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A B S T R A C T

Active infrared thermography is a safe, fast, and low-cost solution for subsurface defects inspection, providing
quality control in many industrial production tasks. In this paper, we explore deep learning-based approaches
to analyze lock-in thermography image sequences for non-destructive testing and evaluation (NDT&E) of sub-
surface defects. Different from most existing Convolutional Neural Network (CNN) models that directly classify
individual regions/pixels as defective and non-defective ones, we present a novel two-stream CNN architecture
to extract/compare features in a pair of 1D thermal signal sequences for accurate classification/differentiation
of defective and non-defective regions. In this manner, we can significantly increase the size of the training data
by pairing two individually captured 1D thermal signals, thereby greatly easing the requirement for collecting
a large number of thermal sequences of specimens with defects to train deep CNN models. Moreover, we
experimentally investigate a number of network alternatives, identifying the optimal fusion scheme/stage for
differentiating the thermal behaviors of defective and non-defective regions. Experimental results demonstrate
that our proposed method, directly learning how to construct feature representations from a large number
of real-captured thermal signal pairs, outperforms the well-established lock-in thermography data processing
techniques on specimens made of different materials and at various excitation frequencies.

1. Introduction

Hidden defects such as delaminations, disbonds, cracks, and sub-
surface corrosion will adversely decrease strength, plasticity, and fa-
tigue resistance of materials (e.g., steel, aluminum alloy, or carbon
fiber-reinforced polymer). Fast and accurate solutions for internal de-
fect inspection are important in many industrial production tasks,
performing quality control of final products and eliminating potential
threats to human safety. In the recent years, many NDT&E techniques
including X-rays [1], ultrasound [2], vibration analysis [3], guided-
wave [4], holographic interferometry [5], image speckle processing [6]
and infrared thermography [7] have been proposed for inspection
of internal defects and assessment of structural integrity of materi-
als. The ultrasonic C-scanning is capable of accurately depicting the
characteristics of the defects (e.g., sizes, depths, categories), and is typ-
ically utilized as the standard NDT&E technique to assess the internal
quality of materials. However, it is expensive, labor-intensive, and time-
consuming to deploy C-scanning or X-rays to perform diverse routine
maintenance activities on a daily basis.
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Compared with the classic NDT&E techniques (ultrasonic or X-
rays), active infrared thermography provides a safe, fast, and low-
cost solution for subsurface defects inspection of large structures. Ac-
tive thermography techniques typically apply external energy sources
(e.g., flashlights or halogen lamps) to induce a heat flux to the surface
of the specimen. Lock-in thermography (LT) and pulsed thermography
(PT) are the most used active thermography techniques. LT typically
sets up halogen lamps to generate modulated heat waves for periodic
heating of specimens, while PT uses high power flashlights to provide a
heat pulse to the specimen surface. A detailed comparison of LT and PT
techniques is provided in references [8]. In this paper, we only focused
our investigations on the LT technique. Subsurface defects will incur
local barriers during the heat propagation and thus cause abnormal
temperature patterns at the surface of the specimen, which can be
detected using a thermal camera (e.g., 8–14 μm uncooled long-wave
infrared camera).

After capturing a sequence of raw infrared images, it is critically
important to develop signal processing methods that can effectively
detect and/or characterize subsurface defects in the presence of severe
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Fig. 1. An illustration of our proposed method. Different from most existing CNN models that directly classify individual regions/pixels as defective and non-defective ones, a
novel two-stream CNN model is proposed for accurate classification/differentiation of defective and non-defective regions via similarity comparison of pairs of 1D thermal signal
sequences.

Fixed Pattern Noise (FPN) and non-uniform heating effects. In the
past decades, a wide variety of signal processing techniques have
been proposed for active thermography NDT&E. It is reported in the
literature that the phase information remains relatively independent of
local heating conditions and less sensitive to noise disturbances [7,9,
10]. Moreover, the analysis based on phase information allows deeper
penetration into the material than the ones based on the amplitude
signals [7]. Therefore, a standard technique is to extract the phase
information in LT image sequences using the Four-point method [11,
12] or discrete Fourier transformation method (DFT) [13,14]. Marinetti
et al. and Rajic et al. successfully applied Principal component analysis
(PCA), which is a well-known technique of multivariate linear data
analysis, to thermal image sequences to enhance the thermal contrast
between defects and non-defective areas [15,16]. However, the perfor-
mance of the techniques mentioned above heavily depends on how well
the extracted features (e.g., phase information or principal component)
can characterize the abnormal thermal behaviors of subsurface defects.
It is not a trivial task to construct/select the optimal feature representa-
tions for defect detection tasks in the presence of non-uniform heating,
severe noise disturbance, and surface emissivity variations.

