Buoyancy-driven flow inside an asymmetrically
heated cavity

A. Demou, D.G.E. Grigoriadis, B.J. Geurts

1 Introduction

Buoyancy-driven flows inside enclosures are in the center of problems related to
heat transfer because they can provide a significant insight into the physical mech-
anisms of heat transfer. Typical examples of such flows include Rayleigh-Bénard
convection, differentially heated cavities and partially divided enclosures. In the
present study, the buoyancy-driven flow inside an asymmetrically heated closed cav-
ity is investigated and proposed as a benchmark case for future studies to assess
the accuracy of simulations and to help in the validation of coarsened turbulence
models. Additionally, from an application perspective such a configuration is highly
relevant, e.g., in view of its similarity with passive solar systems such as ventilated
building facades [1] and Trombe walls [2].

We propose a benchmark study of the flow and heat transfer characteristics inside
a closed cuboid cavity with an interior heated wall and a cooled side wall, while all
other boundaries are treated as adiabatic. The heated wall is asymmetrically located
closer to one side of the cavity, as shown in figure 1. Constant temperature boundary
conditions are applied on both the heated and cooled walls.

Results are compared for a wide range of Rayleigh numbers, Ra = 10° — 3.2 x
10%, based on the height of the heated wall and its temperature. The effect of Ra on
the generated heat transfer as characterised by the Nusselt number Nu as well as the
associated flow patterns in the cavity will be presented.
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Fig. 1 Geometrical configuration with the heated and cooled surfaces shown with red and blue
colour respectively. The figure introduces the characteristic sizes that define the geometry in terms
of heights H, L and w as well as thickness d of the hot wall and separation from the walls s.

2 Mathematical and numerical modeling

2.1 Mathematical modeling

Assuming that the flow is incompressible and that the Boussinesq approximation
is valid, the governing equations for natural convection take the form,
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where i = 1,2,3, represent the x, y and z directions and the respective velocities
u; in each direction are denoted hereafter also as u, v, w. Gravity acts along the z
(= x3) direction and Pr is the Prandtl number. Ra represents the Rayleigh number
which can be defined with respect to the wall and ambient temperatures (7;, and 7.)
according to,
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In equation 4, f3 is the coefficient of volumetric expansion, v the kinematic viscosity,
o the thermal diffusivity and k the thermal conductivity of the fluid. Equations 1
to 3 have been non-dimensionalised using the height of the heated wall H as the
characteristic length scale, Vo = av/Ra/H as a velocity scale, to = H /Vy as a time
scale and Py = pVO2 as a pressure scale. The non-dimensional temperature is defined
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as @ = (T — T..) /Ty where the characteristic temperature scale Ty is taken as the
temperature difference (7, — Tw).

The Nusselt number is defined for all cases with respect to the wall height as
Nu = h H [k, where h is the convection heat transfer coefficient. Nu is calculated as
the average temperature gradient, normal to the heated wall, i.e.
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2.2 Numerical methodology

The numerical method used is based on a second order finite difference method on
Cartesian staggered grids utilising a direct pressure solver. Velocities are discretised
in space using central differences. For the temperature equation 3, a hybrid linear
parabolic approximation (HLPA) scheme was implemented [3]. Time advancement
consisted of a fully explicit Adams-Basforth scheme. The presence of obstacles in-
side the flow is achieved with the use of the Immersed Boundary method [4].

2.3 Computational parameters

Results will be presented for a cuboid cavity with L = 2H and a wall spacing equal
to the wall thickness, i.e., s = d = H/8 (figure 1). Preliminary simulations revealed
independence of the time-averaged isotherms and the two-point correlations when
the spanwise length of the domain is larger than H. Therefore, the spanwise extent
w of the domain is chosen equal to H so that periodic boundary conditions can be
applied without suppressing the contained flow structures. For all cases examined,
the Prandtl number is set to Pr = 0.71, i.e., the cavity is assumed to be filled with
air.

No-slip boundary conditions are used for the velocity field along solid bound-
aries. The boundary conditions along the heated and cooled walls are specified as
constant temperature (®,, = £1). All other boundary surfaces are assumed to be
adiabatic.

