
A Bond-Graph Metamodel:

Physics-Based Interconnection
of Software Components

Reynaldo Cobos Méndez1(B) , Julio de Oliveira Filho2(B) ,
Douwe Dresscher1(B) , and Jan Broenink1(B)

1 Robotics and Mechatronics Group, University of Twente,
Enschede, The Netherlands

{r.cobosmendez,d.dresscher,j.f.broenink}@utwente.nl
2 TNO, The Hague, The Netherlands

julio.deoliveirafilho@tno.nl

Abstract. Composability and modularity in relation to physics are use-
ful properties in the development of cyber-physical systems that inter-
act with their environment. The bond-graph modeling language offers
these properties. When systems structures conform to the bond-graph
notation, all interfaces are defined as physical “power ports” which are
guaranteed to exchange power. Having a single type of interface is a key
feature when aiming for modular, composable systems. Furthermore, the
facility to monitor energy flows in the system through power ports allows
the definition of system-wide properties based on component properties.
In this paper we present a metamodel of the bond-graph language aimed
to facilitate the description and deployment of software components for
cyber-physical systems. This effort provides a formalized description of
standardized interfaces that enable physics-conformal interconnections.
We present a use-case showing that the metamodel enables composabil-
ity, reusability, extensibility, replaceability and independence of control
software components.

Keywords: Bond-graph · Metamodeling · Power port · Component
software · Cyber-physical systems

1 Introduction

On developing cyber-physical systems that exchange power with the environment
(e.g., mechatronic and robotic applications), their relation to the physics domain
brings additional concerns to software developers. These include exchange,
transformation and conservation of power; change of state; and geometrical
constraints. Additionally, the interaction with physical systems leads to tight

This research has received funding from the RobMoSys project (EU project No. 732410)
under the subproject EG-IPC. https://robmosys.eu/eg-ipc/.

c© Springer Nature Switzerland AG 2020
F. Arbab and S.-S. Jongmans (Eds.): FACS 2019, LNCS 12018, pp. 87–105, 2020.
https://doi.org/10.1007/978-3-030-40914-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-40914-2_5&domain=pdf
http://orcid.org/0000-0002-3945-681X
http://orcid.org/0000-0001-5152-4902
http://orcid.org/0000-0002-5315-9029
http://orcid.org/0000-0003-3039-3012
https://robmosys.eu/eg-ipc/
https://doi.org/10.1007/978-3-030-40914-2_5


88 R. Cobos Méndez et al.

requirements on safety and reliability [26]. Examples are the teleoperation appli-
cations with force feedback, which control architectures require a reliable bilat-
eral interconnection of force and velocity [8,27]. The interaction of controllers
and other software components with the physical world determines stability,
performance and safety properties. In other words, the interaction of the system
follows physical laws [38].

Conformance to physics and preservation of composition-related properties
(e.g., composability, reusability, replaceability and independance) of software
components facilitate the development of cyber-physical systems. Such confor-
mance not only allows software models to seamlessly interact with the physi-
cal world but also to behave as physical elements. This leads to the need of
a description method to connect component-based software for cyber-physical
systems with physical laws.

Energy-based modeling languages describe physical systems using power as
the universal interaction currency or lingua franca between elements [21,40].
These methods rely on the principle of conservation of energy and changes of
states to determine state variables, which are necessary and sufficient to unam-
biguously describe a system [5]. The automatic conservation of energy, the pos-
sibility to incorporate geometrical constraints, and its graphical representation
make the bond-graph notation a straightforward form of object-oriented mod-
eling language for physical systems [12,13]. A bond-graph model is a labelled
and directed graph in which the edges represent an ideal energy connection
between its vertices representing (real-world) physical elements [9]. When sys-
tem structures conform to the bond-graph language, the format of all interfaces
are guaranteed to exchange power [21], facilitating their design and later imple-
mentation.

In this paper we integrate physics description to cyber-physical system mod-
els using bond-graph notation. We present a metamodel of the bond-graph lan-
guage that formalises the features of energy-based modeling. The metamodel
describes standard interfaces that are guaranteed to exchange power and pro-
vide hierarchy, inheritance and encapsulation. This effort aims to facilitate the
description and deployment of power-exchanging cyber-physical systems by clos-
ing relationship gaps between software components and physical models - e.g.
impedance controllers in haptic devices. It is worth stressing that incorporating
the metamodel in tooling is beyond the scope of this work. However, the meta-
model serves as strict guideline to provide of physics interpretation to software
components by interconnecting them in a power-consistent way.

This paper is structured as follows: Sect. 2 is a review of related work associat-
ing the bond-graph language to software engineering paradigms, metamodeling
and the component-based approach. Section 3 is a discussion of the abstrac-
tion level of the bond-graph language and its higher-order relations. Section 4
presents the analysis of the separation and classification of the bond-graph con-
structs into metamodeling entities. Section 5 contains the formal definition of the
bond-graph entities, their properties and constraints. Section 6 is a discussion of



A Bond-Graph Metamodel 89

the developed metamodel. A use-case example is presented in Sect. 7, followed
by the conclusions of this work in Sect. 8.

