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A B S T R A C T

The quantification of leaf area index (LAI) is essential for modeling the interaction between atmosphere and
biosphere. The airborne LiDAR has emerged as an effective tool for mapping plant area index (PAI) in a land-
scape consisting of both woody and leaf materials. However, the discrimination between woody and leaf ma-
terials and the estimation of effective LAI (eLAI) have, to date, rarely been studied at landscape scale. We applied
a voxel matching algorithm to estimate eLAI of deciduous forests using simulated and field LiDAR data under
leaf-on and leaf-off conditions. We classified LiDAR points as either a leaf or a woody hit on leaf-on LiDAR data
by matching the point with leaf-off data. We compared the eLAI result of our voxel matching algorithm against
the subtraction method, where the leaf-off effective woody area index (eWAI) is subtracted from the effective
leaf-on PAI (ePAI). Our results, which were validated against terrestrial LiDAR derived eLAI, showed that the
voxel matching method, with an optimal voxel size of 0.1 m, produced an unbiased estimation of terrestrial
LiDAR derived eLAI with an R2 of 0.70 and an RMSE of 0.41 (RRMSE: 20.1%). The subtraction method, however,
yielded an R2 of 0.62 and an RMSE of 1.02 (RRMSE: 50.1%) with a significant underestimation of 0.94.
Reassuringly, the same outcome was observed using a simulated dataset. In addition, we evaluated the per-
formance of 96 LiDAR metrics under leaf-on conditions for eLAI prediction using a statistical model. Based on the
importance scores derived from the random forest regression, nine of the 96 leaf-on LiDAR metrics were selected.
Cross-validation showed that eLAI could be predicted using these metrics under leaf-on conditions with an R2 of
0.73 and an RMSE of 0.27 (RRMSE: 17.4%). The voxel matching method yielded a slightly lower accuracy (R2:
0.70, RMSE:0.41, RRMSE: 20.1%) than the statistical model. We, therefore, suggest that the voxel matching
method offers a new opportunity for the estimating eLAI and other ecological applications that require the
classification between leaf and woody materials using airborne LiDAR data. It potentially allows transferability
to different sites and flight campaigns.

1. Introduction

Leaf area index (LAI) is typically defined as one-sided leaf area per
unit ground surface area (Chen and Black, 1992), and numerous direct
and indirect techniques have been developed for the rapid and regular
estimation of LAI (Neumann et al., 1989; Wilson, 1963). LAI is a key
canopy structural parameter that impacts on the exchange of gas, en-
ergy and mass between the biosphere and atmosphere (Gobron et al.,
1997). It determines ecosystem functioning (Bonan, 1995; Bonan, 2015;
Rautiainen, 2005) and drives many biological and physical processes,

such as photosynthesis, transpiration, light and rainfall interception as
well as the carbon cycle (Asrar et al., 1984; Cattanio, 2017; Chen and
Cihlar, 1996; Hardwick et al., 2015; Tian et al., 2015). Due to its im-
portant role in these processes, LAI has been selected as an essential
biodiversity variable (Pettorelli et al., 2016; Skidmore et al., 2015), and
has been widely used in ecological and climate models (Roy et al.,
2012; Xiao and McPherson, 2002).

Directly measuring LAI is the most accurate method of estimation,
but pragmatically limited to small areas as the field work is time con-
suming, tedious, and destructive to vegetation where leaf harvesting is
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employed (Jonckheere et al., 2004). In-situ indirect techniques using
optical instruments such as LI-COR LAI-2000, TRAC or digital hemi-
spherical photography (DHP) have been proposed to replace direct
measurement (Chen and Cihlar, 1995; Leblanc et al., 2002). Over the
years these optical instruments have proven useful for in-situ mea-
surement and validation (Weiss et al., 2004), but do not provide clear
separation between leaf and woody materials, since the radiometric
information is affected by light and shadow conditions within a forest
(Jonckheere et al., 2004). The derived LAI quoted in many studies is in
fact plant area index (PAI), consisting of both woody and leaf materials
(Luo et al., 2015; Tillack et al., 2014). To actually measure LAI instead
of PAI, a suitable alternative can be the use of LiDAR (discrete light
detection and ranging) data (Béland et al., 2014; Calders et al., 2018).
LiDAR data of a forest canopy contain three-dimensional (3D) in-
formation, and have been widely used to estimate various forest canopy
structural parameters (Farid et al., 2008; Hopkinson and Chasmer,
2009; Ma et al., 2017).

Terrestrial LiDAR also referred to as terrestrial laser scanning (TLS),
provides highly detailed structural canopy information thanks to its fine
angular resolution and close range (Zhao et al., 2011). Various methods
for obtaining LAI from terrestrial LiDAR data have been proposed and
proven accurate (Béland et al., 2014; Hancock et al., 2014; Hosoi and
Omasa, 2006). Consequently, it has been recognized as a good ground
validation technique for remote sensing (Hancock et al., 2017; Oshio
et al., 2015). In addition, the classification between leaf and woody
components using terrestrial LiDAR has also been well studied and good
classification accuracy has been achieved in recent years (Béland et al.,
2011; Ma et al., 2017; Zheng et al., 2016; Zhu et al., 2018). (Ma et al.,
2016b) developed a classification method to separate leaf and woody
components using terrestrial LiDAR data, obtaining an overall accuracy
of 93.1% for coniferous trees and 95.5% for broadleaf trees. An adap-
tive radius near-neighbor search approach was proposed by (Zhu et al.,
2018) for feature derivation to separate foliar and woody materials,
achieving an average overall accuracy of 84.4% for mixed forests on
variable slopes and with mixed understory cover.

Airborne LiDAR also known as airborne laser scanning (ALS), pro-
vides precise 3D coordinates of the object as well as backscatter in-
tensity for each measured point at large scales (Kashani et al., 2015).
Airborne LiDAR has been widely used for forest applications, especially
the evaluation of 3D forest structure (Bouvier et al., 2015; Pearse et al.,
2017; Sumnall et al., 2017). LAI, as one of the most important forest
structure variables, has been linked to the penetration ratio of laser
pulses using airborne LiDAR techniques. These approaches usually
consider the ratio of the number of returns below the canopy to the
total number of returns, and link this ratio to an estimate of the
transmittance or gap fraction of the canopy (Hopkinson et al., 2013;
Solberg et al., 2009). Subsequently, LAI can be estimated using the
Beer-Lambert Law that converts gap fraction to LAI (Chen, 1996;
Nilson, 1971). Due to the lower point density and bigger footprint of
airborne LiDAR data relative to terrestrial LiDAR data, the classification
between leaf and woody components used in terrestrial LiDAR data is
not applicable to airborne LiDAR data. Geometric features require very
high point densities to show the spatial pattern of a single leaf or a small
branch. Moreover, due to this relatively large footprint of airborne
LiDAR data, the radiometric features (e.g. intensity) are not easy to
interpret, since the returned energy from the canopy is often an inter-
action between the transmitted pulse and multiple targets. Conse-
quently, LAI estimated from airborne LiDAR data usually actually re-
presents effective PAI (ePAI), i.e. without the woody contribution
having been removed (Alonzo et al., 2015; Tang et al., 2014).

Some previous studies have used leaf-on and leaf-off airborne LiDAR
data for forest applications. The study of (Næsset, 2005) evaluated
LiDAR metrics derived from both leaf-on and leaf-off data for forest
canopy height measures. (Hill and Broughton, 2009) examined the
understory information using airborne LiDAR data acquired in both
leaf-on and leaf-off conditions. (Kim et al., 2009) tested leaf-on and

leaf-off LiDAR intensity for tree species classification and demonstrated
the potential of combining two datasets. (Parent and Volin, 2014) as-
sessed the potential of leaf-off airborne LiDAR data to model canopy
closure. However, to the best of our knowledge, no researcher has
evaluated the use of temporally consecutive leaf-on and leaf-off air-
borne LiDAR data to discriminate LAI and woody area index (WAI)
from PAI.

Although the joint use of leaf-on and leaf-off airborne LiDAR data
has not been applied for LAI estimation, theories and approaches have
been developed and evaluated for the estimation of LAI and WAI for
leaf-on and leaf-off terrestrial LiDAR data. (Béland et al., 2011) ex-
amined the differences of intensity between leaf and woody compo-
nents using leaf-on and leaf-off terrestrial LiDAR data, and found an
optimal threshold for the classification. (Li et al., 2016) directly sepa-
rated woody points in leaf-off data from leaf points in leaf-on data using
terrestrial LiDAR data. Recently, (Calders et al., 2018) estimated ef-
fective WAI (eWAI) in leaf-off conditions as well as ePAI in leaf-on
conditions, and obtained eLAI by subtracting eWAI from ePAI, in-
dicating a strong linear relationship (R2 = 0.87) between eLAI and
ePAI-eWAI using radiative transfer simulations. Another possible ap-
proach is to directly identify woody points in the leaf-on point cloud by
using the leaf-off point cloud, since, in theory, the location of these
points does not change. However, due to misalignment of these two
datasets and wind conditions, the woody points cannot be perfectly
matched. In this study we propose a voxel matching approach for the
two datasets, leaf-on and leaf-off, to directly identify leaf and woody
points. To eliminate confounding clumping effects, we focus on effec-
tive parameters (eLAI, ePAI, eWAI) for a direct comparison between
airborne LiDAR and terrestrial LiDAR.