The grid resolution was carefully selected for each case, so that the near-wall
dynamics are properly resolved [5], [6]. For the range of Ra numbers considered
here, eight to ten points were placed within the thickness of the boundary layers.
Table 1 lists the test cases that were studied, along with the resolution used.

3 Results

3.1 Statistical convergence

Initially, the air adjacent to the heated surface warms up, rises due to buoyancy and
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Table 1 Test cases in 2D and 3D presented, Ra numbers and million nodes for each numerical grid

used.
Case Raar Grid Mnodes
Tl 1.0 x 10° 56 x 38(2D) 0.002
T2 1.0 x 10° 114 x 82(2D) 0.009
T3A  1.0x 107 206 x 164(2D) 0.03
T3B 1.0 x 107 206 x 128 x 164 43
T4A  1.0x 108 380 x 298(2D) 0.1
T4B 1.0 x 108 380 x 128 x 298 15
T5A  1.0x10° 764 x 558(2D) 04
T5B 1.0 x 10° 764 % 128 x 558 54.6
T6A  3.2x10° 764 x 558(2D) 0.4
T6B  3.2x10° 764 x 160 x 558 68.2

hits the roof of the cavity, before being ejected further into the cavity. A similar but
opposite behaviour is observed in the vicinity of the cooled wall. Figure 2 shows the
non-dimensional time interval needed for the average Nusselt number on the heated
wall to stabilise statistically. This time scale depends on the Rayleigh number and
in all cases is in the order of ~ 1000 dimensionless time units.
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3.2 Stafistics

After the initial transient stage, the flow becomes statistically steady, with strati-
fied temperature at the center of the cavity and most of the dynamics contained at
the top-left and bottom-right corners of the cavity. Figure 3 shows a comparison
of the isotherms inside the cavity obtained with the 2D and 3D simulations for the
two highest Rayleigh number considered here. It is clear that for a Rayleigh num-
ber of 1.0 x 10° the differences are contained only on the top and bottom of the
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cavity, while for 3.2 x 10” also in the bulk of the cavity the isotherms no longer
overlap. This illustrates the increase of 3D turbulent structures inside the cavity as
the Rayleigh number increases.

Ra=1.0x10° Ra=3.2x10°

Fig. 3 Comparison of the time-averaged isotherms of 2D (dashed) and 3D (solid) simulations, for
Ra = 1.0 x 10° (left) and 3.2 x 10 (right).
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Fig. 4 Predicted Nusselt numbers of the heated wall as a function of Rayleigh numbers compared
to similar configurations. For high Ra the results can be well approximated with a scaling law
Nu=0.518 x Ra®28.

Moreover, as shown in figure 4, the 2D and 3D predictions of the average Nusselt
number on the heated wall are very similar in the entire Ra range studied. This is
explained by the fact that the highest Nusselt numbers are observed on the bottom
of the heated wall, where the flow is laminar, while the contribution of the turbulent
flow on the top of the heated wall is much less. A strong evidence for scaling of the
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Nusselt number with respect to Ra numbers is observed. The calculated correlation
Nu = 0.518 x Ra®?%® is also an indication of the similarity between the 2D and
3D Nusselt predictions, since the exponent 0.268 is much closer to the 1/4 laminar
scaling than the 1/3 turbulent scaling [7]. Additionally, as shown in figure 4, the
heat transfer rate of the heated wall is consistently higher than that reported for
similar configurations such as differentially heated cavities, vertical heated plates
and Trombe walls, illustrating its potential for intensified heat transfer.

4 Conclusions

The study of the flow inside the asymmetrically heated cavity, revealed that ~ 1000
non-dimensional time units are needed for the flow to become statistically steady.
The differences between 2D and 3D results become more intense with increasing
Rayleigh numbers, but Nusselt numbers as predicted from the 2D and 3D simula-
tions are similar for all Rayleigh numbers studied. Finally the flow exhibits higher
Nusselt numbers than other relevant configurations, with a scaling close to the lam-
inar one.
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