2 Related Work on Bond-Graph Language and Tooling

The concept of bond-graph was originated in the early 60’s by Paynter [29]
and further developed by Karnopp and Rosenberg [24]. Later, Breedveld [4,6]
provided an insight to describe multi-dimensional physical systems using bond-
graph notation. In this section, we mention work on mapping the bond-graph
language to paradigms of software-engineering. Then, we make a brief review on
effort relating the bond-graph language with the component-based approach for
systems modeling.

2.1 Relation to Software-Modeling Languages

Broenink [12] defined the bond-graph notation as a form of object-oriented mod-
eling language for physical systems. The elements and properties described by
Object Oriented Modeling (OOM) (i.e., objects, hierarchies, inheritances, and
encapsulation) are usually illustrated by graphical representations such as Uni-
fied Modeling Language (UML) [20]. Some works explore describing physical
systems using UML [34] and System Modeling Language (SysML) [16,18]. Other
works aim on integrating software models with physical models using architec-
tural description languages (ADLs) [3,19]. The mentioned approaches describe
physical models for cyber-physical systems from a software-modeling perspec-
tive using standard representations for software engineering. In contrast, we
integrate physical laws to software architectures from a physical-modeling per-
spective using the bond-graph notation. The later is particularly relevant as a
straightforward enforcement of physical constraints.

On the search of a bond-graph metamodel, [35] presents a UML Class Dia-
gram in bond-graph notation that specify the relations and data properties of the
elements composing a certain physical model. [39] contributes on integrating the
bond-graph language to SysML. This is done by mapping the bond-graph enti-
ties to SysML constructs. Another example is the work of [31], which propose a
framework for component modeling using bond-graph-based metamodeling tech-
niques. These efforts identify non-trivial relations of the bond-graph language
to other metamodels and languages; however, details on bond-graph primitive
constructs, constraints and relations to higher-order-knowledge are still missing.
Our work tackles this gap by capturing the relation to physics and mathematics
of the bond-graph notation into the metamodel.

2.2 Bond-Graph Language in Tooling

Various modeling tools supporting bond-graph notation are available. These
tools use their own language to represent bond-graph models. General



90 R. Cobos Méndez et al.

application platforms, like Simulink1, use their native block diagram represen-
tation [2,22]. Other approaches explore implementing the bond-graph language
in object-oriented environments using Modelica [12,15,17]. More dedicated tool-
ing, like 20-SIM2, use a bond-graph-based language for modeling, simulation and
generation of implementable code [1,7,11].

Relating the component-based approach to bond-graph modeling language
is non-trivial. An example is given in [10], which discusses how 20-SIM uses
libraries of models and sub-models, exploiting the encapsulation provided by the
bond-graph paradigm. [28] proposes (semi-)automating the generation of simu-
lation models in bond-graph notation by using off-the-shelf component imple-
mentations. As a metamodel of the bond-graph language is missing (or at least
inaccessible), the development and integration between tools is problematic. As
a first step on the metamodel formulation, the following section positions the
bond-graph language among the abstraction levels and addresses its relation to
higher-order-knowledge.

3 Methods on Metamodeling

From the Object-oriented Modeling perspective, any bond-graph (sub-)model
can be seen as an object containing the mathematical description of a physical
system [9]. Mathematically speaking, the three models in Fig. 1 represent exactly
the same system. The bond-graph model in Fig. 1 is a more abstract representa-
tion of the physical system compared to the iconic diagrams. In this section, the
abstraction levels of physical system modeling is explored, as well as the relation
of the bond-graph language to other known metamodels.

Fig. 1. Different representations of the same dynamic system.

3.1 Levels of Abstraction

In Fig. 1 there is a bond-graph model and two domain models represented by
iconic diagrams - one mechanical and one electrical. The bond-graph model
1 Available Simulink library for bond-graph: https://nl.mathworks.com/matlabcentral/

fileexchange/11092-bond-graph-add-on-block-library-bg-v-2-1.
2 More details about 20-Sim: https://www.20sim.com/.

https://nl.mathworks.com/matlabcentral/fileexchange/11092-bond-graph-add-on-block-library-bg-v-2-1
https://nl.mathworks.com/matlabcentral/fileexchange/11092-bond-graph-add-on-block-library-bg-v-2-1
https://www.20sim.com/ 


A Bond-Graph Metamodel 91

represents both domain models as the same dynamic system. This identifies the
bond-graph model as a Multi-Domain-Specific Language (MDSL) with respect
to the iconic diagrams. The different levels of abstraction are represented in
Fig. 2, where the bond-graph metamodel is located at a higher level (M2) with
respect to the bond-graph model and iconic diagrams (M1). More details about
levels of abstraction are presented in [14].

Fig. 2. Different levels of abstraction of a physical system.

As illustrated in Fig. 2, the bond-graph language conforms to higher-order
knowledge (M3) - the Block-Port-Connector (BPC) metamodel, physics and
mathematics. The bond-graph model in Fig. 1 would not be capable of describing
physical interactions without its relation to other meta-metamodels, physics and
mathematics. Therefore, it can be said that the bond-graph language adheres to
other known metamodels.

