
Detecting and Addressing Design Smells
in Novice Processing Programs

Ansgar Fehnker(B) and Remco de Man

Formal Methods and Tools Group, Faculty of Electrical Engineering,
Mathematics and Computer Science, University Twente,

Enschede, The Netherlands
ansgar.fehnker@utwente.nl

Abstract. Many novice programmers are able to write code that solves
a given problem, but they struggled to write code that adheres to basic
principles of good application design. Their programs will contain several
design smells which indicate a lack of understanding of how to structure
code. This applies in particular to degrees in which programming, and
by extension software design, is only a small part of the curriculum.

This paper defines design smells for Processing, a language for new
media and visual arts that is based on Java. This includes language
specific smells that arise from the common structure that all Processing
programs share. The paper also describes how to detect those smells
automatically with static analysis. This tool is meant to support teaching
staff with providing feedback to novices on program design.

We applied the tool to a large set of student programs, as well as
programs from the Processing community, and code examples used by
textbooks and instructors. The latter gave a good sense of the quality
of resources that students use for reference. We found that a surprising
number of resources contains at least some design smell. The paper then
describes how to refactor the code to avoid these smells. These guidelines
are meant to be practical and fitting the concepts and constructs that
are known to first-year students.

1 Introduction

Programming has become an increasingly important subject for many differ-
ent disciplines. First, programming was only important for technical disciplines.
Nowadays, also novices in less technical disciplines learn some programming.
Within these degrees, programming, and by extension software development, is
just one subject among others. The curriculum will offer only limited room to
teach principles and practices of software application design.

This paper is based on the experience in the first year of Creative Technology
(CreaTE) at the University of Twente. CreaTe equips students with skills and
knowledge required to develop creative and innovative human-centered applica-
tions. Programming is an integral part of the curriculum. First-year students are
introduced to the Processing language, a recent derivative of Java for electronic
c© Springer Nature Switzerland AG 2019
B. M. McLaren et al. (Eds.): CSEDU 2018, CCIS 1022, pp. 507–531, 2019.
https://doi.org/10.1007/978-3-030-21151-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-21151-6_24&domain=pdf
https://doi.org/10.1007/978-3-030-21151-6_24

508 A. Fehnker and R. de Man

art, new media, and visual design. It is a good fit for first-year CreaTe students,
as its philosophy – as exemplified by a thriving community – is very close to the
design philosophy of CreaTe. It prepares the ground for teaching more generic
languages, such as Java and C++, as well as for teaching languages used in
physical computing, such as the Arduino sketch language.

For novices, programming is often difficult. At the end of the first-year, stu-
dents will be able to write code that effectively solves a given problem, but have
trouble with applying principles of good application design. As soon as they
have to build bigger applications, they find it difficult to understand, maintain
or extend their own or other students code. Lack of exposure to principles of
software design frustrates good students, who cannot progress beyond a certain
point, and hinders struggling students, who are facing unnecessary complexities
of their own making. An experiment with the block-based Scratch language has
shown that badly written code can lead to decreased system understanding by
programmers themselves but also for more experienced programmers that review
the code [1].

The field of software development has developed in the last decades a set
of principles and practices that guide good application design. Their aim is to
make code understandable, maintainable, and extendable. A design smell is an
indicator of poor design [2] that may negatively affect these aims. In programs
by novice programmers, these smells are often symptoms of not understanding
design principles or how to put them into practice. Giving quality feedback on
application design to these programmers is especially important, and justifies
the need for automated tools that assist programming educators.

This paper studies design smells in Processing, a language developed by
Casey Reas and Ben Fry in the 2000s for visual arts and new media [3]. Pro-
cessing lowers the bar to producing interactive applications and offers built-in
methods for 2D and 3D graphics and for handling user input events, and a host of
libraries for graphics, audio and video processing, and hardware I/O. It is a sub-
set of Java, and omits, for example, certain object-oriented concepts of the Java
language. These simplifications allow students to create a simple application in
just a few lines of code.

While Processing is a subset of Java, design smells that have been devel-
oped for Java do not always translate to Processing. One reason is that Pro-
cessing consciously omits certain features, such as a system of access control. In
Processing all fields are public by design, which by itself would be considered
a design smell in Java. Another reason is the established practice of the Pro-
cessing community. It is not uncommon in Processing programs for objects
to access and change fields of other objects directly. This would be considered
poor practice in Java.

However, just because the language does not explicitly enforce certain coding
practices, does not mean that students should not be exposed to the ideas behind
them. Processing is only an introductory language, and CreaTe students will
proceed to common general-purpose languages like Java, C# and C++. At that

Detecting and Addressing Design Smells in Novice Processing Programs 509

point, prior exposure to essential design concepts will be beneficial to understand
advanced language features in those languages.

The software development community has learned that certain practices lead
to poor code, regardless of language particularities. We have to strike a balance
between keeping the benefits of a simplified language while introducing well-
known object-oriented design principles. While it is technically possible to use
any Java keyword or syntax in Processing, and teach “Java by stealth”, we
choose instead to teach Processing as it is defined by its inventors, and intro-
duce design in the form of design smells that are to be avoided.

The definition of these smells in this paper is informed by a manual analysis of
Processing code from two different sources: student code, and community code.
This paper will introduce customisations of existing design smells to Process-
ing, and in addition, define design smells that are particular to Processing. All
Processing programs have a shared basic structure, with the same predefined
methods for event handling and status variables. This common structure makes
them suspectable to common violations of good design principles, violations you
usually will not find in Java programs.

The paper then describes how automated static analysis tools can be used
to detect these smells. The tool is applied to code from three sources: student
code, community code, and code examples used by textbooks and instructors.
This analysis gives a good sense of common design problems in Processing,
their prevalence in novice code, and the quality of resources that students use
for reference.

This paper is an extended version of the work presented in [4]. We refined the
definition of some of the Processing specific smells such that they fit better
with the accepted practice and extended the prior work with a discussion of
recommended refactorings.

The contributions of this paper are as follows:

1. Defining design smells for Processing code and assess to what extent these
occur the most in novices as well as publicly available code.

2. A static analysis tool that detects those smells automatically.
3. A discussion of proposed refactorings that will address these smells and

improve the overall design of the programs.

The next section discusses the background and work related to the subject.
Section 3 describes the design smells, Sect. 4 the results of the manual code anal-
ysis. Section 5 discusses the implementation of automated detection tools for the
earlier defined design smells. Section 6 validates the effectiveness these tools on
code from different sources. In Sect. 7 we discuss possible refactoring that address
the smells. The final section contains the conclusion and the discussion.

