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5.1 Introduction

In recent years, pedestrian detection has received wide attention in the computer vision com-
munity [42,9,13,16,15,6]. Given images captured in various real-world environment, pedes-
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Figure 5.1 : Detections generated by a well-trained visible pedestrian detector [60].
(A) Detections generated using an image from the public Caltech testing dataset [12];

(B) detections generated using a visible image from the public KAIST testing dataset [26]
captured during daytime; (C) detections generated using a visible image from the public KAIST
testing dataset [26] captured during nighttime in good illumination condition; (D) detections
generated using a visible image from the public KAIST testing dataset [26] captured during

nighttime in bad illumination condition. Please note that green bounding boxes (BBs) represent
true positives, red BBs represent false positives, and red BBs in dashed line represent false

negatives.

trian detection solution is needed to generate bounding boxes to identify individual pedestrian
instances accurately. It supplies a vital functionality to assist a number of human-centric
applications, such as video surveillance [54,2,36], urban scene analysis [17,7,63] and au-
tonomous driving [56,35,61].

Although some improvements have been achieved in the past years, it remains a challeng-
ing task to develop a robust pedestrian detector for real applications. Most of the detectors
existed are trained using visible images only, thus their performances are unstable in vari-
ous illumination environments as illustrated in Fig. 5.1. In order to overcome the limitation,
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Figure 5.2 : Examples of pedestrian samples in the multimodal (visible and thermal) images
captured in daytime and nighttime scenes [26]. It should be noted that multimodal data can
supply complementary information about the target which could be effectively integrated to

obtain more robust detection results.

multimodal pedestrian detection solutions are studied by many researchers to facilitate robust
pedestrian detection for around-the-clock application [33,31,51,41,26,20]. The underlying
reason is that multimodal images can supply complementary information about the target as
shown in Fig. 5.2, therefore more robust detection results can be generated by the fusion of
multimodal data. Designing an effect fusion architecture which can adaptively integrate multi-
modal features is critical to improving the detection results.

In Fig. 5.3, we illustrate the workflow of our proposed multimodal fusion framework for joint
training of segmentation supervision and pedestrian detection. It contains three modules in-
cluding feature learning/fusion, pedestrian detection, and segmentation supervision. The
feature learning/fusion extracts features in individual channels (visible and thermal) and then
integrate them to obtain multimodal feature maps. The pedestrian detection module generates
predictions of the targets (confidence scores and bounding boxes) utilizing the generated mul-
timodal feature maps. The segmentation supervision module improves the distinctiveness of
features in individual channels (visible and thermal) through the supervision learning of seg-
mentation masks. Pedestrian detection and segmentation supervision are trained end-to-end
using a multitask loss function.

Based on this baseline framework, we organize experiments to explore a number of mul-
timodal fusion models to identify the most effective scheme for the joint learning task of
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Figure 5.3 : The architecture of our proposed multimodal fusion framework for joint training of
pedestrian detection and segmentation supervision.

pedestrian detection and segmentation supervision. For multimodal pedestrian detection, we
evaluate three different multimodal feature fusion schemes (concatenation, maximization,
and summation) and two deep neural network (DNN) models with and without a scene-
aware mechanism. It can be observed that integrating the concatenation fusion scheme with
a global scene-aware mechanism leads to better learning of both human-related features and
correlation between visible and thermal feature maps. Moreover, we explore four different
multimodal segmentation supervision infusion architectures (fused segmentation supervision
with/without a scene-aware mechanism and two-stream semantic segmentation with/without
a scene-aware mechanism). We found that the two-stream segmentation supervision with a
scene-aware mechanism can better infuse semantic information to supervise the training of
visible and thermal features. Our proposed method outperforms state-of-the-art multimodal
pedestrian detectors and achieves higher detection accuracy using less runtime on public
KAIST benchmark. In summary, our contributions are as follows:



Multimodal Fusion Architectures for Pedestrian Detection 105

1. We evaluate a number of feature fusion strategies for multimodal pedestrian detection.
Compared with other basic fusion algorithms, integrating the concatenation with a global
scene-aware mechanism leads to better learning of both human-related features and cor-
relation between visible and thermal feature maps.

2. We experimentally reveal that the two-stream segmentation supervision infusion archi-
tecture, which individually infuses visible/thermal semantic information into their corre-
sponding feature maps without multimodal fusion, provides the most effective scheme to
make use of semantic information as supervision for visual feature learning.

3. We present a unified framework for joint training of multimodal segmentation supervi-
sion and target detection using a multitask loss function. Our method achieves the most
accurate results with the least runtime compared with the current state-of-the-art multi-
modal pedestrian detectors [26,28,30].

This chapter further extends our previous work [22,23] in two aspects. First, we systemati-
cally evaluate three basic multimodal feature fusion schemes (concatenation, maximization,
and summation) and two fusion models with and without a scene-aware mechanism. Our ex-
perimental results reveal that the basic concatenation fusion scheme combined with a global
scene-aware mechanism performs better than other alternatives. Second, we utilize the orig-
inal KAIST testing dataset and the improved one provided by Liu et al. [37] for quantitative
evaluation. In both datasets, our proposed method achieves the most accurate results with the
least runtime compared with the current state-of-the-art multimodal pedestrian detectors [26,
28,30].

The remainder of our chapter is organized as follows. Some existing research work as regards
pedestrian detection using visible, thermal and multimodal images is summarized in Sect. 5.2.
We present our proposed multimodal fusion architectures in detail in Sect. 5.3. The evaluation
of a number of multimodal fusion architectures and the experimental comparison of multi-
modal pedestrian detectors are presented in Sect. 5.4. This chapter is concluded in Sect. 5.5.

5.2 Related Work

Pedestrian detection methods using visible, thermal and multimodal images are closely rele-
vant to our work. We present a review of the recent researches on these topics below.

5.2.1 Visible Pedestrian Detection

A large variety of methods have been proposed to perform pedestrian detection using visi-
ble information in the last 20 years. Papageorgiou et al. [43] firstly abandoned motion cues
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to train a visible pedestrian detection system, utilizing Haar wavelets transform and support-
vector machines (SVMs) [8]. The authors also collected a new visible pedestrian database
(MIT) to evaluate their method. Viola and Jones [52] designed the integral images with a cas-
cade structure for fast feature computation and efficient visible pedestrian detection, applying
the AdaBoost classifier for automatic and accurate feature selection. Wu et al. [55] firstly pro-
posed sliding window detectors for pedestrian detection, applying multiscale Haar wavelets
and support-vector machines (SVMs) [8]. Dalal et al. [9] proposed the histograms of oriented
gradient (HOG) descriptors along with a cascaded linear support-vector network for more
accurate pedestrian detection. Dollar et al. [11] improved the HOG descriptors by designing
the integrate channel features (ICFs) descriptors with an architecture of multichannel feature
pyramids followed by the AdaBoost classifier. The feature representations of ICF have been
further improved through multiple techniques including ACF [12], LDCF [39], SCF [1], and
Checkerboards [62].

