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a b s t r a c t 

We model the problem of dispatching time control in rolling horizons following a peri- 

odic optimization approach reactionary to travel time and passenger demand disturbances. 

This model provides more flexibility to transport planners allowing them to adjust the bus 

schedules during the daily operations. We prove that our periodic optimization model is 

a convex quadratic program, guaranteeing the global optimality of its solution. To reduce 

the computational burden, we introduce an iterative algorithm that uses gradient approx- 

imations to obtain an approximate dispatching solution. The proposed solution method is 

found to be significantly faster than exact optimization approaches for quadratic program- 

ming and maintains an (almost) negligible optimality gap in realistic bus operation scenar- 

ios. Finally, we show that our periodic optimization method outperforms myopic methods 

that adjust the dispatching time of each bus trip in isolation using operational data from 

bus line 302 in Singapore. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Scheduling the dispatching times of all trips operating in a bus line is a multivariable optimization problem where the

dispatching time of every trip is a decision variable (Strathman et al. [1] , Gkiotsalitis and Alesiani [2] ). Typically, its objective

function is scalar, f ( x ) , where x is a vector and x i ∈ x is the dispatching time of the i th trip. The computational cost of

solving this problem increases with the number of decision variables and the number of bus stops served by the bus line.

Therefore, the entire daily schedule cannot be re-adjusted every time we encounter travel time disruptions or unexpected

passenger demand fluctuations. This motivates the use of periodic optimization that reschedules only a small fraction of the

daily bus trips based on the currently available information and short-term travel time predictions. 

There exists a wide range of theoretical models for modifying the scheduled dispatching times of buses or holding the

buses at a control point stop to reduce the waiting time variation of passengers (Hickman [3] , Zhao et al. [4] , Delgado et al.

[5] , Gkiotsalitis and Cats [6] ). Although there are several lines of research on dynamic bus control (e.g., stop-skipping, speed

control), we hereby discuss the works on periodic optimization of dispatching control because they are closer to our study.

A distinct line of research acknowledges that the periodic dispatching time control problem cannot be solved in quasi-real-

time and embeds proactively slack times in every daily trip to allow more flexibility during the operations (see Zhao et al.

[4] , Adamski and Turnau [7] , Daganzo [8] ). Introducing long slack times though requires more buses to maintain the same

service frequency, leading to the under-utilization of resources. 
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Table 1 

Summary of selected rescheduling works. 

Study Problem Mathematical Program Stocha-sticity Solution Method 

Wu et al. [15] scheduling (offline) integer program Yes genetic algorithm heuristic 

Adamski and Turnau [7] rescheduling multiple programs No sub-optimal, simulation-based control 

Eberlein et al. [18] periodic bus holding non-convex quadratic program No heuristic 

Hickman [3] single-vehicle holding 

control 

convex quadratic program in a 

single variable 

Yes line search 

Gkiotsalitis and van 

Berkum [21] 

periodic rescheduling non-convex quadratic program No CPLEX when capacity is not 

considered 

This study periodic rescheduling convex quadratic program No iterative gradient approximations 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Other models on timetable optimization strive to ensure that the dispatching times of trips are evenly spaced throughout

the day. For instance, Ceder [9] and Ceder et al. [10] strive to achieve a desired even-load level for all buses at their maxi-

mum loading point by determining trip dispatching times that do not deviate significantly from the desired even headways.

Similarly, Shafahi and Khani [11] and Gkiotsalitis et al. [12] generated timetables with evenly spaced dispatching times incor-

porating the additional objective of synchronizing passenger transfers. However, such models do not consider the travel time

variations during the actual operations and cannot react to real-time changes in the travel conditions (Fayyaz et al. [13] ).

Another distinct line of works models the scheduling problem as a stochastic optimization one incorporating the travel time

and passenger demand variability when determining the dispatching times of the daily trips at the tactical planning stage

(Xuan et al. [14] , Wu et al. [15] ). Despite the above, solving such stochastic models during the actual operations is not com-

putationally feasible. Thus, control methods that approximate the optimal dispatching policy are typically applied (Berrebi

et al. [16] ). 

Closer to our work are studies that reschedule the original timetable at the operational level with periodic optimization.

Adamski and Turnau [7] proposed a simulation support tool for real-time dispatching control. Similar to our work, their

dispatching control objective is the elimination of the deviations between the actual operations and the planned schedule.

However, the work of Adamski and Turnau [7] requires the performance of simulations inside the optimization process to

produce a sub-optimal full state feedback gain controller. Liu et al. [17] used also a modeling and microsimulation approach

to improve the efficiency and reliability of bus rapid transit systems. In Eberlein et al. [18] , Koehler et al. [19] and Gkiotsalitis

[20] the dispatching control and holding problem is treated as a periodic optimization problem and is modeled as a non-

convex quadratic mathematical program that cannot be solved to global optimality. Those approaches differ from our work,

which models the dispatching time control as a convex quadratic program and does not consider bus holding decisions. 

In light of the above, our closest prior art is the work of Hickman [3] which also formulates the dispatching control prob-

lem as a quadratic convex program that can be solved to global optimality. In Hickman [3] though, the decisions about the

holding or dispatching time modifications are made for single vehicles that are about to be dispatched. That is, every bus

trip is treated in isolation resulting in single-variable optimization problems that do not consider the interactions among

multiple vehicles. The work of Gkiotsalitis and van Berkum [21] is also close to our work and provides a periodic reschedul-

ing formulation for the bus dispatching problem. In Gkiotsalitis and van Berkum [21] , the periodic rescheduling formulation

is proved to be non-convex when considering the capacity of buses. Gkiotsalitis and van Berkum [21] propose a model

that estimates the dwell times at stops by explicitly considering the passenger alighting times and employ a commercial

optimization solver to solve simplified problem instances that do not consider the vehicle capacity limits. In contrast, our

work introduces a convex mathematical program for the periodic rescheduling problem by extending the vehicle movement

model of Daganzo [8] , and introduces an iterative gradient approximation solution method based on analytic solutions. A

summary of the closest prior arts to our work is presented in Table 1 . 

From the above studies, there are no periodic optimization works that model the dispatching control problem as a con-

vex optimization problem. Hence, past periodic optimization models cannot be solved to global optimality. An exception is

the work of Hickman [3] , which does not solve a periodic optimization problem. Instead, Hickman [3] addresses a simplified,

event-based problem where the decision about the dispatching/holding time of each vehicle is made in isolation without

considering the trajectories of following trips. This results in myopic, event-based control instead of holistic periodic opti-

mization for all vehicles operating in a time horizon. Since the existing periodic optimization models for dispatching control

are not convex (e.g., Eberlein et al. [18] ), their resulting solutions are sub-optimal and one might exhibit high computation

costs when trying to improve their optimality gaps. The latter is a main technical challenge when dispatching control needs

to be performed in quasi-real-time. This technical challenge and its associated research gap motivate our work: we propose

a periodic optimization model that is proved to be convex and can determine the globally optimal dispatching times of trips

in rolling horizons. Additionally, we introduce a solution method that can reduce the computation costs by using gradient

approximations and improving iteratively the incumbent solution. Extensive numerical experiments demonstrate that the 

optimality gap of our solution method is negligible even at large-scale scenarios and can result in significant computational

cost reductions. The main contributions of our work to the state-of-the-art are summarized below: 

• the development of a convex mathematical program for periodic dispatching control; 
• the derivation of an analytic solution for the case of headway-insensitive dwell times; 
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• the introduction of an iterative gradient approximation solution method for reducing the computational burden of the

periodic dispatching control; 
• the investigation of the efficiency of our solution method against exact solution methods for quadratic programming; 
• the performance evaluation of our periodic dispatching control approach in terms of passenger waiting times and service

regularity using operational data from a high-frequency bus line. 

The contributions of this work lie both in the modeling and the solution method phase of the periodic dispatching control

problem. Their practical application can improve the regularity of unstable bus operations by re-adjusting the dispatching

times of trips at the operational level. 

2. Periodic dispatching control 

2.1. Problem description 

Periodic dispatching control can be applied to a bus line with a set of ordered stops S = 〈 1 , 2 , . . . , s, . . . 〉 . The periodic

dispatching control can be triggered every time a new trip is about to be dispatched. That is, the daily operations can be

split into M = 〈 1 , 2 , . . . , m, . . . 〉 rolling horizons equal to (at most) the number of daily trips. If j is a trip that is about to

be dispatched at the m 

th rolling horizon, we can determine its dispatching time and the dispatching times of its immediate

following trips, N m 

. N m 

is a sub-set of the ordered set of daily trips, N , and includes all trips for which the dispatching

times should be determined when trip j is about to be dispatched. Note that in extreme cases N m 

can contain only one trip

(namely, trip j ), or all remaining trips of the day, 〈 j, j + 1 , . . . , |N |〉 . One should note that the periodic dispatching control

might yield different results based on the length of the sub-set N m 

. Therefore, the length choice of N m 

is an important

decision of the periodic dispatching control (see Eberlein et al. [18] , Sáez et al. [22] ). 

