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Josephson junctions [1] are the basis for the most sensitive magnetic flux detectors [2],

the definition of the unit volt by the Josephson voltage standard [3], and superconduct-

ing digital and quantum computing [4–6]. They result from the coupling of two coherent

quantum states, as they occur in superconductors [7], superfluids [8], atomic Bose-Einstein

condensates [9] and exciton-polariton condensates [10]. In their ground state, Josephson

junctions are characterised by an intrinsic phase jump. Controlling this phase jump is

fundamental for applications in computing [6]. Here, we experimentally demonstrate con-

trollable phase relations between two photon Bose-Einstein condensates resulting from

particle exchange in a tuneable potential landscape with all-optical control. Our exper-

iment realises an optical analogue of a controllable 0,π-Josephson junction, which can

form a building block for ultrafast spin glass simulators and oscillatory neural networks.

Further applications include the use as a phase battery for engineering topological states

of light.

The low-temperature behaviour of interacting many-body systems often remains poorly understood,

as the mathematical problems involved often elude a solution. Finding the energetic ground state

of a magnet with disordered couplings is a well-known example. This so called spin glass problem

has no analytic solution and even numerical techniques are found to be inefficient. It is known that

many important optimisation problems in machine learning, logistics, computer chip design and DNA

sequencing can be mathematically mapped to an equivalent spin glass problem [11]. The latter results

from the proven NP hardness of the problem [12, 13]. A method for solving the spin glass problem

in the Ising, XY or Heisenberg model can, thus, serve as a blueprint for approaching a large class of

mathematical optimisations. This motivates the development of analog spin glass simulators as a new

class of computational devices specifically designed for simulating spin systems. For the Ising model,

analog spin glass simulations have been demonstrated using networks of superconducting qubits [5, 14]

and optical parametrical oscillators [15–17]. For the XY model, the proposed physical platforms are

based on superconducting qubits [18], lasers [19], atomic BECs [20] and polariton condensates [21–24].

A prototypical analog spin glass simulator consists of a lattice of simulated spins, such as supercon-
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Figure 1. Josephson junction for photon Bose-Einstein condensates. a, The experimental setup is
based on a high-finesse dye microcavity, in which optical photons are repeatedly absorbed and reemitted
by dye molecules. The latter leads to a thermalisation and condensation of the photon gas at room
temperature. The potential landscape for the two-dimensional photon gas is created by a combination
of two experimental techniques: a static nanostructuring of one of the mirror surfaces and an in-situ
variation of the index of refraction of the optical medium using a thermo-sensitive polymer (pNIPAM)
and a heating laser. b, Static confinement potential. A rectangular surface structure is created on one
of the cavity mirrors, which restricts the flow of light to the confined area. This area is furthermore
divided into three parts by introducing two shallower barriers, see the cross section in the lower graph.
The height map of the mirror was determined by Mirau interferometry. c, The Josephson junction in
our experiment consists of two photon Bose-Einstein condensates that are created at the two ends of the
confining potential. By tunnelling into the central region of the junction, a particle exchange is created
that leads to in-phase or anti-phase relations between the condensates (upper two graphs). The acquired
phase delay is controlled by the thermo-optically induced potential (lower graph).

ductors, lasers or Bose-Einstein condensates, which are coupled to each other in a controllable manner.

The ability to accurately adjust the coupling constants between the spins is fundamental for defin-

ing the computational problem to be solved. In this work, we experimentally realise a controllable

0, π-Josephson junction for photon Bose-Einstein condensates. By controlling the potential landscape

between the two coupled condensates, we can deterministically switch the phase relation of the con-

densates between in- and anti-phase coupling. We propose to use this device as the building block for

ultrafast optical spin glass simulators and oscillatory neural networks.

Our experimental setup is based on a high-finesse dye microcavity, see Fig. 1a, in which optical photons

are repeatedly absorbed and reemitted by dye molecules. The dye molecules obey the Kennard-

Stepanov law connecting the (broadband) Einstein coefficients of absorption B12(ω) and emission

B21(ω) by a Boltzmann factor: B12(ω)/B21(ω) = exp[~(ω−ωzpl)/kT ]. Here, ωzpl is the zero-phonon

line of the dye and T is the temperature. Multiple absorption-emission cycles establish a thermal

contact between the photon gas and its environment, which, in effect, leads to a thermalisation and

condensation of the photon gas at room temperature [25–31]. For sufficiently small mirror spacings,

the photon gas effectively becomes two-dimensional and follows a modified energy-momentum relation
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given by

E ' mc2

n20
+

(~kr)2

2m
− mc2

n20

(
∆d

D0
+

∆n

n0

)
, (1)

where kr represents the transverse wavenumber and m denotes an effective photon mass [32]. The

second and third term correspond to the kinetic and potential energy of the photons. The potential

energy is non-vanishing, if the distance between the mirrors D(x, y) = D0 + ∆d(x, y) or the refractive

index n(x, y) = n0+∆n(x, y) is modified across the transverse plane of the resonator. In our derivation,

we assume ∆d� D0 and ∆n� n0.

The Josephson junction in our experiment consists of two photon Bose-Einstein condensates that

exchange particles in a tuneable potential landscape. The potential is created by a combination of two

experimental techniques: nanostructuring of the mirror surface and in-situ variation of the index of

refraction of the optical medium. For the static nanostructuring, we use a direct laser writing technique

that allows us to selectively lift the surface of the mirror by up to 100 nm with sub-nanometer control

[33]. This translates into repulsive potentials for the photon gas in a microresonator setting, see eq.