In recent years, DNN based approaches for object detection [19,18,45,25] have been widely
adopted to improve the performance of visible pedestrian detection. Sermanet et al. [47]
applied convolutional sparse coding to pretrain convolutional neural networks (CNNs) for
feature extraction and fully-connected (FC) layers for classification. Tian et al. [50] devel-
oped extensive part detectors using weakly annotated humans to handle occlusion problems
occurred in pedestrian detection. Li et al. [34] presented a scale-aware DNN which adap-
tively combines the outputs from a large-size sub-network and a small-size one to generate
robust detection results at different scales. Cai et al. [5] designed the unified multiscale DNN
to combine complementary scale-specific ones, applying various receptive fields to iden-
tify pedestrians in different scales. Zhang et al. [60] proposed a coarse-to-fine classification
scheme for visible pedestrian detection by applying region proposal networks [45] to generate
high-resolution convolutional feature maps, which are followed by the AdaBoost classifier for
final classification. Mao et al. [38] designed a powerful deep convolutional neural networks
architecture by utilizing the information of aggregating extra features to improve pedestrian
detection performance without additional inputs in inference. Brazil et al. [4] developed a
novel multitask learning scheme to improve visible pedestrian detection performance with the
joint supervision on weakly box-based semantic segmentation and pedestrian detection, indi-
cating that the box-based segmentation masks can provide sufficient supervision information
to achieve additional performance gains.

We summarize the mentioned visible pedestrian detection methods in Table 5.1. How-
ever, pedestrian detectors trained on visible images are sensitive to changes of illumination,
weather, and occlusions. These detectors are very likely to be stuck with images captured dur-
ing nighttime.
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Table 5.1: The summarization of visible pedestrian detection methods.

Feature Extractor Feature Classifier Highlight Year
Papageorgiou et al. [43] Haar wavelets SVM No motion cues 1999

Viola and Jones [52] Haar wavelets AdaBoost Cascade structure 2004
Wu et al. [55] Haar wavelets SVM Sliding window 2005
Dalal et al. [9] HOG SVM HOG descriptors 2005

Dollar et al. [11] ICF AdaBoost ICF descriptors 2009
Dollar et al. [12] ACF AdaBoost ACF descriptors 2012

Sermanet et al. [47] CNN FC Convolutional sparse coding 2013
Nam et al. [39] LDCF AdaBoost LDCF descriptors 2014

Benenson et al. [1] SCF AdaBoost SCF descriptors 2014
Zhang et al. [62] Checkerboards AdaBoost Checkerboards descriptors 2015
Tian et al. [50] CNN FC Extensive part detectors 2015

Li et al. [34] CNN FC Scale-aware mechanism 2015
Cai et al. [5] CNN FC Multiscale CNN 2016

Mao et al. [38] CNN FC Aggregating extra features 2017
Brazil et al. [4] CNN FC Segmentation supervision 2017

5.2.2 Infrared Pedestrian Detection

Infrared imaging sensors, which provide excellent visible cues during nighttime, have found
their importance for around-the-clock robotic applications, such as autonomous vehicle and
surveillance system.

Nanda et al. [40] presented a real-time pedestrian detection system that works on low quality
thermal videos. Probabilistic templates are utilized to capture the variations in human targets,
working well especially for the case when object contrast is low and body parts are missing.
Davis et al. [10] utilized a generalized template and an AdaBoosted ensemble classifier to
detect people in widely varying thermal imagery. The authors also collected a challenging
thermal pedestrian dataset (OSU-T) to test their method. Suard et al. [49] developed image
descriptors, based on histograms of oriented gradients (HOG) with a support-vector machine
(SVM) classifier, for pedestrian detection applied to stereo thermal images. This approach
achieved good results for window classification in a video sequence. Zhang et al. [59] investi-
gated the approaches derived from visible spectrum analysis for the task of thermal pedestrian
detection. The author extended two feature classes (edgelets and HOG features) and two
classification models (AdaBoost and SVM cascade) to the thermal images. Lee et al. [32] pre-
sented a nighttime part-based pedestrian detection method which divides a pedestrian into
parts for a moving vehicle with one camera and one near-infrared lighting projector. The con-
fidence of detected parts can be enhanced by analyzing the spatial relationship between every
pair of parts, and the overall pedestrian detection result is refined by a block-based segmen-
tation method. Zhao et al. [64] proposed a robust approach utilizing the shape distribution
histogram (SDH) feature and the modified sparse representation classification (MSRC) for
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Table 5.2: The summarization of infrared pedestrian detection methods.

Feature Extractor Feature Classifier Highlight Year
Nanda et al. [40] Templates Bayesian Probabilistic templates 2003

Papageorgiou et al. [10] Sobel AdaBoost Template-based method 2005
Suard et al. [49] HOG SVM Stereo infrared application 2006
Zhang et al. [59] Edgelets/HOG AdaBoost/SVM Experimental analysis 2007

Lee et al. [64] HOG SVM Near-infrared application 2015
Zhao et al. [64] SDH MSRC MSRC classifier 2015
Biswas et al. [3] LSK SVM LSK descriptors 2017
Kim et al. [29] TIR-ACF SVM TIR-ACF descriptors 2018

thermal pedestrian detection. Biswas et al. [3] proposed the multidimensional templates based
on local steering kernel (LSK) descriptors to improve the pedestrian detection accuracies in
low resolution and noisy thermal images. Kim et al. [29] presented a new thermal infrared
radiometry aggregated channel feature (TIR-ACF) to detect pedestrians in the far thermal im-
ages at night.

We summarize the above-mentioned infrared pedestrian detection methods in Table 5.2. How-
ever, false detections are frequently caused due to strong solar radiation and background
clutters in the daytime thermal images. With the development of multimodal sensing tech-
nology, it is possible to generate more stable detection results by simultaneously capturing
multimodal information (e.g., visible, thermal and depth) of the same scene, which provide
complementary information about objects of interest.

5.2.3 Multimodal Pedestrian Detection

It is experimentally demonstrated that multimodal images provide complementary infor-
mation about objects of interest. As a result, pedestrian detectors trained using multimodal
images can generate more robust detection results than using the visible or thermal images
alone.