2 Background and Related Work

2.1 Processing

The Processing language was created to make programming of interactive
graphics easier since the creators noticed how difficult it was to create simple

510 A. Fehnker and R. de Man

interactive programs in common programming languages such as Java and C++
[3]. It is based on Java, but hides certain language features such as access control
of field and methods, while providing a standard library for drawing interactively
on screen. Each program created in Processing has a draw() method which is
run in a loop to animate the drawings on the screen. Because the Processing
programs are primarily meant for creating interactive sketches, they are also
called sketches.

2.2 Code Smells

A code smell is defined as a surface indication which usually corresponds to a
deeper problem in the system. This means that a code smell only identifies a
code segment that most likely has some correspondence with a deeper problem in
the application design. The code smell itself is merely an indication for possibly
badly written code, hence the name code smell. An experienced programmer
would by seeing the code immediately suspect that something odd is happening,
without always directly knowing the exact cause of the problem.

Code smells are widely used in programming education to give feedback to
novice programmer code. Existing research has determined the most important
code smells defined by standard literature on professional programming [5]. The
code smells found in this study were used for the assessment of novice’s code.
This resulted in a framework that could be used for the assessment of novice’s
code in general. This framework covered nine criteria for code quality, of which
two are related to design: decomposition and modularization.

Most recently, studies were conducted on the occurrence of code smells in
block-based languages such as Microsoft Kodu and LEGO MINDSTORMS EV3.
In [6] it was reported that lazy class, duplicate code and dead code smells occur
the most. Another study on Scratch code from the community and on code of
children new to programming showed comparable results [7]. The duplicate code
smell is closely related to multiple design smells.

2.3 Design Smells

Design smells are structures in the design that indicate a violation of fundamental
design principles and negatively impact design quality [2]. Although design smells
seem to originate as part of code smells, design smells are usually more abstract.
Design smells imply a deeper problem with the application design itself. Design
smells are more difficult to detect using static code analysis, since design smells
are related to the application as a whole, as opposed to parts of the code.

There is only little research on design issues in programming education. In
2005, a large survey was conducted in order to gain a better understanding of
problems that students face when learning to program [8]. This study found
that abstract concepts in programming are not the only difficulty that novice
programmers are facing. Many problems arise when novices have to perform
program construction and have to design the program.

Detecting and Addressing Design Smells in Novice Processing Programs 511

2.4 Static Code Analysis

Static code analysis analyzes code without executing or compiling the code.
Static analysis is used in industry to find problems with the structure, semantics,
or style in software. This includes simple errors, like violations of programming
style, or uninitialized variables, to serious and often difficult to detect errors,
such as memory leaks, race conditions, or security vulnerabilities.

A popular automated feedback tool that is based on static code analysis is
PMD . PMD finds code style issues as well as code smell issues. PMD works for
multiple programming languages and custom rules can be implemented in Java.
PMD was used in [9] to investigate to what extent PMD covers 25 common errors
in novice’s code. It furthermore linked the common errors to misunderstood
concepts, in order to give students appropriate feedback on the root cause of the
error.

Keunig et al. reviewed 69 tools for providing feedback on programming exer-
cises [10]. They found that the majority of tools use testing based techniques,
and most often they point to programming mistakes, which could be called code
smells. They found only one tool that uses static analysis to explain misunder-
stood concepts. The tool, CourseMarker [11], offers a range of tools, among them
also a tool to analyse object-oriented diagrams for design issues.

This paper is an extended version of the work presented at the 10th Inter-
national Conference on Computer Supported Education (CSEDU) [4]. This
extended paper uses a refined definition of the Processing specific smells and
presents updated results. It elaborates, furthermore, in detail on how to refactor
code to achieve a better overall structure.

3 Design Smells for Processing

This section presents eight design smells as well as rules for good design that
apply to Processing. Four of these are specific to Processing. They are a
consequence of the predefined basic structure of Processing programs, which
leads to smells that will not appear in common Java programs.

The other four design smells are based on existing design smells in Java.
While Processing is a subset of Java, design smells that have been developed for
Java do not always translate directly. One reason is that Processing consciously
omits certain features, such as a system of access control. In Processing all
fields are public by design, which by itself would be considered a design smell
in Java. Another reason is the predefined basic structure of all Processing
program, with its predefined methods and status variables for event handling.
In Java event handlers that handle multiple tasks by branching are considered
a design smell [12], but in Processing, this is the only way to handle multiple
events.

3.1 Code Bases

The occurrence of the design smells in actual code is determined by manual and
semi-manual analysis of programs from two sources. The first source consists

512 A. Fehnker and R. de Man

of two batches of code written by novice programmers of the degree Creative
Technology at the University of Twente. The first batch of 79 programs was
written for the final tutorial in the programming course, whilst the second batch
of 61 programs was written as the final project for the same course. Both batches
are written by the same group of students and all code is provided anonymously.

The second source is community written code. This batch of 178 programs
originates from www.openprocessing.org and was retrieved on the 20th of May
2017. We selected the most popular code, i.e. programs that received most likes
by community members since the community has been active. Sketches from
this source might contain professional code, but also poorly written code. This
source is of particular interest to us, as students will use the examples that they
find on this site for inspiration for their own project.

3.2 Processing Specific Design Smells

These design smells are specific to Processing and relate to best practices when
creating a sketch in Processing.

3.3 Pixel Hardcode Ignorance

The pixel hardcode ignorance smell refers to having no abstraction for position-
ing elements that are drawn in the sketch. Instead of modelling objects with a
position or size that can be represented on screen they treat Processing as an
advanced drawing tool for rectangles and ellipses.

In the following example, a rectangle and car are drawn, both hardcoded in
pixels.

void draw() {
//Pixels are hardcoded
rect(30, 40, 10, 20);
car.draw();

}

class Car {
//Partial class
PImage image;

void draw() {
//Position is hardcoded in pixels
car(image, 60, 60);

}
}

In this case, moving, scaling or animating the sketch is difficult and in more
involved sketches code duplication will occur. It will be difficult to impossible to
reuse the code in a different context or turn it into a proper object.

This smell is related to “magic numbers”, the use of literals instead of variables
and constants. This is considered a code smell in other languages, but both com-
munity code as well as standard textbooks on Processing use magic numbers

www.openprocessing.org

Detecting and Addressing Design Smells in Novice Processing Programs 513

liberally. This is in part simply because Processing does not use the concept
of user defined constants. Failure to abstract from the position of a graphical
element, however, will often prevent them from producing working, extendable
or maintainable animations. This elevates this smell to a design smell. Use of
magic number for other purposes, such as margins or sizes is accepted practice.

3.4 Jack-in-the-box Event Handling

The Jack-in-the-box event handling smell, a form of decentralised event handling,
occurs when a novice programmer uses the global event variables in processing
to perform event handling outside of dedicated event handling methods. Pro-
cessing defines global variables such as mouseX, mouseY, mouseButton, key or
keyPressed. These global variables can be requested from anywhere in the code,
but are meant to be used inside the event handling methods, such as keyTyped(),
mouseMoved(), or mousePressed().