3.2 Conforming to Higher-Order Knowledge

Mathematical abstractions of the bond-graph notation are port-Hamiltonian sys-
tems and Dirac structures [23]. The diagram in Fig. 3 is a port-Hamiltonian
representation of an ideal physical system in bond-graph notation [37]. A port-
Hamiltonian system can describe network models of physical systems that
exchange power through ports [33]. The physical interaction among elements
is done by the allocation of effort e and flow f variables on such ports and
bonds. The mathematical relation between e and f characterizing the behavior
of each (sub-)system is known as constitutive relation.



92 R. Cobos Méndez et al.

The energy of the system in Fig. 3 is characterized by a Hamiltonian equation,
H(e, f), and a Dirac structure, D(e, f), representing power-conserving intercon-
nections. Energy (defined as integral of power over time) is a conserved quantity,
meaning that, in a closed system, it is at most transferred, converted or dissi-
pated to the environment as free energy3. The energy conservation property is
described by the power-conserving composition of D(e, f) [32]. Thus, the port-
Hamiltonian theory and Dirac structures serve as higher-order mathematical
formulations of bond-graph models.

Fig. 3. A physical system represented as a port-Hamiltonian in bond-graph notation. A
Dirac structure interconnects the source, storage and dissipative elements. The bonds
denote power exchange as a product of effort and flow variables.

3.3 Conforming to Known Meta-Metamodels

When a model conforms-to a metamodel, the elements that are being used in
the model satisfy the constraints on the relations that are made explicit in
the metamodel [14]. This is the case of the Block-Port-Connector (BPC) meta-
metamodel, whose modeling primitives are present in the bond-graph language
known as elements, junctions, power port and power bond. In Table 1, a relation
of the bond-graph constructs with the BPC primitives is shown, along with their
higher-order knowledge link.

However, there are properties and constraints in the bond-graph language
that cannot be sufficiently described by BPC to represent real physical interac-
tions. For instance, physical interaction among systems require a bi-directional
property in the connectors, as the energy is exchanged in both directions
[6,29,33]. Given this, the bond-graph metamodel has to make such constraints
explicit to avoid ambiguity when conforming to other meta-metamodels and
paradigms.

The properties of OOM (i.e. encapsulation, inheritance and hierarchy) are
essential when modeling physical systems [12]. The encapsulation into submodels
3 Also known as the first law of thermodynamics.



A Bond-Graph Metamodel 93

and the inheritance property allow maintaining libraries of basic bond-graph ele-
ments and exchanging classes of components within a model. The hierarchy prop-
erty allows complex bond-graph models to be embedded within other systems
through power ports [21]. By conforming-to other metamodels (e.g, BPC), we
can bring those entities, properties, attributes and relations required to describe
the bond-graph language.

The realization of the metamodel is based on the separation of the elements
of the modeling language into metamodeling concepts. In the following section,
we describe the entities, relations and constraints of the bond-graph modeling
language by identifying the properties and attributes of its elements.

Table 1. Relation between Block-Port-Connector primitives to bond-graph constructs.

BPC primitive Bond-graph constructs Physics/mathematics link

Block - Dissipative elements
- Storage elements
- Source elements

Hamiltonian theory

- Power junction
- Transformer
- Gyrator

Dirac structures

Port - Power port port-Hamiltonian theory

Connector - Power bond

4 Analysis of Bond-Graph Entities

As mentioned earlier, a bond-graph model is a graph which edges and vertices
represent energetic interactions. Breedveld [6] provided a classification of the
bond-graph vertices based on their energetic behavior. Such classification is rep-
resented in Table 2. The diagram in Fig. 4 is a representation of a bond-graph
model whose elements are classified in four classes: elements, junction struc-
tures, power port and power bond. These classes have specific purposes in the
bond-graph language and can be allocated and described in a higher level of
abstraction.

Song [36] defines an entity as a primary thing that exists as itself and can
be identified. Following this definition, the bond-graph elements, junction struc-
tures, power ports and power bonds can be classified as entities as they are inde-
pendent things that can be clearly identified. Table 3 contains the properties and
attributes of the bond-graph entities, which are essential to later formalize the
modeling language.



94 R. Cobos Méndez et al.

Table 2. Classification of the bond-graph vertices based on their energetic behavior.

Classification Bond-graph
constructs

Block Elements Energic - Storage

Entropic - Dissipator

Boundary - Source

Junction structures - Power junction
- Transformer
- Gyrator

Fig. 4. Classification of bond-graph entities into ‘classes’.

4.1 Classification of Bond-Graph Vertices

The UML diagram in Fig. 5 illustrates the classification of the bond-graph
vertices based on their energetic properties and presence of parameters. The
storages, dissipators and sources have at least one parameter - i.e., capaci-
tance/compliance, inductance/mass, resistance/friction. We label these paramet-
ric elements as BondElements. The rest of the vertices are labeled as Junction-
Structures as they interconnect BondElements (and other JunctionStructures)
in a power continuous way.

As shown in Table 3, transformers and gyrators could also be classified as
BondElements as they have parameters - namely transformation/gyration ratio.
For the bond-graph metamodel, we propose classifying transformers and gyrators
as parametric-JunctionStructures to distinguish them from the 0-/1-junctions.
Having identified the entities and properties of the bond-graph language, we
move forward on formally defining them into a metamodel.