Grassi et al. [21] proposed a novel information fusion approach to detecting pedestrians,
by determining the regions of interest in the video data through a lidar sensor and a thermal
camera. Yuan et al. [58] proposed a multispectral based pedestrian detection approach which
employs latent variable support-vector machines (L-SVMs) to train the multispectral (visible
and near-thermal) pedestrian detection model. A large-size multispectral pedestrian dataset
(KAIST) is presented by Hwang et al. [26]. The KAIST dataset contains well-aligned visi-
ble and thermal image pairs with dense pedestrian annotations. The authors further developed
a new multimodal aggregated feature (ACF+T+THOG) followed by the AdaBoost classifier
for target classification. The ACF+T+THOG concatenate the visible features generated by
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Table 5.3: The summarization of multimodal pedestrian detection methods.

Feature Extractor Feature Classifier Highlight Year
Grassi et al. [21] Invariant vectors SVM Invariant feature extraction 2011
Yuan et al. [58] HOG L-SVM NIR-RGB application 2015

Hwang et al. [26] ACF+T+THOG AdaBoost ACF+T+THOG descriptors 2015
Wagner et al. [53] CNN FC Two-stream R-CNN 2016

Liu et al. [28] CNN FC Two-stream Faster R-CNN 2016
Xu et al. [57] CNN FC Cross-modal representations 2017

König et al. [30] CNN FC+BDT Two-stream RPN 2017

ACF [12] and the thermal one generated by T+THOG, which contains the thermal image in-
tensity (T) and the thermal HOG [9] features (THOG).

Recently, DNN based approaches for visible pedestrian detection have been widely adopted to
design the multimodal pedestrian detectors. Wagner et al. [53] proposed the first application
of DNN for multimodal pedestrian detection. The detections in [26] are considered as propos-
als, which are classified with a two-stream R-CNN [19] applying concatenation fusion in the
late stage. The authors further evaluated the performance of architectures with different fu-
sion stages, and the optimal architecture is in the late fusion stage. Liu et al. [28] investigated
how to adopt the Faster R-CNN [45] model for the task of multimodal pedestrian detection
and designed four different fusion architectures in which two-stream networks are integrated
at different stages. Experimental results showed that the optimal architecture is the Halfway
Fusion model which merges two-stream networks at a high-level convolutional stage. Xu
et al. [57] designed a method to learn and transfer cross-modal deep representations in a su-
pervised manner for robust pedestrian detection against bad illumination conditions. However,
this method is based on information of visible channel only (during the testing stage) and
its performance is not comparable with ones based multispectral data (e.g., Halfway Fusion
model [28]) König et al. [30] modified the visible pedestrian detector RPN+BDT [60] to
build Fusion RPN+BDT architecture for multimodal pedestrian detection. The Fusion RPN
concatenates the two-stream RPN on the high-level convolutional stage and achieves the state-
of-the-art performance on KAIST multimodal dataset.

We summarize the mentioned multimodal pedestrian detection methods in Table 5.3. It is
worth it to mention in this chapter that our approach is definitely different from the above
methods in two aspects. Firstly, a number of feature fusion strategies for multimodal pedes-
trian detection is firstly evaluated comparing with other basic fusion schemes. Secondly, we
make use of semantic segmentation information as supervision for multimodal feature learn-
ing.
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Figure 5.4 : The architecture of two-stream deep convolutional neural networks (TDCNNs) for
multimodal feature learning and fusion. Please note that convolutional layers are represented by

green boxes, pooling layers are represented by yellow boxes, and the feature fusion layer is
represented by blue box. This figure is best seen in color.

5.3 Proposed Method

A multimodal fusion framework is presented for joint training of pedestrian detection and
segmentation supervision. It consists of three major components including feature learning/fu-
sion, pedestrian detection, and segmentation supervision. The details of each component are
provided in the following subsections.

5.3.1 Multimodal Feature Learning/Fusion

The architecture of two-stream deep convolutional neural networks (TDCNNs) for multi-
modal feature learning and fusion is illustrated in Fig. 5.4. TDCNN learn semantic feature
descriptions in the visible and thermal channels individually. The visible stream of TD-
CNN contains five convolutional layers (from Conv1-V to Conv5-V) and pooling ones (from
Pool1-V to Pool4-V), which is the same as the thermal stream of TDCNN (from Conv1-T to
Conv5-T and from Pool1-V to Pool4-V). Each stream of TDCNN takes the first five convo-
lutional layers (from Conv1 to Conv5) and pooling ones (from Pool1 to Pool4) in VGG-16 as
the backbone.

Previous researches revealed that feature fusion at a late stage can generate semantic feature
maps which are appropriate for complex high-level detection tasks [53,28,30]. On the basis
of this conclusion, the multimodal feature fusion layer is deployed after the Conv5-V and
Conv5-T layers in TDCNN to combine the feature maps generated by the visible and thermal
streams. The multimodal feature maps are generated as

m =F(v, t), (5.1)
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where F is the feature fusion function, v ∈ R
Bv×Cv×Hv×Wv and t ∈ R

Bt×Ct×Ht×Wt are
the feature maps generated by the visible and thermal streams, respectively, and m ∈
R

Bm×Cm×Hm×Wm is the multimodal feature maps. It should be noted that B, C, H and W de-
note the number of batch size, channels, heights and widths of the respective feature maps.
Considering that the feature maps generated by the visible and thermal streams are the same
size, we set Bt = Bc, Cv = Ct , Wv = Wt , Hv = Ht . Three different feature fusion functions
are considered: concatenation (Fconcat), maximization (Fmax) and summation (F sum).

Concatenation fusion. Concatenation function Fconcat is the most widely used operation
to integrate feature maps generated in visible and thermal channels [53,28,30]. mconcat =
Fconcat(v, t) stacks v and t across the individual channels c as

{
mconcat

B,2c−1,H,W = vB,c,H,W ,

mconcat
B,2c,H,W = tB,c,H,W ,

(5.2)

where c ∈ (1,2, ...,C) and m ∈ R
B×2C×H×W . Considering that the feature maps generated in

visible and thermal streams are directly stacked across feature channels using concatenation
function, the correlation of features generated in visible and thermal streams will be further
learned in subsequent convolutional layers.

Maximization fusion. mmax = Fmax(v, t) takes the maximum of v and t at the same spatial
locations h, w as

mmax
B,C,h,w = max{vB,C,h,w, tB,C,h,w}, (5.3)

where h ∈ (1,2, ...,H), w ∈ (1,2, ...,W) and m ∈ R
B×C×H×W . The maximization fusion

function is utilized to select the features which are most distinct in either the visible or ther-
mal streams.

