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Abstract
Exhaled breath contains thousands of volatile organic compounds (VOCs), some of which 
have been associated with respiratory disease. We describe a sensor device with an array 
of eight polymer-coated piezoelectric micro-cantilevers (two of each polyacrylic acid, 
polyethylenimine and  polyethylene glycol and two uncoated cantilevers) and an electronic 
resonant frequency readout, designed for analysis of VOCs. We have measured the system’s 
response to temperature (24 °C to 40 °C), pressure (200 mmHg to 760 mmHg), and humidity 
(10% to 50% RH), evaluated the reproducibility of measurements between micro-cantilevers 
(n  =  3), and tested the stability of the system over six months. By measuring the frequency 
shift of the resonating micro-cantilevers, and using the inflection point of a fitted sigmoid 
model, we show that acetone, ethanol, octane are distinguishable from one another, with a 
measurement limited of detection of 1568, 383, and 87 ppmv, respectively. From interpolation 
of the electronic readout, we found the lowest estimated measurement to be 5 ppmv (acetone 
on polyacrylic acid). We have also shown that polar mixture (acetone, ethanol, and water) and 
non-polar mixture (increasing octane concentration and decreasing polar mixture constituents) 
can be differentiated.
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Introduction

Thousands of volatile organic compounds (VOCs) have been 
identified in human samples and from both exogenous and 
endogenous origins, and many methods have been developed 
to utilize VOCs for disease diagnosis (Pleil et  al 2013, de 
Lacy Costello et al 2014, Amann et al 2014). Sampling VOCs 
is non-intrusive, and like saliva and urine sampling, can be 
collected with relative ease, compared to invasive methods 
such as blood or sputum collection (Navazesh et  al 1993, 
Beauchamp and Pleil 2013). Some VOCs have been associ-
ated with lung disease and investigated as diagnostic markers 
(Miekisch et al 2004, Haick and Cohen-kaminsky 2015, Bos 
et  al 2016, Ahmed et  al 2017). The presence of saturated 
and unsaturated hydrocarbons (i.e. increased non-polar com-
pounds) are often reported in relation to lung inflammation 
and infection (Ibrahim et al 2011, Bos et al 2014). The hos-
pital environment also contains VOCs from decontamination 
products and volatile inhalational anaesthetics (Bessonneau et 
al. 2013).

A diverse array of instruments for analysing breath VOCs 
are available and provide highly sensitive and accurate iden-
tification (Lourenço and Turner 2014, Beale et  al 2016). 
Hyphenated mass spectrometry (-MS) methods, where 
chemical compounds are subjected to electron or chemical 
ionization, are commonly used in breath research, typically 
paired with sample separation methods such as gas chroma-
tography (GC) (Basanta et al 2012b), proton transfer reaction 
(PTR) (White et al 2013), and selected ion flow tube (SIFT) 
(Smith and Španel 2005). Analyte separation is not carried 
out in SIFT-MS and PTR-MS, and can therefore be used for 
real-time analysis. GC-MS is usually coupled with a pre-
concentration technique such as solid phase micro-extraction 
(SPME).These such instruments are generally expensive, 
bulky and heavy, and require a high-level maintenance and 
specialist operation. The size and cost can be reduced by using 
novel ion mobility spectrometry (IMS) devices adapted for 
clinical breath analysis (Basanta et al 2010, Rabis et al 2011), 
though instruments have complicated installation and require 
periodic maintenance by specialists.

Electronic nose (eNose) gas sensors are low cost, and easy 
to use, when compared to other methods. The wide range 
of eNose sensors and their applications have been reviewed 
before (Konvalina and Haick 2014, Wilson 2015). Recent 
developments in on-line VOC sensors support their future 
potential use in the clinic, such as disposable tubes with 
integrated sensors (Wu et al 2016), and integration of eNose 
sensors with spirometry (de Vries et al 2015). The clinical fea-
sibility of such devices are yet to be determined.