To demonstrate the implementation of our periodic control, we start from the first trip of the day. If the pre-determined

length of every set N m 

is n , we determine the dispatching times of all 〈 1 , 2 , . . . , n 〉 trips when the first trip of the day is

about to be dispatched. A new rolling horizon can start when a new trip is about to be dispatched. For instance, if the

second trip of the day is about to be dispatched, we need to determine the dispatching times of trips 〈 2 , 3 , . . . , n + 1 〉 given

the realized dispatching time of trip 1. For simplification, when a trip j ∈ N is about to be dispatched, it is re-indexed as trip

1. Similarly, trips j + 1 , . . . , j + n − 1 are re-indexed as 2 , 3 , . . . , n . If trip j is not the first trip of the day, it has a previously

dispatched trip j − 1 which is re-indexed as 0. In addition, trip j + n, which is outside of this rolling horizon, is re-indexed

as n + 1 . Following this re-indexing, trips 0 and n + 1 do not belong to N m 

and are the “boundaries” of rolling horizon m

because their dispatching times cannot be modified within this rolling horizon. 

The re-indexed trips 〈 1 , 2 , . . . , n 〉 in a rolling horizon m have originally planned dispatching times δ1 < δ2 < . . . < δ j <

. . . < δn . Our dispatching control decisions are the dispatching time adjustments x = { x 1 , x 2 , . . . , x n } where x ∈ R 

n . Those

dispatching control decisions in rolling horizon m will yield the new dispatching times { δ1 + x 1 , δ2 + x 2 , . . . , δn + x n } . 
To determine the optimal dispatching times within each rolling horizon, we need to model the bus operations (e.g.,

vehicle trajectories, expected arrival times at stops). To this end, we list the main assumptions of our vehicle movement

model: 

(1) The arrivals of passengers at stops are random because passengers do not coordinate their arrival times at stops in

high-frequency services (Bartholdi and Eisenstein [23] ); 

(2) Service supply, which is determined at the frequency settings stage, suffices for satisfying the passenger demand. Thus,

all passengers can be served by the first arriving vehicle. This is the most common assumption on the operational

control of high-frequency services (Daganzo [8] , Eberlein et al. [18] ); 

(3) Bus delays due to the dwell times at stops depend predominantly on passenger boardings since alightings are con-

siderably faster. This assumption is used in Daganzo [8] and is supported by several works on dwell time estimation

(see the early work of Kraft and Bergen [24] ); 

(4) The incremental increase of dwell times arising from headway increases is constant. This assumption is used in Da-

ganzo [8] and is a direct result of the works of Hickman [3] , Eberlein et al. [18] that consider constant incremental

boarding times; 

(5) Dwell times are negligibly small so that we do not have additional passenger arrivals during the limited time a bus

is waiting at a stop (Hickman [3] ). 

Based on assumptions 1–5, we can model the arrival times of buses at stops and the expected headways. The notation

of our model is presented in Table 2 . 

The variables a j,s , k j,s , h j,s in our nomenclature vary based on our dispatching control decisions, x j , and are defined as

follows. The expected arrival time a j,s of a bus trip j ∈ { 1 , 2 , . . . , n } at stop s ∈ { 2 , 3 , . . . , | S|} is 

a j,s ( x ) := (δ j + x j ) + 

s −1 ∑ 

φ=1 

τ j,φ + 

s −1 ∑ 

φ=2 

k j,φ (1)

where | S | is the cardinality of set S denoting the set’s size, δ j + x j is its determined dispatching time, 
∑ s −1 

φ=1 
τ j,φ the

sum of inter-station travel times from the first bus stop until bus stop s , and 

∑ s −1 
φ=2 

k j,φ the sum of dwell times at stops

2 , 3 , . . . , s − 1 . 



788 K. Gkiotsalitis / Applied Mathematical Modelling 82 (2020) 785–801 

Table 2 

Nomenclature. 

Sets 

S = 〈 1 , . . . , s, . . . 〉 ordered set of consecutive bus stops; 

N m = 〈 1 , 2 , . . . , n 〉 ordered set of trips dispatched within the rolling horizon; 

Indices 

j index of vehicles; 

s index of stops; 

Parameters 

δj the originally planned dispatching time for each trip j ∈ { 1 , 2 , . . . , n } ; 
γ s the (fixed) marginal increase in the dwell time of a bus trip at stop s arising from a unit increase in headway. By definition, 

γ s ≥ 0; 

h ∗
j,s 

the target headway between trips j and j − 1 upon their arrival at stop s ; 

τ j,s the travel time of trip j from stop s to stop s + 1 ; 

w s weight factor of each bus stop indicating its relative importance; 

Decision Variables 

x = { x 1 , . . . , x n } the dispatching time offsets of trips j ∈ { 1 , 2 , . . . , n } from δj ; 

Variables 

k j,s the dwell time of trip j at stop s ; 

a j,s the arrival time of trip j at stop s ; 

h j,s the time headway between trips j and j − 1 upon their arrival at stop s . That is, h j,s = a j,s − a j−1 ,s ; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The inter-arrival time headway h j,s of two consecutive trips j − 1 and j at a bus stop s > 1 is 

h j,s ( x ) := a j,s ( x ) − a j−1 ,s ( x ) ∀ j ∈ N m 

, s ∈ S \ { 1 } (2) 

If overtaking is not allowed, the inter-arrival headway is always non-negative. If an overtaking occurs, one can re-index

the impacted trips j − 1 , j at the stop level as in Hickman [3] . This local re-indexing maintains the non-negative headway

value. 

The dwell times of buses can be affected by the time headway changes because a longer time headway will require from

the trailing bus to board a proportionally higher number of passengers. That is, k j,s ∝ h j,s , ∀ j ∈ N m 

, s ∈ S \ { 1 } . In this study,

we adopt the dwell time modeling approach of Daganzo [8] . In Daganzo [8] , the dwell time of each trip j at stop s is defined

as 

k j,s ( x ) := γs · h j,s ( x ) ∀ j ∈ N m 

, s ∈ S \ { 1 } (3) 

where γs ∈ R ≥0 . The above expression relates the dwell time with the expected number of boardings via parameter γ s . γ s 

expresses the marginal increase (decrease) of the dwell time of any trip at stop s for a unit increase (decrease) in headway.

Note that for positive headways and γ s ≥ 0, the dwell time cannot be negative. Eq. (3) is in line with our assumptions 2–5

resulting in a dwell time that: (i) does not have an upper bound due to capacity limitations, (ii) is primarily governed by

the number of boardings, and (iii) neglects the effect of additional passenger arrivals during the short time period within

which the bus performs the boardings/alightings. 

Using empirical results, Daganzo [8] proved that his model is a good approximation of reality and reported typical values

of γ s in the range of 0.01 to 0.1. The constant γ s must be empirically estimated for each bus stop based on historical

automated vehicle location (AVL) data. For instance, Daganzo [8] reported a γ s � 0.1 on rush hours and γ s � 0.01 on

weekends in line 44 of SF-Muni. Note that γ s is stop-specific in order to capture the spatial variability of passenger demand

and can change at different time periods of the day. Within the short time frame of a rolling horizon, γ s is considered

time-independent and varies only from stop to stop. 

2.2. Inter-arrival headways considering boundary conditions 

In each rolling horizon, the inter-arrival headways between bus trips 1 and 0 are: 

h 1 , 2 ( x ) := a 1 , 2 ( x ) − a 0 , 2 = (δ1 + x 1 ) + τ1 , 1 − a 0 , 2 

h 1 ,s ( x ) := (δ1 + x 1 ) + 

(
s −1 ∑ 

φ=1 

τ1 ,φ

)
+ 

(
s −1 ∑ 

φ=2 

γφh 1 ,φ ( x ) 

)
− a 0 ,s ∀ s ∈ S \ { 1 , 2 } (4) 

The inter-arrival headways between any other trip j ∈ N m 

\ { 1 } and its preceding trip j − 1 are: 

h j, 2 ( x ) := 

(
(δ j + x j ) + τ j, 1 

)
−

(
(δ j−1 + x j−1 ) + τ j−1 , 1 

)
, ∀ j ∈ N m 

\ { 1 } 
h j,s ( x ) := (δ j + x j ) + 

s −1 ∑ 

φ=1 

τ j,φ + 

s −1 ∑ 

φ=2 

γφh j,φ ( x ) 

−
(
(δ j−1 + x j−1 ) + 

s −1 ∑ 

φ=1 

τ j−1 ,φ + 

s −1 ∑ 

φ=2 

γφh j−1 ,φ ( x ) 
)
, 

(5) 
∀ j ∈ N m 

\ { 1 } , ∀ s ∈ S \ { 1 , 2 } 
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2.3. Objective function 

Our study focuses on high-frequency services that strive to maintain the service regularity. The service regularity can

be assessed with several key performance indicators (see Trompet et al. [25] ). For instance, the minimization of the total

passenger waiting times has been used as a proxy of the service regularity in Eberlein et al. [18] . Bartholdi and Eisenstein

[23] tried to equalize all inter-arrival headways to improve regularity. Daganzo [8] tried to minimize the variance between

the actual and the planned (target) headways. 

