
An Alternative Formulation of

Cocke−−Younger−−Kasami’s Algorithm∗

Peter R.J. Asveld

Department of Computer Science, Twente University of Technology

P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract − We provide a reformulation of Cocke−Younger−Kasami’s algo-

rithm for recognizing context-free languages in which there are no references

either to indices of table entries or to the length of the input string. Some

top-down analogues of this functional approach are discussed as well.

Keywords: context-free grammar, normal form, recognition, parsing

hh

Let G = (V, Σ, P, S) be a context-free grammar with alphabet V, terminal alphabet Σ,

set of productions P and start symbol S. The set of nonterminal symbols will be

denoted by N, i.e. N = V − Σ. For each set X, P (X) denotes the power set of X.

Cocke−Younger−Kasami’s algorithm —or CYK-algorithm for short— is usually

presented as follows.

Algorithm 1. Let G = (V, Σ, P, S) be a context-free grammar in Chomsky normal

form (without the rule S → λ) and let a1a2
. . . an (n ≥ 1) be a string with ak ∈Σ

(1 ≤ k ≤ n). Form the strictly upper-triangular (n +1) × (n +1) recognition matrix T as

follows, where each element tij is a subset of N = V − Σ and is initially empty.

begin

for i : = 0 to n −1 do

ti, i +1 : = { A c A → ai +1 ∈ P}

for d : = 2 to n do

for i : = 0 to n − d do

begin j : = d + i;

tij : = { A c ∃ k (i +1 ≤ k ≤ j −1): ∃ B (B ∈ tik): ∃ C (C ∈ tkj): A → BC ∈ P}

end

end.

Then a1a2
. . . an ∈ L (G) if and only if S ∈ t1n. `

The above formulation is adapted from [4], but similar versions can be found in

other text books like [1] or [5]. A striking feature of these formulations is the refer-

ence to the numbers i, j and k and to the length n of the input string. These

numbers refer to an explicitly mentioned implementation —viz. the matrix T—

rather than the essence of the algorithm. Now the obvious question is whether we

can get rid of those numbers. We will answer this question in the affirmative.

To this end we define functions f : Σ+ →P (N+) and g :P (N+) →P (N) by:

g For each nonempty word w over Σ we define f as the length-preserving finite sub-

stitution generated by

hhhhhhhhhhhhhhhh
∗

This note appeared in Bull. Eur. Assoc. for Theor. Comp. Sci. (1994) No. 53, 213−216.

2 P.R.J. Asveld

f (a) = { A c A → a ∈ P}

and extended by

f (w) = f (a1)f (a2) . . . f (an) if w = a1a2
. . . an (ak ∈Σ , 1 ≤ k ≤ n).

g For each ω in N+ we define

g (ω) = ∪ { g (φ) ⊗ g (ψ) c φ, ψ ∈ N+, ω = φψ} (1)

where for X and Y in P (N) the binary operation ⊗ is defined by

X ⊗ Y = { A c A → BC ∈ P, with B ∈ X and C ∈ Y}.

g For each language M over N, g (M) is defined by

g (M) = ∪ { g (ω) c ω ∈ M }.

The CYK-algorithm can now be formulated as

Algorithm 2. Let G = (V, Σ, P, S) be a context-free grammar in Chomsky normal

form (without the rule S → λ) and let w be a string over Σ. Compute g (f (w)) and

determine whether S belongs to g (f (w)).

Clearly, we have w ∈ L (G) if and only if S ∈ g (f (w)). `

Since the binary operation ⊗ is associative, (1) may be considered as a matrix

product and an implementation using a recognition matrix is an obvious choice.

Similarly, (1) also suggests implementations based on dynamic programming, an

upper triangular matrix of parallel processors, or a systolic approach; cf. [8,9].

The CYK-algorithm can be generalized for arbitrary λ-free context-free gram-

mars rather than for λ-free grammars in Chomsky normal form; cf. [2] for details.