A novice programmer may actually choose to not use these methods, and use
the variables directly from other parts of the code, such as:

void draw() {
if (keyPressed && key == ’B’) {

fill(0);
} else {

fill(255);
}

}
In this example, the fill(int) method changes the color of the drawings

as soon as the key ′B′ is pressed. Although this code will work perfectly, it is
smelly, since events can better be handled through the keyPressed() method,
as follows:
int color = 255;

void keyPressed() {
if (key == ’B’) color = 0;

}

void keyReleased() {
if (key == ’B’) color = 255;

}

void draw() {
fill(color);

}
This code has the same functionality but handles the keyboard event inside

the keyPressed() method, which is considered more readable and maintainable.
Programmers of Processing sketches should always use the methods for event
handling instead of putting event variables everywhere in the application.

514 A. Fehnker and R. de Man

This smell often causes students to struggle with debugging, as it becomes
very difficult to trace changes on the screen to events, and vice versa. The name
of the smells refers to the surprise many students or teachers feel when they find
in some remote part of the program code that unexpectedly handles events. And
often is the cause of intricate bugs.

3.5 Drawing State Change

In Processing, the draw() method runs in a loop to redraw elements on the
screen, unless noLoop() is used in the setup() method. Although the draw()
method is meant for drawing objects on the screen as part of the sketch, it can
be used as any other method, which makes it possible to change the state of
the sketch during execution. While this should only be used to animate objects,
it is often used for calculations and updates. These which should happen in a
different place, preferably in methods that belong to an object and update its
state.

3.6 Decentralized Drawing

The decentralized drawing smell occurs in Processing sketches if drawing meth-
ods are called in methods that are not part of the call stack of the draw() method.
All things drawn on the screen should always be drawn in either the draw()
method itself, or in methods that are (indirectly) called by the draw() method.
They should not occur in methods like the setup() method or the event handling
methods. You might find that the event handler will directly draw something on
the screen, instead of changing the state of an object, which then changes the
representation of the object.

3.7 Object-Oriented Design Smells in Processing

The smell mentioned in this section are known smells of languages such a Java,
and are also common in Processing code. However, they may have to be
adapted to fit with the particularities and practices of Processing.

3.8 Stateless Class

A stateless class is a class that defines no fields. It only defines methods that
get data via parameters. In Java classes of this kind are sometimes called util-
ity classes and are perfectly allowed. They help moving out computations and
manipulators from stateful classes. This has some benefits, such as the stateless
classes being completely immutable and therefore thread safe [13].

In Processing, stateless classes are considered a design smell. Since Pro-
cessing allows having global methods in a sketch (which are defined in the hid-
den parent class of the sketch), utility methods should be defined here. Stateless
classes should rarely or never occur in a Processing sketch.

Detecting and Addressing Design Smells in Novice Processing Programs 515

3.9 Long Method

The long method design smell is a smell that is directly related to the method
length code smell. When a method exceeds a certain size, the method performs
too many actions and should be split or shortened. Methods that have this design
smell usually perform multiple algorithms or computations in one method, when
they actually should be split into multiple methods.

Table 1. Result of manual analysis for the three different sets of programs.

Set Number of
programs

LoC per
program

Smells per
program

Smells per
1000 LoC

Programs
with some
smell

Novices (tutorial) 79 154.4 2.0 13.1 88.6%
Novices (finals) 61 310.3 3.1 10.0 98.4%
Community code 178 162.7 1.9 11.4 86.0%

3.10 Long Parameter List

The Long Parameter List design smell occurs when a method accepts too many
parameters. When a method exceeds a certain amount of parameters, the method
either performs too many tasks, or a (sub)set of the parameters actually should
be abstracted as part of an object.

3.11 God Class

The God Class smell denotes complex classes that have too much responsibility in
an application. It is detected by combining three software metrics: the Weighted
Methods Count (WMC), the Access To Foreign Data (ATFD) metric and the
Tight Class Cohesion (TCC) metric. The God Class smell is defined more in-
depth in the book Object-Oriented Metrics in Practice [14].

In Processing, the parent class of the sketch has a great chance of being a
God class because programmers have access to all fields and functions defined
on the top-level at all times. This can cause child classes to interleave with the
parent class which causes the metrics to go bad quickly. A God class is considered
bad design since it reduces maintainability and readability.

4 Design Smells in Processing Code

In the previous section, eight design smells that apply to Processing are dis-
cussed. Analysis of code from publicly available sources as well as student code
has been done to determine how often these design smells actually occur. Table 1
shows the results of the manual analysis. They show the how many smells are

516 A. Fehnker and R. de Man

present in a program. The results take to account whether a smell is present,
not how often. Programs often make the same mistake consistently; one novice
program, for example, had 106 instances of the pixel hardcode ignorance smell,
i.e. 106 graphics commands with hardcoded pixels. Here we count this as one
program exhibiting the pixel hardcode ignorance smell.

The results show that programs for the final project are about twice as large
as programs written for the tutorial, with 154.4 lines of code against 310.3 in the
finals. In the tutorial code, we find on average 2.0 of the eight considered smells,
in the final project 3.1. This is in part due to the fact that the final projects are
larger. The number of smells per line code decreases slightly in the code written
for the final project. Overall smells occur very frequently in novice code, with
close to 88.6% of all tutorial code, and even 98.4% of final projects containing
at least one smell.

Table 2. Percentages of programs in different sets that exhibit a given design smell.

Smell Novice (tutorial) Novice (finals) Community code

Pixel hardcode ignorance 29.1% 49.2% 33.7%

Jack-int-the-box event handling 62.0% 85.2% 32.0%

Drawing state change 20.3% 42.6% 55.6%

Decentralized drawing 5.1% 6.6% 5.6%

Stateless class 2.5% 9.8% 1.7%

God class 3.8% 16.4% 10.7%

Long method 72.2% 80.3% 36.5%

Long parameter list 7.6% 19.7% 10.1%

The results for novices may not be surprising since novices are still learning
how to program. Surprising is, however, the number of community programs
that do contain one or more smells. 160 out of 178 programs that were analyzed
contained one or more code smells. There could be multiple reasons causing
this. It could be that the community code is mostly written by inexperienced
programmers, but it is also likely that to Processing programmers the rules for
good design are unclear or less important. This is of course caused by Process-
ing being a language without the history and broad usage of other languages,
which led in those languages to widely accepted programming guidelines. Within
Processing the focus often lies on quickly producing visually appealing proto-
types, instead of on building software systems that will have to be extended and
maintained.