Recently, Convolutional Neural Network (CNN) models have sig-
nificantly boosted the performance of various machine vision tasks
including object detection [17,18], image segmentation [19] and tar-
get recognition [20]. Given a number of training samples, CNNs can
automatically construct high-level representation by assembling the
extracted low-level features. For instance, Simonyan et al. presented
a very deep CNN model (VGG), which is commonly utilized as a
backbone architecture for various computer vision tasks [18]. He et al.
proposed a novel residual architecture to improve the training of very
deep CNN models and achieve improved performance by increasing
the depth of networks [17]. Moreover, some 3D CNN architectures
have been proposed to extend the dimension of input data from 2D to
3D, processing video sequences for action recognition [21,22] or target
detection [23].

Although CNN-based models have been successfully applied to solve
many challenging image/signal processing tasks, very limited deep
learning-based methods have been proposed to analyze thermal signal
sequences for active thermography NDT&E. The major challenge is
twofold. First, subsurface defects in materials typically cause abnormal
thermal behaviors in individual video sequences of hundreds of image
frames. Therefore, it is not applicable to fine-tune the pre-trained CNN
models [17,18,24] working on single images. Moreover, it is extremely
time-consuming to build a large-scale defect video dataset to train
deep CNN models. Second, a complete LT experiment typically captures
hundreds of frames (covering at least a periodical heating circle) to
calculate the phase information robustly [7,11]. To handle such large
video data, CNN models typically contain a large number of network
parameters and are too slow for routine quality check tasks.

In this paper, we present a deep learning-based approach to pro-
cess LT image sequences for NDT&E of subsurface defects in different

materials and at different excitation frequencies. Different from most
existing CNN models that directly classify individual regions/pixels as
defective and non-defective ones [25–27], a novel two-stream CNN
architecture is proposed for accurate classification/differentiation of
defective and non-defective regions via extracting/comparing features
in a pair of 1D thermal signal sequences. In this manner, we can signifi-
cantly increase the size of the training data by pairing two individually
captured 1D thermal signals, thereby greatly ease the requirement for
collecting a large number of thermal sequences of specimens with
defects to train deep CNN models. Given thermal signal sequences
captured at thousands of pixels, the proposed two-stream CNN model
directly learns different thermal patterns/features presented by defec-
tive and non-defective regions instead of being hand-crafted before [11,
14–16]. Moreover, we experimentally investigate a number of fea-
tures/signals fusion alternatives (both fusion stages and functions) in an
attempt to identify the optimal fusion scheme to perform the similarity
comparison of two individual 1D thermal signals for nondestructive
subsurface defect detection. Systematic evaluations are performed on
specimens made of different materials (Q235 steel, aluminum alloy,
and carbon fiber-reinforced polymer) at various excitation frequencies.
Experimental results show that our proposed method outperforms the
well-established LT data processing techniques, both qualitatively and
quantitatively. This light-weight CNN model can process a 500-frame
thermal image sequence within 60 s on a single NVIDIA Geforce Titan
X GPU to facilitate routine quality inspection tasks. The contributions
of this paper are summarized as follows:

(1) We formulate the subsurface defect NDT&E problem as a similar-
ity comparison problem. To this end, a novel two-stream CNN model is
presented to extract/compare features in a pair of 1D thermal signal
sequences for accurate classification/differentiation of defective and
non-defective regions. A noticeable advantage is that the size of the
training data can be significantly increased by pairing two individually
captured 1D thermal signals, thereby greatly easing the requirement for
collecting a large-scale thermal video dataset to train deep CNN models.

(2) We experimentally evaluate the performance of architectures
incorporating different fusion stages and functions, providing feasible
design options to build up alternative CNN models for differentiating
the thermal behaviors of defective and non-defective regions. Experi-
mental results reveal that the CNN model based on middle-stage fusion
generally performs better than alternatives based on early or late-stage
fusion. Moreover, it is observed that the selection of fusion functions
significantly affects the performance of subsurface defect detection,
and is dependent on the choice of the fusion stage of two-stream
signals/features.

