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Abstract. Simulated annealing (SA) is a well-known metaheuristic
commonly used to solve a great variety of NP-hard problems such as the
quadratic assignment problem (QAP). As commonly known, the choice
and size of neighborhoods can have a considerable impact on the perfor-
mance of SA. In this work, we investigate and propose a SA variant that
considers variable neighborhood structures driven by the state of the
search. In the computational experiments, we assess the contribution of
this SA variant in comparison with the state-of-the-art SA for the QAP
applied to printed circuit boards and conclude that our approach is able
to report better solutions by means of short computational times.

1 Introduction

This paper proposes and assesses the incorporation of variable neighborhoods
into SA driven by the state of the search. From a practical standpoint, the basic
idea for this strategy was initially proposed in [7] for a vehicle routing application
in order to obtain better solutions than those provided by a standard SA. At a
methodological level, the contribution of our paper is to evaluate this strategy
in a more general setting with standard problem instances.

In the quest of showing the impact of the algorithmic enhancement regarding
a known method, i.e., SA, we exemplify by means of the quadratic assignment
problem (QAP). The QAP is an NP-hard combinatorial optimization problem
introduced by Koopmans and Beckman [10] that have received a lot of attention
due to its numerous applications. In the QAP, we are given a set of facilities
denoted as F = {1, 2, . . . , n} and a set of locations denoted as L = {1, 2, . . . , n}.
Each pair of facilities, (i, j) ∈ F , requires a certain flow, i.e., fij ≥ 0. The
distance between the locations k, l ∈ L is denoted as dkl ≥ 0. It should be
mentioned that the flows and distances are symmetric (i.e., fij = fji,∀i, j ∈ F
and dkl = dlk,∀k, l ∈ L) and the flow/distance between a given facility/location
and itself is zero (i.e., fii = 0,∀i ∈ F and dkk = 0,∀k ∈ L). Its objective is to
minimize the cost derived from the distance and flows among facilities. Duman
et al. [5] present a practical application of the QAP for sequencing placement
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and configuration printed circuit boards (PCB) and extensively analyze the use
of SA for addressing the problem. The QAP is formally expressed as follows

minimize

n∑

i=1

n∑

j=1

fijdφ(i)φ(j), (1)

where φ is a solution belonging to the set composed of all the feasible permuta-
tions, denoted as Sn, such that φ : F → L. The cost associated to assign facility i
to location φ(i) and facility j to facility φ(j) is, according to Eq. (1), fijdφ(i)φ(j).
In addition, let us denote as f(φ) the objective function value of solution φ ∈ Sn.
Drezner et al. [4] review the applicability of widespread metaheuristics from the
literature to address the QAP. The interested reader is referred to the detailed
survey provided by Loiola et al. [13].

We use the same problem instances of [6] and the best state-of-the-art SA
[5] to properly compare our proposed approach. From the computational exper-
iments, we conclude that our approach provides a better performance compared
to the SA when using a single neighborhood structure.

The remainder of this paper is structured as follows. First, we review some
related works in Sect. 2. The proposed variable SA algorithm is presented in
Sect. 3. In Sect. 4, we report the results of the computational experiments. The
paper ends with some conclusions and an outlook.

2 Related Works

In general terms, Cheh et al. [2] studied the effect that neighborhood structures
have on SA. On the other hand, Ogbu and Smith [14] showed the benefit of
using larger neighborhoods within SA. Henderson et al. [9] review the impact
that the choice of neighborhoods has on SA and indicate that the efficiency of
SA is highly influenced by the neighborhood selection.

Besides Heilig et al. [7], some authors have investigated ideas to control the
neighborhood structure during the search. Xu and Qu [17] investigate the use
of variable neighborhoods within an evolutionary multi-objective SA (EMOSA)
for solving multicast routing problems. Using multiple neighborhood structures
specifically designed for each objective significantly improves the performance of
the SA. Ying et al. [19] propose an SA algorithm with variable neighborhoods
and define additional parameters to control the random selection of the neigh-
borhood structure. While the performance of the algorithm depends on a good
configuration of the parameters, requiring additional experiments. The proposed
approach was able to find new best-known solutions for the cell formation prob-
lem.

Instead of defining a parameter, Rodriguez-Cristerna and Torres-Jimenez [15]
use only two neighborhood structures and select them with uniform probabilities.
Some authors investigate ideas to adjust the size of neighborhood structures, such
as by means of a non-uniform mutation operator for monotonously decreasing
the neighborhood size [16] or by using a circle-directed mutation as done in [12].
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Other than in previous works, we propose a dynamic neighborhood variation
where the neighborhood structures are changed depending on the success of find-
ing better solutions.

Furthermore, SA is used in some works to extend the acceptance criterion
of the variable neighborhood search (VNS) for accepting also non-improving
solutions under certain conditions (see, e.g., [3,8,11,18]).

3 Variable Neighborhood Simulated Annealing Algorithm

In order to evaluate the contribution of variable neighborhood within SA, the
best state-of-the-art SA proposed for solving the QAP-PCB [5] is used as a base
template. For extending it, we include the novel incorporation of neighborhood
variation in lines 5 to 14, where a parameter k is introduced for regulating the
change of neighborhood structures.