It is interesting to know is which design smells occur the most in the different
sets of programs. Table 2 has an overview of the occurrences of each analyzed
smell in each set. As we can see from this overview, the three most occurring
smells are the long method, pixel hardcode ignorance and Jack-in-the-box event
handling smells. Also, the drawing state change smell occurs in many community
programs, while this smell occurs less inside novices programs. This might be

Detecting and Addressing Design Smells in Novice Processing Programs 517

caused by the novices assessment. They are asked as part of the assessment to
implement classes, something that community programmers do not necessarily
have to do.

5 Automated Detection

This section discusses the implementation of rules used for automated detection
of the earlier discussed design smells. The PMD framework is used to implement
the rules, which means that each rule can be used in combination with PMD to
detect design smells in Processing code.

5.1 Processing Code Analysis in PMD

In order to make analysis of Processing code with PMD possible, the Pro-
cessing sketches are converted to Java code, using the processing-java binary.
Since PMD already has a grammar and supporting functions for Java, only the
rules still need to be implemented. The rules implemented as part of this study
detect the design smells inside the resulting Java files.

Converting the Processing code to Java has some important side effects.
For example, the sketch is converted to one Java class with all additional classes
inserted as inner classes of this class. This is because the additional classes need
access to the Processing standard library, which is defined by the class PApplet
in Java. The generated class extends PApplet to have access to all Processing
functions. These functions can then be used by the methods, but also by the
inner classes.

If a PMD rule is violated, a violation is added to the PMD report. The
rules implemented as part of this study detect when a design smell is found and
reports them as a violation to PMD.

5.2 Design Smell Detection

Each design smell in this study is implemented as one PMD rule. All rules are
implemented as an AbstractJavaRule, which means that PMD can execute
them on Java files. Each smell has a different implementation discussed in the
following sections.

5.3 Pixel Hardcode Ignorance

The pixel hardcode ignorance smell is implemented by checking each method
invocation expression. When an expression calls a method, this expression is com-
pared against the list of drawing functions in Processing. A function matches
the expression if and only if the name of the method is equal to the method name
called by the expression, the number of parameters specified in the expression
does match the number of parameters expected by the method, and the scope of

518 A. Fehnker and R. de Man

the expression does not define another method with the same name and argu-
ments (e.g., the method is not overridden). When the expression matches the
method call of a drawing method, then all parameters that define the position
in pixels are checked for being a literal value. When the method is called with
a literal value for one parameter that is defined in pixels, a violation is created.
In that case, the program contains the pixel hardcode ignorance design smell.

This rule has been slightly modified since [4], to align with the common prac-
tice in Processing to define the size of graphical elements as literal values. The
definition used in this paper considers only whether the position of an element is
hardcoded, while it will not warn if, for example, the width or height is. Fehnker
et al. discussed in [15] three dimensions for assessing static analysis warnings:
severity, incidence, and correctness. While the definition in [4] was technically
correct, and pointed to a definite violation (in contrast to a potential violation),
it found many warnings that Processing programmers will not consider severe
enough to change the code. In this paper, we use a definition of the smell that
will not warn about these less severe instances of Pixel Hardcode Ignorance.

5.4 Jack-in-the-box Event Handling

The Jack-in-the-box Event Handling smell uses possible call stacks to determine
which methods are allowed to use global event variables. This smell required to
extend PMD with a detection algorithm. The detection algorithm of the smell
consists of two steps.

First, the rule checks which of the predefined Processing event methods are
implemented and used by the program. Of these methods, all possible method
call stacks are evaluated and saved, as long as the methods can only be called
from event handling methods. This detection is done by the exclusive call stack
as described in [16].

The second step of the detection algorithm goes over all expressions in the
code. If the expression is not defined inside one of the methods saved earlier, it
is checked for the usage of global event variables. If an expression uses the global
event variables, then a violation is created.

5.5 Drawing State Change

The drawing state change smell detection algorithm also consists of two steps.
In the first step of the algorithm, the algorithm determines all methods that are
called as part of the draw sequence. This is done by the non-exclusive call stack
algorithm as described in [16]. All methods that are part of this sequence are
saved for use in step 2.

In step 2 of the algorithm, each expression inside the draw sequence is checked
for the usage of variables that are defined in the top-level scope (e.g., the main
class of the program). If such a variable is used, and the expression is a self-
assignment or the variable is used as the left-hand side of an expression, then the
variable is mutated, indicating a drawing state change. In that case, a violation
is created because the state of the application has changed.

Detecting and Addressing Design Smells in Novice Processing Programs 519

5.6 Decentralized Drawing

The decentralized drawing smell detection rule is implemented using a similar
algorithm as the Jack-in-the-box Event Handling smell. In the first step of the
algorithm, all methods that are exclusively called as part of the draw sequence
are determined. This is done by the exclusive call stack algorithm as described
in [16]. These methods are saved for use in step 2.

In step 2 of the algorithm, for each expression in the program, it is checked
if it is called by a method that is part of the exclusive call stack as determined
in step 1. If the expression is not part of the draw sequence, it is checked if the
expression is a method call. When an expression calls a method, this expression
is compared against the list of predefined drawing functions of Processing.
Like the implementation of the pixel hardcode ignorance detection algorithm, a
function matches the expression if and only if the name of the method is equal to
the method name called by the expression, the number of parameters specified
in the expression does match the number of parameters expected by the method,
and the scope of the expression does not define another method with the same
name and arguments. When the expression matches the method call of a drawing
method, then a violation is created.

5.7 Stateless Class

The stateless class smell detection rule is implemented by going over all class
and interface definitions. When the definition is an inner class, not an interface,
and not defined abstract, then the fields declared in the class are checked. If
the class does not declare any fields, then a violation is created and the class is
considered stateless.

Please note that the algorithm only runs on inner classes, which are in Pro-
cessing, i.e. just the classes that are defined by the programmer. The top-level
class which declares the main program is not checked, since in the Processing
language, this is not seen as a class.

5.8 Long Method

The long method smell detection rule is implemented using the same algorithm
PMD uses to check the method count of Java classes. The rule uses the NCSS
(Non-Commenting Source Statements) algorithm to determine just the lines of
code in the method. When this exceeds 25, a violation is reported.

5.9 Long Parameter List

The Long Parameter List smell detection rule is implemented using the same
algorithm as PMD’s existing rule ExcessiveParameterList. For each method
definition, the amount of accepting parameters is counted. If this count exceeds
5, then a violation is reported.