Summation fusion. msum = F sum(p,q) computes the summation of v and t at the same spa-
tial locations h, w as

mmax
B,C,h,w = vB,C,h,w + tB,C,h,w, (5.4)

where h ∈ (1,2, ...,H), w ∈ (1,2, ...,W) and m ∈ R
B×C×H×W . The summation fusion func-

tion is utilized to integrate the feature maps generated in visible and thermal streams using
equal weighting scheme. Thus, multimodal feature maps will be stronger by combining the
weak features generated in the visible and thermal streams. The performances of multimodal
pedestrian detectors utilizing these three fusion functions (Fconcat, Fmax, F sum) are compara-
tively evaluated in Sect. 5.4.3.
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Figure 5.5 : Comparison of the baseline (A) and scene-aware (B) architectures. Please note that
ωd and ωn are the computed scene-aware weighting parameters, convolutional layers are

represented by green boxes, fusion layers are represented by blue boxes, and output layers are
represented by orange boxes. This figure is best seen in color.

5.3.2 Multimodal Pedestrian Detection

In this subsection, we design two different DNN based models with and without a scene-
aware mechanism for the task of multimodal pedestrian detection. Their overall architectures
are shown in Fig. 5.5.

5.3.2.1 Baseline DNN model

The baseline DNN model is designed based on the TDCNN. The region proposal network
(RPN) model [60] is adopted as two-stream region proposal network (TRPN) to generate
multimodal pedestrian detection results due to its superior performance for large-scale tar-
get detection. Given a pair of well-aligned multimodal images, TRPN generate numbers of
bounding boxes along with predicted scores following target classification and box regression.
The architecture of TRPN is shown in Fig. 5.5A.

Given the multimodal feature maps generated utilizing the fusion layer (Fusion-Det), TRPN
outputs classification scores (CSs) and bounding boxes (BBs) as multimodal pedestrian de-
tections. A 3 × 3 convolutional layer (Conv-Det) is designed to encode pedestrian related
features from the multimodal feature maps. Attached after the Conv-Det, two sibling 1 × 1
convolutional layers (Conv-CS and Conv-BB) are designed to generate multimodal pedestrian
detections (CS and BB). In order to train the baseline DNN model, we utilize the loss term for
detection LDet as

LDet =
∑
i∈S

LCls(ci, ĉi) + λr

∑
i∈S

ĉi ·LReg(bi, b̂i), (5.5)
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where S denotes the set of training samples, ci denotes the computed CS, bi denotes the pre-
dicted BB, Lcls denotes the loss term for classification, Lreg denotes the loss term for box
regression, and λr denotes the trade-off coefficient. The training label ĉi is set to 1 for a pos-
itive sample. Otherwise, we set ĉi = 0 for a negative sample. A training sample is considered
as a positive one in the case that the maximum intersection-over-union (IoU) ratio between
every ground-truth label and the sample is larger than a set threshold. Otherwise, the train-
ing sample is considered a negative one. In Eq. (5.5), the loss term for classification Lcls is
defined as

LCls(c, ĉ) = −ĉ · log(c) − (1 − ĉ)log(1 − c), (5.6)

and the loss term for box regression Lreg is defined as

LReg(b, b̂) =
∑

j∈{x,y,w,h}
smoothL1(bj , b̂j ), (5.7)

where b = (bx, by, bw, bh) represents the parameterized coordinates of the generated bound-
ing box, b̂ = (b̂x, b̂y, b̂w, b̂h) represents the coordinates of the bounding box label, and
smoothL1 represents the robust L1 loss function defined in [18].

5.3.2.2 Scene-aware DNN model

Pedestrian samples have significantly different multimodal characteristics in daytime and
nighttime scenes as shown in Fig. 5.6. Therefore, it is reasonable to deploy multiple scene-
based sub-networks to handle intra-class object variances. Based on this observation, we
further present a scene-aware DNN model to improve detection performance in daytime and
nighttime scenes by considering the scene information encoded in multimodal images.

For this purpose, we firstly design a simple scene prediction model to estimate the proba-
bility of being daytime scene or nighttime one. As shown in Fig. 5.7, the scene prediction
network (SPN) contains one pooling layer (SP-Pool), three continuous fully-connected layers
(SP-FC1, SP-FC2, SP-FC3), and the classification layer (Soft-max). Each pair of multimodal
images are entered into the first five convolutional layers and four pooling ones of TRPN to
extract feature maps in individual visible and thermal channels. The two-stream feature maps
are integrated utilizing the concatenate fusion layer (Concat). Inspired by the spatial pyra-
mid pooling layer which can resize the feature maps to the same spatial resolution [24], the
pooling layer SP-Pool resizes the multimodal feature maps to a fixed spatial size of 7×7 us-
ing symmetric bilinear interpolation from the nearest neighbors. Attached after the SP-FC3 is
Soft-max, which is the classification layer of the scene prediction model. The outputs of Soft-
max are ωd and ωn = (1 − ωd), which compute the probability of being day scene or night
one. We define the error term of scene prediction LSP as

LSP = −ω̂d · log(ωd) − ω̂n · log(ωn), (5.8)
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Figure 5.6 : Characteristics of multimodal pedestrian samples captured in (A) daytime and
(B) nighttime scenes. The first rows display the multimodal images of pedestrian samples. The

second rows illustrate the visualization of feature maps in the corresponding multimodal images.
The feature maps are generated utilizing the RPN [60] well trained in their corresponding

channels. It is observed that multimodal pedestrian samples have significantly different
human-related characteristics under daytime and nighttime scenes.
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Figure 5.7 : Architecture of the scene prediction network (SPN). Please note that convolutional
and fully-connected layers are represented by green boxes, pooling layers are represented by

yellow boxes, fusion layers are represented by blue boxes, classification layer is represented by an
orange box. This figure is best seen in color.

where ωd and ωn = (1 − ωd) are the predicted scene weights for daytime and nighttime,
ω̂d and ω̂n = (1 − ω̂d) are the scene labels. The ω̂d is set to 1 when the scene labels are an-
notated as daytime. Otherwise, we set ω̂d = 0.

