97 47 62 11 1,518 55 38
misc03 160 8,876 136 128 21 11,891 159 117
misc05 136 26,439 108 67 11 8,576 134 99
misc07 260 40,670 228 197 25 32,335 257 205
mod008 319 2 319 638 0 51,041 319 320
mod013 96 936 83 129 0 4,566 91 84
p0033 33 30 33 51 7 547 33 28
p0040 40 111 40 48 11 776 40 31
p0201 201 27,841 201 253 63 18,411 201 140
p0282 282 86 282 318 0 39,904 282 283
p0291 291 78 291 332 0 42,487 291 292
p0548 548
pipex 48 526 32 17 2 1,024 47 32
rgn 180 86,119 160 158 0 16,081 179 161
sample2 67 164 44 58 13 1,684 66 33
sentoy 60 2 60 60 0 1,831 60 61
stein15 15 2 15 30 0 121 15 16
stein27 27 2 27 54 0 379 27 28
stein45 45 2 45 90 0 1,036 45 46
stein9 9 2 9 18 0 46 9 10
vpm1 378 6,172 336 547 49 67,537 376 289

178

A.1. COMPUTATIONAL STUDIES: DIMENSIONS

Table A.4: Timings for MIPLIB 2.0 instances.

Instance tPI tcach
PI

theur
PI

torac
PI

tapx
PI

texct
PI

tfact
PI

air01 50 0.0 21.2 25.0 1.6 1.5 0.1
bell3b 5 0.0 2.2 1.7 0.1 0.7 0.2
bell5 3 0.0 2.1 0.7 0.0 0.1 0.0
bm23 2 0.0 1.7 0.0 0.0 0.0 0.0
cracpb1 122 0.0 117.1 1.4 1.1 1.6 0.7
dcmulti 1,421 1.3 64.3 0.7 9.7 945.9 398.5
diamond 0 0.0 0.0 0.0 0.0 0.0 0.0
egout 3 0.0 1.8 0.6 0.0 0.0 0.0
enigma 110 0.0 15.5 94.4 0.0 0.0 0.0
flugpl 3 0.0 0.2 3.1 0.0 0.0 0.0
gen 621 1.6 107.4 476.6 25.1 2.8 6.1
lseu 1 0.0 1.1 0.0 0.0 0.0 0.0
misc01 10 0.0 7.2 2.5 0.0 0.0 0.0
misc02 1 0.0 1.2 0.2 0.0 0.0 0.0
misc03 33 0.0 24.6 8.5 0.0 0.2 0.0
misc05 32 0.0 28.9 3.0 0.1 0.2 0.1
misc07 141 0.0 103.2 36.2 0.2 1.3 0.5
mod008 19 0.0 17.0 0.0 0.3 0.2 1.4
mod013 1 0.0 0.8 0.0 0.0 0.0 0.0
p0033 1 0.0 0.8 0.3 0.0 0.0 0.0
p0040 1 0.0 0.4 0.1 0.0 0.0 0.0
p0201 21 0.0 11.6 8.6 0.1 0.3 0.1
p0282 6 0.0 4.9 0.0 0.3 0.2 0.4
p0291 7 0.0 5.7 0.0 0.3 0.2 0.5
p0548
pipex 1 0.0 0.9 0.5 0.0 0.0 0.0
rgn 4 0.0 2.8 0.0 0.1 0.6 0.2
sample2 1 0.0 0.6 0.4 0.0 0.0 0.0
sentoy 0 0.0 0.3 0.0 0.0 0.0 0.0
stein15 0 0.0 0.1 0.0 0.0 0.0 0.0
stein27 0 0.0 0.3 0.0 0.0 0.0 0.0
stein45 1 0.0 0.7 0.0 0.0 0.0 0.0
stein9 0 0.0 0.1 0.0 0.0 0.0 0.0
vpm1 17 0.1 12.7 1.9 0.9 0.3 1.0

179

APPENDIX

Table A.5: Statistics for Relaxations of presolved MIPLIB 2.0 instances.