(3) Our built-from-scratch model is trained using thousands of 1D
thermal signal sequences captured at defective and non-defective ar-
eas/pixels without resorting to manually-designed features. Compared
with the well-established LT data processing techniques [11,14–16],
it requires no user-specific parameters or selection of the principal
components and produces superior defect detection results in various
materials at different frequencies both qualitatively and quantitatively.
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The rest of this paper is organized as follows. Section 2 presents
the details of LT experiments and the proposed CNN-based model for
processing LT image sequences. Section 3 provides the performance
analysis of different features/signals fusion alternatives and experi-
mental comparison with other LT data processing solutions. Finally,
Section 4 concludes the paper.

2. Methodology

After capturing raw infrared images of a specimen that contains
subsurface defects, we aim to develop signal processing methods for
effectively detecting and/or characterizing subsurface defects in the
presence of non-uniform heating, FPN disturbances, and surface emis-
sivity variations. Note it is time-consuming to capture a large-scale
video dataset of specimens with defects in LT experiments. As a re-
sult, it is challenging to train deep CNN models that directly clas-
sify individual regions/pixels as defective and non-defective ones. In
this paper, we propose a novel two-stream CNN architecture to ex-
tract/compare features in a pair of 1D thermal signal sequences for
accurate classification/differentiation of defective and non-defective
regions, as illustrated in Fig. 1. By pairing two individually captured
1D thermal signals, we can significantly increase the size of the training
data to train deep CNN models. Our proposed method directly learns
how to construct feature representations from a large number of real-
captured thermal data, therefore it can implicitly take into account
various types of disturbances during LT experiments (e.g., non-uniform
heating, FPNs, and material/emissivity variations). Moreover, we ex-
perimentally investigate a number of network alternatives (performing
signal/feature fusion at different stages and using different fusion func-
tions) in an attempt to identify the feasible fusion schemes to process
two-stream thermal signals for differentiating the thermal behaviors of
defective and non-defective regions.

2.1. LT data acquisition system and specimens

The hardware configuration of the LT data acquisition system is
illustrated in Fig. 2. Two 1000 W halogen lamps (the peak power is
∼1500 W) and a signal modulator are utilized to generate sinusoidal
waves of different frequencies (0.025, 0.05, 0.075, and 0.1 Hz) for
heating specimens. The specimens are placed approximately 80 cm
in front of the halogen lamps. A Xenics Gobi 640 long-wave infrared
(LWIR) camera (working spectral band is 8–14 μm) is utilized to
capture thermal sequences on the surfaces of specimens. The resolution
of the infrared camera is 640 × 480 pixels, and its frame rate is 50
fps. The Noise Equivalent Temperature Difference (NETD) of this LWIR
camera is 50mK at 30 ◦C with F/1 lens.

In total, we prepare six specimens using three different materials,
including steel (Q235), aluminum alloy (Al), and Carbon Fiber Re-
inforced Polymer (CFRP). The size of a specimen is 300 × 300 mm,
and its thickness is 4 mm. Note these specimens are manufactured
and painted individually, and they present different thermal patterns
during LT experiments. Three specimens (one Q235, Al, and CFRP
sample each) are used to generate thermal signal sequences for training
the CNN model while the others are used for testing. As illustrated
in Fig. 3, the simulated defects are 25 bottom flat holes of different
diameters (20, 15, 10, 5 and 2 mm) which are manufactured at various
depths (1.5, 1.2, 1, 0.8 and 0.5 mm). Based on a single specimen,
we can capture thermal images of defects with different sizes at the
same depth (e.g., 5 mm and 10 mm circular defects both at 1 mm
depth) and the ones with the same size at different depths (e.g., 5 mm
circular defects at 1 and 1.5 mm depths). For each specimen, we set
four different excitation frequencies at 0.1, 0.075, 0.05, and 0.025 Hz
and capture LT image sequences. In our experiments, we recorded
24 individual thermal video sequences (on six specimens using four
different excitation frequencies), each of which contains 2000 thermal
images. Note a minimum 2000 frames are required to cover a complete
periodic heating process (the frame rate of the LWIR camera is 50 fps)
for the LT experiment using the lowest frequency (0.025 Hz).