5 Formalization of the Bond-Graph Metamodel

This section addresses the formal definition of the bond-graph language. Here,
we capture the properties and constraints of the entities identified and classified
in previous sections into a metamodel.



A Bond-Graph Metamodel 95

Fig. 5. Identification of bond-graph vertices based on their energetic behavior and
presence of parameters

Table 3. Identification of properties and attributes of the bond-graph entities. Note:
Transformers and gyrators are both Elements and Junction structures.

Bond-graph entity Property Attribute

Element Storage - Has constitutive relation - Name

- Symbol

- Number of ports

- Size of ports

- Size of elements

- Has parameters
Dissipator

Source

Element &

Junction

structure

Transformer/

gyrator

- Has power continuity

- Has constitutive relation

- Name

- Symbol

- Number of ports

- Has parameters

Junction structure 0-junction/

1-junction

- Has power continuity

- Has constitutive relation

- Name

- Symbol

- Number of ports

Power port - Has 1 to 1 relation with bonds

- Has 1 port has 2 variables in

the constitutive relation

- Name

Power bond - Has bidirectionality

- Has power continuity

- Connects 2 ports

- Name

5.1 Formal Definition of Entities, Properties and Constraints

The UML class diagram in Fig. 6a represents the association of entities of Table 3,
based on the vertex classification of Fig. 5. The relation between PowerPort and
PowerBond classes is represented in Fig. 6b. The definitions are enforced using
Description Logic (DL) as UML is insufficient to describe the correct application
of the bond-graph language. The formal semantics provided by DL let humans
and computer systems exchange the same language, avoiding ambiguity [25].



96 R. Cobos Méndez et al.

Fig. 6. UML diagram of bond-graph classes.

The bond-graph classes in Fig. 6 and their properties are expressed in detail
in Table 4. The chosen language is the Web Ontology Language 2 (OWL2), which
is based on DL. The axioms in Table 4 map the bond-graph classes to Block-
Port-Connector (BPC) primitives (as in Table 1), facilitating the description of
the bond-graph language.

Despite the bond-graph language conforms-to BPC, it is not allowed for a
power bond to connect more than two power ports. Given this, it is required
to constrain the relation between PowerPort and PowerBond with two ‘1-to-1
connects’ shown in Fig. 6b. In the PowerPort-PowerBond-PowerPort relation,
one PowerPort is declared as source and the other as sink. However, the energy
exchange in both directions of the PowerBond is guaranteed by the bidirection-
ality property. Just like the previous example, the essential constraints of the
bond-graph classes are formally expressed in Table 5 using DL4.

5.2 Formal Definition of Power Variables

The bond-graph formalism indicates that the only variable to be ‘transferred’
among vertices through PowerPorts and PowerBonds is ‘power’ as a product of
colocated effort and flow. To constrain this, it is proposed to define effort and
flow as quantities containing a given value and a given unit. In the bond-graph
metamodel ontology, we use the Ontology of Units of Measure described in [30].
The complete definition of the power variables is represented in Table 6.

5.3 A Note on Causality

The power-bond determines the effort and flow variable as a bilateral signal flow
[5,29]. Meaning that, when one variable is given as an input for one port, its
conjugated variable is automatically the output for that particular port. The
inverse is true for the port at the other side. Causality is the policy that assigns
the order of computations by determining whether the effort or the flow is either
input or output. Causal analysis is addressed in [11] for computer-aided model-
ing and simulation purposes. In practice, causality is required to generate easy
4 See the Appendix for more details about the symbols used in the formal definitions.



A Bond-Graph Metamodel 97

Table 4. Formal definitions of the bond-graph classes.

Class OW2 axiom Related properties

BondGraph Declaration
(Class(:BondGraph))

- hasPowerBond
- hasJunctionStructure
- hasBondElement

BondElement Declaration
(Class(:BondElement))

- hasParameter
- hasConstitutiveRelation
- hasPowerPort
- DisjointWith Junction-
Structure
- Contains max 1 BondGraph

SubClassOf
(:BondElement :Block)

PowerPort Declaration
(Class(:PowerPort))

- isPortOf exactly 1
(BondElement or Junction-
Structure)SubClassOf

(:PowerPort :Port)

PowerBond Declaration
(Class(:PowerBond))

- Connects exactly 2 PowerPort
- hasBidirectionality

SubClassOf
(:PowerBond:Connector)

JunctionStructure Declaration
(Class(:JunctionStructure))

- hasPowerPort
- hasConstitutiveRelation
- DisjointWith BondElementSubClassOf

(:JunctionStructure :Block)

simulatable cyber-physical models. However, a model with the same structure
but different causality is in fact the same model; therefore, this policy is not
considered part of the bond-graph metamodel itself.

This section has addressed the structural allocation of the entities of the
bond-graph language along with their formal definition and constraints. The
following section is a discussion of the properties of the developed metamodel.

6 Metamodel Discussion

The bond-graph metamodel has to contain the properties and elements of other
known meta-metamodels, in addition to the intrinsic characteristics of the bond-
graph notation, as described in Sects. 3 and 4. This section is a discussion of the
properties of the bond-graph metamodel as well as the resulting ambiguities as
consequence of the limitations of the formalization language.