520 A. Fehnker and R. de Man

5.10 God Class

The God Class smell detection rule is re-implemented based on the rule that
was provided by PMD to detect the God class in Java files. A shortcoming of
this algorithm is that it calculates the needed metrics, the Weighted Methods
Count (WMC), the Access To Foreign Data (ATFD) metric and the Tight Class
Cohesion (TCC) metric, one time for the whole compilation unit. That means
the rule does not take into account inner classes as different classes. This makes
sense for Java programs, in which inner classes should not be used for defining
new standalone objects. In Processing, however, all classes are in the end
inner classes of the main program class. Therefore, these classes should be seen
as different objects and have their own calculated software metrics.

The new implementation calculates the WMC, ATFD and TCC metrics for
each inner class separately. If one of the inner classes violates these metrics, then
this class is considered a God class, as opposed to the whole file being a God
class. Then for this class, a violation is added.

5.11 Design Limitations

The usage of PMD as static code analysis framework introduces some design
limitations to the detection of design smells. This section discusses these limita-
tions.

An important limitation of PMD is the call stack detection. To determine
which methods are called from a certain method, PMD makes use of the name
of the method and the number of arguments that the method is called with.
Because PMD has very little knowledge about the type of each variable, it can-
not distinguish between different overloaded methods. Also, if a method is called
on an object, PMD might not always be able to detect the type of the object the
method is called on, which causes the method detection to fail. This limitation
affects the rules that actually try to detect method calls. The pixel hardcode
ignorance smell might not always report the right overloaded method in the
violation, for example. This is however not of great consequence. The feedback
is not entirely correct, but the smell detection is. In the Jack-in-the-box event
handling and decentralized drawing rule, this limitation might lead to false pos-
itives, since it was impossible to detect the entire event handling stack or draw
sequence respectively. For the drawing state change smell, it might lead to false
negatives because it was impossible to detect the entire draw sequence.

Another limitation of the proposed rules is the handling of object construc-
tors. Since constructors are handled differently than method definitions in PMD,
not all rules will work correctly on them. Constructors will, for example, never
be detected as part of the event handling stack or draw sequence. This means the
Jack-in-the-box event handling and decentralized drawing rule will always report
violations when using global event variables or drawing methods inside construc-
tors. For the same reason, the change of program variables from a constructor
will not cause the drawing state change rule to detect a violation.

Despite these limitations, it is expected that the detection will work fine on
most of the programs. This will be validated in the next section.

Detecting and Addressing Design Smells in Novice Processing Programs 521

Table 3. Results for the automated analysis, as checked by the proposed PMD rules.

Set Number of
programs

Lines of
code per
program

Smells per
program

Smells per
1000 lines

Programs
with some
smell

Novices (resit) 17 297.7 2.8 9.3 100.0%
Textbook examples 149 40.1 0.8 19.8 51.7%
Course material 31 82.1 0.5 5.9 29.0%

6 Validation

To assure that the proposed PMD rules can indeed detect design smells in Pro-
cessing applications, we consider two criteria. The first is if they are capable
to detect smells on a new set of programs. The second is the false positive rate
of the warnings.

6.1 Applicability

To assure the rules can be applied to a broader set of programs than the ones used
in the manual analysis performed earlier, the PMD rules were executed on three
new sets of programs that have different behaviour. The first set is a new set of
novices programs written for the same final project, as were the programs from
the set that we considered before. The difference is that these are submissions
for a resit. Students had to take the resit most commonly because their initial
submission was found to be lacking. The second set contains code examples from
our first year programming course that uses Processing; examples provided
by lecturers and assistants. The third set of code examples are taken from the
website learningprocessing.com. They are the example accompanying the first
10 chapter of the textbook Learning Processing [17]. These are the chapters that
are covered in the course.

Table 3 shows the results for the different sets as detected by the PMD rules.
It is apparent that novice’s code differs significantly from the course and textbook
example, not just because it contains many more lines of code. The code examples
for the course and code from the textbook do not contain as many smells as the
novice sets. However, it still seems striking that sketches from these sources
contain this many code smells.

The high number of smells is explained in part because both sets also contain
examples of “messy” code, which is effectively code that is meant to be improved
by the student. It also includes examples from the first weeks that illustrate basic
concepts, before more advanced concepts are taught. For example, canonical
Processing examples on the difference between global and local variables will
exhibit the Drawing state change smell, since drawing the state change is a very
visual illustration of the difference. However, the course material and textbook
examples contain also smells that should be improved. We will discuss some
possible refactorings in Sect. 7.

522 A. Fehnker and R. de Man

Table 4. Percentages of programs in different sets that exhibit a given design smell.
Compare with Table 2.

Smell Novice (resit) Textbook examples Course material

Pixel hardcode ignorance 35.3% 23.5% 6.5%

Jack-int-the-box event handling 76.5% 18.1% 19.4%

Drawing state change 41.2% 21.5% 6.5%

Decentralized drawing 0.0% 13.4% 6.5%

Stateless class 29.4% 0.0% 0.0%

God class 0.0% 0.0% 0.0%

Long method 82.4% 2.7% 9.7%

Long parameter list 11.8% 0.0% 0.0%

Table 4 splits the results by smell. This table shows each of the PMD rules
on an untested set of programs. Only the God Class smell was not present in
the new sets. This is of course also in part because the code in the course and
textbook set are significantly smaller than the programs in the novice sets.

Interesting is that the Stateless Class smell occurs much more frequent in
programs submitted for the resit, than in any other set. Some students were told
that they have to use classes to structure the code; they introduced stateless
classes, to make a – somewhat misguided – effort towards this request.

6.2 False Positives

The false positive rate tells how many of the warnings were incorrect. This rate
is important because it determines the value that users will attach to a warning.
For this analysis, we consider a technical definition of correctness, as defined in
[15]. For example, the course material contains a program with a Long Method
smell. The method in questions has 27 instead of the specified maximum of 25
lines of code. While the warning is technically correct – the method is too long
– splitting the method into two part would feel artificial, as it draws one single,
slightly more complicated graphical element. The warning is not a false positive
and will be counted as a correct warning, even though an individual developer
may have good reasons not to act upon it.

The results in Table 5 show that there was one false positive for Pixel Hard-
code Ignorance. This student program used pushMatrix and popMatrix in com-
bination with translate and rotate to move and rotate a graphical element. In
Processing there is a practice to use pushMatrix and popMatrix as a pair to
define local blocks of code where the coordinate system is manipulated. Within
these local blocks the position can be considered to be relative.

However, semantically, pushMatrix refers to the global coordinate system
stack. It is just good practice to always use pushMatrix and popMatrix pairs
to make the effect local. The false positive arose because the student used
pushMatrix and popMatrix separated from the actual drawing. Closer inspec-
tion of the control flow showed that it was overall correct, despite the warning.

Detecting and Addressing Design Smells in Novice Processing Programs 523

To analyse this correctly would mean to have a full semantic model of coordinate
transformations, something that would exceed the capabilities of PMD.