Fig. 2. The hardware configuration of the LT data acquisition system.

Fig. 3. The specimens used in LT experiments. Left: The schematic sketch of a
specimen. Right: Front/rear sides of a CFRP specimen with simulated defects (25 bottom
flat holes of different diameters and at various depths).

2.2. Thermal data pre-processing

In LT experiments, the periodical heating process of target spec-
imens typically requires a few minutes for the surface temperature
reaching the steady-state [28]. To speed up the data acquisition pro-
cess, we start capturing infrared images after heating the specimens
for 10 s. After capturing sequences of raw thermal signals, we firstly
applied a second-order polynomial model to fit the time-varying surface
temperatures at individual pixels. The pixel-wise fitted data is sub-
tracted from the raw thermal images to compensate for the increasing
trend in the surface temperature due to the dc component of the
heating [29,30]. Then, we normalized all the data within a thermal
image sequence to the range of 0 to 1. Finally, we decreased the frame
number of each video sequence from 2000 to 500 through temporal
downsampling to improve the computational efficiency of LT data
analysis without sacrificing classification accuracy.

The square-size specimens are covered in an image region of 380 ×
380 pixels. The total numbers of defective and no-defective pixels are
∼8K and ∼130K, respectively. We uniformly selected a number of de-
fective (6500) and non-defective (13,000) pixels in the captured images
by referring to the location of pre-defined defects in specimens. Then
we randomly paired thermal sequences captured at defective/non-
defective pixels to generate training data with ground-truth labels.
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Fig. 4. Network architectures of our proposed TS-LTS model. Our TS-LTS contains three major parts: feature extraction, feature fusion, and similarity prediction. The detailed
configurations of individual layers in the TS-LTS model are shown in Table 1.

Table 1
The detailed configurations of individual layers in the TS-LTS model. The filter
parameters are indicated as 𝐶 × 𝐻 × 𝑊 where 𝐶 is the channel number, 𝐻 is the
kernel height, and 𝑊 is the kernel width.

Layers Kernel size Output size

Input 1 × 500
Conv1-a,b 4 × 1 × 15 4 × 1 × 500
Pooling1-a,b 1 × 5 4 × 1 × 100
Conv2-a,b 4 × 1 × 15 4 × 1 × 100
Pooling2-a,b 1 × 2 4 × 1 × 50
Conv3 4 × 1 × 7 4 × 1 × 50
Pooling3 1 × 2 4 × 1 × 25
Conv4 8 × 1 × 7 8 × 1 × 25
Pooling4 1 × 2 8 × 1 × 13
Conv5 16 × 1 × 7 16 × 1 × 13
FC1 32 32
FC2 1 1

More specifically, we assigned a positive label for a pair of thermal se-
quences if they are captured at two pixels of the same classes (e.g., both
defective or non-defective pixels). In comparison, we assigned a nega-
tive label for two signals if they are captured at a defective pixel and
a non-defective one. In this manner, we can significantly increase the
size of the training data by pairing individually captured 1D thermal
signals. In total, we generate 3,271,680 pairs of thermal signals with
equal numbers of positive and negative labels for training deep CNN
models.

2.3. Architecture

As illustrated in Fig. 4, we design a two-stream CNN model to
process LT image sequences (TS-LTS) for NDT&E of subsurface defects
in different materials. TS-LTS model consists of three major processing
modules, including (1) feature extraction, (2) feature fusion, and (3)
similarity prediction. The detailed configurations of individual layers
are shown in Table 1. Given thermal signals captured at thousands of
defective and non-defective pixels, the TS-LTS model learns how to gen-
erate the optimal feature representation to characterize/differentiate
thermal behaviors of defective and non-defective regions.

Feature extraction: A two-stream feature extraction module is
deployed to extract feature maps in a pair of 1D LT sequences and
reduce the dimension of input signals. It consists of a number of
stacked convolutional, normalization/activation, and pooling layers
with shared parameters. Here we use convolutional layers with kernels
of large sizes to handle the long 1D thermal signals (1 × 500). In
our experiment, the kernel sizes of two convolutional layers are set
to 15. The Batch Normalization (BN) operation is deployed before
every activation function layer to normalize the means and variances

of each layer’s inputs, and its transformation parameters are adaptively
learned during the training stage. ReLU activation function is utilized
to embed more nonlinear terms into the network. Finally, we use two
pooling layers (the kernel sizes are set to 5 and 2 respectively) to reduce
the size of the input signals, computing the compact yet distinctive
representations for individual 1D thermal signals.