We incorporate scene information into the baseline DNN model in order to generate more
accurate and robust results for various scene conditions. Specifically, the scene-aware two-
stream region proposal networks (STRPNs) consist of four sub-networks (D-Conv-CS, N-
Conv-CS, D-Conv-BB, and N-Conv-BB) to generate scene-aware detection results (CS and
BB) as shown in Fig. 5.5B. D-Conv-CS and N-Conv-CS generate feature maps for classi-
fication under daytime and nighttime scenes, respectively. The outputs of D-Conv-CS and
N-Conv-CS are combined utilizing the weights computed in the SPN model to produce the
scene-ware classification scores (CSs). D-Conv-BB and N-Conv-BB generate feature maps
for box regression in day and night scene conditions, respectively. The outputs of D-Conv-BB
and N-Conv-BB are integrated using the weights computed in the SPN model to calculate the
scene-ware bounding boxes (BBs). The loss term for detection Ldet is also defined based on
Eq. (5.5), while cs

i is computed as the weighted sum of classification score in daytime scene
cd
i and one in nighttime scene cn

i as

cs
i = ωd · cd

i + ωn · cn
i , (5.9)

and bs
i is the scene-aware weighted combination of bd

i and bn
i , which are calculated by D-

Conv-BB and N-Conv-BB sub-networks, respectively, as

bs
i = ωd · bd

i + ωn · bn
i . (5.10)
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Figure 5.8 : The comparison of MS-F (A), MS (B), SMS-F (C) and SMS (D) architectures. Please
note that ωd and ωn are the computed scene-aware weighting parameters, convolutional layers
are represented by green boxes, fusion layers are represented by blue boxes, and output layers

are represented by gray boxes. This figure is best seen in color.

5.3.3 Multimodal Segmentation Supervision

According to some recent research work [25,4], the performance of anchor-based object de-
tectors can be improved using the information of semantic segmentation as a strong cue.
The underlying reason is that box-based segmentation masks are able to supply additional
effective supervision to make the feature maps in the shared layers more distinctive for the
downstream object detectors. We integrate the segmentation supervision scheme with TRPN
and STRPN to obtain more accurate multimodal pedestrian detection results.

Given feature maps generated from two-stream visible and thermal channels, different seg-
mentation supervision results will be achieved by integrating the feature maps in different
levels (feature-level and decision-level). In order to explore the optimal fusion architecture
for the multimodal segmentation supervision task, we develop two different multimodal seg-
mentation supervision architectures, denoted as feature-level multimodal segmentation super-
vision (MS-F) and decision-level multimodal segmentation supervision (MS). As illustrated
in Fig. 5.8A, the MS-F contains a concatenate fusion layer (Concat), a 3×3 convolutional
layer (Conv-Seg) and the output layer (Seg). Each pair of multimodal images are entered
into the first five convolutional layers and four pooling ones of TRPN to extract feature maps
in individual visible and thermal channels. The two-stream feature maps are integrated uti-
lizing the Concat layer. The MS-F generate segmentation prediction (Seg) as a supervision
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to make the two-stream feature maps more distinctive for multimodal pedestrian detector.
In comparison, as illustrated in Fig. 5.8B, the MS utilizes two 3×3 convolutional layers
(Conv-Seg-V and Conv-Seg-T) to generate visible and thermal segmentation prediction as
the supervision to make the visible and thermal feature maps more distinctive for multimodal
pedestrian detector. The segmentation outputs of the MS is a combination of Conv-Seg-V and
Conv-Seg-T.

It is reasonable to explore whether the performance of segmentation supervision able to
be improved by integrating the scene information. Two different scene-aware multimodal
segmentation supervision architectures (SMS-F and SMS) are developed based on the ar-
chitectures of multimodal segmentation supervision models (MS-F and MS). As shown in
Fig. 5.8C–D, multimodal segmentation outputs are generated using daytime and nighttime
segmentation sub-networks (D-Seg and N-Seg) applying the scene-aware weighting mech-
anism. It should be noted that SMS-F consists of two sub-networks, while SMS consists of
four sub-networks. The performance of these four different multimodal segmentation supervi-
sion architectures (SM-F, SM, SMS-F, and SMS) are evaluated in Sect. 5.4.

The loss term of segmentation supervision is defined as

LSeg =
∑
i∈C

∑
j∈B

[−ŝj · log(ss
ij ) − (1 − ŝj ) · log(1 − ss

ij )], (5.11)

where ss
ij is the segmentation prediction, C is the segmentation streams (MS-F and SMS-

F consist of one multimodal stream while MS and SMS consist of one visible stream and
one thermal stream), B are training samples for box-based segmentation supervision. We
set ŝj = 1 if the sample is located in the region within any bounding box of ground truth.
Otherwise, we set ŝj = 0. As for the scene-aware multimodal segmentation supervision ar-
chitectures SMS-F and SMS, the scene-aware segmentation prediction ss

ij is computed by the

scene-aware weighted combination of daytime and nighttime segmentation prediction sd
ij and

sn
ij , respectively, as

ss
ij = ωd · sd

ij + ωn · sn
ij . (5.12)

The loss terms defined in Eqs. (5.7), (5.2), and (5.11) are combined to conduct multitask
learning of scene-aware pedestrian detection and segmentation supervision. The final multi-
task loss function is defined as

L = LDet + λsp ·LSP + λseg ·LSeg (5.13)

where λsp and λseg are the trade-off coefficient of loss term LSP and LSeg , respectively.
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5.4 Experimental Results and Discussion

5.4.1 Dataset and Evaluation Metric

The public KAIST multimodal pedestrian benchmark dataset [26] are utilized to evaluate our
proposed methods. The KAIST dataset consists of 50,172 well-aligned visible-thermal im-
age pairs with 13,853 pedestrian annotations in training set and 2252 image pairs with 1356
pedestrian annotations in the testing set. All the images in KAIST dataset are captured under
daytime and nighttime lighting conditions. According to the related research work [28,30], we
sample the training images every two frames. The original annotations under the “reasonable”
evaluation setting (pedestrian instances are larger than 55 pixels height and over 50% visibil-
ity) are used for quantitative evaluation. Considering that many problematic annotations (e.g.,
missed pedestrian targets and inaccurate bounding boxes) are existed in the original KAIST
testing dataset, we also utilize the improved annotations manually labeled by Liu et al. [37]
for quantitative evaluation.

The log-average miss rate (MR) proposed by Dollar et al. [12] is used as the standard eval-
uation metric to evaluate the quantitative performance of multimodal pedestrian detectors.
According to the related research work [26,28,30], a detection is considered as a true posi-
tive if the IoU ratio between the bounding boxes of the detection and any ground-truth label
is greater than 50% [26,28,30]). Unmatched detections and unmatched ground-truth labels
are considered as false positives and false negatives, respectively. The MR is computed by
averaging miss rate at nine false positives per image (FPPI) rates which are evenly spaced in
log-space from the range 10−2 to 100 [26,28,30].