Similar to Daganzo [8] , in this study we try to meet the target headways by minimizing the squared deviation of the

inter-arrival headways, h j,s ( x ) , from their target values, h ∗
j,s 

. The target headway h ∗
j,s 

between each pair of trips j − 1 , j at

stop s is determined at the tactical planning stage. If this target headway is met, the operational regularity is maintained.

To reduce the squared deviation of the inter-arrival headways from their target values, one needs to minimize the following

objective function: 

f ( x ) := β
∑ 

S\{ 1 } 
w s 

∑ 

j∈N m 

(
h j,s ( x ) − h 

∗
j,s 

)2 
(6)

where β := (n 
∑ 

S\{ 1 } w s ) 
−1 and w ∈ R 

|S| 
≥0 

is a vector of weight factors w 2 , w 3 , . . . , w |S| . The weight factors allow the bus

operator to prioritize the adherence to the target headway at some significant bus stops in the expense of others. 

2.4. Schedule sliding constraint 

In each rolling horizon m ∈ M , we determine the dispatching times of a number of trips 〈 1 , 2 , . . . , n 〉 by minimizing the

objective function of Eq. (6) . If, however, the solution of this minimization problem results in a major dispatching time delay

of the last trip in the rolling horizon, n , this will result in a “domino effect” where all trailing trips in next rolling horizons

will have to postpone their dispatching resulting in changes to the vehicle and crew rosters (Gkiotsalitis and Maslekar [26] ).

If the rolling horizon has a slack time ζ ≥ 0 (see Zhao et al. [4] ), we can enforce the dispatching time of its last trip to

not exceed this slack time: 

δn + x n ≤ δn + ζ for some ζ ≥ 0 (7)

With the schedule sliding constraint of Eq. (7) we ensure that the dispatching delays do not propagate to the next

rolling horizon because they do not exceed the pre-determined slack time. Based on our objective function in Eq. (6) and

the associated constraints, our main mathematical program can be succinctly written as: 

(Q ) : min x f ( x ) 
s.t.: x ∈ F( x ) = { x | ( x , h ) satisfies Eqs. (4), (5) and (7) } (8)

where F( x ) is the feasible set. The equality constraints of Eqs. (4) and (5) simply set the values of headways for a given x

and can always be satisfied for any x ∈ R 

n since the headways are not bounded from any other constraint. The same is not

always true for the inequality constraint of Eq. (7) . I.e., ∃ x 0 = { x 0 
1 
, x 0 

2 
, . . . , x 0 n } such that x 0 n > ζ , and thus x 0 �∈ F( x ) . 

As shown in Theorem 2.1 , the objective function f ( x ) is quadratic and convex (with respect to x ). Therefore, ( Q ) can be

solved to global optimality if the feasible set F( x ) is non-empty. 

Theorem 2.1. ( Q ) is a convex optimization problem, which has a unique global minimizer (if any) with respect to x. 

Proof. Note that the feasible set F( x ) is defined by linear (in)equalities, and thus is a closed polyhedron. Consequently, it

is sufficient to prove that f ( x ) is strictly convex. Note that g j,s ( h ) := (h j,s − h ∗
j,s 

) 2 is a strictly convex function with respect

to h j,s . Indeed, 
∂ 2 g j,s 
∂h 2 

j,s 

= 2 > 0 . We define matrix A and vector b so that for any h , A x + b = h . We need to prove that ˜ g j,s ( x ) =
g j,s (A x + b) is a convex function with respect to x . Now, let x 0 , x 1 be arbitrary, and λ ∈ [0, 1]. Then, ˜ g j,s (λx 0 + (1 − λ) x 1 ) =
g j,s (λh 

0 + (1 − λ) h 

1 ) ≤ λg j,s ( h 

0 ) + (1 − λ) g j,s ( h 

1 ) = λ ˜ g j,s ( x 
0 ) + (1 − λ) ̃ g j,s ( x 

1 ) . We note that x 0 � = x 1 does not imply A x 0 +
b � = A x 1 + b. Since f ( x ) = β

∑ | S| 
s =2 

w s 
∑ n 

j=1 ˜ g j,s ( x ) , we proved that f ( x ) is a strictly convex function with respect to x because

it is a sum of strictly convex functions. �

3. Analytic solution of the periodic dispatching control problem 

To obtain an analytic solution of the multi-variate quadratic program ( Q ), we should derive the first-order conditions. Our

solution is based on gradient approximations and we prove that it is the global optimum of ( Q ) if γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| −
1 } . First, we define 

c 1 , 2 := (δ1 + τ1 , 1 − a 0 , 2 − h 

∗
1 , 2 ) (9)

Then, the deviation of the time headway h 1 , 2 ( x ) from its target headway is expressed as 

h 1 , 2 ( x ) − h 

∗
1 , 2 = c 1 , 2 + x 1 (10)
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We now define 

c 1 ,s := δ1 + 

( 

s −1 ∑ 

φ=1 

τ1 ,φ

) 

+ 

( 

s −1 ∑ 

φ=2 

γφh 1 ,φ ( x ) 

) 

− a 0 ,s − h 

∗
1 ,s , ∀ s ∈ S \ { 1 , 2 } (11)

Note that c 1 ,s ≈ δ1 + ( 
∑ s −1 

φ=1 
τ1 ,φ ) − a 0 ,s − h ∗

1 ,s 
if γφ ≈ 0 , ∀ φ ∈ { 2 , . . . , s − 1 } . The deviation of the time headways h 1, s from

their target headways at stops s ∈ S \ { 1 , 2 } is 
h 1 ,s ( x ) − h 

∗
1 ,s = c 1 ,s + x 1 , ∀ s ∈ S \ { 1 , 2 } (12)

Similarly, we define 

c j, 2 := δ j + τ j, 1 − δ j−1 − τ j−1 , 1 − h 

∗
j, 2 , ∀ j ∈ N m 

\ { 1 } (13)

Then, h j, 2 ( x ) − h ∗
j, 2 

is rewritten as 

h j, 2 ( x ) − h 

∗
j, 2 

= c j, 2 + (x j − x j−1 ) , ∀ j ∈ N m 

\ { 1 } (14) 

Finally, we define 

c j,s := δ j + 

( 

s −1 ∑ 

φ=1 

τ j,φ

) 

+ 

( 

s −1 ∑ 

φ=2 

γφh j,φ ( x ) 

) 

− δ j−1 −
( 

s −1 ∑ 

φ=1 

τ j−1 ,φ

) 

−
( 

s −1 ∑ 

φ=2 

γφh j−1 ,φ ( x ) 

) 

− h 

∗
j,s , 

∀ j ∈ N m 

\ { 1 } , s ∈ S \ { 1 , 2 } (15)

Note that c j,s ≈ δ j + ( 
∑ s −1 

φ=1 
τ j,φ ) − δ j−1 − ( 

∑ s −1 
φ=1 

τ j−1 ,φ ) − h ∗
j,s 

if γφ ≈ 0 , ∀ φ ∈ { 2 , . . . , s − 1 } . 
Then, the deviation of the time headway h j,s from its target headway value h ∗

j,s 
for each j ∈ N m 

\ { 1 } at any stop s ∈
S \ { 1 , 2 } is rewritten as 

h j,s ( x ) − h 

∗
j,s 

= c j,s + (x j − x j−1 ) , ∀ j ∈ N m 

\ { 1 } , ∀ s ∈ S \ { 1 , 2 } (16) 

The core of our analytic solution is that the values of γ s are significantly small ( γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } ) so that

the product γs h j,s ( x ) remains constant for a very small change of the dispatching times. In Section 5.3 we will show that

even if the values of γ s are not close to zero, a gradient approximation that assumes the product γs h j,s ( x ) as constant can

provide a good initial solution guess and lead to convergence after a few iterations. 

Using Eqs. (10) –(16) and the values of c j,s for γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } , we proceed to our main theorem. 

Theorem 3.1. For γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } , the analytic solution which is a global minimizer of ( Q ) is either: 

x 

∗ = 

{
(x 1 , x 2 , . . . , x n ) : x j = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( 

j ∑ 

i =1 

( 

−
∑ 

s ∈S\{ 1 } 
w s c i,s 

) ) 

, ∀ j ∈ N m 

}

or, if the above solution violates the schedule sliding constraint, 

x 

∗ = 

{
(x 1 , x 2 , . . . , x n ) : x j = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( ( 

−n − j 

n 

∑ 

s ∈S\{ 1 } 
w s 

( 

ζ + 

∑ 

i ∈N m 
c i,s 

) ) 

+ 

( ∑ 

s ∈S\{ 1 } 
w s 

( 

ζ + 

n ∑ 

i = j+1 

c i,s 

) ) ) 

, 

∀ j ∈ { 1 , 2 , . . . , n − 1 } & x n = ζ . 

}

Proof. To cover all cases, we search for extreme values of the function f ( x ) on the feasible set F( x ) . The feasible set includes

all values of x 1 , x 2 , . . . , x n −1 ∈ R and values of x n such that x n ≤ ζ . For this, we define L ( x ) = f ( x ) − λ(x n − ζ ) where λ ≥ 0 is

the Karush-Kuhn-Tucker (KKT) multiplier. Note that the inequality constraint of the schedule sliding (x n ≤ ζ ) is not binding when

λ = 0 . 