Algorithm 2 can be modified accordingly, but the price we have to pay is that we lose

the simplicity of the operator ⊗ .

The CYK-algorithm is a bottom-up algorithm for recognizing λ-free context-free

languages. Can we also proceed in a similar top-down fashion? Yes, as in Algo-

rithm 3 for which we need the following

Definition. Let G = (V, Σ, P, S) be a context-free grammar and N = V − Σ. The set

T (Σ, N) of terms over (Σ, N) is the smallest set satisfying

(i) λ is a term in T (Σ, N) and each a (a ∈Σ) is a term in T (Σ, N).

(ii) For each A in N and each term t in T (Σ, N), A (t) is a term in T (Σ, N).

(iii) If t1 and t2 are terms in T (Σ, N), then their concatenation t1 t2 is also a term

in T (Σ, N). `

Note that for any two sets of terms S1 and S2 (S1 , S2 ⊆ T (Σ, N)) the entity

S1 S2 , defined by S1 S2 = { t1 t2 c t1 ∈ S1, t2 ∈ S2 }, is also a set of terms over (Σ, N).

Algorithm 3. Let G = (V, Σ, P, S) be a context-free grammar in Chomsky normal

form (without the rule S → λ) and let w be a string over Σ.

Each nonterminal symbol A in N is considered as a function from Σ∗ ∪ {⊥ } to

P (T (Σ, N)) defined as follows. (The symbol ⊥ will be used to denote “undefined”.)

First, A (⊥) = ∅ and A (λ) = { λ } for each A in N. If the argument x of A is a word of

length 1 —i.e. x equals a for some a in Σ— then

A (a) = { λ c A → a ∈ P}

Cocke−Younger−Kasami’s Algorithm 3

and in case the length c x c of the word x is 2 or more, then

A (x) = ∪ { B (y) C (z) c A → BC ∈ P, y, z ∈Σ +, x = yz}. (2)

Finally, we compute S (w) and determine whether λ belongs to S (w).

It is straightforward to show that w ∈ L (G) if and only if λ ∈ S (w). `

Algorithm 3 is a simple recursive descent recognition algorithm that can be

implemented in many ways; cf. e.g. the divide-and-conquer approach in [3]. Since

the “calls” of B (y) and C (z) in (2) are mutually independent a parallel implementa-

tion (e.g. on a parallel random access machine [10]) is a suitable choice. Due to the

fact that G does not contain λ-productions the total number of recursive calls during

the computation of S (w) is at least 2 ⋅ c w c − 1.

Apart from efficiency gained by an appropriate implementation we can improve

upon Algorithm 3 by starting from Greibach 2-form rather than Chomsky normal

form. Remember that a λ-free context-free grammar G = (V, Σ, P, S) is in Greibach

2-form if the productions are of one of the following forms: A → aBC, A → aB and

A → a with a ∈Σ and A, B, C ∈ N; cf. [4].

Algorithm 4. Let G = (V, Σ, P, S) be a λ-free context-free grammar in Greibach 2-

form and let w be a string over Σ. The algorithm is as the previous one except that

(2) is replaced by

A (x) = ∪ { B (y) C (z) c A → aBC ∈ P, y, z ∈Σ +, x = ayz} ∪ (3)

∪ { B (y) c A → aB ∈ P, y ∈Σ +, x = ay}.

Still we have that w ∈ L (G) if and only if λ ∈ S (w). `

In any implementation of this algorithm the number of recursive calls in com-

puting S (w) is at least c w c .

Example. Let #σ (w) denote the number of times the symbol σ occurs in the word

w. Consider the language L0 = { w ∈ { a, b}+ c #a(w) = #b(w) } which is generated

by the following λ-free grammar in Greibach 2-form.