(1). In a first step, we create a barrier around a rectangular region of 30µm length and 5µm width,

see Fig. 1b, which restricts the flow of light to the confined area. In a second step, we divide the

confined area into three regions by introducing two shallower barriers (the three regions are denoted

by 1, 2, and 3 in Fig. 1b,c). The microresonator setup is completed by a second (planar) mirror

and an optical medium, which is a water-based solution of rhodamine 6G and the thermo-sensitive

polymer pNIPAM. By optically pumping the dye molecules with a 5 ns laser pulse at λ = 480 nm

we create photon Bose-Einstein condensates at the two ends of the structure. The finite potential

barriers allow photons to tunnel into the central region of the junction establishing a particle exchange

between the two condensates. The thermo-sensitive polymer pNIPAM is used to control the potential

landscape in the central region of the junction. For that, we use a second laser that emits 2ms long

laser pulses of variable energy. These pulses are irradiated onto the sample 50ms before the optical

pumping initiates the condensation process. The pulses are absorbed in an amorphous silicon layer

located below the dielectric stack of one of our mirrors (’Si’ in Fig. 1a). The absorbed energy increases

the local temperature of the optical medium by a few Kelvin such that it reaches the lower critical

solution temperature (LCST) of pNIPAM in water. This leads to a significant change of the index of

refraction which, with eq. (1), translates into a tuneable potential for the photons in the microcavity

[28]. The purpose of this tuneable potential is to control the phase delay that the photons acquire

while traveling through the central region of the junction, see Fig. 1c.
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The coupled photon BEC system follows equations of motion that closely resemble the Josephson

equations [32]. Deviations from the textbook Josephson scenario arise from the interaction with the

environment. In the photon BEC system, the states of the condensates are not given entities but are

subject to energy and particle exchange with the environment. In particular, the evolution of the total

photon number n = n1 + n2 is equal to

ṅ = λn− J12
√
n1n2 cos(θ1−θ2) , (2)

where n1,2 and θ1,2 are the photon numbers and phases of the two condensates, λ denotes a gain

parameter and J12 is the coupling between the two condensates [32]. Upon optically pumping the

system, the condensation process is triggered and a competition among the possible system states

is initiated. In this competition, the state that maximises the gain ṅ is the one that acquires the

dominant statistical weight. Based on eq. (2), we expect that the system predominantly realises states

with equal condensate population (as this maximises the square root function for a given n) and phase

differences of θ1 − θ2 = 0 (0-state) or θ1 − θ2 = π (π-state) depending on the sign of J12. The latter is

a function of the induced potential and other system parameters [32]. These two states maximise the

gain, are fixed points of the Josephson equations and, thus, define the intrinsic phase jump across the

junction.

Figure 2a shows the photon density ρ = |ψ(x, y)|2 inside the microresonator as determined by a camera

capturing the light transmitted by one of the cavity mirrors. We observe various stripe patterns indic-

ating the presence of photon exchange and the formation of standing waves between the condensates.

All density profiles can be clearly assigned to symmetric wavefunctions (0-states) or antisymmetric

wavefunctions (π-states), see Fig. 1c. The emergence of these states in our experiment follows a qual-

itatively similar scheme as in a one-dimensional harmonic oscillator: with increasing potential depth,

symmetric and antisymmetric states alternate and the number of nodes in the wavefunction increases.

Our theoretical modelling [32] reveals that the condensation process chooses between 0- and π-state

based on the interplay of two physical mechanisms. At high temperatures or large spatial gain gradients,

the coupled condensate wavefunction primarily tries to maximise the spatial overlap with the high gain

regions in the junction, i.e. the regions that are optically pumped. At low temperatures or small spatial

gain gradients, the system mainly tries to minimise the energy of the wavefunction. The latter is related

to the fact that, as in any coupled oscillator system, the frequency of 0- and π-state differ by a certain

amount, which is of order 100GHz in our experiment [28, 32]. As a consequence, the gain-loss scheme

dictated by the Kennard-Stepanov law selects the state that has the lower energy for the given system
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Figure 2. Controllable phase relations. a, Photon density in the microresonator plane for six different
heating energies as determined by a camera capturing the light transmitted by one of the cavity mirrors.
All density profiles can be assigned to symmetric wavefunctions (0-states) or antisymmetric wavefunctions
(π-states). The numbers in the red boxes indicate the number of observed intensity maxima between the
condensates. b, Potential landscape in the microresonator. Starting from the measured photon density
ρ = |ψ(x, y)|2, we reconstruct the wavefunction of the photons ψ(x) = ε(x)

√
ρ(x), in which ε(x) switches

between +1 and −1 at every node in the wavefunction. The potential V follows via V − const = −Ekin =
(~2/2m)(d2ψ/dx2)ψ−1 (points). Our method breaks down at the nodes of the wavefunction. These regions
(shaded areas) are excluded from the polynomial fit (line). The reconstructed potentials reveal both the
static potential due to the nanostructured mirror and the dynamically induced potential due to the thermo-
sensitive polymer. c, Interferometric images of the coupled condensate system. The transmitted light is
guided through a Mach-Zehnder interferometer to test for the coherence of the two condensates. Data
for the interferometric visibility v = (Imax − Imin)/(Imax + Imin) is given in the inset. The estimated
degree of first-order coherence, which is generally found to be close to unity, takes into account the (small)
population imbalances between the condensates.

parameters. In the parameter regime of our experiments, we expect both the gain-gradient-driven and

the energy-driven mechanism to actively contribute to the state selection process in the junction.

The measured photon density ρ allows us to reconstruct the potential landscape in the microresonator.