Feature fusion: A fusion layer is deployed after the two-stream
feature extraction module to integrate the semantic feature maps com-
puted on two individual channels. Here we consider three different
fusion functions including 𝑓 cat (concatenation fusion), 𝑓max (maximiza-
tion fusion) and 𝑓 sum (summation fusion) [31–33]. Detailed compar-
isons of these three fusion functions are provided in Section 3.2. Given
the channel-wise combined features, a number of convolutional and
pooling layers are subsequently deployed to compute the optimal fused
feature map for the following similarity comparison task.

Similarity prediction: The output of the feature fusion module
is then fed to the similarity prediction module. It contains two fully
connected linear decision layers and computes a single value output to
predict the similarity level between two different thermal signals. The
predicted score is compared with the ground-truth labels through the
𝐿2 loss, and the learning objective function is defined as

 = 𝜆
2
‖𝜔‖22 +

1
2𝑁

𝑁
∑

𝑖=1

‖

‖

𝑦𝑖 − 𝑜𝑖‖‖
2
2 , (1)

where 𝜔 are the parameters of the proposed TS-LTS model, and 𝜆 is
the weight decay parameter to avoid data overfitting. For 𝑁 pairs of
training data, 𝑜𝑖 is the 𝑖th predictions of the TS-LTS model, and 𝑦𝑖 is
its corresponding ground-truth label manually set 0 or 1. The TS-LTS
model is trained in a strongly supervised manner by minimizing the
loss function . During the testing phase, we randomly selected 20
reference pixels at different locations in an image. For each reference
pixel, we associated it with the others and computed the sum of their
similarity scores. Because of the low probability of defects occurrence,
we use the reference pixel with the maximal summed similarity score
as the reference non-defective pixel and compute its similarity levels
with other pixels.

2.4. Fusion alternatives

In this section, we investigate a number of features/signals fu-
sion alternatives (fusion functions and stages) in an attempt to iden-
tify feasible design options for comparing two individual 1D thermal
signals.

Based on some commonly used CNN architectures for tracking/
comparing 2D image patches (i.e., the Siamese and 2-channel net-
works [32,34]), we design three different architectures which perform
feature/signal fusions at different stages as illustrated in Fig. 5. In
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Fig. 5. The CNN architectures implementing different fusion schemes. (a) Early-stage fusion, (b) Late-stage fusion, and (c) Middle-stage fusion. Note that the blue blocks represent
the input layers, the red blocks represent the convolutional and ReLU layers, the gray blocks represent the pooling layers, the purple blocks represent fusion layers, and the yellow
blocks represent the fully connected layers. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

the first architecture (Fig. 5(a)), we directly combine two individual
thermal signals without performing feature extraction (early-stage fu-
sion) and then feed the 2-channel signal to the following convolutional
layers to compute semantic feature maps for similarity prediction. In
comparison, two branches of convolutional layers sharing the same
parameters are deployed in the second architecture to extract semantic
features in two individual channels (Fig. 5(b)). Then the individually
extracted features are combined to generate the final prediction (late-
stage fusion). Fig. 5(c) shows the architecture of our proposed TS-LTS.
Different from the first and second architectures using the early and
late fusion strategies, TS-LTS puts a fusion layer after a number of
convolutional layers to combine the feature maps computed on two
individual channels (middle-stage fusion). Moreover, a number of con-
volutional layers are utilized to fine-tune the channel-wise combined
features before predicting similarity scores.

Moreover, we consider three different fusion functions (𝑓 cat, 𝑓max

and 𝑓 sum) which have different working principles and thus lead to dif-
ferent detection performances. The concatenation fusion function 𝑓 cat

stacks two-stream feature maps 𝐩 and 𝐪 at the same spatial locations
but across the feature channels. In comparison, the maximization fusion
function 𝑓max outputs the maximum response of feature maps 𝐩 and 𝐪
at the same spatial locations and in the same channel. Similarly, the
summation fusion function 𝑓 sum calculates the sum of feature maps 𝐩
and 𝐪 at the same spatial locations and in the same channel, combining
the two-stream feature maps using equal weights.