Various airborne LiDAR metrics have been used to estimate eLAI
(Jensen et al., 2008; Pearse et al., 2017). Using LiDAR metrics to esti-
mate eLAI requires a statistical model to join the metrics with the field
measurements of eLAI. Here, we evaluate airborne LiDAR metrics for
the estimation of eLAI with a statistical model, using terrestrial LiDAR
data as field measurements. This results in a good classification be-
tween leaf and woody materials (Li et al., 2018; Ma et al., 2016a).

Our research makes use of airborne LiDAR data acquired in leaf-on
and leaf-off conditions for retrieving eLAI. It is worth noting that since
leaf-off data are required for calculating eLAI, our study focuses on
deciduous forests. We also validate our results using simulated airborne
LiDAR point cloud of 3D forest generated by Arbaro (Weber and Penn,
1995) and HELIOS software (Bechtold and Höfle, 2016). We are thus
able to evaluate and compare our methods with ground truth eLAI. The
aims of our study are to (1) compare the voxel matching method with
the subtraction method for estimating effective leaf area index, (2)
evaluate the influence of the voxel size used in the voxel matching
method when trying to separate woody and leaf points, and (3) assess
various leaf-on LiDAR metrics for the estimation of eLAI.

2. Study area and data collection

2.1. Study area

The study area is located in Bavarian Forest National Park (BFNP) in
southeastern Germany (Fig. 1). It covers an area of 24,250 ha in size.
Being a mountainous area, the elevation ranges from 600 to 1453 m.
The major tree species are Norway spruce (Picea abies) (67%) and
European beech (Fagus sylvatica) (24.5%), with some white fir (Abies
alba) (2.6%), sycamore maples (Acer psudoplatanus) (1.2%) and
mountain ash (Sorbus aucuparia) (3.1%) (Heurich et al., 2010). Data
were collected for 36 circular European beech plots of 50 m radius at
various elevations. These plots cover young, medium and mature stands
and a wide range of stand structures (Liu et al., 2019). The number of
trees per plot ranges from 14 to 110 and the ePAI ranges from 0.88 to
4.44.
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2.2. Terrestrial LiDAR data collection

Ground data were collected in leaf-on conditions in July 2017, with
a Riegl VZ-400, which employs a short-wave infrared (1550 nm) laser.
The system has a reported range accuracy of 5 mm, a beam divergence
of 0.3 mrad and a maximum range of 600 m. An angular resolution of
0.04° was used with a long-range mode. A center and three triangular
scan positions per plot were used to reduce occlusion and increase point
density. To register these different scans, 12 cylindrical reflectance
targets were placed as control points. Within each plot, a subset of the
point cloud with a radius of 50 m was delineated.

2.3. Airborne LiDAR data collection

An airborne LiDAR flight campaign was carried out under both leaf-
off and leaf-on conditions, in March and August 2016, respectively. The
sensor used was a Riegl LMS-Q 680i, employing a laser with a wave-
length of 1550 nm, and a beam divergence of 0.5 mrad. The flying
altitude was approximately 300 m above ground, and the data had an
average point density of 70 points per m2.

2.4. LiDAR data simulation

In order to have a ‘true’ estimate of eLAI to compare our proposed
method to, we created a 3D virtual forest of trees with varying leaf
density using Arbaro software (Weber and Penn, 1995) (Fig. 2). To

model the scene of a leaf-on plot, a random number of trees with
random density of leaves was selected within a radius of 50 m (Fig. 3).
The size of different trees was multiplied by a random number between
0.5 and 1.5. Corresponding leaf-off plots with the same number and
with the trees in the same location were generated by only keeping the
woody skeletons. The true leaf area index was obtained based on the
area of all leaves in each plot. The point cloud data of the plots were
simulated using the laser scanning simulation framework HELIOS. The
configuration of the airborne LiDAR was set to match our real data
(Section 2.2).

3. Methods

Two methods based on gap fraction theory, namely voxel matching
and leaf-on versus leaf-off subtraction, were assessed using both field
airborne LiDAR data and simulated airborne LiDAR data. An empirical
model using various leaf-on field airborne LiDAR metrics was also
evaluated. The results were compared with terrestrial LiDAR derived
eLAI. The workflow is shown in Fig. 4.

3.1. Estimation of gap fraction

To calculate the gap fraction for both the terrestrial and airborne
LiDAR data, the point clouds needed to be classified into ground and
non-ground returns. The Lasground module in Lastools (Lastools, ra-
pidlasso GmbH, Germany, 2017) was used for the classification. The

Fig. 1. The distribution of 36 sample plots in the Bavarian Forest National Park.
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height of above-ground points was then calculated as the difference
between the return and ground elevation. A “weight all return” method
(Armston et al., 2013; Calders et al., 2018), which considers all returns
in each pulse, was used (Eq. (1)).

= −
∑

P θ
NR

N
( ) 1

1/
total (1)

where P(θ) is the gap fraction at the viewing zenith angle θ, NR is the
number of returns detected for each pulse from the canopy, and Ntotal is
the total number of outgoing laser pulses. 1/NR is a weighted sum of all
returns from the canopy. A height threshold of 1.3 m was used to se-
parate canopy and non-canopy returns. This method is hardly sensitive
to changing acquisition height and produces near unbiased estimates of
gap fraction (Armston et al., 2013).

3.2. ePAI calculation

We calculated eLAI based on the identified leaf points, using well
established gap fraction theory (Korhonen et al., 2011; Moorthy et al.,
2008). To obtain ePAI from the point cloud, the gap fraction needs to be
converted using gap fraction theory based on the Beer-Lambert law
(Calders et al., 2018; Nilson, 1971; Solberg et al., 2009; Vincent et al.,

2017):

= − ∙ePAI P θ θ
G θ

ln( ( )) cos
( ) (2)

where G(θ) is the mean projection of a unit leaf area on a plane per-
pendicular to the direction of the laser beam (Hosoi and Omasa, 2006).
The ePAI does not account for foliage clumping index, which quantifies
the effect of non-random spatial distribution of foliage (Chen, 1996).

The zenith angle of laser pulses was known for both airborne LiDAR
and terrestrial LiDAR. The G(θ) is approximated based on an ellipsoidal
function of the zenith angle and the leaf angle distribution (Campbell,
1986, 1990; Li et al., 2017).

= +
+ + −G θ χ θ θ

χ χ
( ) ( (tan ) ) cos

1.774( 1.182)

2 2 0.5

0.733 (3)

where χ is a shape parameter for the leaf angle distribution, which
stands for the ratio of vertical to horizontal projections of canopy ele-
ments. A χ value of 2 (close to planofile) (Pisek et al., 2013) was used
for the estimation of ePAI, eLAI and eWAI for comparison.

3.3. Retrieval of eLAI and eWAI from terrestrial LiDAR

Previous studies have demonstrated the feasibility and reliability of
classifying woody and leaf points using terrestrial LiDAR data (Ma
et al., 2016b; Zheng et al., 2016; Zhu et al., 2018). In this study, the
method by (Zhu et al., 2018) was adopted to separate leaf and woody
components. Both geometric and radiometric features were calculated
from terrestrial LiDAR data.

The radiometric features are mainly composed of intensity features.
The intensity of terrestrial LiDAR data was calibrated using a white, flat
target placed at the same distance from the sensor in each plot
(Pfennigbauer and Ullrich, 2010), thus removing the range-dependent
effect. Geometric features, consisting of height related features, in-
clination angle and local dimensionality features, represent the dis-
tribution of local points (Table 1). Eigenvalues were used to calculate
the local dimensionality properties that describe how the point cloud
appears at a given location. In order to obtain the eigenvalues, a local
covariance matrix of each point was calculated based on the neigh-
boring points within a radius of a given point. The eigenvalues were
sorted in a descending order (λ1 > λ2 > λ3). The feature values for
these three categories can be expressed as λ1 ≫ λ2 ≈ λ3 for a linear
feature, λ1 ≈ λ2 ≫ λ3 for a two-dimensional, flat feature and
λ1 ≈ λ2 ≈ λ3 for a 3D random feature (Zheng et al., 2016). Based on
the eigenvalues, the local dimensionality features were calculated as
follows:

= − = − =α λ λ λ α λ λ λ α λ λ( )/ , ( )/ , /D D D1 1 2 1 2 2 3 1 3 3 1 (4)

where α1D, α2D and α3D represent the likelihood that the shape of local
points around the given point is linear, planar and random,

Fig. 2. A complete scene of a forest plot. (a) leaf-off. (b) leaf-on.