Using V − const = −Ekin = (~2/2m)(d2ψ/dx2)ψ−1 with ψ(x) = ε(x)
√
ρ(x) and a sign function ε(x)

switching between +1 and −1 at every node, we obtain the spatial variation of the potential in the

x-direction of the microcavity plane, see Fig. 2b. The reconstructed potentials clearly reveal both

the static potential due to the nanostructured mirror and the dynamically induced potential due to

the thermo-sensitive polymer. Interferometric images of the coupled condensate system are shown

Fig. 2c. For this, we guide the transmitted light through a Mach-Zehnder interferometer, see the

schematic representation in Fig. 2c, and superimpose the images of the two condensates. The high

contrast of the observed stripe pattern indicates first-order coherences close to unity. State-resolved

statistical information on the operation of the junction are provided in Fig. 3a. Here, we measure and

analyse sequences of 50 experimental runs with identical control parameters. The data indicates that

the formation of a particular phase relation between the condensates is deterministic for a significant
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Figure 3. State-resolved statistics. a, State-resolved statistical information on the operation of the
junction. For every heating energy, 50 experimental runs with identical control parameters are measured
and analysed. The data indicates that the formation of a particular junction state, as defined by the
number of observed intensity maxima between the condensates (red boxes), is deterministic for a significant
fraction of the investigated heating energies. b, Probability of finding the junction in a 0- or π−state as
a function of the heating energy.

fraction of the investigated heating energies. Moreover, the transition between the states is quite sharp,

see Fig. 3b.

We expect that analog spin glass simulation will be the first major application of photonic Josephson

junctions. In the following, we propose and analyse an experimental scheme for solving the ground

state problem in XY spin glasses using networks of photonic Josephson junctions. A particular instance

of such a problem is defined in Fig. 4a, which shows a classical XY model with Hamiltonian HXY =

−
∑

i>j Jij cos(φi − φj) on a (random) 3-regular planar graph with antiferromagnetic couplings Jij =

−1. The basic idea is to associate the XY spins φi ∈ [0, 2π) to the phases θi of photon Bose-Einstein

condensates. For the given example, we assume a triangular lattice potential in the microcavity. The

lattice sites are connected to each other by attractive step potentials with variable depth. For mapping

the XY coupling constants Jij = −1 to the photon BEC system, we set the potential depth to a value

that favours the formation of π-states. This results in the potential landscape shown in Fig. 4a. We

have performed numerical simulations to investigate the dynamics of the condensation process in the

given potential landscape. For this, we numerically integrate a two-dimensional stochastic Schrödinger

equation with gain and frequency-dependent loss terms in an experimentally relevant parameter regime,

see Ref. [32] for further information. At t = 0, the optical gain on the triangular lattice is set close to
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Figure 4. Optical spin glass simulation with photonic Josephson junctions. a, Mapping between
XY spin glasses and systems of coupled Bose-Einstein condensates. We propose to use photonic Joseph-
son junctions to solve optimisation problems, namely the ground state problem in XY spin glasses and
mathematical equivalent problems. The ground state problem corresponds to finding the minimum of
HXY = −

∑
i>j Jij cos(φi − φj) with optimisation variables φi ∈ [0, 2π). A particular instance of such a

problem is defined on a (random) 3-regular planar graph with antiferromagnetic couplings Jij = −1. The
problem is mapped onto the potential landscape in the microcavity system by introducing a triangular
lattice potential, in which the lattice sites are connected by attractive step potentials. The depth of the
steps is chosen to favour the formation of π-states. b, Amplitude of the simulated light field |ψ(x, y)|. We
have performed numerical simulations to investigate the condensation process in the given potential land-
scape. A two-dimensional stochastic Schrödinger equation with gain and frequency-dependent loss terms
is numerically integrated using the Runge-Kutta method [32]. At the start of the simulation, the optical
gain on the triangular lattice is set close to the condensation threshold and photons start to populate the
cavity. The phases of the light field, indicated by the arrows, are adjusted to maximise the gain. c, Total
photon number and simulated energy as a function of time. The data comprises 200 numerically obtained
stochastic time evolutions of the system. The relative frequency of the total photon number N and the
simulated energy HXY , derived from the phases of the light field, are colour-coded. The photon number
is normalised to the noise level N0 in the stochastic Schrödinger equation (at zero gain). The coupled
condensate system is capable of finding good approximative solutions of the given ground state problem
within a period as short as 20 ps.

the condensation threshold and photons start to populate the cavity. This starts a competition among

the various system states, in which the phases of the light field, indicated by the arrows in Fig. 4b,

are adjusted to maximise the gain function. The latter is a straightforward generalisation of eq. (2)

and can be shown to coincide with the XY Hamiltonian HXY [32]. Figure 4c shows the total photon

number and the simulated energy, derived from the phases of the light field, as a function of time.

The data comprises 300 numerically obtained stochastic time evolutions of the system. The relative

frequency of photon number and simulated energy are colour-coded. From this figure, we conclude that

the coupled condensate system is capable of finding good approximative solutions of the given ground

state problem within several ten picoseconds. This number suggests a substantial reduction of six

orders of magnitude in annealing time over the present state of the art in analog spin glass simulation

[5, 16]. That said, we would like to emphasise that many aspects determining the performance of the



8

proposed simulator will need to be investigated more closely in the future.

In conclusion, our work explores Josephson junctions in a fundamentally new regime, in which the state

of the junction is determined by energy and particle exchange with its environment. By controlling the

flow of light in the microresonator, we can deterministically switch the state of the junction between

in-phase and anti-phase coupling. We expect that photonic Josephson junctions can play a major role

for novel computational schemes, for example, in analog spin glass simulation and oscillatory neural

networks. Applications in basic research include, for example, the use as phase battery for engineering

topological states of light.

We thank Klaas-Jan Gorter for his contributions in the early phase of this project and the Weitz group

at the University of Bonn for providing critical equipment. Useful discussions with Natalia Berloff,

Pavlos Lagoudakis, Michiel Wouters, Pepijn Pinkse, and Willem Vos are acknowledged.

[1] Josephson, B. D. Possible new effects in superconductive tunnelling. Phys. Lett. 1, 251 (1962).

[2] Drung, D., Assmann, C., Beyer, J., Kirste, A., Peters, M., Ruede, F. & Schurig, Th., Highly sensitive and

easy-to-use SQUID sensors. IEEE T. Appl. Supercon. 17, 699 (2007).