Instance n maxbit
Q kcach

Q kheur
Q kapx

Q kexct
Q kfact

Q

air01 760 40,156 363 364 210,178 758 364
bell3b 113 375,315 91 101 6,189 113 92
bell5 87 1,399 56 71 3,333 88 57
bm23 27 40,453 27 29 379 27 28
cracpb1 518 2,559,840 478 479 133,602 506 479
dcmulti 548 4,508,942 469 489 147,267 547 470
diamond 2 0 0 1 3 0 0
egout 118 1,161 41 53 4,019 116 42
enigma 100 192,392 79 79 4,820 94 80
flugpl 16 936 10 11 116 14 11
gen 699 6,148 509 674 203,323 699 412
lseu 89 61,305 85 88 3,996 89 86
misc01 82 23,813 56 57 3,053 82 57
misc02 58 553 37 44 1,481 55 38
misc03 159 78,142 115 116 11,731 159 116
misc05 128 273,917 100 99 7,851 126 101
misc07 259 225,017 201 218 31,960 254 202
mod008 319 2 319 637 51,041 319 320
mod013 96 1,277 83 95 4,566 93 84
p0033 29 4,879 26 32 430 29 27
p0040 40 14 20 21 611 39 21
p0201 201 82,948 163 202 17,527 201 128
p0282 281 58 200 241 36,301 281 201
p0291 264 2 67 96 15,478 264 68
p0548 527 2,704,204 362 381 125,434 527 363
pipex 48 25,695 32 33 1,041 47 33
rgn 175 208,257 160 178 15,281 174 161
sample2 55 945 32 37 1,265 52 33
sentoy 60 94 60 60 1,831 60 61
stein15 15 2 15 30 121 15 16
stein27 27 2 27 54 379 27 28
stein45 45 2 45 90 1,036 45 46
stein9 9 2 9 18 46 9 10
vpm1 362 47,101 168 197 46,789 361 169

180

A.1. COMPUTATIONAL STUDIES: DIMENSIONS

Table A.6: Timings for relaxations of presolved MIPLIB 2.0 instances.

Instance tQ tcach
Q theur

Q tapx
Q texct

Q tfact
Q

air01 16 0.0 13.1 0.9 1.1 0.1
bell3b 9 0.0 5.3 0.0 2.9 1.2
bell5 1 0.0 0.9 0.0 0.0 0.0
bm23 1 0.0 1.3 0.0 0.1 0.0
cracpb1 1,346 0.3 210.1 5.3 818.3 312.3
dcmulti 3,162 2.2 272.2 13.6 2,057.8 815.6
diamond 0 0.0 0.0 0.0 0.0 0.0
egout 1 0.0 0.8 0.0 0.0 0.0
enigma 3 0.0 2.6 0.0 0.6 0.2
flugpl 0 0.0 0.1 0.0 0.0 0.0
gen 60 0.1 47.2 9.2 1.1 2.3
lseu 2 0.0 1.4 0.0 0.1 0.1
misc01 2 0.0 1.8 0.0 0.1 0.1
misc02 0 0.0 0.3 0.0 0.0 0.0
misc03 9 0.0 6.7 0.1 1.6 0.6
misc05 22 0.0 15.5 0.0 4.8 1.9
misc07 44 0.0 23.8 0.4 14.2 5.4
mod008 20 0.1 17.4 1.3 0.4 1.0
mod013 1 0.0 0.7 0.0 0.0 0.0
p0033 0 0.0 0.3 0.0 0.0 0.0
p0040 0 0.0 0.1 0.0 0.0 0.0
p0201 7 0.0 6.0 0.2 1.0 0.3
p0282 5 0.0 4.3 0.3 0.1 0.2
p0291 1 0.0 1.1 0.0 0.1 0.0
p0548 64 0.3 35.3 1.5 20.6 5.7
pipex 1 0.0 0.5 0.0 0.0 0.0
rgn 8 0.0 5.1 0.1 1.8 0.5
sample2 0 0.0 0.2 0.0 0.0 0.0
sentoy 0 0.0 0.4 0.0 0.0 0.0
stein15 0 0.0 0.1 0.0 0.0 0.0
stein27 0 0.0 0.3 0.0 0.0 0.0
stein45 1 0.0 0.8 0.0 0.0 0.0
stein9 0 0.0 0.1 0.0 0.0 0.0
vpm1 6 0.0 4.8 0.5 0.4 0.2

181

APPENDIX

Table A.7: Statistics for presolved MIPLIB 2.0 instances.