6.1 Properties of the Bond-Graph Metamodel

As mentioned earlier, the bond-graph language has encapsulation, hierarchy and
inheritance properties. In the metamodel, encapsulation is represented in the



98 R. Cobos Méndez et al.

Table 5. Essential constraints of bond-graph classes

DL syntax Description

Class: BondElement

BondElement �JunctionStructure =⊥ No bond-graph vertex can be at the same time a

BondComponent and a JunctionStructure

BondElement � ∀ hasPowerPort.Port BondElements have any number of power ports

BondElement �≤ 1

contains.BondGraph

BondElements may contain at most 1 BondGraph

Class: PowerPort

PowerPort � 1

isPortOf.(BondElement �
JunctionStructure)

Any PowerPort is a port of exactly one

BondElement or one JunctionStructure

PowerPort �≤ 1 connects.PowerBond PowerPorts can connect to at most

1 PowerBond

Class: PowerBond

PowerBond � 2 connects.PowerPort A PowerBond connects exactly two PowerPort.

Equivalently, a PowerBond cannot connect to more

than two power ports, nor have one of its

connection points loose

Class: JunctionStructure

JunctionStructure � BondElement = ⊥ No bond graph vertex can be at the same time a

BondElement and a JunctionStructure

JunctionStructure � ∀
hasPowerPort.PowerPort

JunctionStructure have any number of power ports

JunctionStructure � 0 contains.	 JunctionStructure is a block that contains nothing

Class: BondGraph

BondGraph� ∀has
BondComponent.BondComponent

BongGraphs have BondElements

BondGraph� ∀has
PowerBond.PowerBond

BondGraphs have PowerBonds

BongGraph� ∀has
JunctionStructure.JunctionStructure

BondGraphs have JunctionStructures

relation between the BondGraph class and the rest of the classes in Fig. 6. As
expressed in Table 5, an instance of a BondGraph is a collection that can contain
elements, junction structures and power bonds. In a similar way, a BondGraph
instance can contain other BondGraph models itself.

The encapsulation of bond-graph models is illustrated in Fig. 7 as follows:
Model 4 is a BondGraph model composed of BondElements, JunctionStructures
and other BondGraph models interconnected by PowerBonds (represented by
half arrows) and PowerPorts (represented by black squares). Model 1, Model 2
and Model 3 are BondGraphs models containing at least one BondElement each.
These constructions are allowed by the metamodel, providing hierarchy to the
system.

Given the guaranteed interconnection of vertices and the encapsulation prop-
erty, the construction of complex models can be simplified by using generic sub-
models and only modifying parameters and attributes. For instance, Model 2



A Bond-Graph Metamodel 99

Table 6. Definition of power variables and their constraints

Data property DL definition Description

effort ∃ effort. � � PowerBond Domain of effort is always a
PowerBond

Quantity � ∀ effort.PowerBond Range of ‘effort’ is always a
‘Quantity’

Quantity �≤ 1 effort.PowerBond ‘effort’ is functional, and
additionally for each individual
moment in time

flow ∃ flow. � � PowerBond Domain of flow is always a
PowerBond

Quantity � ∀ flow.PowerBond Range of ‘flow’ is always a
‘Quantity’

Quantity �≤ 1 flow.PowerBond ‘flow’ is functional, and
additionally for each individual
moment in time

and Model 3 in Fig. 7 can be described as storage elements with different
ConstitutiveRelation, parameter value and symbol. Therefore, inheritance is sup-
ported by the metamodel.

6.2 Note on Completeness of the Bond-Graph Metamodel

The implementation of the bond-graph metamodel into tooling is out of the scope
of this paper. This represent a limitation on the assessment of the completeness of
the metamodel to describe physical systems. However, it is possible to determine
whether or not the formal definitions adhere to the the bond-graph notation to
construct models.

The interaction between vertices has to be done only through the association
between PowerPort and PowerBond classes. The UML diagram in Fig. 6 and
the DL definitions in Table 5 enforce this constraint. Still, there is no formal
definition that prevents a PowerBond to be connected at both sides to the same
BondElement or BondGraph model (through different ports) as shown in the
system in Fig. 8a. Nevertheless, such an unusual connection does not compro-
mise the correct application of the bond-graph language to describe the physical
behavior of the system. For instance, Fig. 8b is a representation of the same sys-
tem shown in Fig. 8a. On the other hand, the structure in Fig. 9a is not allowed
due to lack of information required to describe the power exchange between Bon-
dElements. Changing the splitter to a JunctionStructure block - either 0-junction
or 1-junction5 - in Fig. 9b is essential to allow a physics-conformal interconnec-
tion.

5 Depending on the model, the JunctionStructure could be either a 1-junction or a
0-junction as they denote different Diract structures.



100 R. Cobos Méndez et al.

Fig. 7. A bond-graph model encapsulating other bond-graph (sub-)models.

Fig. 8. Two equal systems (a) Unusual connection to same element. (b) Encapsulation
of the PowerBond.

7 Interfacing Software Components Using Bond-Graph
Entities

By incorporating the bond-graph metamodel to the component-based approach,
software models like in Fig. 10 can be realized. The software components have
instances of PowerPort class connected by instances of PowerBond class. The
components themselves are BondElement instances which ConstitutiveRelation
(see Table 4) is the implementation. Since power exchange (product of effort and
flow variables) is enforced on the interfaces, the components can be exchanged
or replaced depending on the application. Thus, the component implementation
can be extended without compromising its independence from the interfaces. In
this section we present a use case example where the bond-graph metamodel is
applied.