Fig. 3. Random locations of individual trees generated within a plot for data
simulation.
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respectively. The zenith angle and mean zenith angle of local points
were also included in the classification, since leaves had different zenith
angles from branches. eLAI and eWAI were calculated following the
classification using the gap fraction method.

A random forest classification was applied, as this algorithm is not
sensitive to highly correlated features and is both fast and insensitive to
overfitting (Belgiu and Drăguţ, 2016). To train the random forest
classifier, training samples were manually selected from the point cloud
and were identified as either leaf or woody points (Zhu et al., 2018).
The terrestrial LiDAR derived features (Table 1) of the training samples
were used as input in the random forest classifier. The number of trees
was set to 100 (Guan et al., 2013). Subsequently, the model was applied
to the whole point cloud.

3.4. Retrieval of eLAI and eWAI from leaf-on and leaf-off airborne LiDAR

Two methods were tested and compared in this study in order to
calculate eLAI from airborne LiDAR data in leaf-on and leaf-off condi-
tions: (1) a direct subtraction of eWAI from leaf-off data, (2) a voxel
matching approach to separate woody points from leaf points.

3.4.1. ePAI – eWAI (method 1(M1))
The ePAI and eWAI were calculated for leaf-on and leaf-off data,

respectively, based on Eqs. (1), (2) and (3). Subsequently, eLAI was
obtained by subtracting eWAI from ePAI.

Feature 
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and wood
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Woody 
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Fig. 4. Work flow diagram for eLAI estimation.

Table 1
List of the features extracted for classification from terrestrial LiDAR data.

Type Feature Definition Reference

Radiometric features I Backscatter intensity Pfennigbauer and Ullrich (2010)
Imean Mean intensity of the local points Koenig et al. (2015)
Icov Intensity coefficient of variation of the local points Koenig et al. (2015)

Geometric features α1D The likelihood that the shape of the local points is linear (1D) Demantke et al. (2011)
α2D The likelihood that the shape of the local points is planar (2D) Demantke et al. (2011)
α3D The likelihood that the shape of the local points is random (3D) Demantke et al. (2011)
StdZ Standard deviation of the height values Koenig et al. (2015)
Zdiff Range of maximum and minimum height value Koenig et al. (2015)
ZA Zenith angle of local points
ZAmean Mean zenith angle of local points
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3.4.2. Voxel matching (method 2(M2))
A voxel is defined as a cubic element in a 3D array. All LiDAR points

from leaf-on and leaf-off data were converted into voxel coordinates,
since exact matching of the woody points in these two datasets could
not be achieved due to wind effects and system accuracy. The vox-
elization allows voxels that represent woody points to intersect. The
voxelization was executed based on (Hosoi and Omasa, 2006):

= ⎛
⎝

− ⎞
⎠

i Int X X
iΔ

min

(5)

⎜ ⎟= ⎛
⎝

− ⎞
⎠

j Int Y Y
jΔ

min

(6)

= ⎛
⎝

− ⎞
⎠

k Int Z Z
kΔ

min

(7)

where i, j, and k are the voxel coordinates in the 3D array, Int means to
round off at one decimal place to the nearest integer, X, Y, and Z stand
for the original point coordinates of the LiDAR data, Xmin, Ymin, and Zmin

are the minimum values of X, Y, and Z, respectively, and Δi, Δj, and Δk
denote the voxel size. In this study, voxel sizes from 0.05 m to 0.5 m,
applying steps of 0.05 m, were assessed for the classification. A voxel
size of 0.1 m represents a cube size of 0.1 × 0.1 × 0.1 m. The voxels
containing LiDAR hits corresponding with leaf-on as well as leaf-off
datasets were identified as woody points, while the others were re-
cognized as leaf points. Then leaf canopy cover (1-gap fraction) was
calculated based on leaf points, while the woody canopy cover was
calculated based on the matched woody points. Finally, eLAI and eWAI
were calculated using gap fraction theory (Eq. (2)).

3.5. Evaluation of eWAI using voxel matching

We evaluated voxel matching by quantifying the matched and un-
matched eWAI which constitute the eWAI derived from airborne leaf-
off LiDAR data. The matched eWAI observed by leaf-on LiDAR data was
derived from the woody gap fraction based on the intersecting woody
points in the leaf-on data using the voxel matching method. The un-
matched eWAI was obtained by subtracting the matched eWAI from the
total eWAI obtained from the leaf-off data. A Pearson's correlation test
was used to evaluate the relationship between the proportion of un-
matched eWAI relative to the total eWAI and ePAI.

3.6. Retrieval of eLAI based on an empirical method using leaf-on airborne
LiDAR only

Based on literature review, a list of common leaf-on metrics
(Table 2) for the estimation of eLAI was assembled, including height
metrics (Pearse et al., 2017; Shi et al., 2018), ratio metrics (Næsset and
Bjerknes, 2001) and radiometric metrics (Luo et al., 2018; Vauhkonen
et al., 2010). These metrics were derived using LiDAR processing soft-
ware Fusion (McGaughey, 2009). In addition, 4 LiDAR penetration
metrics commonly used for estimating canopy cover were added
(Armston et al., 2013; Korhonen et al., 2011; Lovell et al., 2011; Solberg
et al., 2009) (Table 2).

A random forest regression was used to estimate eLAI. Random
forest regression offers sophisticated measures of variable importance
beyond rank and selection frequency (Pearse et al., 2017). It is a non-
parametric statistical method that improves the estimation accuracy
and reduces overfitting (Gleason and Im, 2012). Random forest re-
gression has been successfully applied to estimating eLAI based on
LiDAR metrics (Luo et al., 2018; Pearse et al., 2017). Its strength is
discovering nonlinear relationships in high dimensional data where
independent variables show high levels of correlation (Criminisi et al.,
2012). To select important features and to avoid overfitting, ‘variable
importance’ was adopted, following training of the random forest al-
gorithm. The most important predictors with an importance score

larger than 0.01 were used to re-fit and construct the random forest
model (Cutler et al. 2012). The number of regression trees in this study
was set at 1500 instead of the default quantity of 500 for more accurate
results. The random forest model was subsequently applied to predict
the eLAI with the test dataset.

For an unbiased assessment of a model, a held-out test to create a
validation dataset independent of the calibration dataset is re-
commended. However, insufficient field plots were available to provide
an independent validation dataset. Therefore, a leave-one-out cross-
validation method, as used to validate forest attributes with airborne
LiDAR data, was applied to evaluate the random forest model (Bouvier
et al., 2015; Pearse et al., 2017; Picard and Cook 1984; Véga et al.
2016).

3.7. Statistical analysis

The results were evaluated based on the coefficient of determination
(R2), the root mean square error (RMSE), the relative RMSE (RRMSE)
and the bias. A significance test was also carried out.

= −
∑ − ′
∑ −

R
y y
y y

1
( )
( )

i i

i

2
2

2 (8)

=
∑ − ′y y

n
RMSE

( )i i
2

(9)

=
∑ − ′y y

n
Bias

( )i i
(10)

= RMSE
y

RRMSE
(11)

where yi and yi′ are the measured and estimated values for sample i,
respectively, and yi and n denote the mean and the number of samples,
respectively.

4. Results

4.1. Estimation of effective leaf area index when using real field data

Fig. 5a shows that PAI values derived from real leaf-on data were
significantly correlated with observed values derived from terrestrial
LiDAR with a low RMSE and bias (R2 = 0.75, p < .05). Based on the
subtraction method, eLAI was considerably underestimated using the
real data (Fig. 5b).

The effect of voxel size on the estimation of eLAI using the voxel
matching method is summarized in Fig. 6. A voxel size of 0.1 m
achieved the highest value of R2 for the estimation of eLAI, while both
the RMSE value and the absolute value of bias were minimized at this
voxel size. The voxel size of 0.1 m was consequently chosen for further
analysis.

Subsequently eWAI and eLAI estimated using a voxel size of 0.10 m
were validated against those derived from terrestrial LiDAR data. Both
estimates showed significant correlation and low RMSE and bias values.
Compared to the estimation of eLAI based on subtraction, the errors,
especially the underestimation of eLAI, decreased significantly (Fig. 7).