The false positives found for the Decentralised Drawing smell are caused
by an idiom that caused the call stack to be incorrect. This idiom occurred in
particular in community code, which accounts for 18 of the 21 false positives.
The false positive rate for this checks seems high, unfortunately, addressing this
would require to modify the presentation of the call stack, as provided by PMD,
which is outside of the scope of this paper.

Table 5. Frequency of false positives per design smell.

Warnings False positives

Pixel hardcode ignorance 157 1 0.6%
Jack-int-the-box event handling 202 0 0.0%
Drawing state change 183 0 0.0%
Decentralized drawing 61 21 34.4%
Stateless class 16 0 0.0%
God class 6 0 0.0%
Long method 192 0 0.0%
Long parameter list 38 0 0.0%
Total 855 22 2.6%

Not counted as false positives were 3 instances of the Decentralised Event
Handling smell, that pointed to dead code. Technically the warning is correct, as
the code contains drawing instructions that are not part of call stack of the main
draw routine, simply because this code is not part of any call stack. Different
programmers may disagree whether this dead code is a problem that needs to
be addressed.

From this table, it is easy to see that the long parameter list, long method,
and stateless class smells are easy to detect. After all, they are just counting
rules. It is fairly easy to count lines of code or count the number of defined
parameters for a method. In the same way, counting the number of variables
defined for a class is fairly simple.

All things considered, the results are satisfying. Especially when compared to
the state of the art in static code analysis tools, as reported in [18], a rate of 2.6%
of false positives can be considered to be low. Our analysis is helped because we
can make certain assumptions about Processing code. For example, converting
Processing code to Java will make sure that all classes of a sketch are part of
one file, which means that all code definitions can be detected inside that file.
These assumptions can be exploited in the PMD rules to improve the analysis.

524 A. Fehnker and R. de Man

7 Refactorings

The previous section defined the design smells and discussed how to detect them.
This section will discuss the causes as well make suggestions how to refactor
the code. The refactorings are meant to be practical and suitable for novice
programmers. This, for example, excludes patterns in the spirit of the Gang-
of-Four [19], since novice programmers are not yet familiar with the required
concepts to competently implement those patterns.

7.1 Pixel Hardcode Ignorance

In novice’s code, this smell occurs because there is no abstraction from drawing
elements having a location as opposed to an object having a location on the
screen. Students often view Processing as a type of scripting language for a
drawing application, instead of a fully fledged programming language. Graphical
objects still have a static position on the screen directly written as pixels inside
the program.

A typical example would be the following part of a program that is meant
to display parts of a hamburger.

stroke (0);
fill(#E80000);
rect(263, 254, 60, 8);
rect(200, 254, 60, 8);
rect(137, 254, 60, 8);
These line of code fail to capture that they are conceptually related to a

graphical object, a hamburger, and more importantly, that the position is deter-
mined by the position of the hamburger.

A basic refactoring would be to introduce position variables. For simple pro-
grams that consist only of the main class these would most likely be global
variables, such that they can be updated by other methods. The exercise to
introduce position variables will also clarify which drawing instruction belongs
to which graphical object in the animation. In the following example, all three
rectangles are part of the hamburger.

stroke (0);
fill(#E80000);
rect(hamburgerX+63, hamburgerY, 60, 8);
rect(hamburgerX, hamburgerY, 60, 8);
rect(hamburgerX-63, hamburgerY, 60, 8);
This prepares the ground for the next step, namely to determine which parts

deserve their own class. Once classes are introduced, global variables that relate
to the hamburger will become part of the Hamburger class. In the course we
use the following rule of thumb: if you can legitimately ask “Where is the ham-
burger?”, then the hamburger deserves variables modelling the position.

A more sophisticated refactoring uses pushMatrix and popMatrix. The com-
mand pushMatrix pushes the matrix representing current coordinate system

Detecting and Addressing Design Smells in Novice Processing Programs 525

onto a stack. The program can then use transformations and rotations to achieve
the desired result. Calling popMatrix will then restore the previous coordinate
system afterwards. The following would be the corresponding refactoring of the
hamburger code snippet:

stroke (0);
fill(#E80000);
pushMatrix();
translate(hamburgerX,hamburgerY);
rect(63, 0, 60, 8);
rect(0, 0, 60, 8);
rect(-63,0, 60, 8);
popMatrix();
Note, that in this code, the first two arguments of the call to rect are not

absolute positions, even though they are literals. They are relative to the new
origin after translation to the position of the hamburger. The width and height
however are literals. In other languages novices would usually be encouraged to
avoid such magic numbers, and be asked to introduce constants instead. However,
textbooks on Processing do not introduce constants; it is not a official feature
of the language. It is possible to use the final keyword from Java, however this
is then strictly speaking no longer Processing. In Processing it is accepted
and normal to use literals for dimensions of graphical elements.

It is important to note that pushMatrix and popMatrix work on a global
stack. This means that there is no syntactic requirement to use them in pairs.
However, it is established practice to have each pushMatrix matched by a
popMatrix in the same block. The single false positive for the Pixel Hard-
code Ignorance smell was caused by a program that separated pushMatrix,
popMatrix, and the drawing into different methods.

7.2 Drawing State Change

The drawing state change smell occurs for different reasons. One of the reasons
is the programmer wanting to animate an object by incrementing, decrementing
a global counter on each redraw. This is particularly the case for programs in
the very first weeks, that only contain the main class. In this case, it is usually
possible to replace the global variable by the predefined frameCount variable. In
most other cases this can be fixed because the calculated value should actually
be part of an object. This means the global variable should become a field, and
a method to update the object should take care of manipulating its value.

7.3 Jack-in-the-box Event Handling and Decentralized Drawing

We will deal with these together because they are other two aspects of the same
problem: not distinguishing between event handling, drawing, and updates of
the state.

526 A. Fehnker and R. de Man

Main Processing Tab
global variables

Use for information concerning
the entire update, and variables
for important objects.

setup
Initialize the global variables,
set size, create global objects

draw
All code that drives the display
of objects,
All code that drives the update

event handlers
This are predefined methods
such as mousePressed or
keyPressed

utility methods
Useful methods that don’t
belong to any particular class.

Class A
attributes

What’s important to
know about an object
of this class

constructor
Initializes the attributes
for a new object

display methods
One or more methods
to display the different
parts

update methods
These methods will
update attributes as
time (frames) go by.

event handlers
Update attributes in
response to events.

Class B
attributes

What’s important to
know about an object
of this class

constructor
Initializes the attributes
for a new object

display methods
One or more methods
to display the different
parts

update methods
These methods will
update attributes as
time (frames) go by.

event handlers
Update attributes in
response to events.

....

Fig. 1. Suggested structure for simple interactive Processing applications.