Depending on the sensor’s mechanism of action, eNoses 
are designed to be either chemically selective for a specific 
VOC (lock and key) or chemical group, or can differentiate 
between chemical patterns. Signal processing algorithms can 
be performed during (on-line analysis) or immediately after 
sampling VOCs (off-line) for clinical interpretation (Gromski 
et  al 2014), where on-line analysis is usually preferred for 
fast and efficient analysis in a clinical setting. Micro-electro-
mechanical-system (MEMS) sensors have shown potential 

for VOC detection and classification of chemical groups 
(Yoshikawa et al 2009). Sensor chips can be mass produced 
at low cost and can be interchangeable with other chips for 
single use or for a different panel of sensors. One group of 
MEMS type sensors called acoustic wave detectors have 
shown potential in breath VOC analysis. A study by Phillips 
et al used a GC-SAW device to profile patients with pulmo-
nary tuberculosis (Phillips et al 2012).

Micro-cantilever-based sensors are common and have 
been developed for VOC analysis, where studies have shown 
their good sensitivity and specificity towards VOC samples 
(Maute et al 1999, Lange et al 2002, Xu et al 2010, Pettine 
et al 2012, 2013). Gerber et al have shown separation between 
alkanes by carbon number using principal component analysis 
(Yoshikawa et al 2009). However, a purpose-built integrated 
MEMS device for breath analysis in large scale clinical trials 
is required and to our knowledge, no such micro-cantilever-
based sensor device is available for clinical use. Such a system 
should be stable between multiple measurements and show 
chemical specificity with high sensitivity, typically down to 
ppmv-ppbv concentrations as breath contains VOCs within 
this concentration and it is therefore essential to achieve this 
detection range with eNose devices (Rattray et al 2014).

Here, we describe the development of a stand-alone inte-
grated MEMS device for VOC profiling with an electronic 
resonant frequency output that measures several resonating 
micro-cantilevers simultaneously. We describe how this test 
setup responds to changes in the environment; e.g. temperature, 
relative humidity and atmospheric pressure. VOC concentra-
tions were then measured with the sensor to assess chemical 
differentiation, detection sensitivity, and short-term and long-
term measurement reproducibility of micro-cantilevers. We 
chose to test acetone as it is a common breath constituent; 
ethanol as it is used in hospital decontamination products, and 
octane as this was identified as a potential marker for acute 
respiratory distress syndrome (de Lacy Bessonneau et  al 
2013, Bos et al 2014, de Lacy Costello et al 2014).It is impor-
tant to note that these compounds are non-specific and have 
been identified from various sources. For example, acetone 
levels are increased in diabetics and decreased in heart failure 
patients (Ghimenti et al 2013, Biagini et al 2017).

Materials and methods

Sensor micro-fabrication and resonant frequency output

In this application we employ a single micro-cantilever beam 
arrangement (length 200 µm  ×  width 100 µm, thickness 2 
µm), with one end glue-bonded onto the electrode. Micro-
cantilevers were fabricated and assembled on a silicon-on-
insulator wafer, starting with thermal oxidation and deposition 
and patterning of the bottom electrode, followed by pulsed 
laser desorption of the PZT layer and deposition and pat-
terning of the top electrode and gold patch, patterning of the 
PZT layer, and finally patterning and release of the micro-
cantilever. Further information about the micro-cantilever 
fabrication and stability can be found in our previous work 
(Dekkers et al 2009). Figure 1 shows the layers as described 
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above, and the microscope image of the chip carrier forming 
the micro-cantilever sensor array (1 mm  ×  1 mm).

The electronic connection between the micro-cantilever 
and chip carrier were made by wire bonding. To give the 
sensor the ability to chemically interact with VOCs (as well as 
changes in mass and stiffness), functionalized polymer layers 
were spotted (density 1 g cm−3, thickness 50 nm) onto the 
tip of each cantilever using the FEMTO (Fluidics Enhanced 
Molecular Transfer Operation) process with a Nano eNabler 
molecular printing system (BioForce Nanosciences, USA) 
(Alvarez and Lechuga 2010, Fu and Ayazi 2010).

Selected polymer coatings included polyacrylic acid 
(PAA), polyethylene glycol (PEG), and polyethylenimine 
(PEI). Cantilevers with no polymer coating were included for 
reference measurements (control). Two micro-cantilevers with 
the same coating were included on the sensor chip (n  =  8). 
Polymers coated onto micro-cantilevers were chosen based on 
their interaction with a range of VOCs with varying chemical 
properties (including polarity and electrostatic interactions).