For a fair comparison, we set the number of convolutional layers
and kernel sizes to the same values for CNN architectures incorporating
different fusion stages and functions. We will experimentally evaluate
nine different design combinations (incorporating three different fusion
stages and three different fusion function) and discuss the best scheme
to perform features/signals fusion to achieve high-accuracy similarity
prediction of two 1D thermal signals in Section 3.2.

3. Experiments and results

3.1. Implementation details

The publicly available Caffe platform is used for the proposed CNN
model implementation [35]. We use 3,271,680 pairs for model training,
and the batch size is set to 64. The maximum training iteration is
set to 200,000. The learning rate 𝐿𝑅 is initially set to 0.01 and is
reduced using the step strategy, updating 𝐿𝑅 by a 0.1 decreasing factor
after 50,000 iterations. The training process is performed using the
SGD training policy with momentum 0.9 and weight decay 0.0005.
The momentum and weight decay are fixed during the entire training
process. The proposed model is trained on a NVIDIA TITAN X GPU (12G
memory) within 30 min.

3.2. Performance analysis

In this section, we set up experiments to evaluate the performance
of CNN models based on different two-steam features/signals fusion
alternatives (both fusion stages and functions). In total, we consider
nine different design combinations which incorporate three different
fusion stages and three different fusion function. Note the number of
convolutional layers and kernel sizes are set to the same values for
all three different architectures. The only difference among them is
that the signal/feature fusion is performed in different stages and using
different functions in CNN models. We train all models in a strongly
supervised manner using the loss function defined in Eq. (1).

We adopt the global contrast index (𝐶𝐺) between defective (𝐷𝑓 )
and non-defective (𝑁 − 𝐷𝑓 ) regions to quantitatively evaluate the
detection results of different models [10,36]. The 𝐶𝐺 index computes
the difference between all defective pixels and non-defective pixels in
an image and then divides the value by the background noise (e.g., the
standard deviation of the background pixels) as

𝐶𝐺 =
|

|

|

𝑚𝑒𝑎𝑛
(

𝑆𝐷𝑓
)

− 𝑚𝑒𝑎𝑛
(

𝑆𝑁−𝐷𝑓
)

|

|

|

𝑠𝑡𝑑
(

𝑆𝑁−𝐷𝑓
) , (2)

where 𝑆𝐷𝑓 and 𝑆𝑁−𝐷𝑓 are the values of the defective and non-defective
pixels, respectively. Note higher 𝐶𝐺 index indicates a more distinctive
contrast between defects and the background.

The performance (𝐶𝐺 index [10,36]) of CNN models incorporating
different fusion schemes are quantitatively compared in Table 2. It is
observed that the selection of signal/feature fusion stages and functions
significantly affects the performance of subsurface defect detection.
We made two important observations. Firstly, the proposed TS-LTS
model (based on the middle-stage fusion) performs generally better
than the CNN models incorporating early or late fusion schemes by
achieving higher 𝐶𝐺 values for different materials and at various ex-
citation frequencies. The experimental results suggest that it is more
suitable to firstly convert raw thermal signals to feature represen-
tations in individual channels and then perform feature-level fusion
for comparing the similarity of two 1D thermal signals. Secondly, it
is critically important to select the appropriate fusion functions for
architectures that perform feature/signal fusions at different stages.
For instance, the concatenation fusion function 𝑓 cat works well for
architectures incorporating either early or middle stage fusion schemes
but did not produce satisfactory results for the CNN model based on
the late-stage fusion. Given the two-stream semantic features computed
in late convolutional stages, it is better to identify the more distinct
ones through the maximization fusion function (𝑓max) for the similarity
prediction.

3.3. Comparisons with other LT data processing techniques

We compare the proposed TS-LTS model with well-established LT
data analysis techniques, including the Four-point [11], DFT [13,14],
and PCA [15,16] methods.
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Fig. 6. Qualitative comparison of different LT data analysis techniques on a specimen made of aluminum alloy at four excitation frequencies (0.025, 0.05, 0.075, and 0.1 Hz).
All images are normalized to the 0–1 range for visualization.