7.1 Use-Case Example: Haptic Telemanipulation

We applied the entities described by the bond-graph metamodel on the teleop-
eration with force feedback use case depicted in Fig. 11. The system model is
in bond-graph notation, which means that power is exchanged between the ele-
ments. A human operator telemanipulates a robot (‘Slave’) using another robot



A Bond-Graph Metamodel 101

Fig. 9. Interaction between BondElements: (a) Ill-connection through a signal splitter
not allowed by the metamodel. (b) Correct application of the bond-graph language.
Note: the 1-junction in (b) could be a 0-junction.

(‘Master’) as haptic device. The impedance controller component is provided of
power ports and its implementation is bond-graph conformal - that is, dealing
with effort and flow signals and other constraints as formalized in the metamodel.
This is the same for the geometric Jacobian components.

Fig. 10. Software components interacting via power ports and power bonds. Given the
interfaces, it can be assumed that power is exchanged among them.

The PowerPort and PowerBond instances provide a power-consistent inter-
connection between the physical and virtual environments in Fig. 11. In other
words, the impedance controller has a ’physical’ link with the target environment
and the operator. Thus, a (force) feedback loop is enforced. The interfaces allow
the use-cased system to be composable and its components replaceable. The
impedance controller and geometric Jacobians can be replaced by other com-
ponents as long as they have the required power ports. The implementation of
each component can also be extended. If the application changes - for instance,
adding another ’slave’ robot - the controller and Jacobian can be reused. Addi-
tionally, system developers can get the flexibility and independence offered by
the component software approach by having application-specific and tool-specific
components clearly separated.



102 R. Cobos Méndez et al.

Fig. 11. Control software model of the teleoperation application in bond-graph nota-
tion.

8 Conclusions

We presented a metamodel that formalizes the bond-graph modeling language.
This effort aims to ease the development of software components for cyber-
physical systems that interact with their environment. This is done by enforcing
the correct application of the bond-graph notation to describe physical inter-
connections among components. The elements, properties and constraints of the
modeling language were identified and characterized using Description Logics.
The result is a set of definitions of bond-graph classes, their object properties
and relations that conform to physics, mathematics and Block-Port-Connector
meta-metamodel.

As discussed in Sect. 6, the bond-graph metamodel supports encapsulation,
hierarchy and inheritance, while providing of a physics interpretation to the
component-based approach. The use case in Sect. 7 suggests that the meta-
model can serve as a strict guideline to develop software components interfacing
with physical systems. It was shown that composability, reusability, extensibility,
replaceability and independence of components are present.

Further work can be done on integrating the bond-graph metamodel to
software-modeling tooling. This means merging physical laws to off-the-shelf
software components. Such incorporation can help reducing development times
and improve cost-effectiveness by facilitating the task of control-software devel-
opers.

Moreover, further work can be on the formal description of causality. Thus
the presented metamodel becomes more rich. Tools using this extended bond-
graph metamodel can be enhanced with automated causal analysis functions,
exploiting transformation from energy relations to signal input-output relations
- as done by dedicated tooling for bond-graph modeling and simulation, e.g.,
20-SIM.

Despite the tooling limitation, the presented metamodel is useful to provide
the required descriptions to make already existent control components abide
physics through guaranteed power exchange. The facility to monitor energy flows
in the system through power ports can allow the definition of system-wide prop-
erties based on component properties, most notably passivity. Therefore, the



A Bond-Graph Metamodel 103

bond-graph metamodel can contribute on reliability and safety of component-
based cyber-physical systems.

Appendix

See Table 7.

Table 7. Symbols used in DL definitions

Symbol Legend

� Meet semilattice

⊥ Minimum element or bottom

� Partial order relation

∀ For all

∃ There exist

� Maximum element or top

	 Disjoint union

References

1. Automated modelling. In: Borutzky, W. (ed.) Bond Graph Methodology: Devel-
opment and Analysis of Multidisciplinary Dynamic System Models, pp. 469–560.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-882-7 11

2. Antic, D., Vidojkovic, B.: Obtaining system block diagrams based on bond graph
models and application of bondsim tools. Int. J. Model. Simul. 21(4), 257–262
(2001). https://doi.org/10.1080/02286203.2001.11442210

3. Bhave, A.Y., Garlan, D., Krogh, B., Rajhans, A., Schmerl, B.: Augmenting soft-
ware architectures with physical components. In: Embedded Real Time Software
and Systems Conference (2010)

4. Breedveld, P.C.: Multibond graph elements in physical systems theory. J. Franklin
Inst. 319(1), 1–36 (1985). https://doi.org/10.1016/0016-0032(85)90062-6

5. Breedveld, P.: Integrated modeling of physical systems - dynamic systems, vol. 1.
University of Twente, Enschede, The Netherlands (2014)

6. Breedveld, P.C.: Physical Systems Theory in Terms of Bond Graphs. Twente Uni-
versity of Technology, Department of Electrical Engineering, Enschede (1984).
oCLC: 852801415