The resonant frequency is dependent on the mass applied 
to a micro-cantilever. Our system measures the baseline res-
onant frequency (f ) and tracks changes in resonance (under 
microprocessor control) by continuously monitoring the phase 
shift in signals applied to the micro-cantilever. This allows for 

tracking of the frequency shift for each cantilever (Δf ) sequen-
tially, and in real-time (within milliseconds per step response).

In theory, when the micro-cantilevers are exposed to a gas 
containing VOCs, molecules bind to the surface of the canti
lever, or absorb into the polymer coating, thereby causing 
a measurable increase in mass, causing a decrease in f . 
Additionally, as with all resonance-based devices, changes in 
micro-cantilever stiffness caused by surface stresses change 
the spring constant and therefore also impact Δf  (Waggoner 
and Craighead 2007). Absorption of VOCs into polymer 
receptor layers generally decreases the stiffness and therefore 
lowers the frequency. In this way, the stiffness effect amplifies 
the mass generated resonance frequency shift.

Measurements of environmental changes

Variations in ambient pressure, humidity, and temperature 
were measured. Controlled and ambient measurements were 
performed. Controlled measurements included a temperature 
range from 24 °C to 40 °C (as the temperature of breath is 
within this range), pressure range from 760 mmHg down to 
200 mmHg (to mimic atmospheric pressure fluctuations), 
and relative humidity from 10% to 50% (to reflect low 
humidity in a clinical environment). Sample humidification 

Figure 1.  Sensor mechanism layout and sensor housing images. Top left: 2D illustration showing the top and side view plan of a single 
micro-cantilever with colours highlighting various fabricated layers for a non-coated micro-cantilever (where SiO2 is silicon dioxide, Pt 
is platinum, and PZT is lead zirconate titanate). Top right: an image (×10 magnification) of the sensor chip (10  ×  10 mm) with multiple 
cantilevers with a single micro-cantilever highlighted in red. Bottom right: A schematic of the flow box (internal volume 300 µl) where gas 
is directed above the sensor chip. Bottom left: the housing for the electronics suitable for portable on-site analysis (148  ×  210 mm).
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involved increasing the gas mixing ratio of water in dry N2. 
Measurements of ambient environmental changes were per-
formed over eight hours, and simultaneously monitored using 
a calibrated barometric datalogger (Extech SD700, FLIR 
Systems, USA) to compare sensor response with the sur-
rounding environment. The datalogger was set to acquire data 
every 5 s.

VOC measurements

Laboratory standard chemicals (Sigma Aldrich, UK) of 
octane, acetone, and ethanol (>95% purity) were used for 
analysis. Acetone is ubiquitous in breath. Ethanol and octane 
are of interest as high concentrations may originate from 
microbial metabolism and lipid peroxidation, respectively 
(Bos et  al 2014; Bos et  al 2013). A controlled mixture of 
VOC vapour in dry N2 at a constant flow (20 ml min−1) was 
purged onto the micro-cantilever array using the system illus-
trated in figure 2. This flow remained constant throughout all 
runs. Ratios of 0.66%, 1%, 2%, 3%, 4%, 5%, and 10% of 
saturated VOC vapour to N2 were measured. VOC concentra-
tions in ppmv were calculated using this ratio and Antoine 
equation and constants specific to each VOC (NIST Standard 
Reference Database No. 69).

Thermal desorption-gas chromatography-mass spec-
trometry (TD-GC-MS) was carried out as part of the quality 
assessment of the air surrounding the system, and identifica-
tion of compounds running through the sensor flowbox. Here, 
thermal desorption tubes were used which were packed with 
Tenax TA and Carbograph 5TD, and GC-tof-MS chromato-
graphic and MS acquisition parameters were set as described 
elsewhere (van Oort et al 2017). The tube was placed in-line 
between the sensor exhaust and the pump. A total volume of 
20 ml of the gas mixture from the sensor was drawn onto the 
tube (20 ml min−1).