Instance n maxbit
QI

kcach
QI

kheur
QI

korac
QI

kapx
QI

kexct
QI

kfact
QI

air01 760 2,970 363 361 3 209,381 759 362
bell3b 113 28,918 91 67 6 6,064 113 87
bell5 87 506 56 71 0 3,333 87 57
bm23 27 221 27 16 0 379 27 28
cracpb1 518 132,385 478 432 0 133,602 511 479
dcmulti 548 2,152,153 469 133 3 147,106 548 468
diamond 2 0 0 1 1 3 0 0
egout 118 2,444 41 59 0 4,019 115 42
enigma 100 2 79 155 77 495 80 4
flugpl 16 22 10 15 4 92 15 8
gen 699 106,918 509 701 99 203,035 699 412
lseu 89 3,187 85 69 0 3,996 89 86
misc01 82 352 56 65 13 2,745 82 45
misc02 58 120 37 48 5 1,387 56 34
misc03 159 8,249 115 93 6 11,496 159 111
misc05 128 32,645 100 56 3 7,792 127 99
misc07 259 44,300 201 157 4 31,841 255 199
mod008 319 2 319 638 0 51,041 319 320
mod013 96 1,227 83 126 0 4,566 93 84
p0033 29 30 26 38 7 400 29 21
p0040 40 65 20 13 0 611 39 21
p0201 201 16,590 163 192 37 17,601 200 128
p0282 281 1,501 200 235 0 36,301 281 201
p0291 264 110 67 99 0 15,478 264 68
p0548 527 147,885 362 265 6 124,594 527 358
pipex 48 586 32 21 2 1,041 47 32
rgn 175 10,314 160 131 0 15,281 174 161
sample2 55 56 32 35 0 1,265 50 33
sentoy 60 2 60 60 0 1,831 60 61
stein15 15 2 15 30 0 121 15 16
stein27 27 2 27 54 0 379 27 28
stein45 45 2 45 90 0 1,036 45 46
stein9 9 2 9 18 0 46 9 10
vpm1 362 4,974 168 224 0 46,789 362 169

182

A.1. COMPUTATIONAL STUDIES: DIMENSIONS

Table A.8: Timings for presolved MIPLIB 2.0 instances.

