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Abstract

Previous research has shown that estimating full-body poses
from a minimal sensor set using a trained ANN without ex-
plicitly enforcing time coherence has resulted in output pose
sequences that occasionally show undesired jitter. To miti-
gate such effect, we propose to improve the ANN output by
combining it with a state prediction using a Kalman Filter.
Preliminary results are promising, as the jitter effects are di-
minished. However, the overall error does not decrease sub-
stantially.

Introduction

The human motion capture industry has grown a lot in recent
years, which is shown by the availability of a large variety
in technologies. The most prominent solutions are based on
inertial measurement units (IMUs) and optical tracking, and
both require numerous sensors/markers for full-body motion
capturing (van der Kruk and Reijne 2018). This results in a
large setup time and obtrusiveness to the subject.

Many works focused on reducing complexity by relying on
database solutions. For example, the number of markers (in
optical motion capture) was successfully reduced (to as few
as six markers) by using a nearest neighbour search ap-
proach (Chai and Hodgins 2005). Similarly, Tautges et al.
exploited nearest neighbour search to reconstruct full-body
movements using only four accelerometers (Tautges et al.
2011). Both approaches require a movement database to be
available at runtime, which is computationally expensive.
Therefore, Wouda et al. 2016 used an Artificial Neural Net-
work (ANN) to overcome this limitation and showed compa-
rable performance. However, this approach does not enforce
any temporal coherence between consecutive poses and thus
results might show unrealistic jumps and jitter.

By providing temporal coherence, the overall performance
of an ANN approach is likely to improve. For example, use
of recurrent neural networks were effective in predicting se-
quences of human movement from a (short) pose sequence
(Fragkiadaki et al. 2015). However, such an approach re-
quires sufficient computation resources and training data (of
the sequences of interest). An interesting alternative is the
use of a Kalman filter (KF), which fuses a prediction of

Copyright (© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10063

states with the measurements (Welch and Bishop 1995).
The goal of this work is to investigate the use of a statisti-
cal framework like a KF for combining the pose output of
an ANN (estimated from a minimal IMU sensor setup) with
a pose prediction. This approach allows for using explicit
modelling of constraints of the human body, e.g. movement
range and joint degree of freedom limits.

Methods

An ANN (with two hidden layers of 200 and 100 neurons)
was trained (using MATLAB R2016a) to map the (relative
to pelvis) orientation of 4 body segments (lower legs and
arms) to a full-body pose, identical to Wouda et al. 2016.
The training data for this ANN consists of movements of
6 participants (~ 120 minutes in total), identical to used
in (Wouda et al. 2016). An inertial motion capture system
(Xsens MVN) consisting of 17 on-body sensors was used
for capturing the dataset (Schepers, Giuberti, and Bellusci
2018). It was chosen to describe orientations using quater-
nions, as it was shown to be suitable for pose estimation
from a minimal sensor set with a trained ANN (Wouda et
al. 2016). However, orientations complicate the use of a KF,
due to the potentially large linearization errors. Therefore,
we propose to use an error-state KF, similar to Kortier et al.
2014, which keeps linearization errors to a minimum. The
error-state was used as follows: ¢; = ¢2 ® dg, i.e. the er-
ror quaternion can be seen as the orientation difference be-
tween two body segments. Furthermore, the error quaternion
were converted to helical angles using: dq = [1 %59]. We
will take orientation and its derivative: angular velocity of
the full-body pose (23 segments) into account in the states:
zt =[50 66].

The purpose of applying a KF is to stabilize the pose predic-
tion (process) using the ANN output (measurement), as de-
picted in Figure 1. We assume our process can be described
with constant velocity, which should be acceptable for small
timesteps. This results in the following state transition ma-

trix: A = F At . The output of the trained ANN is used

0 1
as a measurement update, which is related to the states by
the measurement matrix: H = [1  0].

The noise covariance of the process () and the measure-
ment (R) effectively reflect the reliability of both informa-
tion sources. To test the viability of this approach, an esti-



mate of the measurement noise covariances was made based
on the variance of the ANN output data (as jitter can be ob-
served as increased variance), i.e. R = o(d60), which is a
diagonal matrix. Similarly, the process noise covariance ma-
trix was determined from the variance in the ground truth.
The performance of the proposed approach was evaluated
using the Euclidean distance between joint positions, simi-
lar to existing literature (Tang et al. 2008). To this end, joint
positions are calculated from orientations using a forward
kinematics approach.
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Figure 1: The proposed Kalman filter combines the ANN
estimate of the full-body pose (q’}ul ;) with prediction of the
state that is based on the optimal estimate from the previous
timestep (4,,,)-

Results and discussion

For sake of conciseness, only the knee joint positions are
compared, since jitter was observed best for this joint due to
the lack of a sensor on the more proximal segment (upper
leg). The ground truth was derived from the knee position as
measured with a full-body motion capture system. Figure 2
shows a comparison of the estimated knee joint position with
the ground truth. For illustration purposes the trial with most
evident jitter (blue peak errors) was shown. However, sim-
ilar behaviour was observed for trials with less evident jit-
ter. It can be seen that the jitter has been largely mitigated,
although the mean joint position error shows a limited de-
crease (0.11 m instead of 0.12 m).

This can potentially be improved by having a time-variant
measurement noise matrix, which depends on the current es-
timated pose. Jitter behaviour was mainly observed for spe-
cific poses, that are likely similar to other poses, e.g. in the
end of the swing phase the lower leg orientation is similar to
that of a person sitting. However, this would require a mea-
sure of confidence of the ANN output. Furthermore, the KF
framework easily allows for applying additional constraints,
such as limited joint range/degrees of freedom.

Conclusion

Promising results were achieved by using a KF to stabi-
lize the (constant velocity) prediction using ANN ouput, al-
though the limited decrease in the mean joint position error
indicates that there is room for improvement.
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Comparison between the ANN estimate and the KF output
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Figure 2: The Euclidean distance between the ANN estimate
and the actual knee joint position (for a walking trial) is
shown in blue (ML), and the optimal estimate of the knee
joint position compared to the ground truth is shown in or-
ange (OE).
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