Signal post-processing

Resonant frequency data acquired during on-line measure-
ment were evaluated off-line to develop suitable post-pro-
cessing methods. All post-processing and data analysis were 

carried out in Matlab (Mathworks Inc., USA, version R2015b). 
Each Δf  observation was centred by the initial frequency f 0 
(Δf /f 0). The Δf /f 0 vector was then corrected to remove sys-
tematic drift by subtracting a fitted polynomial curve across 
all baseline measurements for each experimental run.

To plot concentration curves, a Δf /f 0 response vector was 
extracted for each concentration and polymer coating com-
bination. The magnitude of the response curve was then cal-
culated and used for plotting concentration curves using the 
following equation:

Z =

Ã
N∑

i=1

∆f 2
i� (1)

where the magnitude (Z) of the response vector is the square 
root of the sum of Δf /f 0 values (denoted in equations (1) and 
(2) as Δf ). For easy integration into on-line data processing, a 
time-independent value extracted from a suitable model was 
required. A reverse sigmoid model was applied to the Δf /f 0 
vector:

S(∆f ) = c +
a

1 + e(∆f−b)� (2)

where a, b, and c are the curve fitting coefficients and S is 
the fitted sigmoid curve. The final value was extracted from 
the point at which the Δf /f 0 vector intersected the inflection 
point (IP) of the sigmoid curve (where f ″  =  0). Two addi-
tional features (adapted from the linear extrapolation method) 
described previously (Chen and Chang 1991, McDowall and 
Dampney 2006) were extracted from the curve—the ‘adsorp-
tion’ point (AP) and the ‘saturation’ (SP) point, where AP is 
defined as the point from which Δf /f 0 decreases below the 
upper horizontal asymptote, and SP as the point from which 
Δf /f 0 no longer decreases (i.e. the sensor coating is saturated).

The time taken to reach SP from AP (tS) was used in fin-
gerprinting analysis. To assess how well the sigmoid models 
original data, the area under the curve (AUC) for each vector 
and root mean squared error (RMSE) were calculated. 
Arbitrary thresholds were set to accept or reject resulting data 
where the model was used. A good match was indicated by an 
AUC  >  80%, and no RMSE outliers.

Figure 2.  Gas delivery system used to flow a concentration of a VOC in dry N2 through the sensor. In summary, N2 gas is first split 
between two programmable mass flow controllers (MFC). One stream is carried towards a stainless-steel canister, containing a chemical 
liquid standard (VOC), to achieve a saturated gas vapour mixture of the selected VOC in N2. A toggle valve at this point allows the vapour 
generated to be redirected to an exhaust. The vapour mixture is then further diluted into the second stream of carrier N2 gas to create a 
concentration ratio mixture. The diluted stream is then pumped through the device flowbox (housing the sensor chip) at a flow rate of 20 ml 
min−1. Surplus vapour is expelled through an exhaust. A conditioned thermal desorption tube was added between the sensor and pump 
(location marked ‘a’) when required.

Meas. Sci. Technol. 31 (2020) 035103
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The mean IP and mean tS of three replicates were used to 
develop heat maps to compare micro-cantilever ‘fingerprints’ 
visually for each VOC. The input values for the heat maps were 
normalised by sum and feature-scaled across polymer observa-
tions to generate a value between 0 and 1, where 1 showed the 
maximum intensity observed for a VOC. To exclude the domi-
nant effect of concentration for VOCs with high vapour pres
sure, data with similar VOC concentrations (acetone at 1568 
ppmv; ethanol 1158 ppmv; water 1303 ppmv and octane 1316 
ppmv) were used to generate heat maps and assess reprodu-
cibility. Additionally, principal component analysis (PCA) 
was carried out where samples were represented as individual 
VOCs or VOC mixtures, and micro-cantilevers represented the 
features. Data were mean centred prior to PCA. All the data 
were then represented across 2 principal components (PCs). 
For comparing between mixtures, polar and non-polar mix-
tures were made. The polar mixture included acetone, ethanol, 
and water, whereas the non-polar mixture contained octane. 
The ratio of each mixture was changed (20%, 30%, and 40% 
in N2 for each mixture) and evaluated by PCA.

Intra-run repeatability (octane only) and inter-run reprodu-
cibility were assessed for each polymer by calculating the 
relative standard deviation (% RSD) across three replicates 
runs. To assess the effect of long-term use of the same chip 
(0 and 180 d) and differences between duplicate cantilevers 
with the same coating, the IP median and interquartile range 
(IQR) were compared between each sensor group, with t-tests 
performed to test significance (α  =  0.05).