Table 2
Quantitative comparison (global contrast index 𝐶𝐺 [10,36]) of CNN models which perform feature/signals fusion in different stages (early,
middle, and late) and using different fusion functions (𝑓 sum, 𝑓max, and 𝑓 cat). The best results are highlighted in bold.
Materials Frequency (𝐻𝑧) Early Fusion Late Fusion Middle Fusion

𝑓 sum 𝑓max 𝑓 cat 𝑓 sum 𝑓max 𝑓 cat 𝑓 sum 𝑓max 𝑓 cat

Al

0.025 0.2798 0.2943 1.2110 0.2790 1.2379 0.0215 1.4657 0.4514 1.5887
0.05 0.1359 0.6043 2.3800 0.0925 2.0709 0.1730 2.0181 2.0111 2.2169
0.075 0.1642 0.8451 1.3221 0.8303 2.0897 0.0484 2.1363 2.3969 2.9570
0.1 0.1127 0.4107 1.3753 0.9250 1.7868 0.0334 1.2654 1.9880 2.5268

Q235

0.025 0.2102 0.4772 1.2822 1.0910 1.3228 0.5229 2.1806 1.9901 3.1886
0.05 1.9533 2.7739 2.1958 0.4495 2.9495 0.6600 4.1505 4.9652 5.0440
0.075 2.3480 3.5068 3.7097 1.6127 3.6364 0.9955 4.4956 3.3001 6.5652
0.1 2.3135 3.8060 5.1393 0.4861 3.7772 0.4293 3.0931 4.0047 5.7612

CFRP

0.025 2.9486 2.6894 1.6298 1.7241 3.0321 0.8826 2.7007 2.6035 4.5238
0.05 4.0327 4.5649 3.8356 0.5481 6.2490 0.1368 6.5712 4.0242 7.1299
0.075 2.6450 3.1114 4.4915 1.5148 5.1927 0.1368 5.6409 5.5297 8.0582
0.1 1.2772 1.6655 4.3467 0.4669 3.4182 0.9507 4.5032 3.3559 6.5646

Four-point method selects four equidistant data points 𝑆1, 𝑆2, 𝑆3,
𝑆4 in a thermal wave signal 𝐼 and computes the magnitude (𝐴) and
phase (𝜑) information of this pixel as

𝐴 =
√

(𝑆3 − 𝑆1)
2 + (𝑆4 − 𝑆2)

2, (3)

𝜑 = arctan
(

𝑆3 − 𝑆1
𝑆4 − 𝑆2

)

. (4)

DFT method transfers the 1D thermal wave signal 𝐼 to a real part
(𝑅𝑒) and an imaginary part (𝐼𝑚) and calculates the amplitude and
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Fig. 7. Qualitative comparison of different LT data analysis techniques on a specimen made of Q235 steel at four excitation frequencies (0.025, 0.05, 0.075, and 0.1 Hz). All
images are normalized to the 0–1 range for visualization.

phase information as

𝐴 =
√

𝑅𝑒2 + 𝐼𝑚2, (5)

𝜑 = arctan
( 𝐼𝑚
𝑅𝑒

)

. (6)

Note both Four-point and DFT methods make use of the computed
phase data (𝜑), which remains relatively independent of local heating
conditions and less sensitive to noise disturbances [7,9], for defect
detection/characterization.

PCA method converts the 3D array (LT image sequences) to a 2D
matrix 𝐴 by reshaping pixels of each 2D image frame to a 1D column
vector. And the scatter matrix 𝑆 can be got by

𝑆 = (𝐴 − 𝐴𝑚𝑒𝑎𝑛)(𝐴 − 𝐴𝑚𝑒𝑎𝑛)𝑇 (7)

Then it performs singular value decomposition (SVD) of the trans-
formed 2D matrix 𝑆 as

𝑆 = 𝑈𝐷𝑈𝑇 , (8)

where 𝑈 and 𝐷 are the eigenvector and diagonal matrices of 𝐴. Then
a principal eigenvector (𝑈𝑝) is selected from the matrix 𝑈 to compute
the output as

𝐴′ = 𝑈𝑇
𝑝 𝐴, (9)

where 𝐴′ is a 1D column vector and is further reshaped to a 2D image
for visualizing defects. The selection of the optimal principal eigenvec-
tor is typically required to enhance the contrast between defects and

non-defective areas [37]. In our experiments, we found that the second
principal component typically provides the most distinctive results to
characterize subsurface defects, which is consistent with many previous
research works [16,37,38]. It has been reported in previous literature
works that the PCA technique can generate better subsurface defect
detection results compared with the four-point or FFT methods [39–
41], suppressing the influence of uneven heating and enhancing the
contrasts of defects.