[3] Niemeyer, J., Grimm, L., Meier, W., Hinken, J. H. & Vollmer, E., Stable Josephson reference voltages

between 0.1 and 1.3 V for high-precision voltage standards. Appl. Phys. Lett. 47, 1222 (1985).

[4] Feofanov, A. K. et al. Implementation of superconductor/ferromagnet/superconductor π-shifters in super-

conducting digital and quantum circuits. Nat. Phys. 6, 593 (2010).

[5] Johnson, M. W. et al., Quantum annealing with manufactured spins. Nature 473, 194 (2011).

[6] Gingrich, E. C. et al. Controllable 0–π Josephson junctions containing a ferromagnetic spin valve. Nat.

Phys. 12, 564 (2016).

[7] Anderson, P. W. & Rowell, J. M. Probable observation of the Josephson tunnel effect. Phys. Rev. Lett. 10,

230 (1963).

[8] Avenel, O. & Varoquaux, E., Josephson effect and quantum phase slippage in superfluids. Phys. Rev. Lett.

60, 416 (1988)

[9] Cataliotti, F. S., Burger, S., Fort, C., Maddaloni, P., Minardi, F., Trombettoni, A., Smerzi, A., Inguscio,

M., Josephson junction arrays with Bose-Einstein condensates. Science 293, 843 (2001).

[10] Abbarchi, M., Amo, A., Sala, V. G., Solnyshkov, D. D. Flayac, H., Ferrier, L., Sagnes, I., Galopin, E.,

Lemaître, A., Malpuech, G. & Bloch, J. Macroscopic quantum self-trapping and Josephson oscillations of

exciton polaritons. Nat. Phys. 9, 275 (2013).

[11] Lucas, A., Ising formulations of many NP problems. Front. Phys. 12, 1 (2014).

[12] Barahona, F., On the computational complexity of Ising spin glass models. J. Phys. A-Math. Gen. 15,



9

3241 (1982).

[13] Cubitt, T. & Montanaro, A., Complexity classification of local Hamiltonian problems. SIAM J. Comput.

45, 268 (2016).

[14] Boixo, S., Rønnow, T. F., Isakov, S. V., Wang, Z., Wecker, D., Lidar, D. A., Martinis, J. M. & Troyer, M.,

Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218 (2014).

[15] Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y., Network of time-multiplexed optical

parametric oscillators as a coherent Ising machine. Nat. Photonics 8, 937 (2014).

[16] McMahon, P. L. et al., A fully programmable 100-spin coherent Ising machine with all-to-all connections.

Science 354, 614 (2016).

[17] Inagaki, T., Inaba, K., Hamerly, R., Inoue, K., Yamamoto, Y. & Takesue, H., Large-scale Ising spin network

based on degenerate optical parametric oscillators. Nat. Photonics 10, 415 (2016).

[18] King, A. D. et al., Observation of topological phenomena in a programmable lattice of 1,800 qubits, Nature

560, 456 (2018).

[19] Nixon, M., Ronen, E., Friesem, A. A. & Davidson, N., Observing geometric frustration with thousands of

coupled lasers. Phys. Rev. Lett. 110, 184102 (2013).

[20] Struck, J., Weinberg, M., Ölschläger, C., Windpassinger, P., Simonet, J., Sengstock, K., Höppner, R.,

Hauke, P., Eckardt, A., Lewenstein, M. & Mathey, L., Engineering Ising-XY spin-models in a triangular

lattice using tunable artificial gauge fields, Nat. Phys. 9, 738 (2013).

[21] Berloff, N. G., Silva, M., Kalinin, K., Askitopoulos, A., Töpfer, J. D., Cilibrizzi, P., Langbein, W. &

Lagoudakis, P. G., Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120

(2017).

[22] Alyatkin, S., Töpfer, J. D., Askitopoulos, A., Sigurdsson, H., & Lagoudakis, P. G., Optical control of

synchronous phases in a programmable polariton cell, arXiv:1907.08580v1 [cond.mat.mes-hall].

[23] Kalinin, K. P. & Berloff, N. G., Simulating Ising and n-state planar potts models and external fields with

nonequilibrium condensates. Phys. Rev. Lett. 121, 235302 (2018).

[24] Kalinin, K. P. & Berloff, N. G., Toward arbitrary control of lattice interactions in nonequilibrium condens-

ates. Adv. Quantum Technol., 1900065 (2019).

[25] Klaers, J., Vewinger, F. & Weitz, M., Thermalization of a two-dimensional photonic gas in a ‘white wall’

photon box. Nat. Phys. 6, 512 (2010).

[26] Klaers, J., Schmitt, J., Vewinger, F. & Weitz, M., Bose-Einstein condensation of photons in an optical

microcavity. Nature 468, 545 (2010).

[27] Kirton, P., Keeling, J., Nonequilibrium model of photon condensation, Phys. Rev. Lett. 111, 100404 (2013).

[28] Dung, D., Kurtscheid, C., Damm, T., Schmitt, J., Vewinger, F., Weitz, M. & Klaers, J., Variable potentials

for thermalized light and coupled condensates. Nat. Photonics 11, 565 (2017).

[29] Walker, B. T., Flatten, L. C., Hesten, H. J., Mintert, F., Hunger, D., Trichet, A. A. P., Smith, J. M. &

Nyman, R. A., Driven-dissipative non-equilibrium Bose–Einstein condensation of less than ten photons.

Nat. Phys. 14, 1173 (2018).

http://arxiv.org/abs/1907.08580


10

[30] Greveling, S., Perrier, K. L. & van Oosten, D., Density distribution of a Bose-Einstein condensate of

photons in a dye-filled microcavity. Phys. Rev. A 98, 013810 (2018).