4.2. Comparison between the subtraction and voxel matching method

The comparison of eLAI estimation between subtraction and voxel
matching can be seen in Fig. 8. A strong correlation emerged between
these two methods for eLAI estimation. However, the estimates of eLAI
based on the subtraction method were on average 0.96 lower than those
based on the voxel matching method.

X. Zhu, et al. Remote Sensing of Environment 240 (2020) 111696

6



4.3. Estimation of effective leaf area index based on simulation

The simulation of point clouds for different LAI values is shown in
Fig. 9. Both leaf-off and leaf-on plots were simulated so the methods for
extracting LAI and WAI could be tested and compared.

We conducted an accuracy assessment for the classification between
leaf and woody points using the voxel matching method (voxel size:
0.1 m) on the simulation data. Each point in the simulated data was

labeled as leaf or woody for validation. Fig. 10 presents the overall
classification accuracy, as well as precision and recall for the leaf
points. Classification using the voxel matching method achieved an
average overall accuracy of 0.83. The average recall of leaf points was
0.99, indicating that the omission error of leaf points was very low. The
precision of leaf points (average 0.82), on the other hand, showed that a
proportion of the woody points was misclassified as leaf points, which
could be caused by mismatching between the small voxels. The lowest

Table 2
List of leaf-on airborne LiDAR metrics for the estimation of eLAI.

Metrics Definition

Penetration ratio metrics
FCI (First echo Cover Index) ∑ +

∑ +

Singlecanopy Firstcanopy
Singleall Firstall

DI (weighted Discrete Index) − ∑1 NR
Ntotal

1 /
(NR is the number of returns, and Ntotal is the total number of outgoing laser pulses)

LCI (Last echo Cover Index) ∑ +

∑ +

Singlecanopy Lastcanopy
Singleall Lastall

SCI (Solberg Cover Index)
−

∑ + ∑ + ∑

∑ + ∑ + ∑
1

Singleground Firstground Lastground
Singleall Firstall Lastall

0.5( )
0.5( )

Total return count Total number of returns
Return 1–9 count Count of returns (1–9)

Height metrics
Elev minimum Minimum
Elev maximum Maximum
Elev mean Mean
Elev mode Mode elevation
Elev stddev Standard deviation
Elev variance Variance
Elev CV Coefficient of variation
Elev IQ Interquartile distance
Elev skewness Skewness
Elev kurtosis Kurtosis
Elev AAD Average Absolute Deviation
Elev MAD median Median of the absolute deviations from the overall median
Elev MAD mode Median of the absolute deviations from the overall mode
Elev L 1–4 L-moments 1–4
Elev L CV L-moment Coefficient of variation
Elev L skewness L-moment skewness
Elev L kurtosis L-moment kurtosis
Elev P01, P05, P10, P20, P25, P30, P40, P50, P60, P70, P75,

P80, P90, P95, P99
Percentile values (1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th
percentiles)

Canopy relief ratio Canopy relief ratio ((mean - min) / (max – min))
Elev SQRT mean SQ Generalized means for the 2nd and 3rd power (Elev quadratic mean)
Elev CURT mean CUBE Generalized means for the 2nd and 3rd power (Elev cubic mean)

Intensity metrics
Int minimum Minimum
Int Maximum Maximum
Int mean Mean
Int mode Mode elevation
Int stddev Standard deviation
Int variance Variance
Int CV Coefficient of variation
Int IQ Interquartile distance
Int skewness Skewness
Int kurtosis Kurtosis
Int AAD Average Absolute Deviation
Int L 1–4 L-moments 1–4
Int L CV L-moment Coefficient of variation
Int L skewness L-moment skewness
Int L kurtosis L-moment kurtosis
Int P01, P05, P10, P20, P25, P30, P40, P50, P60, P70, P75,

P80, P90, P95, P99
Percentile values (1st, 5th, 10th, 20th, 25th, 30th, 40th, 50th, 60th, 70th, 75th, 80th, 90th, 95th, 99th
percentiles)

Percentage first returns above mean Percentage of first returns above the mean height
Percentage first returns above mode Percentage of first returns above the mode height
Percentage all returns above mean Percentage of all returns above the mean height
Percentage all returns above mode Percentage of all returns above the mode height
(All returns above mean)/(Total first returns) *100 Number of returns above the mean height/total first returns ∗ 100
(All returns above mode)/(Total first returns) *100 Number of returns above the mode height/total first returns ∗ 100
First returns above mean Number of first returns above the mean height
First returns above mode Number of first returns above the mode height
All returns above mean∗ Number of all returns above the mean height
All returns above mode Number of all returns above the mode height
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accuracy observed for a plot, combined with a precision of 0.60, was
due to the low LAI value of 0.01. Few points were sampled in this plot.

The results for the estimation of eLAI in 30 plots using the two
different methods tested in this study are presented in Fig. 11. The bias
of −0.57 (Fig. 11a) shows that the eLAI calculated by subtracting leaf-
off eWAI from leaf-on ePAI significantly underestimated the observed
eLAI, although the correlation with the observed eLAI was strong
(R2 = 0.93). The voxel matching method generated a much lower bias
as well as a higher value of R2. It is noteworthy that for plots with
higher eLAI values, the underestimation of the observed eLAI based on
the subtraction method was higher. There was clearly a significant re-
lationship between the underestimation of eLAI using the subtracting
method and the eLAI. This indicates that plot density had a strong
impact on eLAI estimation using the subtraction method.

4.4. Evaluation of eWAI using voxel matching

The estimations of matched eWAI and unmatched eWAI for each
plot are shown in Fig. 12. The Pearson's test showed that the proportion
of unmatched eWAI to total eWAI was significantly correlated with
eLAI estimated from airborne LiDAR with a p-value < .01 (Fig. 13).
Visually, it can also be seen that many trunk voxels (in black) from the
leaf-off data were not matched in the leaf-on data (Fig. 14).

Fig. 5. Validation of ePAI and eLAI (using subtraction method) using only leaf-on data validated by terrestrial LiDAR. (a) Validation of ePAI, (b) Validation of eLAI
using subtraction method.

Fig. 6. The influence of voxel size on the estimation accuracy of eLAI using voxel matching method. (a) R2 value, (b) RMSE value, (c) bias value.

Fig. 7. Validation of eLAI estimation based on voxel matching using real data.
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4.5. Linking leaf-on airborne LiDAR metrics with effective leaf area index

Importance scores derived from random forest regression are pre-
sented in Fig. 15, with variables scoring above 0.01 depicted. The top
five most important LiDAR metrics were FCI, SCI, DI, LCI and Elev P01,
which are height and penetration ratio metrics.

The validation for eLAI was established based on the most important
leaf-on LiDAR metrics with an importance score larger than 0.01
(Fig. 15) using random forest regression. The results show that eLAI
could be estimated with an accuracy of R2 = 0.73 and RMSE = 0.27
(Fig. 16).

5. Discussion

We found significant correlation, with an R2 value of 0.70, between
airborne LiDAR derived effective leaf area index (eLAI) and terrestrial
LiDAR derived eLAI using the voxel matching method. Voxel matching
produced a much lower RMSE of 0.41 (RRMSE: 20.1%) than the sub-
traction method (RMSE: 1.02, RRMSE: 50.1%). The subtraction method
significantly underestimated eLAI by 0.94 on average, compared to an
underestimation of 0.02 using the voxel matching method. The same
outcome was largely observed when using the simulated dataset. The
results support the use of the voxel matching method for the estimation
of eLAI in deciduous forests using leaf-on and leaf-off airborne LiDAR
data.

Subtracting the effective woody area index (eWAI) obtained in leaf-
off conditions from the effective plant area index (ePAI) in the leaf-on
state can cause significant underestimation of eLAI. The under-
estimation is partially caused by the fact that a large proportion of
woody materials present in the leaf-off scan were occluded by leaves in
the leaf-on scan. As the canopy becomes denser, the underestimation
increases, because more woody materials are occluded by the addi-
tional leaves. Another possible reason is that LiDAR signal might be
saturated in dense canopies. In dense forests, canopy cover of only
woody components using leaf-off data can be very high, as most of the
returns are intercepted by trunks and branches. When leaves are pre-
sent, saturation occurs where canopy cover does not increase with plant
area anymore. Therefore, subtracting eWAI in leaf-off conditions from
ePAI in the leaf-on state could cause erroneous calculation of eLAI.

Comparison between the two methods, subtraction and voxel
matching, further validated our results (Fig. 8). The strong correlation
of results when using these two completely different methods indicates
the robustness of the voxel matching method. The underestimation of
eLAI using the subtraction method appears to be amplified for higher
LAI values. We demonstrated the influence of LAI on the under-
estimation of eLAI using the subtraction method (see Fig. 11). Our
findings, therefore, suggest that voxel matching should be used to es-
timate eLAI in deciduous forests using leaf-on and leaf-off data.