The complementary slackness condition is λ(x n − ζ ) = 0 which has two solutions: (i) when the schedule sliding constraint is

not binding (inactive), its solution is λ = 0 , and (ii) when it is binding, x n = ζ . To find critical point(s), one should derive the

first-order conditions of L ( x ) . Expanding L ( x ) using Eqs. (10) , (12) , (14) and (16) yields 

L ( x ) = β

[ ∑ 

s ∈S\{ 1 } 
w s 

∑ 

j∈N m 
(h j,s ( x ) − h 

∗
j,s ) 

2 

] 

− λ(x n − ζ ) 

= λ(ζ − x n ) + β

[( ∑ 

s ∈S\{ 1 } 
w s (h 1 ,s ( x ) − h 

∗
1 ,s ) 

2 

) 

+ 

( ∑ 

s ∈S\{ 1 } 
w s 

∑ 

j∈N m \{ 1 } 
(h j,s ( x ) − h 

∗
j,s ) 

2 

) ]
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= λ(ζ − x n ) + β

[ ( ∑ 

s ∈S\{ 1 } 
w s (c 2 1 ,s + 2 c 1 ,s x 1 + x 2 1 ) 

) 

+ 

( ∑ 

s ∈S\{ 1 } 
w s 

∑ 

j∈N m \{ 1 } 
(c 2 j,s + 2 c j,s (x j − x j−1 ) + (x j − x j−1 ) 

2 ) 

) ] 

(17)

The critical points of L ( x ) can be found by setting ∇L ( x ) = 0 and satisfying the complementary slackness condition. This

yields the KKT system of equations: 

∂L ( x ) 
∂x 1 

= 0 ⇒ β
∑ 

s ∈S\{ 1 } 
w s (2 c 1 ,s − 2 c 2 ,s − 2 x 2 + 4 x 1 ) = 0 

∂L ( x ) 
∂x 2 

= 0 ⇒ β
∑ 

s ∈S\{ 1 } 
w s (2 c 2 ,s − 2 c 3 ,s − 2 x 1 − 2 x 3 + 4 x 2 ) = 0 

. . . .. 

. . . .. 
∂L ( x ) 
∂x n −1 

= 0 ⇒ β
∑ 

s ∈S\{ 1 } 
w s (2 c n −1 ,s − 2 c n,s − 2 x n −2 − 2 x n + 4 x n −1 ) = 0 

∂L ( x ) 
∂x n 

= 0 ⇒ −λ + β
∑ 

s ∈S\{ 1 } 
w s (2 c n,s + 2 x n − 2 x n −1 ) = 0 

λ(ζ − x n ) = 0 (complementary slackness) 

(18)

By solving the above system of equations we obtain the local extrema which are globally optimal solutions if L ( x ) is convex.

To investigate convexity, we compute the Hessian matrix H ∈ R 

n ×n with elements 

H i j = 

∂ 2 L ( x ) 

∂ x i ∂ x j 
, ∀ i, j ∈ { 1 , 2 , . . . , n } 

Noticing that β
∑ 

s ∈S\{ 1 } w s = 

1 
n and setting ν = n −1 , the Hessian is: 

H = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

4 ν −2 ν 0 0 0 . . . 0 0 0 0 

−2 ν 4 ν −2 ν 0 0 . . . 0 0 0 0 

0 −2 ν 4 ν −2 ν 0 . . . 0 0 0 0 

0 0 −2 ν 4 ν −2 ν . . . 0 0 0 0 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

0 0 0 0 0 . . . 0 −2 ν 4 ν −2 ν
0 0 0 0 0 . . . 0 0 −2 ν 2 ν

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(19)

L ( x ) is convex if its Hessian matrix is positive semidefinite for all possible values of x 1 , x 2 , . . . , x n . To prove that, we should

show that z T H z is non-negative for every column vector z of n real numbers. This yields 

z T  H z = 

[
z 1 z 2 . . . z n −1 z n 

]
H 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

z 1 
z 2 
. . . 

z n −1 

z n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[
(4 z 1 ν − 2 z 2 ν) (−2 z 1 ν + 4 z 2 ν − 2 z 3 ν) . . . (−2 z n −2 ν + 4 z n −1 ν − 2 z n ν) (−2 z n −1 + 2 z n ) 

]
⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

z 1 
z 2 
. . . 

z n −1 

z n 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= v 
(
4 z 2 1 − 2 z 1 z 2 − 2 z 1 z 2 + 4 z 2 2 − 2 z 2 z 3 − . . . − 2 z n −2 z n −1 + 4 z 2 n −1 − 2 z n −1 z n − 2 z n −1 z n + 2 z 2 n 

)
= v 

(
4 z 2 1 − 4 z 1 z 2 + 4 z 2 2 − 4 z 2 z 3 + 4 z 2 3 − . . . + 4 z 2 n −2 − 4 z n −2 z n −1 + 4 z 2 n −1 − 4 z n −1 z n + 2 z 2 n 

)
= ν

(
2 z 2 1 + (z 1 

√ 

2 − z 2 
√ 

2 ) 2 + (z 2 
√ 

2 − z 3 
√ 

2 ) 2 + · · · + (z n −2 

√ 

2 − z n −1 

√ 

2 ) 2 + (z n −1 

√ 

2 − z n 
√ 

2 ) 2 
)

which is non-negative for all possible values of x . Thus, L ( x ) is convex. Given the convexity of L ( x ) , the local extrema derived

by solving the system of equations in (18) are globally optimal solutions. 

The system of equations in (18) has two solutions (one when the schedule sliding-related constraint is binding and one when

it is not). By setting λ = 0 in the system of equations in (18) we get: 
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x 1 = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( 

−
∑ 

s ∈S\{ 1 } 
w s c 1 ,s 

) 

x 2 = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( 

−
∑ 

s ∈S\{ 1 } 
w s c 1 ,s −

∑ 

s ∈S\{ 1 } 
w s c 2 ,s 

) 

. . . .. 

. . . .. 

x n = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( 

n ∑ 

i =1 

( 

−
∑ 

s ∈S\{ 1 } 
w s c i,s 

) ) 

Considering the above, the globally optimal solution when the schedule sliding constraint is inactive can be written as: 

x 

∗ = 

{
(x 1 , x 2 , . . . , x n ) : x j = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( 

j ∑ 

i =1 

( 

−
∑ 

s ∈S\{ 1 } 
w s c i,s 

) ) 

, ∀ j ∈ N m 

}

which completes the first part of our proof. 

Now, if the above solution violates the schedule sliding constraint, we should consider the schedule sliding constraint as binding.

That is, λ > 0 which requires that x n = ζ to meet the complementary slackness condition. For λ > 0, the second solution is

derived. In more detail, by setting x n = ζ in the KKT conditions in Eq. (18) we get the following globally optimal solution when

schedule sliding constraint is binding: 

x 1 = 

1 ∑ 

s ∈S\{ 1 } 
w s 

( 

−n − 1 

n 

( ∑ 

s ∈S\{ 1 } 
w s (ζ + 

n ∑ 

i =1 

c i,s ) 

) 

+ 

∑ 

s ∈S\{ 1 } 
w s 

( 

ζ + 

n ∑ 

i =2 

c i,s 

) ) 

x 2 = 

1 ∑ 

s ∈S\{ 1 } 
w s 

( 

−n − 2 

n 

( ∑ 

s ∈S\{ 1 } 
w s 

( 

ζ + 

n ∑ 

i =1 

c i,s 

) ) 

+ 

∑ 

s ∈S\{ 1 } 
w s 

( 

ζ + 

n ∑ 

i =3 

c i,s 

) ) 

. . . .. 

. . . .. 

x n −1 = 

1 ∑ 

s ∈S\{ 1 } w s 

( 

−1 

n 

( ∑ 

s ∈S\{ 1 } 
w s 

( 

ζ + 

n ∑ 

i =1 

c i,s 

) ) 

+ 

∑ 

s ∈S\{ 1 } 
w s (ζ + c n,s ) 

) 

which completes the second part of our proof. �

An interesting case arises when the schedule is tight and there is no slack time provision ( ζ = 0 ). In this case, follows

the Corollary 3.1.1 . 

Corollary 3.1.1. For γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } , the analytic solution that minimizes the headway variance from the target

headways when the schedule sliding constraint is active and the slack time ζ = 0 is: 

x j = 

1 ∑ 

s ∈S\{ 1 } w s 

((
− n − j 

n 

∑ 

s ∈S\{ 1 } 
w s 

n ∑ 

i =1 

c i,s 

)
+ 

( ∑ 

s ∈S\{ 1 } 
w s 

n ∑ 

i = j+1 

c i,s 

))
, ∀ j ∈ { 1 , 2 , . . . , n − 1 } 

& x n = 0 . 