[31] Gladilin, V. N. & Wouters, M., Classical field model for arrays of photon condensates. arXiv:2001.07137

[cond-mat.quant-gas].

[32] For further information see the Supplemental Information at [...].

[33] Dung, D., Variable Potentiale für thermisches Licht und gekoppelte Photonenkondensate. PhD thesis,

University of Bonn (2017).

http://arxiv.org/abs/2001.07137


Supplementary Information

Controllable Josephson junction for photon Bose-Einstein condensates

Ben Kassenberg, Mario Vretenar, Shivan Bissesar, and Jan Klaers

Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology,

University of Twente, PO Box 217, 7500 AE Enschede, Netherlands

CONTENTS

References 8

I. Experimental Methods S2

A. Microcavity setup S2

B. Optical medium S3

II. Theoretical Methods S4

A. Josephson equations for coupled photon Bose-Einstein condensates S4

B. Potential step model S6

C. Spin glass simulation with N coupled condensates S10

D. Numerical simulations S11



S2

I. EXPERIMENTAL METHODS

A. Microcavity setup

Our experiment is based on a high finesse microcavity as shown in Fig. 1a of our Letter. In this

system, photons behave as two-dimensional massive particles subject to a controllable potential energy

landscape. In general, the photon energy in the cavity is given by E = (~c/n)
√
k2z + k2r , in which

the longitudinal (along the optical axis) and transverse wavenumbers are denoted by kz and kr. The

boundary conditions induced by the mirrors require kz = qπ/D(x, y), in which q = const is the

longitudinal mode number and D(x, y) denotes the mirror separation. We allow small variations in

the index of refraction n(x, y) = n0 + ∆n(x, y) and in the mirror separation D(x, y) = D0 + ∆d(x, y)

across the transverse plane of the resonator. Assuming kr � kz, ∆n � n0 and ∆d � D0, we can

approximate the photon energy by

E ' mc2

n20
+

(~kr)2

2m
− mc2

n20

(
∆d

D0
+

∆n

n0

)
, (S1)

in which only leading order contributions were retained. Furthermore, we have defined an effective

photon mass m = π~n0q/cD0. The first term corresponds to the rest energy of the (two-dimensional)

photon. The second term is the kinetic energy and the third term corresponds to the potential energy

of the photon. The latter is non-vanishing, if the index of refraction or the mirror distance varies

across the transverse plane of the resonator. In our experiment, the index of refraction is controlled

by means of a thermo-sensitive polymer [28] and variations of the mirror distance are achieved by

nanostructuring one of the mirrors with a direct laser writing technique [33]. The height profiles of

our mirrors are determined via Mirau interferometry. For the latter, we use a commercially available

interferometric microscope objective (20X Nikon CF IC Epi Plan DI).

In our experiment, the rest energy of the photon is mc2/n20 ' 2.1 eV (yellow spectral regime). The

mirror separation D0 can be determined using eq. (S1), which relates height differences to differences in

potential energy: ∆V = −(mc2/n20) ∆d/D0. Based on Fig. 1b and Fig. 2b, we conclude that a height

difference of ∆d ' 0.45 nm is accompanied by a potential difference of ∆V ' 0.4meV (barrier of the

condensate confinement). The latter corresponds to a mirror separation of D0 = −(mc2/n20) ∆d/∆V '

2.3µm, which is similar to earlier experiments in the photon BEC system [25, 26].
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B. Optical medium

The optical medium in our experiment is a water-based solution of rhodamine 6G (concentration

1mMol/l) and the thermo-sensitive polymer pNIPAM (4% mass fraction). To avoid self-quenching of

the dye molecules, we add a small amount of lauryldimethylamine N-oxide. Due to the addition of

pNIPAM, the index of refraction of our optical medium is expected to be slightly higher than that of

pure water.

A necessary condition for the occurrence of photon Bose-Einstein condensation in an optical medium

is the Kennard-Stepanov (KS) law. The KS law describes the temperature dependence of absorption

B12(ω) and emission B21(ω) coefficient of a broadband fluorescent medium such as a dye solution:

B12(ω)

B21(ω)
= e

~(ω−ωzpl)
kT . (S2)

Here, ωzpl denotes the zero-phonon line and T describes the temperature of the medium (all experiments

were carried out at room temperature). The KS law goes back to a sub-picosecond thermalisation

process of the vibrational and rotational states of the dye by collisions with solvent molecules and

is well fulfilled for the dye species in our experiment. It can be shown that multiple absorption-

emission cycles drive a photon gas towards thermal equilibrium with the optical medium [see Klaers

et al., PRL 108, 160403 (2012)]. The KS law is fulfilled, if the emission coefficient is constant, i.e.

B21(ω) = B̂, and the absorption coefficient increases exponentially with the photon frequency, i.e.

B12 = B̂ exp(~(ω − ωzpl)/kT ). This condition is used in our theoretical modelling and approximately

corresponds to the situation that is realised in experiments.

For optically exciting the dye molecules in the microcavity we use a pulsed optical parametrical os-

cillator (OPO) emitting at a wavelength of 480 nm with a pulse duration of 5 ns. The heating of the

thermo-sensitive polymer is achieved with a 2ms laser pulse at a wavelength of 532 nm. The heating

pulse is irradiated onto the sample 50ms before the optical pump pulse. The heating energy is absorbed

in an amorphous silicon layer located below the dielectric stack of one of our mirrors. This leads to

an increase of the local temperature of the optical medium by a few Kelvin such that it reaches the

lower critical solution temperature (LCST) of pNIPAM in water. The water molecules attached to

the polymer chains are set free and the polymer chains collapse. This initiates a mass transport that

leads to a significant change of the index of refraction, which, with eq. (1), translates into a tuneable

potential for the photons in the microcavity [28].
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II. THEORETICAL METHODS

A. Josephson equations for coupled photon Bose-Einstein condensates

The system of two coupled condensates with gain and frequency-dependent loss is sketched in Fig. S1.