An appropriate voxel size needed to be determined for accurate eLAI

Fig. 8. Comparison of eLAI estimation between subtraction and voxel
matching.

LAI = 0.30 LAI = 2.25 LAI = 5.12 

a 

b 

Fig. 9. Simulations of airborne LiDAR point cloud using Helios software. (a) leaf-off. (b) leaf-on.
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estimation. We evaluated the effect of voxel size ranging from 0.05 m to
0.5 m, using steps of 0.05 m, bearing the distance of two consecutive
points (about 0.15 m) in mind. We demonstrate that, as the voxel size
increased, R2 of the eLAI estimation decreased. A larger voxel would
result in more voxels matching between leaf-on and leaf-off scans. As a
consequence, a larger proportion of leaf hits would be identified as
woody hits leading to an underestimation of eLAI. On the other hand,
with a small voxel, some woody points might not be identified due to
misalignment of the two scans, causing an overestimation of eLAI. Our
results show that RMSE values of eLAI appear to be the lowest at a voxel
size of 0.1 m. This voxel size is large enough for most woody hits to
match up despite misalignment due to precision and wind, and small
enough to exclude mixed voxels and leaf hits in the voxel matching.

The evaluation of eWAI in §4.4 shows that a large proportion of
woody points were not matched between leaf-off and leaf-on scans. This
is mainly attributed to the occlusion of woody components by leaves, so
that these points were not seen in the leaf-on data. Other possible ex-
planations could be the misalignment which may occur between the
leaf-on and leaf-off scans when the spatial accuracy of the LiDAR data is
not high enough, or strong wind is present during the flight campaign,

forms the main disadvantage of the voxel matching method. Since the
leaf-on and leaf-off scans were acquired in the same year, the influence
of tree growth is expected to have been negligible. Another important
factor that needs to be taken into account is the point density. In theory,
to match the woody points in leaf-on and leaf-off scans, the point
density of the leaf-off scan should be equal or higher than that of the
leaf-on scan, so that most woody points in the leaf-on scan can be
identified and deducted in the calculation of eLAI. The impact of point
density in leaf-on and leaf-off scans will need to be further evaluated.

The importance score generated by the random forest regression
showed that the most important metrics to estimate eLAI are penetra-
tion ratio metrics and height metrics (Fig. 15). Ratio metrics such as
FCI, SCI, DI and LCI have been frequently used to estimate eLAI
(Armston et al., 2013; Hopkinson and Chasmer, 2009; Solberg et al.,
2009). In this study, the first three metrics (FCI, SCI and DI) are highly
correlated with an average R2 of 0.99. These ratio metrics all provide a
measure of gap fraction through ratios of pulse penetration that can be
directly linked to eLAI. Height metrics had a much lower importance
score, indicating that penetration metrics are more important than
height metrics for the estimation of eLAI. This is in agreement with the

Fig. 10. Assessment of classification accuracy of leaf points (blue line: overall accuracy, red line: precision of leaf points, green line: recall of leaf points). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. Validation of the estimation of LAI based on simulated data for 30 simulated plots using different methods: (a) ePAI – eWAI (M1), (b) Voxel matching (M2).
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study by (Pearse et al., 2017) who also found that penetration metrics
contributed more to eLAI estimation.

With the statistical method, an R2 of 0.73 and an RMSE of 0.27

(RRMSE: 13.3%) were achieved, in spite of only using a leaf-on scan. It
is hard to compare our results with previous studies, as obtaining eLAI
through terrestrial LiDAR classification for validation has not pre-
viously been attempted (Ma et al., 2016a, 2017). Most frequently, field
measurement of LAI has been executed with optical instruments, which
do not provide good separation between woody and leaf materials.
While a clear comparison of accuracy may not be feasible, previous
studies did indicate that statistical models provided higher accuracy
than physically based models (Pearse et al., 2017). However, with
statistical models being site and flight campaign dependent, accuracy
could vary for different sites even within one study (Jensen et al.,
2008). This poor transferability between sites and flight campaigns
forms the main disadvantage of statistical models (Armston et al., 2013;
Pearse et al., 2017). Training and calibration of a new model are needed
every time the tree species, the canopy structure, the LiDAR sensor or
the flight parameters change. Our voxel matching method yielded an R2

of 0.70 and an RMSE of 0.41 (RRMSE: 20.1%), which was close in
accuracy to that obtained using the statistical model. It is worth men-
tioning that the training and test datasets were the same (leave-one-
out). On the other hand, the 36 plots were all used as test dataset for the
voxel matching method. Potentially, the voxel matching method could
be directly applied to airborne LiDAR data of another study area. The
penetration ratio used in this study to estimate gap fraction (Armston
et al., 2013) and the conversion from gap fraction to eLAI have been
proved effective in different study areas with different sensors (Armston
et al., 2013; Calders et al., 2018; Lovell et al., 2011). However, the
matching between leaf-on and leaf-off data requires relatively high

Fig. 12. Matched eWAI and unmatched eWAI in leaf-on data (orange bar: included eWAI, blue bar: occluded eWAI). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)

Fig. 13. Pearson's correlation test between ePAI derived from airborne LiDAR
and the percentage of unmatched eWAI.

Fig. 14. Voxelization of leaf-on and leaf-off data. (a) leaf-on voxels. (b) leaf-on and unmatched leaf-off voxels (green voxels: leaf-on voxels, black voxels: unmatched
voxels). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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point density. The minimum point density for the voxel matching
method to work is yet to be addressed. The relationship between the
voxel size and point density needs be modeled using various point
densities. So when applying the method to other studies, the voxel size
could be predetermined based on the model. Future work will be fo-
cused on the dependency of the voxel size on point density.

Although the voxel matching method provided slightly lower ac-
curacy than the statistical method, the voxel matching method is not
limited to the estimation of eLAI. It provides a new way to classify leaf
and woody materials using airborne LiDAR data. The estimation of
other leaf properties such as biochemical parameters that requires the
separation of leaf materials from wood materials can benefit from the
voxel matching method. It would also open up other ecological appli-
cations, especially those to do with radiation transfer, gas exchange and
net primary production partitioning of different materials (Vicari et al.,
2019).

However, the joint use of leaf-on and leaf-off data does limit the
application of the proposed voxel matching approach to deciduous
forests. Deciduous forests are of immense importance for biodiversity
(Norden et al., 2018), as well as for providing a wide variety of eco-
system services, such as carbon storage, water purification and food

provision (Nilsson, 2016). The accurate estimation of eLAI can further
improve the evaluation of the relationship between eLAI and biological
and physical processes. Though the leaf-on and leaf-off images collected
by the Bavarian Forest National Park were not designed to map LAI, but
rather for many other applications, such as tree phenology studies, the
estimation of forest structural parameters, DEM extraction, understory
assessment and tree species classification (Hill and Broughton, 2009;
Kim et al., 2009; Næsset, 2005; Parent and Volin, 2014; White et al.,
2015), it is of interest to the Park authority that the LiDAR imagery can
be used to accurately estimate LAI. The method proposed here can well
be applied in future studies using UAV LiDAR, as it is cost efficient and
flexible for multi-temporal observation. With the point density being
much higher, the method proposed in this study is expected to lead to a
higher accuracy.

6. Conclusions

We introduced a new voxel matching method to classify leaf and
woody points using leaf-off and leaf-on airborne LiDAR data. Our re-
sults demonstrate the applicability of this method in temperate decid-
uous forests for the estimation of eLAI. Another method based on gap
fraction theory, the subtraction method, shows close correlation with
the voxel matching method, but significantly underestimates eLAI by
subtracting the occluded woody materials in leaf-off data. Empirical
approaches benefit from the simplicity of their methods and the fact
that only leaf-on data are required. However, they suffer from the ne-
cessity of re-calibration every time the tree species, canopy structure
and LiDAR sensor change. The voxel matching method offers the po-
tential to estimate eLAI with greater transferability without the need for
re-calibration. It is worth noting that the voxel matching method is
dependent on the point density. High point density would render the
matching between leaf-off and leaf-on scans possible. In particular, the
point density of the leaf-off scan should be equal or higher than that of
the leaf-on scan. The minimum point density for voxel matching to be
applicable needs to be quantified. The present research, especially the
classification, is validated primarily with simulated data. Future work
would also benefit from the inclusion of ‘ground truth’ classification
data of leaf and woody materials.