5.4.2 Implementation Details

According to the related research work [60,28,30], the image-centric training framework is
applied to generate mini-batches and each mini-batch contains one pair of multimodal im-
ages and 120 randomly selected anchor boxes. In order to make the right balance between
foreground and background training samples, we set the ratio of positive and negative anchor
boxes to 1:5 in each mini-batch. The first five convolutional layers in each stream of TDCNN
(from Conv1-V to Conv5-V in the visible stream and from Conv1-T to Conv5-T in the ther-
mal one) are initialized using the weights and biases of VGG-16 [48] DNN pretrained on the
ImageNet dataset [46] in parallel. Following the RPN designed by Zhang et al. [60], other
convolutional layers are initialized with a standard Gaussian distribution. The number of
channels in SP-FC1, SP-FC2, SP-FC3 are empirically set to 512, 64, 2, respectively. We set
λr = 5 in Eq. (5.5) following [60] and λs = 1 in Eq. (5.13) according to the visible segmenta-
tion supervision method proposed by Brazil et al. [4]. All of multimodal pedestrian detectors
are trained using the Caffe deep learning framework [27] with stochastic gradient descent [65]
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Table 5.4: The quantitative comparison (MR [12]) of TRPN using
different feature fusion functions on the original KAIST testing

dataset [26].

Model All-day (%) Daytime (%) Nighttime (%)

TRPN-Concat 32.60 33.80 30.53

TRPN-Max 31.54 32.66 29.43

TRPN-Sum 30.49 31.27 28.29

Table 5.5: The quantitative comparison (MR [12]) of TRPN using
different feature fusion functions on the improved KAIST testing

dataset [37].

Model All-day (%) Daytime (%) Nighttime (%)

TRPN-Concat 21.12 20.66 22.81

TRPN-Max 19.90 18.45 23.29

TRPN-Sum 19.45 17.94 22.37

for the first two epochs in the learning rate (LR) of 0.001 and one more epoch in the LR of
0.0001. We clip gradients when the L2 norm of the back-propagation gradient is larger than
10 to avoid exploding gradient problems [44].

5.4.3 Evaluation of Multimodal Feature Fusion

In order to explore the optimal feature fusion scheme for multimodal pedestrian detection,
we compare the TRPN with different feature fusion layers. As exposed in Sect. 5.3.1, three
different feature fusion functions (concatenation, maximization, and summation) are utilized
to build the three different TRPN models (TRPN-Concat, TRPN-Max, and TRPN-Sum). The
TRPN models are trained using the loss term of detection LDet . The detection performances
of TRPN-Concat, TRPN-Max, and TRPN-Sum are quantitatively compared in Table 5.4 and
Table 5.5 using the log-average miss rate (MR) proposed by Dollar et al. [12]. In addition,
qualitative comparisons of the detection performances of the three different TRPN models are
conducted by showing some detection results in Fig. 5.9.

We can observe that the multimodal pedestrian detection performance is affected by the func-
tions of feature fusion. Our experimental comparisons show that the performance of TRPN-
Sum is better than the TRPN-Concat and TRPN-Max, resulting in lower MR on both original
and improved KAIST testing datasets. Surprisingly, the widely used fusion function (con-
catenation) to integrate feature maps generated in visible and thermal channels [53,28,30]
performs worst among the three different feature fusion functions. As described in Sect. 5.3.1,
the feature maps generated in visible and thermal streams are directly stacked across feature
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Figure 5.9 : Qualitative comparison of multimodal pedestrian detections of TRPN-Concat,
TRPN-Max, and TRPN-Sum (only displayed in the thermal images). Note that yellow BB in solid

line represents the pedestrian detections. This figure is best seen in color.

channels using concatenation function. Thus, the correlation of features generated in visible
and thermal streams will be further learned using the Conv-Det layer in the TRPN-Concat
model. As shown in Fig. 5.6, such correlation is different for daytime and nighttime mul-
timodal pedestrian characteristics. It is difficult to build up the correlation between visible
and thermal feature maps using a simple convolutional encoder (Conv-Det). On comparison,
TRPN-Max and TRPN-Sum models achieve better detection results by using either maximum
or summation function to define the correlation between visible and thermal feature maps. It
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Figure 5.10 : The architecture of SPN (A), SPN-V (B) and SPN-T (C). Please note that
convolutional and fully-connected layers are represented by green boxes, pooling layers are

represented by yellow boxes, fusion layers are represented by blue boxes, classification layer is
represented by an orange box. This figure is best seen in color.

should be noticed that the TRPN-Sum can successfully detect the pedestrian targets whose
human-related characteristics are not distinct in both visible and thermal images. Different
from the maximum function that selects the most distinct features in the visible and thermal
streams, the summation function is able to integrate the weak features generated in the visible
and thermal streams to generate a stronger multimodal one to facilitate more accurate pedes-
trian detection results.

5.4.4 Evaluation of Multimodal Pedestrian Detection Networks

The scene prediction network (SPN) is essential and fundamental in our proposed scene-
aware multimodal pedestrian detection networks. We first evaluate whether the scene pre-
diction networks (SPNs) can accurately compute the scene weights ωd and ωn = (1 − ωd),
which supply vital information to integrate the scene-aware sub-networks. The KAIST test-
ing dataset is utilized to evaluate the performance of SPN. Please note that the KAIST testing
dataset consists of 1455 image pairs captured in daytime scene conditions and 797 in night-
time. Given a pair of multimodal images, the SPN computes a daytime scene weight ωd . The
scene condition will be predicted correctly if ωd > 0.5 during daytime or ωd < 0.5 during
nighttime. In order to investigate whether visible images or thermal ones can supply the most
reliable information to predict the scene conditions, the performances of scene prediction
utilizing the feature maps generated only in the visible stream (SPN-V) or thermal one (SPN-
T) are evaluated individually. We illustrate the architectures of SPN-V, SPN-T, and SPN in
Fig. 5.10. The prediction results of these three scene prediction networks are compared in Ta-
ble 5.6.

We can observe that the SPN-V are able to generate accurate prediction of scene conditions
for daytime scenes (97.94%) and nighttime ones (97.11%). The underlying reason is that
the visible images display different brightness in daytime and nighttime scene conditions.
The scene prediction performance using SPN-T are not comparable with SPN-T (daytime
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Table 5.6: Accuracy of scene prediction
utilizing SPN-V, SPN-T, and SPN.