It can be described by two stochastic and dissipative Schrödinger equations

i~ψ̇1 = ~ωc,1ψ1 +
i~
2

(
Γ↑,1 − Γ↓ exp

(
~(θ̇1 − ωzpl)

kT

))
ψ1 + ~Jψ2 + ~η1ψ1 (S3)

i~ψ̇2 = ~ωc,2ψ2 +
i~
2

(
Γ↑,2 − Γ↓ exp

(
~(θ̇2 − ωzpl)

kT

))
ψ2 + ~Jψ1 + ~η2ψ2 . (S4)

Here, ωc,1 and ωc,2 describe the bare condensate frequencies. The parameters Γ↑,1, Γ↑,2 and Γ↓ describe

gain and loss rates, while J denotes the coupling of the two condensates. In general, J can be a complex

number. The equations include noise terms ~η1,2ψ1,2 with noise functions η1,2 = η1,2(t). This renders

the time evolution of the system stochastic. The functions θ1,2 denote the phases in the wavefunctions

ψ1,2 =
√
n1,2 exp(−iθ1,2) , (S5)

We now define the centre frequency of the condensates, namely ω̄c = (ωc,1 + ωc,2)/2, and rewrite the

absorption term in eqs. (S3) and (S4) as

Γ↓ exp

(
~(θ̇1,2 − ωzpl)

kT

)
= Γ̃↓ exp

(
~(θ̇1,2 − ω̄c)

kT

)
(S6)

with Γ̃↓ = Γ↓ exp(~(ω̄c − ωzpl)/kT ). Assuming that all occurring frequencies remain close to ω̄c, i.e.

~|θ̇1,2 − ω̄c| � kT , we can linearise the exponential function in the gain-loss term. This leads to

i~ψ̇1 = ~ωc,1ψ1 +
i~
2

(
Γ̃↑,1 − Γ̃↓

~(θ̇1 − ω̄c)
kT

)
ψ1 + ~Jψ2 + ~η1ψ1 (S7)

i~ψ̇2 = ~ωc,2ψ2 +
i~
2

(
Γ̃↑,2 − Γ̃↓

~(θ̇2 − ω̄c)
kT

)
ψ2 + ~Jψ1 + ~η2ψ2 . (S8)

In the latter, we have introduced the renormalised gain coefficients Γ̃↑,1 = Γ↑,1−Γ̃↓ and Γ̃↑,2 = Γ↑,2−Γ̃↓.
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Figure S1. Two coupled photon Bose-Einstein condensates with frequency-dependent gain-loss scheme.
The latter follows the Kennard-Stepanov law for fluorescent media and is responsible for a thermalisation
process between the coupled condensate system and its environment.

Using the temporal derivative of eq. (S5), we replace the phase velocities via

θ̇1,2 = i

(
ψ̇1,2

ψ1,2
− ṅ1,2

2n1,2

)
. (S9)

Again using eq. (S5) and separating into real and imaginary parts (Madelung transformation), we

arrive at the Josephson equations for the coupled photon BEC system. For the evolution of the

condensate phases we find

θ̇1 = ωc,1Re(A)− ω̄c[Re(A)−1] +
1

2
Im(A)

(
ṅ1
n1
−Γ̃↑,1

)
+ |A||J |

√
n2
n1

cos(θJ+θA+δ) +Re(Aη1) (S10)

θ̇2 = ωc,2Re(A)− ω̄c[Re(A)−1] +
1

2
Im(A)

(
ṅ2
n2
−Γ̃↑,2

)
+ |A||J |

√
n1
n2

cos(θJ+θA−δ) +Re(Aη2) (S11)

For the evolution of the particle numbers we derive

ṅ1 =

[
Γ̃↑,1 + 2

Im(A)

Re(A)
(ωc,1−ω̄c)

]
n1 +

2 |A||J |
Re(A)

√
n1n2 sin(θJ +θA+δ) + 2Im(Aη1)n1 (S12)

ṅ2 =

[
Γ̃↑,2 + 2

Im(A)

Re(A)
(ωc,2−ω̄c)

]
n2 +

2 |A||J |
Re(A)

√
n1n2 sin(θJ +θA−δ) + 2Im(Aη2)n2 . (S13)

In these equations, we have introduced a dimensionless complex dissipation parameter

A =
kT

kT + i~
2 Γ↓

= |A|eiθA . (S14)

We have furthermore used δ = θ1− θ2 and J = |J |eiθJ . Omitting the noise terms, we find the equation
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of motion for the total particle number n = n1 + n2:

ṅ = (Γ̃↑,1n1+Γ̃↑,2n2) + 2
Im(A)

Re(A)
(ωc,1n1+ ωc,2n2−ω̄cn) +

4|A||J |
Re(A)

sin(θJ +θA)
√
n1n2 cos(δ) (S15)

We can draw the following conclusion from this equation:

1. Equation (S15) implies that a phase difference of

δ =


0 sin(θJ + θA) > 0

π otherwise
(S16)

maximises the gain in total particle number. This holds independent of the details of the

coupling, condensate frequencies and pumping rates.

2. For condensates with equal frequencies (ωc,1 = ωc,2) and a given total particle number n, the

particle number distribution that maximises the gain is

n1 =
n

2

1 +
Γ̃↑,1 − Γ̃↑,2√(

4|A||J |
Re(A) sin(θJ +θA)

)2
+
(

Γ̃↑,1 − Γ̃↑,2

)2
 with n2 = n− n1 . (S17)

For large coupling constants |J | or equal gain (Γ̃↑,1 = Γ̃↑,2), the solution reduces to equal

population. In other words, the state n1 = n2 = n/2 with δ = 0,π maximises the gain. This

solution is furthermore a dynamical fixed point of the Josephson equations given in eqs. (S10)-

(S13).