Results

Response to environmental changes

Measurements of temperature, humidity and pressure were 
performed in a pressure-controlled oven. The change in fre-
quency (Δf /f 0) of a control micro-cantilever in response to 
environmental changes correlated with that of a coated micro-
cantilever, as shown in figure 3. The response for both control 
and coated micro-cantilevers also correlated with the stepwise 
change in environmental stimuli i.e. decreasing temperature 
(sensitivity of 0.05 Hz °C−1), increased pressure (−ve), and 
increased relative humidity (sensitivity of 0.1 Hz/%RH).

Measurements of ambient room temperature, humidity, 
and pressure were also carried out. Temperature changes 
showed an inverse relationship with Δf /f 0 signal over a period 
of approximately 8 h (figure 4). As this included uncontrolled 
environmental changes, the acquired signal will be influenced 
by ambient humidity and pressure. However, in our case, no 
discernible relationship was shown with humidity or pres
sure after measurement, most likely due to the low ambient 
fluctuations.

Detection of VOCs

Vapour mixtures of acetone, ethanol, and octane chemical stan-
dards in dry N2 were purged onto the micro-cantilever array with 

Figure 3.  Single measurements showing a Δf /f 0 response to 
environmental conditions: (a) increasing oven temperature from  
24 °C to 40 °C (1 °C intervals); (b) increasing relative humidity 
from 10% to 50% (10% intervals); (c) pressure range from 760 to 
200 mmHg (50 mmHg intervals). All charts show a control (black) 
and coated (red, PEG) micro-cantilever response as examples.

Meas. Sci. Technol. 31 (2020) 035103
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data acquired in real-time. Dry N2 was used to assess the sensors 
response to single chemical vapours without introducing mois-
ture. Coated micro-cantilevers showed a greater Δf /f 0 response 
to VOCs when compared to control micro-cantilevers. Analysis 
by TD-GC-MS confirmed the presence of ethanol, acetone, and 
octane, and revealed no artefact VOCs from the gas delivery 
system or the surrounding air. However, we found a 5 to 10 min 
dry N2 purge was not sufficient to clear the system between gas 
samples, which may be attributed to the high vapour concentra-
tion. Compound peaks from the mixture gas are shown in the 
chromatogram (S1) (stacks.iop.org/MST/31/035103/mmedia). 
The minimum measured concentration detected from our cur
rent gas delivery system was for octane at 87 ppmv. The esti-
mated measurement detection limit by linearly interpolating 
the synthesiser step size signal-to-noise ratio (SNR) using a 
Δf /f 0 vector (acetone on PAA) was estimated at approximately 
5 ppmv. These lower limits are high when compared to other 
studies which have LODs in the ppb range.

An increase in Δf /f 0 in response to all VOCs is shown 
by all polymer-coated micro-cantilevers, where PAA has the 
weakest response, and PEG the strongest response, with the 
exception of octane where PEI shows the strongest response 
above 263 ppmv. The uncoated control micro-cantilever 
interacts with acetone above 4737 ppmv, whereas for ethanol, 
the control remains unresponsive throughout all concentra-
tions (measured up to 5789 ppmv). Similarly, an increase for 
the control micro-cantilever is also shown for octane above 
396 ppmv. Real-time micro-cantilever response curves and 
concentration curves (n  =  3) for each VOC are shown in 
figure 5.

VOC fingerprinting

2D heat maps were generated for each VOC and polymer 
coating pair for visual representation of fingerprints, using the 
mean IP and tS data. Heat maps are shown in figure 6.

According to the heat maps, all control micro-cantilevers 
had the lowest concentration in response to VOCs when com-
pared to all polymer-coated micro-cantilevers (PAA, PEI, and 
PEG). As a consequence of the response being minimal the 
sigmoid model failed to fit to the data (as they were outside 

the RMSE and AUC threshold criteria), and therefore their IP 
was set to zero. This was also the case for the PAA polymer 
response to water. It is important to note that we also observed 
high concentrations of water invoke a response on PAA (data 
not shown), which may be attributed to increased mass on the 
cantilever.