CRediT authorship contribution statement

Xi Zhu: Conceptualization, Methodology, Software, Validation,
Formal analysis, Writing - original draft. Jing Liu: Methodology,
Investigation, Writing - review & editing. Andrew K. Skidmore:
Resources, Writing - review & editing, Supervision, Funding acquisi-
tion. Joe Premier: Investigation, Writing - review & editing. Marco

Fig. 15. Importance scores of leaf-on LiDAR metrics to estimate eLAI using Random Forest regression (only variables with an importance score higher than 0.01 are
shown).

Fig. 16. Validation using terrestrial LiDAR derived eLAI (observed eLAI) for the
estimation of eLAI using important leaf-on LiDAR metrics based on random
forests regression.

X. Zhu, et al. Remote Sensing of Environment 240 (2020) 111696

12



Heurich: Investigation, Writing - review & editing, Project adminis-
tration.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

This research is funded by the Natural Resources Department, ITC,
University of Twente. We thank the “Data Pool Forestry” data-sharing
initiative of the Bavarian Forest National Park. This project has received
funding from the European Research Council (ERC) under the European
Union's Horizon 2020 research and innovation programme (grant
agreement number 834709).

References

Alonzo, M., Bookhagen, B., McFadden, J.P., Sun, A., Roberts, D.A., 2015. Mapping urban
forest leaf area index with airborne lidar using penetration metrics and allometry.
Remote Sens. Environ. 162, 141–153.

Armston, J., Disney, M., Lewis, P., Scarth, P., Phinn, S., Lucas, R., Bunting, P., Goodwin,
N., 2013. Direct retrieval of canopy gap probability using airborne waveform lidar.
Remote Sens. Environ. 134, 24–38.

Asrar, G., Fuchs, M., Kanemasu, E.T., Hatfield, J.L., 1984. Estimating absorbed photo-
synthetic radiation and leaf area index from spectral reflectance in Wheat1. Agron. J.
76, 300–306.

Bechtold, S., Höfle, B., 2016. Helios: a multi-purpose LiDAR simulation framework for
research, planning and training of laser scanning operations with airborne, ground-
based mobile and stationary platforms. ISPRS Ann. Photogramm. Remote Sens.
Spatial Inf. Sci. III-3, 161–168.

Béland, M., Widlowski, J.-L., Fournier, R.A., Côté, J.-F., Verstraete, M.M., 2011.
Estimating leaf area distribution in savanna trees from terrestrial LiDAR measure-
ments. Agric. For. Meteorol. 151, 1252–1266.

Béland, M., Baldocchi, D.D., Widlowski, J.-L., Fournier, R.A., Verstraete, M.M., 2014. On
seeing the wood from the leaves and the role of voxel size in determining leaf area
distribution of forests with terrestrial LiDAR. Agric. For. Meteorol. 184, 82–97.

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: a review of applications
and future directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31.

Bonan, G., 1995. Land-atmosphere interactions for climate system models: coupling
biophysical, biogeochemical, and ecosystem dynamical processes. Remote Sens.
Environ. 51, 57–73.

Bonan, G., 2015. Ecological Climatology: Concepts and Applications. Cambridge
University Press.

Bouvier, M., Durrieu, S., Fournier, R.A., Renaud, J.-P., 2015. Generalizing predictive
models of forest inventory attributes using an area-based approach with airborne
LiDAR data. Remote Sens. Environ. 156, 322–334.

Calders, K., Origo, N., Disney, M., Nightingale, J., Woodgate, W., Armston, J., Lewis, P.,
2018. Variability and bias in active and passive ground-based measurements of ef-
fective plant, wood and leaf area index. Agric. For. Meteorol. 252, 231–240.

Campbell, G.S., 1986. Extinction coefficients for radiation in plant canopies calculated
using an ellipsoidal inclination angle distribution. Agric. For. Meteorol. 36, 317–321.

Campbell, G.S., 1990. Derivation of an angle density function for canopies with ellip-
soidal leaf angle distributions. Agric. For. Meteorol. 49, 173–176.

Cattanio, J.H., 2017. Leaf area index and root biomass variation at different secondary
forest ages in the eastern Amazon. For. Ecol. Manag. 400, 1–11.

Chen, J.M., 1996. Optically-based methods for measuring seasonal variation of leaf area
index in boreal conifer stands. Agric. For. Meteorol. 80, 135–163.

Chen, J.M., Black, T., 1992. Defining leaf area index for non-flat leaves. Plant Cell
Environ. 15, 421–429.

Chen, J.M., Cihlar, J., 1995. Quantifying the effect of canopy architecture on optical
measurements of leaf area index using two gap size analysis methods. IEEE Trans.
Geosci. Remote Sens. 33, 777–787.

Chen, J.M., Cihlar, J., 1996. Retrieving leaf area index of boreal conifer forests using
Landsat TM images. Remote Sens. Environ. 55, 153–162.

Criminisi, A., Shotton, J., Konukoglu, E.J.F., Graphics, T.i.C., & Vision, 2012. Decision
Forests: A Unified Framework for Classification, Regression, Density Estimation,
Manifold Learning and Semi-Supervised Learning. 7. pp. 81–227.

Cutler, A., Cutler, D.R., Stevens, J.R., 2012. Random forests. In: In Ensemble machine
learning. Springer, Boston, MA, pp. 157–175.

Demantke, J., Mallet, C., David, N., Vallet, B., 2011. Dimensionality based scale selection
in 3D lidar point clouds. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 38,
W12.

Farid, A., Goodrich, D.C., Bryant, R., Sorooshian, S., 2008. Using airborne lidar to predict
leaf area index in cottonwood trees and refine riparian water-use estimates. J. Arid
Environ. 72, 1–15.

Gleason, C.J., Im, J., 2012. Forest biomass estimation from airborne LiDAR data using
machine learning approaches. Remote Sens. Environ. 125, 80–91.

Gobron, N., Pinty, B., Verstraete, M.M., 1997. Theoretical limits to the estimation of the
leaf area index on the basis of visible and near-infrared remote sensing data. IEEE
Trans. Geosci. Remote Sens. 35, 1438–1445.

Guan, H., Li, J., Chapman, M., Deng, F., Ji, Z., Yang, X., 2013. Integration of orthoimagery
and lidar data for object-based urban thematic mapping using random forests. Int. J.
Remote Sens. 34, 5166–5186.

Hancock, S., Essery, R., Reid, T., Carle, J., Baxter, R., Rutter, N., Huntley, B., 2014.
Characterising forest gap fraction with terrestrial lidar and photography: an ex-
amination of relative limitations. Agric. For. Meteorol. 189–190, 105–114.

Hancock, S., Anderson, K., Disney, M., Gaston, K.J., 2017. Measurement of fine-spatial-
resolution 3D vegetation structure with airborne waveform lidar: calibration and
validation with voxelised terrestrial lidar. Remote Sens. Environ. 188, 37–50.

Hardwick, S.R., Toumi, R., Pfeifer, M., Turner, E.C., Nilus, R., Ewers, R.M., 2015. The
relationship between leaf area index and microclimate in tropical forest and oil palm
plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol.
201, 187–195.

Heurich, M., Beudert, B., Rall, H., Křenová, Z., 2010. National parks as model regions for
interdisciplinary long-term ecological research: The bavarian forest and šumavá na-
tional parks underway to transboundary ecosystem research. In: Müller, F., Baessler,
C., Schubert, H., Klotz, S. (Eds.), Long-Term Ecological Research: Between Theory
and Application. Springer Netherlands, Dordrecht, pp. 327–344.

Hill, R.A., Broughton, R.K., 2009. Mapping the understorey of deciduous woodland from
leaf-on and leaf-off airborne LiDAR data: a case study in lowland Britain. ISPRS J.
Photogramm. Remote Sens. 64, 223–233.

Hopkinson, C., Chasmer, L., 2009. Testing LiDAR models of fractional cover across
multiple forest ecozones. Remote Sens. Environ. 113, 275–288.

Hopkinson, C., Lovell, J., Chasmer, L., Jupp, D., Kljun, N., van Gorsel, E., 2013.
Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective
leaf area index. Remote Sens. Environ. 136, 301–314.

Hosoi, F., Omasa, K., 2006. Voxel-based 3-D modeling of individual trees for estimating
leaf area density using high-resolution portable scanning Lidar. IEEE Trans. Geosci.
Remote Sens. 44, 3610–3618.

Jensen, J.L.R., Humes, K.S., Vierling, L.A., Hudak, A.T., 2008. Discrete return lidar-based
prediction of leaf area index in two conifer forests. Remote Sens. Environ. 112,
3947–3957.

Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., Baret, F., 2004.
Review of methods for in situ leaf area index determination: part I. theories, sensors
and hemispherical photography. Agric. For. Meteorol. 121, 19–35.