B. Potential step model

In this section, we analyse a simplifying model, in which two photon Bose-Einstein condensates ex-

change particles via an attractive potential step, see Fig. S2. Using this model, we will gain insight into

the physical mechanisms that drive the state selection process between symmetric and antisymmetric

wavefunctions in the photonic Josephson junction.

The starting point is a one-dimensional dissipative Schrödinger equation. We use this equation to find

symmetric and antisymmetric wavefunctions that can be associated to the 0- and π-state of a coupled

condensate system as discussed in section II.A. The Schrödinger equation now includes terms related
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Figure S2. Potential step model. The model assumes that two Bose-Einstein condensates exchange
particles via an attractive potential step. Depending on the potential energy V and gain Γ↑ the system
selects either 0- or π-state. We assume spatially symmetric and piecewise constant functions V (x), Γ↑(x).

to the kinetic and potential energy:

i~
∂ψ

∂t
= ~ωcψ −

~2

2m

∂2ψ

∂x2
+ V ψ +

i~
2

(
Γ↑ − Γ↓ exp

(
~(θ̇ − ωzpl)

kT

))
ψ . (S18)

We follow a procedure similar as in section II.A. First, we rewrite the absorption term as

Γ↓ exp

(
~(θ̇ − ωzpl)

kT

)
= Γ̃↓ exp

(
~(θ̇ − ωc)

kT

)
(S19)

with Γ̃↓ = Γ↓ exp(~(ωc − ωzpl)/kT ). We assume that all occurring energies stay close to the bare

condensate frequency ωc in the sense that ~(θ̇ − ωc) � kT . Under this assumption, we linearise the

exponential function in the gain-loss term

i~
∂ψ

∂t
= ~ωcψ −

~2

2m

∂2ψ

∂x2
+ V ψ +

i~
2

(
Γ̃↑ − Γ̃↓

~(θ̇ − ωc)
kT

)
ψ . (S20)

In the latter, we have introduced the renormalised gain coefficient Γ̃↑ = Γ↑ − Γ̃↓. Assuming slowly

varying amplitudes in the wavefunction ψ =
√
n exp(−iθ), we approximate the phase velocity as
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θ̇ ' iψ̇/ψ. This procedure leads to

i~
∂ψ

∂t
= ~ωcψ −

~2A
2m

∂2ψ

∂x2
+AV ψ +

i~
2
AΓ̃↑ψ , (S21)

in which we have used the complex dissipation parameter A as defined in eq. (S14). Using ψ(x, t) =

φ(x)χ(t) yields the time-independent Schrödinger equation

− ~2A
2m

∂2φ

∂x2
+AV φ+

i~
2
AΓ̃↑φ = (E − ~ωc)φ . (S22)

The potential and gain profiles are considered symmetric in space, i.e. V (x) = V (−x) and Γ̃↑(x) =

Γ̃↑(−x). Furthermore, they are set constant in each of the three regions shown in Fig. S2. For the

symmetric state, we use the following ansatz

φ0(x) =


sin(k1[x+a+b]) −a−b ≤ x ≤ −a

A cos(k2x) −a ≤ x ≤ a

− sin(k1[x−a−b]) a ≤ x ≤ a+b .

(S23)

For the antisymmetric state, we choose

φπ(x) =


sin(k1[x+a+b]) −a−b ≤ x ≤ −a

A sin(k2x) −a ≤ x ≤ a

sin(k1[x−a−b]) a ≤ x ≤ a+b .

(S24)

Here, the complex wavenumbers ki must follow

ki = ~−1
√

2m

(
E − ~ωc
A

− Vi −
i~
2

Γ̃↑,i

)
. (S25)

Continuity conditions for φ and ∂φ/∂x at x = ±a determine the coefficient A. We find

A =


sin(k1b)
cos(k2a)

(0-state)

− sin(k1b)
sin(k2a)

(π-state) .
(S26)

Furthermore, the continuity conditions deliver an additional relation between the wavenumbers. For
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Figure S3. Complex energy difference ∆E = E0 − Eπ as a function of potential step depth V2 for three
parameter regimes. For positive Im(∆E), the system predominantly realises the 0-state. For negative
Im(∆E), the system chooses to be in the π-state. For all parameter sets, the gain periodically switches
sign as the depth of the potential step is increased. For large gain gradients Γ↑,1 − Γ↑,2 (left column) or
high temperatures T (right column), the system maximises the spatial overlap with the high gain regions,
as indicated by the quantity Γ̄0

↑− Γ̄π↑ (see text). For small gradients or low temperatures (middle column),
the system minimizes (the real part of) the energy. Further parameters: m = 6.5 × 10−36 kg, a = 9µm,
b = 7µm.

the two states, these conditions are given by

k1 cot(k1b) =


k2 tan(k2a) (0-state)

−k2 cot(k2a) (π-state) .
(S27)

Together with eq. (S25), these equation determine the allowed (complex) energies in the system. Since

analytical solutions are not possible, the energy spectrum has to be found numerically. In particular,

we are interested in the energies that belong to the kinetic ground state of the condensates, which will

be called E0 and Eπ. These two energies are related to the coupling constant J , as defined in section
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II.A, in the following way:

E0 − Eπ = i~

(
ψ̇0

ψ0
− ψ̇π
ψπ

)
(S28)

= ~(θ̇0 − θ̇π) +
i~
2

(
ṅ0
n0
− ṅπ
nπ

)
(S29)

= 2~Re(AJ) + i2~ Im(AJ)/Re(A) . (S30)

Here, we have used eqs. (S10) and (S15) with Γ̃↑,1 = Γ̃↑,2, ωc,1 = ωc,2 and consequently n1 = n2. The

solution of this equation in terms of the coupling constant is

J =
Re(E0 − Eπ) + iRe(A) Im(E0 − Eπ)

2~A
. (S31)

Figure S3 shows the complex energy difference ∆E = E0−Eπ as a function of the potential step depth

V2 for three parameter sets, which represent limiting cases for the system. For positive imaginary

components, i.e. Im(∆E) > 0, the 0-state system has a larger gain than the π-state. Consequently,

the system will predominantly realise the 0-state. For negative Im(∆E), the system chooses the π-

state. For all parameter sets, the gain periodically switches sign as the depth of the potential step is

increased.