Daytime (%) Nighttime (%)

SPN-V 97.94 97.11

SPN-T 93.13 94.48

SPN 98.35 99.75

Figure 5.11 : Samples of false scene prediction results during (A) daytime and (B) nighttime.
When the illumination condition is not good during daytime or street lights provide good

illumination during nighttime, the SPN model will generate false prediction results.

93.13% vs. 97.94% and nighttime 94.48% vs. 97.11%). This is a reasonable result as the rel-
ative temperature between the pedestrian, and surrounding environment is not very different
in daytime and nighttime scenes. Although thermal images cannot be utilized for scene pre-
diction individually, it supplies supplementary information for the visible images to boost the
performance of scene prediction. By integrating the complementary information of visible and
thermal images, the SPN can generate more accurate prediction of scene conditions compared
with SPN-V (daytime 98.35% vs. 97.94% and nighttime 99.75% vs. 97.11%). In addition,
we show some fail cases using SPN in Fig. 5.11. The SPN may generate false scene predic-
tions when the brightness is very low in daytime or the street lights provide high illumination
in nighttime. Overall, the scene conditions can be accurately predicted utilizing the SPN by
integrating visible and thermal features.

We further evaluate whether the performance of multimodal pedestrian detector can be
boosted by applying our proposed scene-aware weighting mechanism by comparing the per-
formance of the baseline TRPN and scene-aware TRPN (STRPN) models. The loss term for
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Table 5.7: The calculated MRs of different TRPN and STRPN
models on the original KAIST testing dataset [26].

All-day (%) Daytime (%) Nighttime (%)

TRPN-Sum 30.49 31.27 28.29

STRPN-Sum 30.50 30.89 28.91

TRPN-Max 31.54 32.66 29.43

STRPN-Max 30.70 31.40 28.32

TRPN-Concat 32.60 33.80 30.53

STRPN-Concat 29.62 30.30 26.88

Table 5.8: The calculated MRs of Tdifferent TRPN and STRPN
models on the improved KAIST testing dataset [37].

All-day (%) Daytime (%) Nighttime (%)

TRPN-Sum 19.45 17.94 22.37

STRPN-Sum 17.67 17.76 18.16

TRPN-Maxn 19.90 18.45 23.29

STRPN-Max 18.40 18.15 18.69

TRPN-Concat 21.12 20.66 22.81

STRPN-Concat 17.58 17.36 17.79

scene prediction defined in Eq. (5.8) and loss term for detection defined in Eq. (5.2) are com-
bined to jointly train SPN and STRPN. Although the TRPN model is an effective framework
to integrate visible and thermal streams for robust pedestrian detection, it cannot differentiate
human-related features under daytime and nighttime scenes when generating detection re-
sults. With comparison, STRPN utilize the scene-aware weighting mechanism to adaptively
integrate multiple scene-aware sub-networks (D-Conv-CS, N-Conv-CS, and D-Conv-BB, N-
Conv-BB) to generate detection results (CS and BB).

As shown in Tables 5.7 and 5.8, the quantitative comparative results of TRPN and STRPN
are conducted using the log-average miss rate (MR) as the evaluation protocols. Applying
the scene-aware weighting mechanism, the detection performances of the STRPN are sig-
nificantly improved comparing with TRPN for all scenes on both original and improved
KAIST testing datasets. We can observe that integrating the Concat fusion scheme with a
global scene-aware mechanism, instead of a single Conv-Det layer, facilitates better learn-
ing of both human-related features and correlation between visible and thermal feature maps.
It also worth mentioning that such performance gain (TRPN-Concat 32.60% MR v.s. STRPN-
Concat 29.62% MR on the original KAIST testing dataset [26] and TRPN-Concat 21.12%
MR v.s. STRPN-Concat 17.58% MR on the improved KAIST testing dataset [37]) is achieved
at the cost of small computational overhead. Measured on a single Titan X GPU, the STRPN
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Table 5.9: Detection results (MR) of STRPN, STRPN+MS-F,
STRPN+MS, STRPN+SMS-F, and STRPN+SMS on the original

KAIST testing dataset [26].

All-day (%) Daytime (%) Nighttime (%)

STRPN 29.62 30.30 26.88

STRPN+MS-F 29.17 29.92 26.96

STRPN+MS 27.21 27.56 25.57

STRPN+SMS-F 28.51 28.98 27.52

STRPN+SMS 26.37 27.29 24.41

Table 5.10: Detection results (MR) of STRPN, STRPN+MS-F,
STRPN+MS, STRPN+SMS-F, and STRPN+SMS on the improved

KAIST testing dataset [26].

All-day (%) Daytime (%) Nighttime (%)

STRPN 17.58 17.36 17.79

STRPN+MS-F 16.54 15.83 17.28

STRPN+MS 15.88 15.01 16.45

STRPN+SMS-F 16.41 15.17 16.91

STRPN+SMS 14.95 14.67 15.72

model takes 0.24 s to process a pair of multimodal images in KAIST dataset while TRPN
needs 0.22 s. These experimental results show that the global scene information can be in-
fused into scene-aware sub-networks to boost the performance of the multimodal pedestrian
detector.

5.4.5 Evaluation of Multimodal Segmentation Supervision Networks

In this section, we investigate whether the performance of multimodal pedestrian detection
can be improved by incorporating the segmentation supervision scheme with STRPN. As
described in Sect. 5.3.3, four different multimodal segmentation supervision (MS) models
including MS-F (feature-level MS), MS (decision-level MS), SMS-F (scene-aware feature-
level MS) and SMS (scene-aware decision-level MS) are combined with STRPN to build
STRPN, STRPN+MS-F, STRPN+MS and STRPN+SMS-F and STRPN+SMS respectively.
Multimodal segmentation supervision models generate the box-based segmentation predic-
tion and supply the supervision to make the multimodal feature maps more distinctive. The
detection results (MR) of the STRPN, STRPN+MS-F, STRPN+MS and STRPN+SMS-F and
STRPN+SMS are compared in Table 5.9 and Table 5.10.