Kashani, A.G., Olsen, M.J., Parrish, C.E., Wilson, N., 2015. A review of LIDAR radiometric
processing: from ad hoc intensity correction to rigorous radiometric calibration. 15,
28099–28128.

Kim, S., McGaughey, R.J., Andersen, H.-E., Schreuder, G., 2009. Tree species differ-
entiation using intensity data derived from leaf-on and leaf-off airborne laser scanner
data. Remote Sens. Environ. 113, 1575–1586.

Koenig, K., Höfle, B., Hämmerle, M., Jarmer, T., Siegmann, B., Lilienthal, H., 2015.
Comparative classification analysis of post-harvest growth detection from terrestrial
LiDAR point clouds in precision agriculture. ISPRS J. Photogramm. Remote Sens.
104, 112–125.

Korhonen, L., Korpela, I., Heiskanen, J., Maltamo, M., 2011. Airborne discrete-return
LIDAR data in the estimation of vertical canopy cover, angular canopy closure and
leaf area index. Remote Sens. Environ. 115, 1065–1080.

Leblanc, S.G., Chen, J.M., Kwong, M., 2002. Tracing radiation and architecture of ca-
nopies. In: TRAC Manual, (Version, 2).

Li, Y., Guo, Q., Tao, S., Zheng, G., Zhao, K., Xue, B., Su, Y., 2016. Derivation, validation,
and sensitivity analysis of terrestrial laser scanning-based leaf area index. Can. J.
Remote. Sens. 42, 719–729.

Li, Y., Guo, Q., Su, Y., Tao, S., Zhao, K., Xu, G., 2017. Retrieving the gap fraction, element
clumping index, and leaf area index of individual trees using single-scan data from a
terrestrial laser scanner. ISPRS J. Photogramm. Remote Sens. 130, 308–316.

Li, Z., Strahler, A., Schaaf, C., Jupp, D., Schaefer, M., Olofsson, P., 2018. Seasonal change
of leaf and woody area profiles in a midlatitude deciduous forest canopy from clas-
sified dual-wavelength terrestrial lidar point clouds. Agric. For. Meteorol. 262,
279–297.

Liu, J., Skidmore, A.K., Wang, T., Zhu, X., Premier, J., Heurich, M., Beudert, B., Jones, S.,
2019. Variation of leaf angle distribution quantified by terrestrial LiDAR in natural
European beech forest. ISPRS J. Photogramm. Remote Sens. 148, 208–220.

Lovell, J., Jupp, D., van Gorsel, E., Jimenez-Berni, J., Hopkinson, C., Chasmer, L., 2011.
Foliage profiles from ground based waveform and discrete point lidar. In:
Proceedings of the SilviLaser 2011 Conference. Oct. 16–20, Hobart, Tasmania.
Citeseer.

Luo, S., Wang, C., Pan, F., Xi, X., Li, G., Nie, S., Xia, S., 2015. Estimation of wetland
vegetation height and leaf area index using airborne laser scanning data. Ecol. Indic.
48, 550–559.

Luo, S.Z., Chen, J.M., Wang, C., Gonsamo, A., Xi, X.H., Lin, Y., Qian, M.J., Peng, D.L., Nie,
S., Qin, H.M., 2018. Comparative performances of airborne LiDAR height and in-
tensity data for leaf area index estimation. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 11, 300–310.

Ma, L., Zheng, G., Eitel, J.U.H., Magney, T.S., Moskal, L.M., 2016a. Determining woody-
to-total area ratio using terrestrial laser scanning (TLS). Agric. For. Meteorol. 228,
217–228.

Ma, L., Zheng, G., Eitel, J.U.H., Moskal, L.M., He, W., Huang, H., 2016b. Improved salient
feature-based approach for automatically separating photosynthetic and non-
photosynthetic components within terrestrial lidar point cloud data of forest ca-
nopies. IEEE Trans. Geosci. Remote Sens. 54, 679–696.

Ma, L., Zheng, G., Eitel, J.U.H., Magney, T.S., Moskal, L.M., 2017. Retrieving forest ca-
nopy extinction coefficient from terrestrial and airborne lidar. Agric. For. Meteorol.

X. Zhu, et al. Remote Sensing of Environment 240 (2020) 111696

13

http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0005
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0005
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0005
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0010
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0010
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0010
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0015
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0015
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0015
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0025
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0025
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0025
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0030
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0030
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0030
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0035
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0035
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0040
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0040
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0040
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0045
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0045
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0050
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0050
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0050
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0055
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0055
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0055
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0060
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0060
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0065
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0065
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0070
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0070
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0075
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0075
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0080
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0080
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0085
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0085
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0085
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0090
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0090
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0095
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0095
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0095
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5000
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5000
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0100
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0100
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0100
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0105
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0105
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0105
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0110
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0110
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0115
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0115
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0115
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0120
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0120
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0120
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0125
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0125
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0125
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0130
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0130
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0130
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0135
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0135
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0135
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0135
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0140
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0140
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0140
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0140
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0140
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0145
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0145
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0145
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0150
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0150
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0155
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0155
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0155
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0160
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0160
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0160
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0165
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0165
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0165
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0170
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0170
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0170
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0175
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0175
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0175
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0180
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0180
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0180
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0185
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0185
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0185
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0185
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0190
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0190
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0190
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0195
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0195
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0200
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0200
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0200
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0205
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0205
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0205
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0210
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0210
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0210
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0210
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0215
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0215
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0215
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0220
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0220
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0220
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0220
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0225
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0225
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0225
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0230
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0230
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0230
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0230
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0235
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0235
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0235
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0240
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0240
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0240
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0240
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0245
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0245


236, 1–21.
McGaughey, R.J., 2009. FUSION/LDV: Software for LIDAR Data Analysis and

Visualization. 123.
Moorthy, I., Miller, J.R., Hu, B., Chen, J., Li, Q., 2008. Retrieving crown leaf area index

from an individual tree using ground-based lidar data. Can. J. Remote. Sens. 34,
320–332.

Næsset, E., 2005. Assessing sensor effects and effects of leaf-off and leaf-on canopy
conditions on biophysical stand properties derived from small-footprint airborne
laser data. Remote Sens. Environ. 98, 356–370.

Næsset, E., Bjerknes, K.-O., 2001. Estimating tree heights and number of stems in young
forest stands using airborne laser scanner data. Remote Sens. Environ. 78, 328–340.

Neumann, H., Den Hartog, G., Shaw, R.J.A., Meteorology, F, 1989. Leaf area measure-
ments based on hemispheric photographs and leaf-litter collection in a deciduous
forest during autumn leaf-fall. 45, 325–345.

Nilson, T., 1971. A theoretical analysis of the frequency of gaps in plant stands. Agric.
Meteorol. 8, 25–38.

Nilsson, A., 2016. Effect of Continuity, Area, Connectivity and Surrounding Landscape on
Forest Specialist Plant Species in Deciduous Forest.

Norden, B., Rørstad, P.K., Löf, M., Rusch, G.M., 2018. Potential for restoration of tem-
perate deciduous forest by thinning of mixed forests on abandoned agricultural land.
In: ECCB2018: 5th European Congress of Conservation Biology. Open Science Centre,
University of Jyväskylä, Jyväskylä, Finland 12th-15th of June 2018.

Oshio, H., Asawa, T., Hoyano, A., Miyasaka, S., 2015. Estimation of the leaf area density
distribution of individual trees using high-resolution and multi-return airborne
LiDAR data. Remote Sens. Environ. 166, 116–125.

Parent, J.R., Volin, J.C., 2014. Assessing the potential for leaf-off LiDAR data to model
canopy closure in temperate deciduous forests. ISPRS J. Photogramm. Remote Sens.
95, 134–145.

Pearse, G.D., Morgenroth, J., Watt, M.S., Dash, J.P., 2017. Optimising prediction of forest
leaf area index from discrete airborne lidar. Remote Sens. Environ. 200, 220–239.

Pettorelli, N., Wegmann, M., Skidmore, A., Mücher, S., Dawson, T.P., Fernandez, M.,
Lucas, R., Schaepman, M.E., Wang, T., O'Connor, B., Jongman, R.H.G., Kempeneers,
P., Sonnenschein, R., Leidner, A.K., Böhm, M., He, K.S., Nagendra, H., Dubois, G.,
Fatoyinbo, T., Hansen, M.C., Paganini, M., de Klerk, H.M., Asner, G.P., Kerr, J.T.,
Estes, A.B., Schmeller, D.S., Heiden, U., Rocchini, D., Pereira, H.M., Turak, E.,
Fernandez, N., Lausch, A., Cho, M.A., Alcaraz-Segura, D., McGeoch, M.A., Turner, W.,
Mueller, A., St-Louis, V., Penner, J., Vihervaara, P., Belward, A., Reyers, B., Geller,
G.N., 2016. Framing the concept of satellite remote sensing essential biodiversity
variables: challenges and future directions. Remote Sensing in Ecology and
Conservation 2, 122–131.