For large gain gradients Γ↑,1 − Γ↑,2 (left column) or high temperatures T (right column), the system

primarily maximises the spatial overlap with the high gain region. The latter is reflected by the fact

that the gain curve Im(∆E) correlates with the quantity Γ̄0
↑− Γ̄π↑ , as shown in the third row of Fig. S3.

Here, Γ̄0,π
↑ =

∫ −+a+b
−a−b Γ↑ |ψ0,π|2dx (with normalised wavefunctions ψ0,π) is the spatially averaged gain.

This quantity is positive, if the 0-state has a larger overlap with the high gain regions than the π-state

(and is negative otherwise). For small gradients Γ↑,1 − Γ↑,2 or low temperatures T (middle column),

the system primarily minimises the energy, which is reflected by the fact that the gain curve Im(∆E)

now correlates with the energy curve Re(∆E). This behaviour can be understood as a consequence of

the thermalisation process induced by the Kennard-Stepanov gain-loss scheme.

C. Spin glass simulation with N coupled condensates

Equations (S10), (S11) and (S15) can readily be generalised to N coupled condensates with coupling

constants Jij . In the following, we set all condensate frequencies and pumping rates equal: ωc,i = ωc
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and Γ↑,i = Γ↑. For the phase velocity, we find:

θ̇i = ωc +
1

2
Im(A)

(
ṅi
ni
− Γ̃↑

)
+
∑
j

|A||Jij |
√
nj/ni cos(θJij +θA+ θi −θj) (S32)

For the particle number evolution, we obtain

ṅi = Γ̃↑ni +
∑
j

2|A||Jij |
Re(A)

√
ninj sin(θJij +θA+θi−θj) . (S33)

The total particle number gain ṅ =
∑

i ṅi is given by

ṅ =
∑
i

Γ̃↑ni +
∑
i,j

2|A||Jij |
Re(A)

√
ninj sin(θJij +θA+θi−θj) (S34)

=
∑
i

Γ̃↑ni +
∑
i>j

4|A||Jij |
Re(A)

√
ninj sin(θJij +θA) cos(θi−θj) , (S35)

which can be written in the form

ṅ =
∑
i

Γ̃↑ni −
∑
i>j

JXYij cos(θi−θj) . (S36)

Here, JXYij = −4|A||Jij |(ReA)−1
√
ninj sin(θJij+θA) describes an effective coupling constant. Assuming

that all condensates have the same number of particles, only the phases of the condensates remain free.

In this case, the second term in eq. (S36) exactly corresponds to the Hamiltonian of a classical XY

model. The phase configuration {θi} that maximises the gain, minimises the energy of the simulated

XY Hamiltonian. This implies that the coupled BEC system can be used to sample low energy

configurations of the simulated XY Hamiltonian. In general, the assumed equality of particle numbers

is not automatically guaranteed and may require a feedback scheme [24] (and references therein).

Furthermore, it is not guaranteed that the system relaxes to a single state as the configuration that

maximises the gain is not necessarily a fix point of the Josephson equations.

D. Numerical simulations

The numerical simulations presented in Fig. 4 of our Letter are based on numerical solutions of the

two-dimensional, stochastic and dissipative Schrödinger equation:

i~
∂ψ

∂t
= ~ωcψ−

~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+V ψ+

i~
2

(
Γ↑ − Γ↓ exp

(
~ (θ̇ − ωzpl)

kT

)
− Γ2 |ψ|2

)
ψ+~η . (S37)
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Figure S4. Potential landscape V (x, y) and gain profile Γ↑(x, y) used in our numerical simulations. The
spatial profile of the loss (absorption) is assumed to be homogeneous Γ↓(x, y) = 1THz. We furthermore
assume T = 300K, which sets the dissipation parameter A given in eq. (S14). Condensate frequency
and zero-phonon line are considered equal: ωc = ωzpl. The effective photon mass in the simulation is
m = 6.5 · 10−36 kg.

This equation is an extension of eq. (S18) to the two-dimensional domain. It includes an additional

term related to non-linear losses, namely −Γ2 |ψ|2, which allows us to model gain saturation in the sys-

tem. Moreover, we added the noise function η = η(t). We perform the same steps and approximations

as in section II.B to obtain

i~
∂ψ

∂t
= ~ωcψ −

~2A
2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
+AV ψ +

i~
2
A
(

Γ̃↑ − Γ2 |ψ|2
)
ψ + ~Aη . (S38)

Numerical solutions of this equation are obtained with the Runge-Kutta method (4th order) with

constant time steps. The open source software library ViennaCL is used to perform the computations

on a fast GPU. We have carefully verified that our numerical results reproduce known analytical results

in a series of simple test cases. The results presented in Fig. 4c of our Letter were obtained by assuming

the potential landscape V (x, y) and the spatial gain profile Γ↑(x, y) presented in Fig. S4 (see the figure

caption for further information on simulation parameters). At t = 0, the optical gain Γ↑(x, y) is set to

the specified value and is then kept fixed (like all other system parameters). The data shown in Fig. 4c

of our Letter comprises 300 numerically obtained stochastic time evolutions of the system. The system

is observed to find good approximative solutions of the given ground state problem within several ten

picoseconds. In addition to the shown data, we have tested the performance of our simulation scheme

on a set of randomly created 3-regular planar graphs with 22 spins and antiferromagnetic coupling. In

all cases, the performance was very similar to the case shown in Fig. 4c.
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