The Jack-in-the-box Event Handling smell occurs for two main reasons. The
first reason is the opportunity to decentralize event handling. Because Process-
ing has a multitude of global variables for event handling, it is tempting to work
around the event methods. This usually leads to code that is littered with small
bits of event handling.

Another reason for this to happen is drawing on the position of the mouse
pointer, which is done in many programs. The best solution is to use instead the
mouseMoved() method in combination with a position variable used for drawing.
Unfortunately, the easiest method, and the first students see in community code
and teaching material is to use the global variables mouseX and mouseY directly
and everywhere where it is convenient.

The Decentralized Drawing smell is happening for less obvious reasons. Some
novices treat Processing as a sophisticated drawing application, and do not
yet understand that Processing is a fully fledged programming language. Also,
some novice students have the misconception that drawing is a way to record a
state change.

To address these two smells we recommend distinguishing in the code between
the three main task of a Processing program: (1) Displaying a graphical object,
(2) updating the state of these object from frame to frame, (3) and handling
events. Figure 1 gives a recommended structure that will be applicable to most
interactive applications that are developed by novices.

Each interesting graphical object in the application should be modelled as a
class that encapsulates the relevant state and provides the methods to display,
update, and handle events that relate to object. The rule of thumb we give to
students is that “If you see a monster on the screen, we want to see a monster
class in the project.”

Detecting and Addressing Design Smells in Novice Processing Programs 527

The structure in Fig. 1 entails that drawing should ideally happen in draw
methods of the corresponding object. These should be only called from the main
draw method, or draw methods of other objects. Separate from these should
be update-methods that are executed with every frame of the animation. These
methods update the state in response to the passing of time. These have to be
called from the main draw method, or from other update methods.

Separate from draw- and update-methods should be event handling methods,
which should be called from the event handling methods in the main class, such
as mouseMoved(), or from other event handling methods. This ensures that it
is possible to track the calls from the main class to the relevant event handler,
which help during debugging. The event handling methods are ideally also the
only methods that use global event variables such as keyCode or keyPressed.

The structure given in Fig. 1 distinguishes between the model, the display,
and event handling, not unlike the Model-View-Controller pattern. However,
here we separate these horizontally within a class, instead of vertically into sep-
arate classes. Our structure is closer to the structure that is also present in
openFrameworks [20], a toolkit for interactive application based in C++. Note
also that this structure uses composition of objects as the main mechanism to
compose systems, instead of inheritance. In the first year of CreaTe inheritance
is only covered cursory; a more thorough treatment of inheritance takes place
when languages such as Java, or C++ are introduced.

7.4 Stateless Class

The stateless class smell is mostly caused by the programmer not understanding
the principle of object-oriented programming. The programmer moves out long
methods by putting them in separate classes which are used as utility classes,
which is considered bad design in Processing. It is also caused by the program-
mer failing to grasp a central object-oriented concept, namely that data should
be bundled with associated methods operating on that data. Refactoring means
to determine whether these methods belong to an object or are general purpose
methods. In the latter case, it is usually best to keep them in the main class of
the Processing application.

7.5 Long Method

In more than half of the programs, long methods are caused by drawing complex
structures that have to be split into different parts or even different objects. In
such cases it may be better to divide the code into smaller methods, however, as
mentioned in Sect. 6.2, this depends on the case. In most other cases, the long
method smell is caused by putting all application logic inside one method. This
is of course fundamentally bad design and should be changed.

7.6 Long Parameter List

Novice programs that contain the Long Parameter List smell mostly have this
smell because they define methods as a way to combine a set of methods into

528 A. Fehnker and R. de Man

one. They want to repeatedly draw some structure with slightly different param-
eters, so they put the small sequence of functions inside a method with a lot of
parameters. In most cases, the best way to fix this is by creating an object out
of the structure that the programmer wants to draw.

7.7 God Class

The God Class smell only occurs in a small set of programs and is caused by the
programmer not understanding the responsibility of its defined classes. Each class
defined by the programmer has multiple responsibilities or one responsibility is
divided over multiple classes. This causes these classes to communicate heavily
with the global parent scope, pushing the metrics of the program to bad values.
It can be fixed by reconsidering the responsibilities of each class.

7.8 Application to Course Material

We applied these recommended refactorings to the course material that we devel-
oped ourselves. The main problem was Jack-in-the-box Event Handling. It was
in most cases easy to move the problematic code out to the predefined event
handling methods. This has two added advantages; one is that it gives more
attention this often neglected feature of Processing; the other is that it also
makes the code more readable. For example, instead of an object chasing the
mouse, it is now converging to an explicit target, and the target is changed
by moving the mouse. It makes the relation between the target and the mouse
explicit. Changing the code to having other events change the aim is now easily
accomplished. Other programs that were refactored contained the Long Method
and Pixel Hardcode Ignorance smell.

The 31 refactored programs now contain two “messy” programs that contain
combined 6 smells. These are intentionally poor programs that students have to
improve. It contains one program that explains the difference between value and
reference passing, which intentionally uses drawing to illustrate the difference,
and an example that illustrate an array algorithm, by manipulating and drawing
the content of a global array. Finally, it still contains one other example with a
long method as discussed before. It was decided not split this method, also to
convey that smells are just indicators of potential problems instead of manda-
tory guidelines. The number of programs with smells reduced from 9 to 5. This
includes the two messy programs. Instead of 0.5 smells per program (Table 3),
the examples now contain only 0.3 smells on average; or 0.15 if we take disregard
the two intentionally “messy” programs.

8 Conclusions and Future Work

This paper applied the concept of design smells to Processing. The new design
smells that we introduced relate to common practice by novice programmers,
as well as the Processing community. In addition, we identified and adapted

Detecting and Addressing Design Smells in Novice Processing Programs 529

relevant object-oriented smells, that also apply to Processing. We showed the
relevance of these new and existing smells to Processing code, by manual
analysis of novice code and code by the Processing community. We found
that a majority of programs by novices and by the community contain at least
some Processing related design smell. This is particularly true for the newly
proposed Processing specific smells.

For the eight identified design smells, we implemented customised checks in
PMD. These proposed rules were checked against the manually analyzed sets
of Processing sketches to estimate the false positive rate. They were then
applied to a new set of code to demonstrate their wide applicability. The results
show that the proposed way of detecting design smells performs well on the code
examples used in this study. This analysis also revealed that even course material
and textbook examples exhibit, to a somewhat surprising extent, design smells.

This led us to discuss suggested refactoring that will improve the overall
design of the application, and reduce the number of smells. We applied these
refactoring to the course material that we developed for the course.

This work produced along the way also the first static analysis tool for Pro-
cessing. It created an automated pipeline, defined new rules, and customized
existing rules, all to accommodate Processing specific requirements.