Pfennigbauer, M., Ullrich, A., 2010. Improving quality of laser scanning data acquisition
through calibrated amplitude and pulse deviation measurement. In: Proc. SPIE 7684,
Laser Radar Technology and Applications XV, pp. 76841F.

Picard, R.R., Cook, R.D., 1984. Cross-validation of regression models. J. Am. Stat. Assoc.
79, 575–583.

Pisek, J., Sonnentag, O., Richardson, A.D., Mõttus, M., 2013. Is the spherical leaf in-
clination angle distribution a valid assumption for temperate and boreal broadleaf
tree species? Agric. For. Meteorol. 169, 186–194.

Rautiainen, M., 2005. Retrieval of leaf area index for a coniferous forest by inverting a
forest reflectance model. Remote Sens. Environ. 99, 295–303.

Roy, S., Byrne, J., Pickering, C., 2012. A systematic quantitative review of urban tree
benefits, costs, and assessment methods across cities in different climatic zones.
Urban For. Urban Green. 11, 351–363.

Shi, Y., Wang, T., Skidmore, A.K., Heurich, M., 2018. Important LiDAR metrics for dis-
criminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens.
137, 163–174.

Skidmore, A., Pettorelli, N., Coops, N., Geller, G., Hansen, M., Lucas, R., Mücher, C.,

O’Connor, B., Paganini, M., Pereira, H., 2015. Environmental science: agree on bio-
diversity metrics to track from space. Nature 523, 403.

Solberg, S., Brunner, A., Hanssen, K.H., Lange, H., Næsset, E., Rautiainen, M., Stenberg,
P., 2009. Mapping LAI in a Norway spruce forest using airborne laser scanning.
Remote Sens. Environ. 113, 2317–2327.

Sumnall, M., Fox, T.R., Wynne, R.H., Thomas, V.A., 2017. Mapping the height and spatial
cover of features beneath the forest canopy at small-scales using airborne scanning
discrete return Lidar. ISPRS J. Photogramm. Remote Sens. 133, 186–200.

Tang, H., Brolly, M., Zhao, F., Strahler, A.H., Schaaf, C.L., Ganguly, S., Zhang, G.,
Dubayah, R., 2014. Deriving and validating Leaf Area Index (LAI) at multiple spatial
scales through lidar remote sensing: a case study in Sierra National Forest, CA.
Remote Sens. Environ. 143, 131–141.

Tian, Y., Zheng, Y., Zheng, C., Xiao, H., Fan, W., Zou, S., Wu, B., Yao, Y., Zhang, A., Liu, J.,
2015. Exploring scale-dependent ecohydrological responses in a large endorheic river
basin through integrated surface water-groundwater modeling. 51, 4065–4085.

Tillack, A., Clasen, A., Kleinschmit, B., Förster, M., 2014. Estimation of the seasonal leaf
area index in an alluvial forest using high-resolution satellite-based vegetation in-
dices. Remote Sens. Environ. 141, 52–63.

Vauhkonen, J., Korpela, I., Maltamo, M., Tokola, T., 2010. Imputation of single-tree at-
tributes using airborne laser scanning-based height, intensity, and alpha shape me-
trics. Remote Sens. Environ. 114, 1263–1276.

Véga, C., Renaud, J.P., Durrieu, S., Bouvier, M., 2016. On the interest of penetration
depth, canopy area and volume metrics to improve Lidar-based models of forest
parameters. Remote Sens. Envirobn. 175, 32–42.

Vicari, M.B., Disney, M., Wilkes, P., Burt, A., Calders, K., Woodgate, W., 2019. Leaf and
wood classification framework for terrestrial LiDAR point clouds. Methods Ecol. Evol.
10, 680–694.

Vincent, G., Antin, C., Laurans, M., Heurtebize, J., Durrieu, S., Lavalley, C., Dauzat, J.,
2017. Mapping plant area index of tropical evergreen forest by airborne laser scan-
ning. A cross-validation study using LAI2200 optical sensor. Remote Sens. Environ.
198, 254–266.

Weber, J., Penn, J., 1995. Creation and rendering of realistic trees. In: Proceedings of the
22nd Annual Conference on Computer Graphics and Interactive Techniques. ACM,
pp. 119–128.

Weiss, M., Baret, F., Smith, G., Jonckheere, I., Coppin, P., 2004. Review of methods for in
situ leaf area index (LAI) determination: part II. Estimation of LAI, errors and sam-
pling. Agric. For. Meteorol. 121, 37–53.

White, J.C., Arnett, J.T., Wulder, M.A., Tompalski, P., Coops, N.C., 2015. Evaluating the
impact of leaf-on and leaf-off airborne laser scanning data on the estimation of forest
inventory attributes with the area-based approach. Can. J. For. Res. 45, 1498–1513.

Wilson, J.W.J.A.j.o.b. (1963). Estimation of foliage denseness and foliage angle by in-
clined point quadrats, 11, 95–105.7

Xiao, Q., McPherson, E.G., 2002. Rainfall interception by Santa Monica’s municipal urban
forest. Urban Ecosyst. 6, 291–302.

Zhao, F., Yang, X., Schull, M.A., Román-Colón, M.O., Yao, T., Wang, Z., Zhang, Q., Jupp,
D.L.B., Lovell, J.L., Culvenor, D.S., Newnham, G.J., Richardson, A.D., Ni-Meister, W.,
Schaaf, C.L., Woodcock, C.E., Strahler, A.H., 2011. Measuring effective leaf area
index, foliage profile, and stand height in New England forest stands using a full-
waveform ground-based lidar. Remote Sens. Environ. 115, 2954–2964.

Zheng, G., Ma, L.X., He, W., Eitel, J.U.H., Moskal, L.M., Zhang, Z.Y., 2016. Assessing the
contribution of woody materials to Forest angular gap fraction and effective leaf area
index using terrestrial laser scanning data. IEEE Trans. Geosci. Remote Sens. 54,
1475–1487.

Zhu, X., Skidmore, A.K., Darvishzadeh, R., Niemann, K.O., Liu, J., Shi, Y., Wang, T., 2018.
Foliar and woody materials discriminated using terrestrial LiDAR in a mixed natural
forest. Int. J. Appl. Earth Obs. Geoinf. 64, 43–50.

X. Zhu, et al. Remote Sensing of Environment 240 (2020) 111696

14

http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0245
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0250
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0250
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0255
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0255
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0255
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0260
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0260
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0260
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0265
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0265
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0270
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0270
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0270
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0275
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0275
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0280
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0280
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0285
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0285
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0285
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0285
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0290
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0290
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0290
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0295
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0295
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0295
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0300
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0300
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0305
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0310
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0310
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0310
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5010
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5010
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0315
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0315
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0315
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0320
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0320
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0325
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0325
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0325
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0330
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0330
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0330
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0335
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0335
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0335
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0340
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0340
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0340
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0345
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0345
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0345
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0350
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0350
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0350
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0350
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0355
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0355
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0355
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0360
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0360
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0360
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0365
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0365
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0365
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf5020
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0370
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0370
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0370
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0375
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0375
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0375
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0375
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0380
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0380
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0380
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0385
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0385
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0385
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0390
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0390
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0390
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0395
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0395
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0400
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0400
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0400
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0400
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0400
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0405
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0405
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0405
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0405
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0410
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0410
http://refhub.elsevier.com/S0034-4257(20)30065-1/rf0410

	A voxel matching method for effective leaf area index estimation in temperate deciduous forests from leaf-on and leaf-off airborne LiDAR data
	Introduction
	Study area and data collection
	Study area
	Terrestrial LiDAR data collection
	Airborne LiDAR data collection
	LiDAR data simulation

	Methods
	Estimation of gap fraction
	ePAI calculation
	Retrieval of eLAI and eWAI from terrestrial LiDAR
	Retrieval of eLAI and eWAI from leaf-on and leaf-off airborne LiDAR
	ePAI – eWAI (method 1(M1))
	Voxel matching (method 2(M2))

	Evaluation of eWAI using voxel matching
	Retrieval of eLAI based on an empirical method using leaf-on airborne LiDAR only
	Statistical analysis

	Results
	Estimation of effective leaf area index when using real field data
	Comparison between the subtraction and voxel matching method
	Estimation of effective leaf area index based on simulation
	Evaluation of eWAI using voxel matching
	Linking leaf-on airborne LiDAR metrics with effective leaf area index

	Discussion
	Conclusions
	CRediT authorship contribution statement
	mk:H1_26
	Acknowledgements
	References