S → aSB c aBS c bSA c bAS c aB c bA

A → aS c a

B → bS c b

Applying Algorithm 4 yields

S (x) = ∪ { S (y) B (z) c y, z ∈Σ +, x = ayz} ∪

∪ { B (y) S (z) c y, z ∈Σ +, x = ayz} ∪

∪ { S (y) A (z) c y, z ∈Σ +, x = byz} ∪

∪ { A (y) S (z) c y, z ∈Σ +, x = byz} ∪ B (a] x) ∪ A (b] x),

A (x) = S (a] x),

B (x) = S (b] x),

where u] v = w if v = uw, and ⊥ otherwise (u, v, w ∈Σ ∗). Similarly, we define

u [v = w if u = wv, and ⊥ otherwise. Remember that for each nonterminal symbol

A, we have A (⊥) = ∅ .

4 P.R.J. Asveld

These three equalities reduce to

S (x) = ∪ { S (a] x [b), S (ab] x), S (b] x [a), S (ba] x) } ∪

∪ { S (y) S (b] z), S (b] y)S (z) c y, z ∈Σ +, x = ayz} ∪

∪ { S (y) S (a] z), S (a] y)S (z) c y, z ∈Σ +, x = byz}.

As examples consider S (abba) = S (ba) ∪ S (b)S (a) = { λ} ∪ S (b)S (a) , and

S (aba) = S (a) ∪ S (a)S (λ) = S (a). Since λ∈ S (abba) and λ∉ S (aba), we have

abba ∈ L0 and aba ∉ L0 , respectively. `

Instead of Greibach 2-form we may also take other normal forms as starting

point in order to obtain more efficient algorithms. Other possibilities, for instance,

are the double Greibach 2-form and the supernormal form of [7]. However, in those

cases (3) becomes much more complicated.

Removing details referring to possible implementations or data structures

clearly yields more functional descriptions of recognition algorithms. (For a func-

tional variant of Earley’s algorithm we refer to [6].) Although some of our algo-

rithms are rather inefficient, they may serve as a basis for a general approach to

recognition and parsing algorithms, a subject that is one of the main topics in [11].

Acknowledgements. I am indebted to Rieks op den Akker and Klaas Sikkel for some

critical remarks.

References

1. A.V. Aho & J.D. Ullman: The Theory of Parsing, Translation and Compiling −
Volume I: Parsing (1972), Prentice-Hall, Englewood Cliffs, NJ.

2. H.J.A. op den Akker: Recognition methods for context-free languages (1991),

Memoranda Informatica 91-30, Dept. of Comp. Sci., University of Twente,

Enschede, the Netherlands.

3. A. Bossi, N. Cocco & L. Colussi: A divide-and-conquer approach to general

context-free parsing, Inform. Process. Lett. 16 (1983) 203-208.

4. M.A. Harrison: Introduction to Formal Language Theory (1978), Addison-

Wesley, Reading, Mass.

5. J.E. Hopcroft & J.D. Ullman: Introduction to Automata Theory, Languages, and

Computation (1979), Addison-Wesley, Reading, Mass.

6. R. Leermakers, A recursive ascent Earley parser, Inform. Process. Lett. 41

(1992) 87-91.

7. H.A. Maurer, A. Salomaa & D. Wood: A supernormal-form theorem for context-

free grammars, J. Assoc. Comp. Mach. 30 (1983) 95-102.

8. A. Nijholt: Overview of parallel parsing strategies, Chapter 14 in M. Tomita

(ed.): Current Issues in Parsing Technology (1991), Kluwer, Boston.

9. A. Nijholt: The CYK-approach to serial and parallel parsing, Proc. Seoul Inter-

nat. Conf. on Natural Language Processing SICONLP’90 (1990) 144-155.

10. W.J. Savitch & M.J. Stimson: Time bounded random access machines with

parallel processing, J. Assoc. Comp. Mach. 26 (1979) 103-118.

11. N. Sikkel: Parsing Schemata (1993), Ph.D. Thesis, Dept. of Comp. Sci., Univer-

sity of Twente, Enschede.