This study has introduced a selected set of design smells that apply to Pro-
cessing. In the future, more research on design smells will be needed to further
develop design guidelines for Processing. This paper made a start with dis-
cussing some potential refactorings, and by applying them to our own course
material. As such this made a first effort towards the future work discussed in
[4], which this paper extends. This paper refined the definition of some of the
Processing specific smells such that they match more closely the accepted
practice, and extended the prior work with a discussion of recommended refac-
torings. It will take more effort to review other publicly available material and to
initiate and contribute to the discussion on the importance of application design
within the Processing community.

This paper presents a tool for automated detection and discusses its accu-
racy and applicability. Future research has to investigate the most effective use
of these tools; whether students should use them directly, or only teaching assis-
tants, to help them with providing feedback, how frequently to use them, and if
and how to intergrade them into peer review, assessment, or grading.

In order to make novice programmers aware of design smells and good appli-
cation design, guidelines for application design should be provided. These guide-
lines can be used to give quality feedback on the code of novice programmers as
well as helping them understand the rules of application design.

In the recent years, a lot of research has been performed on automated feed-
back frameworks for students using static code analysis, which primarily look at
styling issues and possible bugs. Although successful in providing feedback on
these aspects of the code, few give feedback on the application design. Feedback
generated by industrial software development tool is mostly based on software
metrics, such as cyclomatic complexity. These concepts are, not surprisingly,

530 A. Fehnker and R. de Man

poorly understood by novice programmers. They will not understand the feed-
back, nor will it help them to gain a deeper understanding of object-oriented
application design. The concept of design smell may prove to be easier for novices
to grasp.

The sources and analysed programs that were used in this paper will be
available at http://wwwhome.ewi.utwente.nl/~fehnkera/smell/.

References

1. Hermans, F., Aivaloglou, E.: Do code smells hamper novice programming? A con-
trolled experiment on scratch programs. In: ICPC 2016, pp. 1–10 (2016)

2. Suryanarayana, G., Samarthyam, G., Sharma, T.: Refactoring for Software Design
Smells: Managing Technical Debt, 1st edn. Morgan Kaufmann Publishers Inc., San
Francisco (2014)

3. Reas, C., Fry, B.: Processing: A Programming Handbook for Visual Designers and
Artists. The MIT Press, Cambridge (2007)

4. Man, R., Fehnker, A.: The smell of processing. In: Proceedings of the 10th Inter-
national Conference on Computer Supported Education, vol. 2 (2018)

5. Stegeman, M., Barendsen, E., Smetsers, S.: Towards an empirically validated model
for assessment of code quality. In: Koli Calling 2014, pp. 99–108. ACM, New York
(2014)

6. Hermans, F., Stolee, K.T., Hoepelman, D.: Smells in block-based programming
languages. In: 2016 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (2016)

7. Aivaloglou, E., Hermans, F.: How kids code and how we know: an exploratory
study on the scratch repository. In: ICER 2016. ACM, New York (2016)

8. Lahtinen, E., Ala-Mutka, K., Järvinen, H.M.: A study of the difficulties of novice
programmers. SIGCSE Bull. 37, 14–18 (2005)

9. Blok, T., Fehnker, A.: Automated program analysis for novice programmers. In:
HEAd 2017, Universitat Politecnica de Valencia (2016)

10. Keuning, H., Jeuring, J., Heeren, B.: Towards a systematic review of automated
feedback generation for programming exercises. In: ITiCSE 2016. ACM, New York
(2016)

11. Higgins, C.A., Gray, G., Symeonidis, P., Tsintsifas, A.: Automated assessment and
experiences of teaching programming. J. Educ. Resour. Comput. 5, 5 (2005)

12. Lelli, V., Blouin, A., Baudry, B., Coulon, F., Beaudoux, O.: Automatic detection
of GUI design smells: the case of Blob listener. In: Proceedings of the 8th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, EICS 2016.
ACM (2016)

13. Goetz, B.: Java Concurrency in Practice. Addison-Wesley, Upper Saddle River
(2006)

14. Lanza, M.: Object-Oriented Metrics in Practice: Using Software Metrics to Char-
acterize, Evaluate, and Improve the Design of Object-Oriented Systems. Springer,
Heidelberg (2006). https://doi.org/10.1007/3-540-39538-5

15. Fehnker, A., Huuck, R., Seefried, S., Tapp, M.: Fade to grey: tuning static program
analysis. Electron. Notes Theor. Comput. Sci. 266, 17–32 (2010)

16. de Man, R.: The smell of poor design. In: 26th Twente Student Conference on IT,
University of Twente (2017)

http://wwwhome.ewi.utwente.nl/~fehnkera/smell/
https://doi.org/10.1007/3-540-39538-5

Detecting and Addressing Design Smells in Novice Processing Programs 531

17. Shiffman, D.: Learning Processing: A Beginner’s Guide to Programming Images,
Animation, and Interaction, 2nd edn. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2016)

18. Okun, V., Delaitre, A., Black, P.E.: Report on the static analysis tool exposition
(SATE) IV. NIST Spec. Publ. 500, 297 (2013)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

20. Perevalov, D., Tatarnikov, I.S.: openFrameworks Essentials. Packt Publishing,
Birmingham (2015)

	Detecting and Addressing Design Smells in Novice Processing Programs
	1 Introduction
	2 Background and Related Work
	2.1 Processing
	2.2 Code Smells
	2.3 Design Smells
	2.4 Static Code Analysis

	3 Design Smells for Processing
	3.1 Code Bases
	3.2 Processing Specific Design Smells
	3.3 Pixel Hardcode Ignorance
	3.4 Jack-in-the-box Event Handling
	3.5 Drawing State Change
	3.6 Decentralized Drawing
	3.7 Object-Oriented Design Smells in Processing
	3.8 Stateless Class
	3.9 Long Method
	3.10 Long Parameter List
	3.11 God Class

	4 Design Smells in Processing Code
	5 Automated Detection
	5.1 Processing Code Analysis in PMD
	5.2 Design Smell Detection
	5.3 Pixel Hardcode Ignorance
	5.4 Jack-in-the-box Event Handling
	5.5 Drawing State Change
	5.6 Decentralized Drawing
	5.7 Stateless Class
	5.8 Long Method
	5.9 Long Parameter List
	5.10 God Class
	5.11 Design Limitations

	6 Validation
	6.1 Applicability
	6.2 False Positives

	7 Refactorings
	7.1 Pixel Hardcode Ignorance
	7.2 Drawing State Change
	7.3 Jack-in-the-box Event Handling and Decentralized Drawing
	7.4 Stateless Class
	7.5 Long Method
	7.6 Long Parameter List
	7.7 God Class
	7.8 Application to Course Material

	8 Conclusions and Future Work
	References