7. Breunese, A.P.J., Broenink, J.F.: Modeling mechatronic systems using the
SIDOPS+ language. Simul. Ser. 29(1), 301 (1997). oCLC: 106228295

8. Brodskiy, Y.: Robust autonomy for interactive robots (2014). https://doi.org/10.
3990/1.9789036536202

9. Broenink, J.: Introduction to physical systems modelling with bond graphs (1999)

https://doi.org/10.1007/978-1-84882-882-7_11
https://doi.org/10.1080/02286203.2001.11442210
https://doi.org/10.1016/0016-0032(85)90062-6
https://doi.org/10.3990/1.9789036536202
https://doi.org/10.3990/1.9789036536202


104 R. Cobos Méndez et al.

10. Broenink, J.F.: 20-sim software for hierarchical bond-graph/block-diagram mod-
els. Simul. Pract. Theory 7(5), 481–492 (1999). https://doi.org/10.1016/S0928-
4869(99)00018-X

11. Broenink, J.F.: Computer-aided physical-systems modeling and simulation: a bond
graph approach, March 1990

12. Broenink, J.F.: Object-oriented modeling with bond graphs and Modelica. In: Pro-
ceedings of the 1999 International Conference on Bond Graph Modeling and Sim-
ulation, pp. 163–168, February 1999

13. Brown, F.T.: Engineering System Dynamics: A Unified Graph-Centered Approach,
2nd edn. CRC Press (2006). https://doi.org/10.1201/b18080

14. Bruyninckx, H., Scioni, E., Hubel, N., Reniers, F.: Composable control stacks in
component-based cyber-physical system platforms, April 2018

15. de la Calle, A., Cellier, F.E., Yebra, L.J., Dormido, S.: Improvements in BondLib,
the Modelica bond graph library. In: 2013 8th EUROSIM Congress on Mod-
elling and Simulation, pp. 282–287, September 2013. https://doi.org/10.1109/
EUROSIM.2013.58

16. Cao, Y., Liu, Y., Fan, H., Fan, B.: SysML-based uniform behavior modeling and
automated mapping of design and simulation model for complex mechatronics.
Comput. Aided Des. 45(3), 764–776 (2013). https://doi.org/10.1016/j.cad.2012.
05.001

17. Cellier, F.E., Nebot, À.: The Modelica Bond Graph Library, p. 10 (2005)
18. Chen, R., Liu, Y., Cao, Y., Zhao, J., Yuan, L., Fan, H.: ArchME: a systems mod-

eling language extension for mechatronic system architecture modeling. AI EDAM
32(1), 75–91 (2018). https://doi.org/10.1017/S0890060417000245

19. Garlan, D., Monroe, R.T., Wile, D.: ACME: architectural description of
component-based systems. In: Foundations of Component-Based Systems, pp. 47–
68. Cambridge University Press (2000)

20. Garrido, J.M.: Object orientation. In: Garrido, J.M. (ed.) Object Oriented Sim-
ulation, pp. 51–58. Springer, Boston (2009). https://doi.org/10.1007/978-1-4419-
0516-1 5

21. Gawthrop, P.J., Bevan, G.P.: Bond-graph modeling. IEEE Control Syst. 27(2),
24–45 (2007). https://doi.org/10.1109/MCS.2007.338279

22. Geitner, G.: Power flow diagrams using a bond graph library under simulink. In:
IECON 2006–32nd Annual Conference on IEEE Industrial Electronics, pp. 5282–
5288, November 2006. https://doi.org/10.1109/IECON.2006.347232

23. Golo, G., van der Schaft, A., Breedveld, P.C., Maschke, B.M.: Hamiltonian formu-
lation of bond graphs. In: Johansson, R., Rantzer, A. (eds.) Nonlinear and Hybrid
Systems in Automotive Control, pp. 351–372. Springer, London (2003)

24. Karnopp, D., Rosenberg, R.C.: Analysis and Simulation of Multiport Systems:
The Bond Graph Approach to Physical System Dynamics. MIT Press, Cambridge
(1968)

25. Krötzsch, M., Simancik, F., Horrocks, I.: Description logics. IEEE Intell. Syst.
29(1), 12–19 (2014). https://doi.org/10.1109/MIS.2013.123

26. Lee, E.A.: Cyber physical systems: design challenges. In: 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), pp. 363–369, May 2008. https://doi.org/10.1109/ISORC.
2008.25

27. Mersha, A.Y.: On autonomous and teleoperated aerial service robots (2014).
https://doi.org/10.3990/1.9789036536585

https://doi.org/10.1016/S0928-4869(99)00018-X
https://doi.org/10.1016/S0928-4869(99)00018-X
https://doi.org/10.1201/b18080
https://doi.org/10.1109/EUROSIM.2013.58
https://doi.org/10.1109/EUROSIM.2013.58
https://doi.org/10.1016/j.cad.2012.05.001
https://doi.org/10.1016/j.cad.2012.05.001
https://doi.org/10.1017/S0890060417000245
https://doi.org/10.1007/978-1-4419-0516-1_5
https://doi.org/10.1007/978-1-4419-0516-1_5
https://doi.org/10.1109/MCS.2007.338279
https://doi.org/10.1109/IECON.2006.347232
https://doi.org/10.1109/MIS.2013.123
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.1109/ISORC.2008.25
https://doi.org/10.3990/1.9789036536585