Proof. This can be easily proved by setting ζ = 0 in Theorem 3.1 . �

Another interesting case arises when we want to maintain the target headway at only one important bus stop (i.e., a

central bus stop with many interconnections). In this case, from Theorem 3.1 follows the corollary: 

Corollary 3.1.2. For γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } , the analytic solution that minimizes the headway variance from the target

headways at one bus stop s ∗ ∈ S \ { 1 } is either: 

x j = −
j ∑ 

i =1 

c i,s ∗ , ∀ j ∈ N m 

. 

or, if the above solution violates the schedule sliding constraint, 

x j = 

((
− ζ (n − j) 

n 

n ∑ 

i =1 

c i,s ∗

)
+ 

(
ζ + 

n ∑ 

i = j+1 

c i,s ∗

))
, ∀ j ∈ { 1 , 2 , . . . , n − 1 } 

& x n = ζ . 
Proof. This can be easily proved from Theorem 3.1 by setting all w s values to zero, except w s ∗ > 0 . �
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4. Gradient approximation-based iterative algorithm for sensitive dwell times 

In Theorem 3.1 , we showed that our analytic solution can provide the global optimum when γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| −
1 } . Daganzo [8] reported empirical γ s values in the range of 0.01 to 0.1 where 0.01 is mostly observed in off-peaks. Values

of γ s � 0 can have a significant impact on the solution quality because they result in a marginal effect to the dwell times at

stops when x changes. As a result, we devise an iterative solution method which uses the output from the analytic solution

as a solution guess for the next iteration. 

For instance, let us consider the following analytic solution of ( Q ) when γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } and the schedule

sliding constraint is active: 

x 

∗ = 

⎧ ⎨ 

⎩ 

(x 1 , x 2 , . . . , x n ) : x j = 

( ∑ 

s ∈S\{ 1 } 
w s 

) −1 ( ( 

−n − j 

n 

∑ 

s ∈S\{ 1 } 
w s (ζ + 

∑ 

i ∈N m 
c i,s ) 

) 

+ 

( ∑ 

s ∈S\{ 1 } 
w s (ζ + 

n ∑ 

i = j+1 

c i,s ) 

) ) 

, 

∀ j ∈ { 1 , 2 , . . . , n − 1 } & x n = ζ . } 
Reckon that when γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } , the values of c j,s remain constant for changes in x . If γ s � 0 for some

s ∈ { 2 , 3 , . . . , |S| − 1 } , then x ∗ is not a global minimizer of ( Q ) any more. In that case, we can compute the approximate

gradient ˜ ∇ L ( x ) � ∇L ( x ) that still considers the values of c j,s as constant to changes in x . With the use of the approximate

gradient ˜ ∇ L ( x ) , our analytic solution remains the same. Note though that this solution is not a global minimizer of ( Q ).

For this, we use it for computing the values of c j,s in the next iteration resulting in the iterative solution method explained

below. 

To compute the values of c j,s at the initial stage when ∃ γ s : γ s � 0, we assume an initial solution guess x 0 = { 0 , 0 , . . . , ζ } .
The initial solution guess x 0 = { 0 , 0 , . . . , ζ } is used in our analytic solution to compute the values of c j,s which are no longer

independent of x . Then, our analytic solution computes an updated x 1 for such c j,s values. After that, we use x 1 to update the

values of c j,s and compute x 2 . Following this approach, the iterations continue until being terminated at an iterate κ where

the analytic solution is not improving the performance of L ( x κ ) ≤ L ( x κ−1 ) . The algorithm is formalized in Algorithm 1

and, as shown in Section 5.3 , exhibits optimality gaps of less than 1% even at large-scale scenarios. 

Step 0: Re-index the trips that can change their dispatching times within the rolling horizon as 〈 1 , 2 , 3 , . . . , n 〉 following their

dispatching order; 

Step 1: Assume that the schedule sliding constraint is not binding by setting λ = 0 . Set κ ← 0 and initialize solution x κ =
{ 0 , 0 , . . . , 0 } ; 
Step 2: Compute the values of c j,s , ∀ j ∈ N m 

, ∀ s ∈ S \ { 1 } using x κ and calculate the analytic solution x κ+1 : 

x κ+1 
j 

= 

1 ∑ 

s ∈S\{ 1 } 
w s 

( 

j ∑ 

i =1 

(
−

∑ 

s ∈S\{ 1 } 
w s c i,s 

)) 

, ∀ j ∈ N m 

in a sequential order starting from x κ+1 
1 

while updating the values of c j,s at each sequence; 

Step 3: If L ( x κ+1 ) ≤ L ( x κ ) , set κ ← κ + 1 and return to (Step 2). Else, proceed to (Step 4) to check the feasibility of x κ ; 

Step 4: If x κn ≤ ζ , then STOP because our assumption of λ = 0 is correct. Else, discard the infeasible solution x κ and continue

to (Step 5); 

Step 5: Provided that x κn > ζ , set κ ← 0 and re-initialize solution x κ = { 0 , 0 , . . . , ζ } ; 
Step 6: Compute the values of c j,s , ∀ j ∈ N m 

, ∀ s ∈ S \ { 1 } using x κ and use the analytic solution method to derive solution

x κ+1 : 

x κ+1 
j 

= 

1 ∑ 

s ∈S\{ 1 } w s 

((
− n − j 

n 

∑ 

s ∈S\{ 1 } 
w s (ζ + 

∑ 

i ∈N m 
c i,s ) 

)
+ 

( ∑ 

s ∈S\{ 1 } 
w s (ζ + 

n ∑ 

i = j+1 

c i,s ) 
))

, ∀ j ∈ { 1 , 2 , . . . , n − 1 } in a (reverse) sequential order starting from x κ+1 
n −1 

while updating the values of c j,s at each sequence. 

Step 7: If L ( x κ+1 ) ≤ L ( x κ ) , set κ ← κ + 1 and return to (Step 6). Else, return solution x κ and STOP. 

Algorithm 1 : Iterative algorithm for the bus dispatching problem in a rolling horizon using gradient approximations for the

general case where ∃ γ s : γ s � 0 for some s ∈ { 2 , 3 , . . . , |S| − 1 } . 

It should be noted that in the special case where γs ≈ 0 , ∀ s ∈ { 2 , 3 , . . . , |S| − 1 } we can still use Algorithm 1 which will

return the global minimizer (and not an approximate solution). In that case, the initial solution guess x κ=0 = { 0 , 0 , . . . , 0 } is
irrelevant. That is, even if the initial solution guess is changed, Algorithm 1 will return the same result as in Theorem 3.1 and

it will always convergence in a single iteration. 

An important final note is that even if this algorithm decides about the dispatching time adjustments of all trips at N m 

,

those decisions can be updated every time a bus is about to be dispatched by applying again Algorithm 1 in a “rolled”
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Table 3 

Trip travel times τ j,s from stop s to stop 

s + 1 per bus trip j in seconds. 

stop 

j s = 1 s = 2 

1 900 720 

2 920 700 

3 880 640 

Fig. 1. Improvement potential when the dispatching time decisions for all trips within the rolling horizon are made simultaneously against the myopic 

case where they are made independently (one-by-one). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

horizon. For instance, the same algorithm can be applied for the set of trips 〈 2 , 3 , . . . , n + 1 〉 when trip 2 is about to be

dispatched to fully exploit the updated information regarding the inter-station travel times. 

5. Computational study 

5.1. Comparison periodic dispatching control and one-by-one (myopic) dispatching control 

One-by-one (myopic) decision methods decide the dispatching time of a trip j when it is about to be dispatched with

the objective of meeting the target headway with its preceding trip j − 1 (Hickman [3] , Fu and Yang [27] ). This decision is

made by solving the following minimization problem every time a trip j is about to be dispatched: 

min 

x j 

∑ 

s ∈S\{ 1 } 
(h j,s (x j ) − h 

∗
j,s ) 

2 (20) 

Therefore, in a rolling horizon with 〈 1 , 2 , . . . , n 〉 bus trips the one-by-one decision methods will make n decisions every

time the respective trip j is about to be dispatched. In contrast, our periodic optimization method considers the operations

of all trips in the rolling horizon when making a decision. To investigate the performance of our holistic periodic optimiza-

tion approach against the (myopic) one-by-one dispatching control method, both approaches are applied to the following

idealized scenario. 

We consider a rolling horizon within which three new bus trips (namely 1, 2 and 3) are expected to be dispatched. Trip

0 that precedes trip 1 has been dispatched when our periodic optimization starts. The dispatching time of trip 0 is δ0 = 0

s. Its expected arrival times at stops s = 2 and s = 3 are: a 0 , 2 = 900 s and a 0 , 3 = 1600 s . 

The originally planned dispatching times of trips 1, 2 and 3 are: δ1 = 600 s, δ2 = 1200 s and δ3 = 1800 s. The predicted

inter-station travel times of trips 1, 2 and 3 are given in Table 3 . 

In addition, γs = 0 . 035 for stop s = 2 . The target time headways are h ∗
j,s 

= 600 s, ∀ j ∈ {1, 2, 3}, ∀ s ∈ {2, 3}. Finally, bus

stops 2 and 3 have the same importance (weights): w s = 1 , ∀ s ∈ { 2 , 3 } . 
After applying our periodic optimization approach and the single-variable one-by-one dispatching control when ζ = 20

s, ζ = 10 s and ζ = 0 s, we summarize the results in Fig. 1 . 

From Fig. 1 one can note that if we decide the dispatching time of each trip independently, the performance deteriorates.