Algorithm 1. SA with variable neighborhood structures (SA-VN)
Require: Tempmin, α, β, rmax

1: S ← generate initial solution at random
2: Temp ← fobj(S)α; k ← 1
3: while (Tempmin < Temp and it ≤ itmax) do
4: for (r = 1 to rmax) do
5: Generate a solution S′ ∈ N k(φ)(S)
6: Calculate ΔS,S′ = fobj(S′) − fobj(S)
7: if (ΔS,S′ ≤ 0) then
8: S ← S′

9: k ← 1
10: Update best solution Sbest if applicable
11: else
12: S ← S′ with probability e−Δ/Temp

13: k + +
14: end if
15: Temp = Temp · β
16: it + +
17: end for
18: end while
19: Return Sbest

We apply the swap neighborhood structure. That is, given a solution, φ ∈ Sn,
the swap neighborhood, N 1(φ) = {φ ◦ (i, j) : 1 ≤ i, j ≤ n, i 	= j}, performs
the transposition (i, j) by swapping the two relevant locations assigned to the
indexes, i and j, respectively. Moreover, we define N 2(φ) and N 3(φ) as the
application of swap consecutively two and three times, respectively.
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4 Computational Results

The computational experiments were executed over the instances proposed by
Duman et al. [6] which were generated considering the QAP-PCB. In each case,
30 executions of our SA-VN were carried out for each problem instance. The
algorithms were executed on a computer equipped with an Intel i7-7700HQ and
16 GB of RAM. In order to properly evaluate the contribution of our approach,
we have used the SA and its best parameters as provided in [5] with a maximum
number of |n|3.5 solutions.

Table 1. Comparison among SA-VN algorithms for the QAP-PCB instances. Best
values in bold.

SA-VN (k = 3) SA-VN (k = 2)

Instance (size) Min Avg. Max. t (ms) Min Avg. Max. t (ms)

B1 (58) 1066 1084.33 1132 3281.47 1066 1088.33 1126 3302.47

B2 (54) 754 771.067 798 2865.37 756 775.4 796 2852.4

B3 (52) 730 749.667 784 2666.57 732 749.867 776 2653.37

B4 (50) 1450 1456 1482 1651.27 1450 1466.13 1502 1643.07

B5 (48) 752 765.133 802 1534.33 754 767.067 814 1525.43

B6 (49) 1388 1400.33 1436 1601.3 1392 1397.07 1438 1597.5

B7 (47) 1350 1362.6 1394 1474.2 1348 1360.6 1374 1503.83

B8 (40) 714 725.067 740 491.533 718 726.333 738 497.667

1025.5 1039.28 1071 1945.75 1027 1041.35 1070.5 1946.97

Table 2. Comparison among SA algorithms using one neighborhood structure for the
QAP-PCB instances. Best values in bold.

SA 1 SA 2 SA 3

Instance (size) Min Avg. Max. t (ms) Min Avg. Max. t (ms) Min Avg. Max. t (ms)

B1(58) 1070 1087.73 1130 3319 1066 1084.13 1126 3323.57 1068 1092 1130 3345.23

B2 (54) 758 778.4 814 2850.1 756 775.533 814 2894.47 760 774.60 796 2938.67

B3 (52) 730 753.4 780 2667.2 734 757.733 784 2701.37 730 752.67 804 2744.90

B4 (50) 1450 1458.4 1488 1628.9 1450 1462.47 1484 1664.33 1450 1463.73 1514 1696.17

B5 (48) 752 764.533 804 1512.07 754 766.533 802 1533.57 754 764.20 808 1556.43

B6 (49) 1390 1399.93 1438 1589.63 1388 1397.53 1444 1589.5 1390 1399.20 1438 1638.93

B7 (47) 1350 1362.07 1386 1454.9 1348 1360 1378 1472.3 1348 1364.40 1398 1512.27

B8 (40) 718 724.867 736 487.1 716 724.667 734 492.133 716 725.20 736 505.87

1027.25 1041.17 1072 1938.61 1026.5 1041.08 1070.75 1958.9 1027 1042 1078 1992.31

Table 1 shows the comparison between SA with variable neighborhoods con-
sidering two, i.e., SA-VN (k = 2) and three neighborhoods, i.e., SA-VN (k = 3).
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Moreover, the best SA proposed by [5] considering individually all the used neigh-
borhoods is compared in Table 2. For each problem instance, the performances
of the algorithms in terms of average objective value (Avg.), best objective value
(Min.), the worst objective value (Max.), and the computational time (t (ms))
of all the executions in milliseconds are reported.

From the results, it can be seen that all algorithms require similar computa-
tional times. The strategy of including variable neighborhoods permits to obtain
more best-known solutions. Although there is not a relevant difference in terms
of the worst values, the average performance is enhanced when more neigh-
borhoods are considered in SA-VN. Moreover, there is a relevant performance
benefit when the number of neighborhoods increases.

5 Conclusions

In this work, a novel simulated annealing with variable neighborhoods changing
along the search is proposed for solving the quadratic assignment problem. This
new SA approach includes alternating neighborhoods when there is no improve-
ment or the probability of acceptance does not permit a worsening movement.
It is noticeable from the numerical experiments that the proposed algorithm
exhibits a better performance within similar time frames as the standard SA.
The promising results encourage to further explore this research direction. The
results also go in line with those shown in [7] where the inclusion of variable
neighborhoods leads to an overall improvement of the SA search framework.

As future work, we aim at extending and analyzing the performance of SA-
VN on other QAP instances such as those from the QAPLIB [1] as well as other
optimization problems. Moreover, we aim to add a look ahead component like
known from the pilot method.
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