A Bond-Graph Metamodel 105

28. Novák, P., Šindelář, R.: Component-based design of simulation models utilizing
bond-graph theory. IFAC Proc. Vol. 47(3), 9229–9234 (2014). https://doi.org/10.
3182/20140824-6-ZA-1003.01167

29. Paynter, H.M., Briggs, P.: Analysis and Design of Engineering Systems: Class Notes
for M.I.T. Course 2.751. MIT Press, Cambridge (1961). Massachusetts Institute of
Technology

30. Rijgersberg, H., van Assem, M., Top, J.: Ontology of units of measure and related
concepts. Semant. Web 4(1), 3–13 (2013). https://doi.org/10.3233/SW-2012-0069

31. Sampath Kumar, V.R., Shanmugavel, M., Ganapathy, V., Shirinzadeh, B.: Unified
meta-modeling framework using bond graph grammars for conceptual modeling.
Robot. Auton. Syst. 72, 114–130 (2015). https://doi.org/10.1016/j.robot.2015.05.
003

32. van der Schaft, A., Cervera, J.: Composition of Dirac structures and control of
Port-Hamiltonian systems. In: Proceedings of the 15th International Symposium
on the Mathematical Theory of Networks and Systems. University of Notre Dame
(2002)

33. Scioni, E., et al.: Hierarchical hypergraphs for knowledge-centric robot systems. In:
A Composable Structural Meta Model and its Domain Specific Language NPC4
(2016). https://doi.org/10.6092/JOSER 2016 07 01 p55

34. Secchi, C., Bonfe, M., Fantuzzi, C.: On the use of UML for modeling mechatronic
systems. IEEE Trans. Autom. Sci. Eng. 4(1), 105–113 (2007). https://doi.org/10.
1109/TASE.2006.879686

35. Sen, S., Vangheluwe, H.: Multi-domain physical system modeling and control based
on meta-modeling and graph rewriting. In: 2006 IEEE Conference on Computer
Aided Control System Design, 2006 IEEE International Conference on Control
Applications, 2006 IEEE International Symposium on Intelligent Control. pp. 69–
75, October 2006. https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776626

36. Song, I.Y., Froehlich, K.: Entity-relationship modeling. IEEE Potentials 13(5),
29–34 (1995). https://doi.org/10.1109/45.464652

37. Stramigioli, S.: Intrinsically passive control using sampled data system passivity.
In: Multi-point Interaction with Real and Virtual Objects, pp. 215–229, July 2005.
https://doi.org/10.1007/11429555 14

38. Stramigioli, Stefano: Energy-aware robotics. In: Camlibel, M.Kanat, Julius,
A.Agung, Pasumarthy, Ramkrishna, Scherpen, Jacquelien M.A. (eds.) Mathemati-
cal Control Theory I. LNCIS, vol. 461, pp. 37–50. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-20988-3 3

39. Turki, S., Soriano, T.: A SysML extension for Bond Graphs support (2005)
40. van der Schaft, A., Jeltsema, D.: Port-Hamiltonian systems theory: an introductory

overview. Found. Trends R© Syst. Control 1(2), 173–378 (2014). https://doi.org/10.
1561/2600000002

https://doi.org/10.3182/20140824-6-ZA-1003.01167
https://doi.org/10.3182/20140824-6-ZA-1003.01167
https://doi.org/10.3233/SW-2012-0069
https://doi.org/10.1016/j.robot.2015.05.003
https://doi.org/10.1016/j.robot.2015.05.003
https://doi.org/10.6092/JOSER_2016_07_01_p55
https://doi.org/10.1109/TASE.2006.879686
https://doi.org/10.1109/TASE.2006.879686
https://doi.org/10.1109/CACSD-CCA-ISIC.2006.4776626
https://doi.org/10.1109/45.464652
https://doi.org/10.1007/11429555_14
https://doi.org/10.1007/978-3-319-20988-3_3
https://doi.org/10.1007/978-3-319-20988-3_3
https://doi.org/10.1561/2600000002
https://doi.org/10.1561/2600000002

	A Bond-Graph Metamodel:
	1 Introduction
	2 Related Work on Bond-Graph Language and Tooling
	2.1 Relation to Software-Modeling Languages
	2.2 Bond-Graph Language in Tooling

	3 Methods on Metamodeling
	3.1 Levels of Abstraction
	3.2 Conforming to Higher-Order Knowledge
	3.3 Conforming to Known Meta-Metamodels

	4 Analysis of Bond-Graph Entities
	4.1 Classification of Bond-Graph Vertices

	5 Formalization of the Bond-Graph Metamodel
	5.1 Formal Definition of Entities, Properties and Constraints
	5.2 Formal Definition of Power Variables
	5.3 A Note on Causality

	6 Metamodel Discussion
	6.1 Properties of the Bond-Graph Metamodel
	6.2 Note on Completeness of the Bond-Graph Metamodel

	7 Interfacing Software Components Using Bond-Graph Entities
	7.1 Use-Case Example: Haptic Telemanipulation

	8 Conclusions
	References