Through the joint training of segmentation supervision and pedestrian detection, all the mul-
timodal segmentation supervision models, except for STRPN+MS-F in nighttime scene,
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achieve performance gains. The reason is that semantic segmentation masks provide ad-
ditional supervision to facilitate the training of more sophisticated features to enable more
robust detection [4]. Meanwhile, we observe that the choice of fusion architectures (feature-
level or decision-level) can significantly affect the performance of multimodal pedestrian
detection results. As illustrated in Tables 5.9 and 5.10, the detection results of decision-level
multimodal segmentation supervision models (MS and SMS) are much better than the feature-
level models (MS-F and SMS-F). The reason is that decision-level models can generate more
effective supervision information by infusing visible and thermal segmentation information
directly for learning human-related features for multimodal pedestrian detection. It will be
our future research work to explore the optimal segmentation fusion scheme for the effec-
tive supervision of multimodal pedestrian detection. More importantly, we can observe that
the performance of segmentation supervision can be significantly improved by applying the
scene-aware weighting mechanism. More accurate segmentation prediction can be generated
by adaptively integrating the scene-aware segmentation sub-networks. Some comparative
segmentation predictions utilizing MS-F, MS, SMS-F, and SMS are shown in Fig. 5.12. The
STRPN+SMS can generate more accurate segmentation predictions which supply better
supervision information to facilitate the training of human-related features for multimodal
pedestrian detection task.

In order to show the improvements gains achieved by different scene-aware modules, we vi-
sualize the feature maps of TRPN, STRPN, and STRPN+SMS in Fig. 5.13. It can be observed
that STRPN can generate more distinctive human-related features by incorporating scene-
aware weighting mechanism into TRPN for better learning of multimodal human-related
features. More importantly, further improvements can be achieved by STRPN+SMS through
the scene-aware segmentation modules to supervise the learning of multimodal human-related
features.

5.4.6 Comparison with State-of-the-Art Multimodal Pedestrian Detection Methods

We compare the designed STRPN and STRPN+SMS models with the current state-of-the-
art multimodal pedestrian detection algorithms: ACF+T+THOG [26], Halfway Fusion [28]
and Fusion RPN+BDT [30]. The log–log figure of MR vs. FPPI is plotted for performance
comparison in Fig. 5.14. It can be observed that our proposed STRPN+SMS achieves the best
detection accuracy (26.37% MR on the original KAIST testing dataset [26] and 14.95% MR
on the improved KAIST testing dataset [37]) in all-day scenes (see Fig. 5.15). The perfor-
mance gain on the improved KAIST testing dataset achieves a relative improvement rate of
18% compared with the best of current state-of-the-art algorithm Fusion RPN+BDT (18.23%
MR on the improved KAIST testing dataset [37]). In addition, the detection performance of
our proposed STRPN is comparable with the current state-of-art models. Furthermore, some
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Figure 5.12 : Examples of pedestrian segmentation prediction utilizing four different multimodal
segmentation supervision models. (A) Daytime. (B) Nighttime. The first two rows in (A) and (B)

illustrate the visible and thermal images, respectively. Other rows in (A) and (B) illustrate the
pedestrian segmentation prediction results of MS-F, MS, SMS-F, and SMS respectively. Please

note that green BB presents pedestrian labels. This figure is best seen in color.
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Figure 5.13 : Examples of multimodal pedestrian feature maps which are promoted by
scene-aware mechanism captured in (A) daytime and (B) nighttime scenes. The first two columns

in (A) and (B) show the pictures of visible and thermal pedestrian instances, respectively. The
third to the fifth columns in (A) and (B) show the feature map visualizations generated from

TRPN, STRPN, and STRPN+SMS respectively. It is noticed that the feature maps of a multimodal
pedestrian become more distinct by using our proposed scene-aware modules (STRPN and

SMS).
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Figure 5.14 : Comparisons of the original KAIST test dataset under the reasonable evaluation
setting during all-day (A), daytime (B), and nighttime (C) (legends indicate MR).

Figure 5.15 : Comparisons of the improved KAIST test dataset under the reasonable evaluation
setting during all-day (A), daytime (B), and nighttime (C) (legends indicate MR).

detection results of the Fusion RPN+BDT and STRPN+SMS are visualized for qualitative
comparison as shown in Fig. 5.16. We can observe that our proposed STRPN+SMS model
can generate more accurate detection results in both daytime and nighttime scene conditions.

The computation efficiency of STRPN, STRPN+SMS and the current state-of-the-art meth-
ods [28,30] are illustrated in Table 5.11. Every method is executed 1000 times to compute
the averaged runtime. We can observe that our proposed STRPN+SMS results in least run-
time comparing with the current state-of-the-art methods [28,30] (STRPN+SMS 0.25 s vs.



Multimodal Fusion Architectures for Pedestrian Detection 129

Figure 5.16 : Comparison with the current state-of-the-art multimodal pedestrian detector
(Fusion RPN+BDT). The first column shows the multimodal images along with the ground truth

(displayed in the visible image) and the other columns show the detection results of Fusion
RPN+BDT, STRPN, and STRPN+SMS (displayed in the thermal image). Please note that green
BBs in solid line show positive labels, green BBs in dashed line show ignore ones, yellow BB in
solid line show true positives, and red BB show false positives. This figure is best seen in color.

Halfway Fusion 0.40 s vs. Fusion RPN+BDT 0.80 s). The reason is that both the extra Fast R-

CNN module [18] utilized in the Halfway Fusion model and the boosted decision trees [14]

algorithm utilized in Fusion RPN+BDT model significantly decrease the computation ef-

ficiency. It should be noticed that our proposed scene-aware architectures can significantly
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Table 5.11: Comprehensive comparison of STRPN and
STRPN+SMS with state-of-the-art multimodal pedestrian

detectors [28,30] on the improved KAIST testing dataset. A single
Titan X GPU is used to evaluate the computation efficiency. Note

that DL represents deep learning and BDT represents boosted
decision trees [14].

MR (%) Runtime (s) Method

Halfway Fusion [28] 25.72 0.40 DL

Fusion RPN+BDT [30] 18.23 0.80 DL+BDT

TRPN 21.12 0.22 DL

STRPN 17.58 0.24 DL

STRPN+SMS 14.95 0.25 DL

boost the multimodal pedestrian detection results while only cause a small computational
overhead (TRPN 0.24 s vs. STRPN 0.24 s vs. STRPN+SMS 0.25 s).

5.5 Conclusion

In this chapter, we present a new multimodal pedestrian detection method based on multi-
task learning of scene-aware target detection and segmentation supervision. To achieve better
learning of both human-related features and correlation between visible and thermal feature
maps, we propose a feature fusion scheme utilizing the concatenation with a global weighting
scene-aware mechanism. Experimental results illustrate that multimodal pedestrian detections
can be improved by applying our proposed scene-aware weighting mechanism. Moreover, we
design four different multimodal segmentation supervision architectures and conclude that
scene-aware decision-level multimodal segmentation (SMS) module can generate the most
accurate prediction as supervision for visual feature learning. Experimental evaluation on pub-
lic KAIST benchmark shows that our method achieves the most accurate results with least
runtime compared with the current state-of-the-art multimodal pedestrian detectors.
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