The reason is that each bus trip tries to maintain its own target headways and potential problems are transferred to the

next trip(s) of the rolling horizon. The problem intensifies if the slack time is smaller (e.g., ζ = 0) because, in that case, the

last trip of the rolling horizon has less flexibility to correct the accumulated delays from previous trips. 
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Fig. 2. Computation times of the interior-reflective Newton algorithm in quadprog and our approximate gradient method in Algorithm 1 when solving ( Q ) 

in randomized networks with different bus stops in the cases of 3, 4, 5 and 6 trips per rolling horizon. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Time complexity tests 

To investigate the time complexity of our approach, we report the computation costs of solving the dispatching time

model ( Q ) with the use of (i) the interior-reflective Newton method for quadratic programming that returns a globally

optimal solution (see algorithm 5 on p. 1048 in Coleman and Li [28] ), and (ii) our approximate gradient solution method

presented in Algorithm 1 . Our experiments are executed in a general-purpose computer with Intel Core i7-7700HQ CPU @

2.80GHz and 16 GB RAM. All solution methods and external libraries are in Python 3.6. The algorithm of Coleman and Li

[28] that is used as a benchmark is implemented with the use of the ‘quadprog’ library. 

To perform the computational tests, we consider rolling horizon optimization scenarios with 3, 4, 5 and 6 trips. In Fig. 2 ,

we present the computational costs of the interior-reflective Newton algorithm in Coleman and Li [28] and our approximate

gradient solution method. Note that the number of recursive calculations that express the bus motion law increases quickly

with the number of bus stops and, after a certain point, it becomes time consuming to evaluate the objective function.

Therefore, the interior-reflective Newton algorithm in the ‘quadprog’ solver - which needs to evaluate the performance of

the objective function multiple times - exhibits a rapid computation time increase. Hence, it cannot solve program ( Q ) within

a reasonable time (i.e., 10 min) for lines with more than ≈ 16 bus stops. 

The computational efficiency tests presented in Fig. 2 demonstrate a significant advantage of our solution method because

its computation time remains in the range of 0 to 90 s. On the contrary, the self-imposed computational threshold of 10

min allowed the algorithm of Coleman and Li [28] to solve networks with up to 16 stops when we have 3 trips in a rolling

horizon, 15 stops when we have 4, 13 stops when we have 5, and 13 stops when we have 6. 

5.3. Solution quality tests 

Using the randomly generated networks from Section 5.2 , we investigate the optimality gap of our approximate gradient

solution method with respect to the solution of Coleman and Li [28] which is a global minimizer of ( Q ). We report the
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Table 4 

Optimality gap of our gradient approximation solution method compared to the globally optimal solution of 

Coleman and Li [28] in multiple idealized networks. 

Networks f ( x 1 ) iterations f ( x ∗) f ( x 1 ) − f ( x ∗ ) 
f ( x ∗ ) f ( x ′ ) Optimality Gap 

trips stops (in s 2 ) (in s 2 ) (%) (in s 2 ) f ( x ∗ ) − f ( x ′ ) 
f ( x ′ ) (%) 

3 11 2598.68 0 2598.68 0.00 2585.78 0.50 

14 2170.44 2 2122.31 2.27 2114.54 0.37 

15 2145.07 2 2097.46 2.27 2090.79 0.32 

16 2431.12 2 2431.12 0.00 2408.88 0.92 

4 3 4367.50 0 4367.50 0.00 4366.75 0.02 

11 6040.21 2 5510.31 9.62 5493.18 0.31 

12 6124.05 2 5495.16 11.44 5470.42 0.45 

14 5204.62 4 4321.60 20.43 4310.33 0.26 

15 5047.76 4 4009.69 25.89 4000.24 0.24 

5 3 5927.75 0 5927.75 0.00 5926.50 0.02 

8 10806.63 0 10806.63 0.00 10666.27 1.32 

11 7955.39 2 7478.61 6.38 7443.27 0.47 

13 7134.92 2 6418.04 11.17 6379.58 0.60 

6 3 16213.75 0 16213.75 0.00 16202.50 0.07 

7 14002.06 0 14002.06 0.00 13908.19 0.67 

10 9766.73 2 9384.10 4.08 9342.96 0.44 

12 9026.19 2 8378.31 7.73 8336.33 0.50 

13 8246.05 2 7481.25 10.22 7433.51 0.64 

Table 5 

Optimality gap and computation costs in a bus line with 13 bus stops for different numbers of 

trips in the rolling horizon. 

computation time (min) 

trips interior-reflective Newton method approximate gradient optimality gap 

in Coleman and Li [28] 

3 1.63 0.02 0.36% 

4 2.61 0.52 0.37% 

5 8.52 0.63 0.60% 

6 9.96 0.62 0.64% 

7 > 10 0.94 n/a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimality gap in Table 4 for each randomized network that can be solved to global optimality within the self-imposed

computation time threshold of 10 min. 

In Table 4 , the first two columns indicate the number of trips optimized in the rolling horizon and the number of stops of

the idealized scenario. When solving each idealized scenario, we initially set κ ← 0 and we start with a solution guess x κ=0 .

In the third column we present the performance of the solution of Algorithm 1 after completing its first iteration, x κ+1 = x 1 .

Column 4 indicates the required number of iterations from the first iteration until the termination of the algorithm. Column

5 indicates the performance of the solution of Algorithm 1 when the algorithm terminates: f ( x ∗) . 
Column 6 indicates the performance improvement (%) of solution x ∗ compared to solution x 1 from the first iteration

of Algorithm 1 . This demonstrates how the use of our analytic solution at each iteration can provide a direction towards

solutions that are closer to the global optimum. In column 7, we present the performance of the solution of Coleman and Li

[28] , x ′ , which is the global minimizer of ( Q ). Finally, column 8 presents the optimality gap of our solution method which

is computed as � = 

f ( x ∗) − f ( x ′ ) 
f ( x ′ ) · 100% . 

From Table 4 one can note that the optimality gap remains below 1% at almost all cases (except the case of 5 trips

and 8 stops) and it does not exhibit a substantial increase when the number of bus stops or the number of trips increases

(e.g., when the scenarios increase in complexity). This demonstrates that one can apply our solution method to large-scale

scenarios without a significant optimality loss. 

In the numerical experiments in Table 4 , we observe that the number of required iterations of Algorithm 1 tends to

increase with the number of stops when the trips in the rolling horizon remain the same. For instance, in the case of 4

trips the required iterations of Algorithm 1 increased from 0 to 4 when the stops increased from 3 to 15. This can be

explained because the marginal effect of the neglected γ s values in our gradient approximation is larger when we have

more stops. In such case, Algorithm 1 requires more iterations to find dispatching time adjustments that are closer to a

globally optimal solution. 

To provide an example, in Fig. 3 we present the performance of the solution of Algorithm 1 after its first iteration, f ( x 1 ) ,

and its final performance after 5 iterations when Algorithm 1 terminates. 

Finally, to show the effect of the number of trips on the solution times and solution quality, in Table 5 we present

the optimality gap and the computation time of our gradient approximation algorithm compared to the interior-reflective
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Fig. 3. Iterations until the termination of Algorithm 1 in the two most extreme scenarios. The difference between f ( x ′ ) and the performance of the 

approximate solution at each iteration indicates the respective optimality gap. 

Table 6 

Scheduled headways of bus line 302 at different 

times of the day in minutes. 

Period Target Headway, h ∗
j,s 

05:30-06:30 - 

06:30-08:30 ≈ 4 

08:30-19:00 ≈ 5 

After 19:00 ≈ 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Newton algorithm of Coleman and Li [28] . Note that in Table 5 we focus on a scenario with 13 bus stops and the exact

optimization algorithm of Coleman and Li [28] cannot return a globally optimal solution for more than 6 trips in the rolling

horizon due to the self-imposed computation time limit of 10 min. 

6. Case study 

6.1. Case study description 

Our case study is the high-frequency, circular bus line 302 in Singapore. Bus line 302 has 22 stops departing from Choa

Chu Kang Loop - Choa Chu Kang Int (44,009) and ending at the same stop. A subsidiary of the government of Singapore’s

Temasek Holdings (SMRT) operates this line and the Land Transport Authority (LTA) monitors its regularity. Normally it

starts operating at 05:30 and ends at 00:55. Its route length is 8.1 km and its total travel time typically ranges from 35 to

40 min. Bus line 302 is selected because it is one of the seven high-frequency bus lines in Singapore that are monitored

in terms of service regularity and are placed under the Bus Service Reliability Framework (BSRF) (see Leong et al. [29] ).

The bus operator’s objective is in line with our proposed dispatching control method that aims at improving the service

regularity. Under the BSRF framework, bus lines that do not maintain their scheduled headways are penalized, whereas

well-performing lines receive monetary incentives (up to 30 0 0$ for every 0.1 min improvement in regularity at the end of

each month, as of May 2014). 

Bus line 302 satisfies several other assumptions of our work. Its planned service supply is sufficient and the number

of stranded passengers is negligibly small. Additionally, its dwell times depend predominantly on passenger boardings (the

observed average time for an extra passenger boarding is 1.47 s). The topology of bus line 302 is presented in Fig. 4 . 