Instance tQI tcach
QI

theur
QI

torac
QI

tapx
QI

texct
QI

tfact
QI

air01 14 0.0 10.9 0.3 0.7 1.0 0.1
bell3b 2 0.0 1.4 0.2 0.0 0.1 0.1
bell5 1 0.0 0.8 0.0 0.0 0.0 0.0
bm23 2 0.0 1.7 0.0 0.0 0.0 0.0
cracpb1 108 0.1 105.3 0.0 0.8 1.4 0.5
dcmulti 369 0.6 14.0 0.3 6.1 276.4 71.3
diamond 0 0.0 0.0 0.0 0.0 0.0 0.0
egout 1 0.0 0.9 0.0 0.0 0.0 0.0
enigma 153 0.0 17.5 135.6 0.0 0.0 0.0
flugpl 2 0.0 0.2 1.6 0.0 0.0 0.0
gen 58 0.3 39.7 6.9 6.8 1.5 2.1
lseu 1 0.0 1.0 0.0 0.0 0.0 0.0
misc01 7 0.0 5.6 1.6 0.0 0.0 0.0
misc02 1 0.0 0.8 0.1 0.0 0.0 0.0
misc03 31 0.0 24.6 6.3 0.0 0.1 0.0
misc05 32 0.0 30.7 0.7 0.0 0.3 0.0
misc07 111 0.0 87.2 22.6 0.2 1.0 0.4
mod008 20 0.1 17.4 0.0 0.4 0.2 1.3
mod013 1 0.0 1.0 0.0 0.0 0.0 0.0
p0033 1 0.0 0.5 0.2 0.0 0.0 0.0
p0040 0 0.0 0.1 0.0 0.0 0.0 0.0
p0201 12 0.0 9.1 2.7 0.1 0.2 0.0
p0282 4 0.0 3.6 0.0 0.1 0.2 0.1
p0291 1 0.0 0.9 0.0 0.0 0.1 0.0
p0548 175 0.1 34.1 124.0 2.9 9.2 4.6
pipex 2 0.0 1.1 0.7 0.0 0.0 0.0
rgn 3 0.0 2.5 0.0 0.1 0.1 0.1
sample2 0 0.0 0.3 0.0 0.0 0.0 0.0
sentoy 0 0.0 0.4 0.0 0.0 0.0 0.0
stein15 0 0.0 0.1 0.0 0.0 0.0 0.0
stein27 0 0.0 0.3 0.0 0.0 0.0 0.0
stein45 1 0.0 0.8 0.0 0.0 0.0 0.0
stein9 0 0.0 0.1 0.0 0.0 0.0 0.0
vpm1 6 0.1 4.5 0.0 0.3 0.3 0.2

183

	Zusammenfassung
	Summary
	Acknowledgements
	Introduction
	Polyhedral Combinatorics
	Investigating Polyhedra by Oracles
	Analyzing Simple Extensions of Polytopes

	Preliminaries
	Basics
	Vectors, Matrices and Linear Algebra
	Polyhedra
	Linear and Mixed-Integer Linear Optimization
	Graphs
	Computational Complexity

	Investigating Polyhedra by Oracles
	Motivation: Mixed-Integer Hulls
	The Software Library IPO
	Outline
	IPO's User Interface

	Optimization Oracles
	Optimization Oracle for the Recession Cone
	Optimization Oracles for Projections of Polyhedra
	Optimization Oracles for Faces of Polyhedra
	Corrector Oracle for Mixed-Integer Programs

	Computing the Affine Hull
	A Basic Scheme
	The Algorithm
	A Lower Bound on the Number of Oracle Calls
	Heuristic Optimization Oracles
	Implementation Details

	Computing Facets
	Polarity and Target Cuts
	An Equivalent Model
	Extended Basic Solutions
	Extracting Inequalities and Equations
	Computing Multiple Facets

	Identifying Vertices, Edges and Other Faces
	The Smallest Containing Face
	Detecting Vertices
	Detecting Edges and Extreme Rays
	Detecting Higher-Dimensional Faces
	Strengthening Inequalities

	Solving the Polar Linear Programs
	The Separation Problem
	Stabilization
	Cut Aging
	Effect of Stabilization and Cut Aging

	Improving Readability of Equations and Inequalities
	Manhattan Norm Problems
	Two Vectors: An Exact Algorithm
	A Fast Heuristic
	Implementation

	Computational Studies: Dimensions
	Dimensions of Polyhedra from MIPLIB Instances
	Dimensions of Optimal Faces
	Faces Induced by Model Inequalities

	Computational Study: Facets
	Matching Polytopes with One Quadratic Term
	Edge-Node-Polytopes
	Tree Polytopes

	Computational Study: Adjacency
	Heuristics and Oracles for TSP Polytopes
	Experiment & Results
	Adjacent Tours with Common Edges

	Analyzing Simple Extensions of Polytopes
	Introduction
	Constructions
	Reflections
	Disjunctive Programming

	Bounding Techniques
	Hypersimplices
	Spanning Tree Polytopes
	Flow Polytopes for Acyclic Networks
	Perfect Matching Polytopes
	Complete Bipartite Graphs
	Complete Nonbipartite Graphs
	Adjacency Result

	A Question Relating Simple Extensions with Diameters

	Bibliography
	Appendix
	Computational Studies: Dimensions