With regard to the heat map showing tS fingerprints 
(figure 6(b)), darker colours indicate an increased length of 
time to reach SP. According to the heat map, the fastest tS 
was shown by octane (4.63 min), with the fastest reading on 
PEI (4.57 min), in comparison to other VOCs (acetone 9.04, 
ethanol 6.82, and water 6.94 min). It is therefore evident that 
octane has a better affinity for PEI compared to other poly-
mers, most likely due to its low polarity and larger surface 
area. On average, PEG was slowest to respond from the three 
coated micro-cantilevers (PEG 7.97, PEI 7.26, and PAA 
7.12 min).

PCA was carried out and the scores plot (figure 7) showed 
separation between individual VOCs in N2 where water sepa-
rated across the first PC (figure 7(a)), with octane and ethanol 
samples being separated in the second PC. Mixture samples 
were also analysed with PCA with both PC1 and PC2 showing 
variation due to sample concentration. A corresponding PCA 
loadings biplot is provided in S2 and shows the importance of 
polymers responsible for separating VOCs.

Measurement reproducibility

Relative standard deviations (RSDs) for repeatability mea-
surements (within run) and reproducibility measurements 
(between runs) are summarised in table 1. Inter-run reprodu-
cibility results showed measurements with PAA were the most 
reproducible in comparison to other coatings (mean RSD of 
13.5%), and acetone compared to other VOCs (mean RSD of 
9.2%).

Three replicates were used to calculate the RSD for each 
pair (VOC and polymer-coated microcantilever), and only 
octane was used to assess intra-run repeatability. Water vapour 
did not react with PAA at this concentration therefore no 
signal was extracted.

No clear difference was found between baseline (n  =  9, 
median  −5.80  ×  10−6, IQR 1.93  ×  10−6) and measurement 
after 180 d (n  =  9, median  −7.00  ×  10−6, IQR 3.28  ×  10−6, 
paired t-test p  = 0.553 for difference). Comparisons of Δf /f 0 
readings between two micro-cantilevers with the same coating 
were also made. In this case, All VOCs were included, and 
groups consisted of sensor one and sensor two (paired within 
measurement) for micro-cantilevers coated with PEI and PAA. 
Between PEI sensor one (n  =  12, median  −4.44  ×  10−6, IQR 
2.70  ×  10−6) and sensor two (n  =  12, median  −1.46  ×  10−6, 
IQR 2.54  ×  10−6) a difference 2.98  ×  10−6 Hz was found 
where sensor two had a low Δf /f 0 in comparison (paired 
t-test p   ⩽  0.001). Similarly, between PAA sensor one (n  =  8, 
median  −3.13  ×  10−6, IQR 1. 80  ×  10−6) and sensor two 
(n  =  8, median  −1.62  ×  10−6, IQR 2.00  ×  10−6) the results 
indicated a difference of 1.51  ×  10−6 Hz (p  = 0.0039). A 
summary table of the above reproducibility analysis is shown 
in the supplementary information (S4).

Figure 4.  Ambient room temperature readings (red line, y  axis 
on the left) and Δf /f 0 measurement of a control micro-cantilever 
(blue line, y  axis on the right) aligned by time over a period of 
approximately 8 h.

Meas. Sci. Technol. 31 (2020) 035103
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Discussion

We have developed an integrated sensor device with a simulta-
neous readout of eight piezoelectric micro-cantilevers coated 
with three different polymers coatings, tailored towards breath 
VOC analysis. We achieved this by measuring VOCs com-
monly found in exhaled breath gas. In addition, we evaluated 

the system’s performance by assessing reproducibility of 
measurements.

After continuous 8 h run without flow, we found the Δf /f 0 
signal matched that of temperature fluctuations. This sug-
gests that temperature has a direct effect on systematic drift 
during measurement and is also consistent with controlled 
measurements taken from 24 °C to 40 °C. This result shows 

Figure 5.  Time series (left) and concentration curve (right) plots of acetone (top), ethanol (middle), and octane (bottom). All graphs show 
four cantilever Δf /f 0 responses (coloured). Time series plots were corrected for sensor response drift and the magnitude for each Δf /f 0 
response curve calculated to form concentration curves from three sequential runs (where a circle is the mean response, and positive/
negative error bars show standard deviations).