Table 3 summarizes the quantitative results on specimens made
of three different materials (Al, Q235, and CFPR) at four excitation
frequencies (0.025, 0.05, 0.075, and 0.1 Hz). Our proposed TS-LTS
model outperforms other LT data analysis methods, achieving signif-
icantly higher 𝐶𝐺 values. Such improvement is particularly evident
when compared with the Four-point and DFT methods based on the
computed phase information. The experimental results demonstrate
the effectiveness of deep learning-based feature extraction, generating
better representations of 1D thermal signals than hand-crafted ones.
Another noticeable advantage of TS-LTS is that its feature extrac-
tion and comparison are automatically learned from thermal signal
sequences captured at thousands of pixels in an end-to-end manner,
requiring no further parameter fine-tuning or principal component
selection which is heavily human expertise dependent. Moreover, this
light-weight CNN model can process a 500-frame thermal image se-
quence within 60 s on a single NVIDIA Geforce Titan X GPU, which
is fast enough for routine quality inspection tasks.
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Fig. 8. Qualitative comparison of different LT data analysis techniques on a specimen made of CFRP at four excitation frequencies (0.025, 0.05, 0.075, and 0.1 Hz). All images
are normalized to the 0–1 range for visualization.

Figs. 6, 7, and 8 visualize the qualitative results of defect detection
on different materials at various excitation frequencies. Compared with
other well-established LT data analysis techniques, our proposed TS-
LTS model can achieve better defect detection results. It is able to
generate more obvious contrast between defective and non-defective
regions and remain more robust to thermal signal disturbances such as
background noise and non-uniform heating.

4. Conclusion

In this paper, we describe a novel deep learning-based approach to
achieve accurate subsurface defect detection by comparing the simi-
larity of 1D thermal signals captured at defective and non-defective
pixels. The size of the training data can be significantly increased
by pairing two individually captured 1D thermal signals. Without re-
sorting to manually-designed features, this built-from-scratch model
is trained using thousands of 1D thermal signal sequences captured
at defective and non-defective areas/pixels. Also, we set up experi-
ments to evaluate the performance of network alternatives performing
signal/feature fusion at different stages and using different functions.
Compared with the well-established LT data processing techniques, our
proposed method requires no user-specific parameters or selection of
the principal components and generates better defect detection results
(generating more obvious contrast between defective and non-defective

Table 3
Quantitative comparison (global contrast index 𝐶𝐺 [10,36]) between our proposed
TS-LTS model and other LT images analysis techniques on specimens made of three
different materials (Al, Q235, and CFPR) at four excitation frequencies (0.025, 0.05,
0.075, and 0.1 Hz). The best results are highlighted in bold.

Materials Frequency (Hz) Four-point DFT PCA Ours

Al

0.025 0.7566 1.2620 1.2166 1.5887
0.05 1.0886 1.5426 2.1399 2.2169
0.075 0.8065 2.3198 2.3272 2.9570
0.1 0.8008 2.3898 1.1382 2.5268

Q235

0.025 1.0092 2.5077 3.0294 3.1886
0.05 2.4321 2.3960 3.8187 5.0440
0.075 1.3196 2.2781 2.7971 6.5652
0.1 1.0555 1.5584 3.2271 5.7612

CFRP

0.025 2.0178 1.9855 2.4831 4.5238
0.05 4.0850 4.4100 4.8676 7.1299
0.075 4.4803 5.2142 5.7759 8.0582
0.1 3.9216 4.5186 4.9764 6.5646

regions and remaining more robust to thermal signal disturbances such
as background noise and non-uniform heating) in various materials at
different frequencies. In the future, our research works will focus on
developing new CNN models that are capable of extracting more dis-
tinctive features and identifying deeper and more complex subsurface
defects.
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