Bus line 302 is a feeder service that serves residential blocks, schools, and public amenities, connecting them to Choa

Chu Kang Town Center and Yew Tee Mass Rapid Transit (MRT) station. Its primary area of service is Choa Chu Kang neigh-

borhoods 5 and 6. Typically, on this bus line operate 12-meter single-decker buses with a seated capacity of 42 passengers

and a standing capacity of 33 passengers (75 passengers in total). In this line operate also high capacity, articulated buses

because of the high demand from residents at specific times of the day. As presented in Table 6 , the total number of operat-

ing trips per day is 245, and the scheduled (target) headways differ among peak/off-peak hours. Note that from 05:30 until

6:30, the service is not headway-based due to the low passenger demand; thus, the scheduled headways in Table 6 start

after 6:30. 

Our experiments focus on the time period 6:30-8:30, which exhibits the highest frequency. For such a high frequency,

we assume uniformly distributed passenger arrivals at any stop s because passengers are not able to coordinate their arrival

times with the arrival times of buses (see Ibarra-Rojas et al. [30] ). In that period operate 31 trips with a scheduled headway
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Fig. 4. Topology of bus line 302 in Singapore. 
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Fig. 5. Observed hourly passenger boardings at each bus stop of the circular bus line 302. 

Table 7 

Parameter values from our case study. 

h ∗
js 

4 min 

S 〈 1 , 2 , . . . , 22 〉 
w s 1 

δj dispatches every ~ 4 min after 6:30 

 

 

 

 

 

 

of 4 min. The observed hourly passenger boardings at each stop within the time period 6:30–8:30 of the examined day are

presented in Fig. 5 . 

Additionally, Fig. 6 presents the historical average inter-station travel times of trips operating from 6:30–7:30 and 7:30–

8:30 in the form of vehicle trajectories. 

The marginal increase in the dwell time at stop s arising from a unit increase in headway, γ s , is derived from Fig. 5 con-

sidering the average observed time for an extra passenger boarding (1.47 s), and the hourly boarding demand at that stop.

Additionally, the expected inter-station travel times E [ t j,s ] for trips j operating from 6:30–7:30 and 7:30–8:30 are derived

from Fig. 6 . Table 7 summarizes the values of the remaining parameters in our case study. 

6.2. Evaluation of periodic dispatching control and one-by-one dispatching control 

In this experimentation, we demonstrate the application of our periodic dispatching time control and the one-by-one

dispatching control proposed in the works of Hickman [3] and Fu and Yang [27] . Since both Hickman [3] and Fu and Yang
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Fig. 6. Trajectories based on historically average inter-station travel times for vehicles traveling from 6:30–7:30 and 7:30-8:30. 
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[27] considered also bus holding, our benchmark one-by-one control logic is modified to consider only dispatching time

changes. Herein, we describe the implementation of the one-by-one dispatching control and our proposed periodic dis-

patching control in our case study. Note that both the one-by-one dispatching control and our periodic dispatching control

solve convex quadratic programs when a decision needs to be made. This is why the one-by-one control logic is used as a

benchmark. Their difference is that the one-by-one dispatching control solves single-variable decision problems where only

the dispatching time of a single trip is considered, whereas our approach modifies the dispatching times of all trips N m 

in

a rolling horizon. 

When implementing the one-by-one dispatching control logic, we decide the dispatching time adjustment of every trip

j from the set of 31 trips operating from 6:30-8:30 when trip it is about to be dispatched. The decision of the dispatching

time adjustment, x j , is based on the sole objective of meeting the target headways with its preceding trip j − 1 : 

min 

x j 

∑ 

s ∈S\{ 1 } 
(h j,s (x j ) − h 

∗
j,s ) 

2 (21)

Note that to calculate the headway h j,s ( x j ) we use the realized/expected arrival time of the already dispatched trip j − 1

at stop s ∈ S \ { 1 } , the expected arrival time of trip j at stop s based on the inter-station travel time expectations, E [ t j,s ] ,

and its determined dispatching time, x j + δ j . To evaluate the dispatching control strategies in a realistic setting, we use

the expected inter-station travel times, E [ t j,s ] , when making a dispatching control decision because we do not know the

realized travel times of trips that have not been dispatched when the decision is made (e.g., trip j ). When this decision is

implemented, trip j starts to operate based on its realized inter-station travel times (e.g., the ones observed in practice),
˜ 
 j,s , and not the expected ones, E [ t j,s ] . This provides a realistic evaluation of the dispatching control strategies because our

decisions, which were based on future travel time expectations, are evaluated in the actual operations. With this approach,

we consider in our evaluation framework the fact that an optimal dispatching decision x j might not maintain its optimality

when applied in the actual operations. 

When implementing our proposed periodic dispatching control logic, we modify the dispatching times of N m 

trips that

are following trip j . Ergo, we do not determine the dispatching time of only the trip which is about to be dispatched, but

of all other trips in N m 

= 〈 j, j + 1 , . . . , j + n − 1 〉 . The number of trips in N m 

plays an important role in the optimization

process because if we consider only 1 trip our approach is reduced to the one-by-one dispatching control described in

Eq. (21) . To investigate the influence of the number of considered trips in each rolling horizon, n , we apply our approach

when n varies from 2 to 7 trips. We implement our periodic optimization every time a trip is about to be dispatched,

resulting in 31 control decisions from 6:30-8:30. Our approach is implemented 6 times in total (every time with a different

number of considered trips, n , in the rolling horizons). 

Table 8 presents the results of the evaluation. In Table 8 we report the results of the following key performance indicators

when different dispatching control methods are applied: (i) the average squared headway deviation from the target headway

(indicating the service regularity); and (ii) the average passenger waiting time. 

The operational performance when applying our periodic dispatching control logic results in the following improvements

compared to the baseline (e.g., one-by-one dispatching control logic): 

• improvement up to 21% in terms of service regularity expressed in the mean squared headway deviation of the realized

headways from their target values 
• improvement up to 15% in terms of average passenger waiting times 

Another interesting finding is the importance of the number of trips in a rolling horizon, n , in the operational perfor-

mance of the periodic dispatching control method. As expected, if we only consider two trips, N m 

= 〈 1 , 2 〉 , the improvement
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Table 8 

Performance of the bus operations from 6:30-8:30 when applying the one- 

by-one dispatching control logic and our proposed periodic optimization 

control logic for different numbers of trips, n , in the rolling horizon. 

Mean squared headway Average passenger 

deviation (min 2 ) waiting times (min) 

one-by-one decision 33.1 2.37 

n = 2 31.4 2.31 

n = 3 28.1 2.14 

periodic n = 4 27.0 2.06 

control n = 5 26.2 2.02 

n = 6 26.1 2.01 

n = 7 26.1 2.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

potential compared to the one-by-one decision control is limited (only 5% in terms of service regularity). The performance

of the periodic dispatching control increases progressively when considering up to five trips in a rolling horizon. After that,

the improvement is marginal because trips that will not be dispatched within a short time period do not affect considerably

our current dispatching decisions. 

7. Concluding remarks 

7.1. Summary and future research direction 

In this study, we introduced a mathematical model for the periodic bus dispatching control of high-frequency services

and we proved its strict convexity. Additionally, we introduced a gradient approximation solution method that exploits the

analytic solution of our main mathematical program in the case where the dwell times are not affected considerably by the

headway deviations. 

After testing our solution method against the interior-reflective Newton algorithm of Coleman and Li [28] , we showed

that the optimality gap of our solution method remains stable in the range of 0–1% for different scenarios with bus lines of

up to 16 bus stops and up to 6 trip dispatches in a rolling horizon. The small optimality gap of our approximate gradient

solution method is compensated by its significantly lower computation time which remains below 1 min even in cases

where the interior-reflective Newton algorithm requires more than 10 min to return a solution. The reason behind this

improved computation cost is that, unlike quadratic optimization algorithms that need to evaluate the objective function

several times, our solution method uses an easy-to-compute analytic solution at each iteration to converge within a very

limited number of iterations. Thus, it can return a good approximation of the globally optimal solution within a limited

time. 

In addition to the computational experiments, we applied our periodic optimization model for dispatching control using

real data from the high-frequency bus line 302 in Singapore. In this application, the dispatching times of a number of trips,

N m 

, were re-optimized every time a new trip was about to be dispatched. The performance of our periodic dispatching

control model when applied from 6:30-8:30 in one day of operations was compared against the performance of the one-

by-one dispatching control model adapted from the works of Hickman [3] and Fu and Yang [27] . The application results

demonstrated an up to 21% improved performance in terms of service regularity and a 15% reduction in passenger waiting

times when considering 4 or more trips in each rolling horizon. For fewer trips, the performance of our periodic optimization

model deteriorates and becomes exactly equal to the performance of the one-by-one dispatching control when considering

only a single trip in each rolling horizon. 

In future research, our approach can be expanded to account for the available vehicle capacity and the total travel times

of passengers who are using multiple public transport lines for their origin-destination trips. 

7.2. Limitations 

To facilitate the reproduction and extension of our work, we hereby report its main limitations: 

• rescheduling the dispatching times in rolling horizons can account for mild disruptions that do not require the addition

of more vehicles. If the disruptions are severe, there should be changes in the planned service provision (e.g., vehicle and

crew schedules); 
• our rescheduled dispatching times aim to maintain the target headway, which is the main key performance indicator

of high-frequency services. In the case of low frequencies, this objective should be replaced by the adherence to the

planned arrival times at stops resulting in a different optimization problem; 
• our approach is suitable if the planned vehicle capacity suffices to accommodate the passenger demand. In contexts

where the passenger demand exceeds the vehicle capacity, we will have stranded passengers with increased waiting
times that should be considered in our objective function. 
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Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.apm.2020.02.003

References 

[1] J. Strathman , K. Dueker , T. Kimpel , R. Gerhart , K. Turner , P. Taylor , S. Callas , D. Griffin , J. Hopper , Automated bus dispatching, operations control, and
service reliability: Baseline analysis, Transp. Res. Record J. Transp. Res. Board (1666) (1999) 28–36 . 

[2] K. Gkiotsalitis , F. Alesiani , Robust timetable optimization for bus lines subject to resource and regulatory constraints, Transp. Res. Part E Log. Transp.

Rev. 128 (2019) 30–51 . 
[3] M.D. Hickman , An analytic stochastic model for the transit vehicle holding problem, Transp. Sci. 35 (3) (2001) 215–237 . 

[4] J. Zhao , M. Dessouky , S. Bukkapatnam , Optimal slack time for schedule-based transit operations, Transp. Sci. 40 (4) (2006) 529–539 . 
[5] F. Delgado , J.C. Munoz , R. Giesen , How much can holding and/or limiting boarding improve transit performance? Transp. Res. Part B Methodol. 46 (9)

(2012) 1202–1217 . 
[6] K. Gkiotsalitis , O. Cats , Multi-constrained bus holding control in time windows with branch and bound and alternating minimization, Transportmet. B

Transp. Dyn. 7 (1) (2019) 1258–1285 . 

[7] A . Adamski , A . Turnau , Simulation support tool for real-time dispatching control in public transport, Transp. Res. Part A Policy Pract. 32 (2) (1998)
73–87 . 

[8] C.F. Daganzo , A headway-based approach to eliminate bus bunching: systematic analysis and comparisons, Transp. Res. Part B Methodol. 43 (10) (2009)
913–921 . 

[9] A .A . Ceder , Optimal multi-vehicle type transit timetabling and vehicle scheduling, Proc. Social Behav. Sci. 20 (2011) 19–30 . 
[10] A .A . Ceder , S. Hassold , B. Dano , Approaching even-load and even-headway transit timetables using different bus sizes, Publ. Transp. 5 (3) (2013)

193–217 . 

[11] Y. Shafahi , A. Khani , A practical model for transfer optimization in a transit network: model formulations and solutions, Transp. Res. Part A Pol. Pract.
44 (6) (2010) 377–389 . 

[12] K. Gkiotsalitis, O.A. Eikenbroek, O. Cats, Robust network-wide bus scheduling with transfer synchronizations, IEEE Trans. Intell. Transp. Syst. (2019)
1–11. . Advance online publication. doi: 10.1109/TITS.2019.2941847 . 

[13] S.K. Fayyaz , X.C. Liu , R.J. Porter , Dynamic transit accessibility and transit gap causality analysis, J. Transp. Geogr. 59 (2017) 27–39 . 
[14] Y. Xuan , J. Argote , C.F. Daganzo , Dynamic bus holding strategies for schedule reliability: optimal linear control and performance analysis, Transp. Res.

Part B Methodol. 45 (10) (2011) 1831–1845 . 

[15] Y. Wu , J. Tang , Y. Yu , Z. Pan , A stochastic optimization model for transit network timetable design to mitigate the randomness of traveling time by
adding slack time, Transp. Res. Part C Emerg. Technol. 52 (2015) 15–31 . 

[16] S.J. Berrebi , K.E. Watkins , J.A. Laval , A real-time bus dispatching policy to minimize passenger wait on a high frequency route, Transp. Res. Part B
Methodol. 81 (2015) 377–389 . 

[17] X.C. Liu, M. Zlatkovic, R.J. Porter, K. Fayyaz, S. Yu, Improving Efficiency and Reliability of bus Rapid Transit, Technical Report MPC 18–349, U.S. Depart-
ment of Transportation serving the Mountain-Plains Region, 1200 New Jersey Avenue, SE Washington, DC 20590, 2018. https://rosap.ntl.bts.gov/view/

dot/36410 . 

[18] X.J. Eberlein , N.H. Wilson , D. Bernstein , The holding problem with real–time information available, Transp. Sci. 35 (1) (2001) 1–18 . 
[19] L.A. Koehler , W. Kraus , E. Camponogara , Iterative quadratic optimization for the bus holding control problem, IEEE Trans. Intell. Transp. Syst. 12 (4)

(2011) 1568–1575 . 
[20] K. Gkiotsalitis, Bus rescheduling in rolling horizons for regularity-based services, J. Intell. Transp. Syst. (2019) 1–20. . Advance online publication. doi:

10.1080/15472450.2019.1681992 . 
[21] K. Gkiotsalitis , E. van Berkum , An exact method for the bus dispatching problem in rolling horizons, Transp. Res. Part C Emerg. Technol. 110 (2020)

143–165 . 
[22] D. Sáez , C.E. Cortés , F. Milla , A. Núñez , A. Tirachini , M. Riquelme , Hybrid predictive control strategy for a public transport system with uncertain

demand, Transportmetrica 8 (1) (2012) 61–86 . 

[23] J.J. Bartholdi III , D.D. Eisenstein , A self-coördinating bus route to resist bus bunching, Transp. Res. Part B Methodol. 46 (4) (2012) 4 81–4 91 . 
[24] W.H. Kraft , T.F. Bergen , Evaluation of passenger service times for street transit systems, Transp. Res. Rec. (505) (1974) 13–20 . 

[25] M. Trompet , X. Liu , D. Graham , Development of key performance indicator to compare regularity of service between urban bus operators, Transp. Res.
Record J. Transp. Res. Board (2216) (2011) 33–41 . 

[26] K. Gkiotsalitis , N. Maslekar , Multiconstrained timetable optimization and performance evaluation in the presence of travel time noise, J. Transp. Eng.
Part A Syst. 144 (9) (2018) . 

[27] L. Fu , X. Yang , Design and implementation of bus-holding control strategies with real-time information, Transp. Res. Record J. Transp. Res. Board (1791)

(2002) 6–12 . 
[28] T.F. Coleman , Y. Li , A reflective newton method for minimizing a quadratic function subject to bounds on some of the variables, SIAM J. Optim. 6 (4)

(1996) 1040–1058 . 
[29] W. Leong , K. Goh , S. Hess , P. Murphy , Improving bus service reliability: The singapore experience, Res. Transp. Econ. 59 (2016) 40–49 . 

[30] O. Ibarra-Rojas , F. Delgado , R. Giesen , J. Muñoz , Planning, operation, and control of bus transport systems: a literature review, Transp. Res. Part B
Methodol. 77 (2015) 38–75 . 

https://doi.org/10.1016/j.apm.2020.02.003
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0002
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0002
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0002
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0003
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0003
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0004
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0004
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0004
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0004
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0005
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0005
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0005
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0005
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0006
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0006
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0006
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0007
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0007
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0007
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0008
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0008
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0009
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0009
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0010
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0010
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0010
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0010
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0011
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0011
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0011
https://doi.org/10.1109/TITS.2019.2941847
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0013
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0013
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0013
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0013
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0014
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0014
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0014
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0014
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0015
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0015
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0015
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0015
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0015
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0016
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0016
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0016
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0016
https://rosap.ntl.bts.gov/view/dot/36410
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0018
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0018
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0018
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0018
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0019
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0019
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0019
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0019
https://doi.org/10.1109/TITS.2019.2941847
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0021
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0021
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0021
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0022
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0023
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0023
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0023
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0024
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0024
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0024
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0025
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0025
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0025
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0025
http://refhub.elsevier.com/S0307-904X(20)30088-3/othref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/othref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/othref0001
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0026
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0026
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0026
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0027
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0027
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0027
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0028
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0028
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0028
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0028
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0028
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0029
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0029
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0029
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0029
http://refhub.elsevier.com/S0307-904X(20)30088-3/sbref0029

	A model for the periodic optimization of bus dispatching times
	1 Introduction
	2 Periodic dispatching control
	2.1 Problem description
	2.2 Inter-arrival headways considering boundary conditions
	2.3 Objective function
	2.4 Schedule sliding constraint

	3 Analytic solution of the periodic dispatching control problem
	4 Gradient approximation-based iterative algorithm for sensitive dwell times
	5 Computational study
	5.1 Comparison periodic dispatching control and one-by-one (myopic) dispatching control
	5.2 Time complexity tests
	5.3 Solution quality tests

	6 Case study
	6.1 Case study description
	6.2 Evaluation of periodic dispatching control and one-by-one dispatching control

	7 Concluding remarks
	7.1 Summary and future research direction
	7.2 Limitations

	Supplementary material
	References