Meas. Sci. Technol. 31 (2020) 035103



W M Ahmed et al

8

Figure 7.  PCA score plots of sensor response to vapour of (a) 
individual VOC gas samples at similar concentrations where colours 
indicate different VOCs (the explained variance for each PC is 
provided in the plots in parentheses and the total (TEV)  =  98.2%), 
and (b) polar and non-polar gas mixture samples where colours 
indicate are different relative concentrations (20%, 30%, or 40%) of 
either polar or non-polar mixtures (TEV 99.5%).

temperature must be monitored and data used to correct for 
fluctuations in signal drift, especially as temperature of breath 
gas and the surrounding clinical environment around the 
sensor will not be constant.

As expected, the control micro-cantilevers exhibited a 
low Δf /f 0 shift in comparison to coated micro-cantilevers. 
Regarding acetone a notable increase in Δf /f 0 is observed 
for control micro-cantilevers, which may be attributed to 
increased mass on the micro-cantilevers from vapour mixtures 
with high ppmv concentration, explained by increased elec-
trostatic interaction between acetone molecules on the silicon 
dioxide layer of the micro-cantilever.

In combination, all polymer coated cantilevers were able 
to differentiate VOCs. According to intensity patterns on the 
IP heat map, octane and acetone were not visually different by 
PEI or PAA, and required PEG to differentiate the two VOCs, 
whereas ethanol and water could be differentiated by PEI 
and PAA coated micro-cantilevers. The overall high inten-
sity of PEG (compared to PAA and PEI) for polar VOCs may 
be due to hydrogen bonding on the O–H termini of the PEG 
polymer surface, whereas the comparatively lower intensity 
for octane due to its low polarity and therefore low chemical 
affinity, may only exhibit weak Van der Waals forces due to its 
low chemical affinity for the PEG surface. Chemical interac-
tions, which are based on solubility properties of the polymer 
coating, cause swelling and deswelling and therefore changes 
in resonance. As it was possible to extract additional features, 
the time taken for VOC Δf /f 0 signals to reach ‘saturation’ 

were measured with a maximum time of 10 min. Improved 
response times may be achieved by increasing the electronic 
gain setting.

With regard to PCA results, data separation of water sam-
ples were due to the PAA coated micro-cantilever and com-
parably increased Δf /f 0 of PEG and PEI for other VOCs, as 
also shown by the heat maps. PCA of VOC mixtures revealed 
separation between polar and non-polar mixtures. It is inter-
esting to note that this observation is more apparent at larger 

Figure 6.  Heat maps with each rectangle showing the intensity of (a) 
the mean inflection point, and (b) or time taken to reach the saturation 
point from the adsorption, of each VOC (at a specific concentration) 
to illustrate the fingerprinting potential of the selected cantilevers.
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concentrations, as shown between the polar mixture and non-
polar mixture at 40%, in contrast to the mixtures at 20% and 
30%.

Although we can predict a known interaction occurs such as 
electrostatic interactions based on VOC polarity (as described 
above), in reality there may be several additional interactions 
that take place with either a large or small impact on Δf /f 0. 
One such impact is the viscosity of the polymer at room 
temperature, where morphological transition of the polymer 
layer from a ‘glassy’ state to a ‘swollen’ state may result in 
a changed damping effect on the micro-cantilever. Polymer 
chain length and ambient temperature may also be influencing 
factors on Δf /f 0 signal. Additionally, experimental influences 
on Δf /f 0 signal may arise from the amount of time required 
to adequately clean micro-cantilevers for subsequent runs, 
or from previous VOCs that remain on the micro-cantilevers 
where the size or effectiveness of the polymer surface has 
altered. It is possible that irreversible reactions occur between 
VOCs and cantilevers which may reduce the number of chem-
ical binding sites.

Measurements of uncertainty for validated GC-MS anal-
ysis of pure standards vary from 2% to 19% for standard 
chemical VOCs trapped on sorbent material (Basanta et  al 
2012a, Mleth et al 2010, Mochalski et al 2014), with a general 
acceptance level for GC-MS metabolomic research of  <30% 
(Dunn et al 2011). No such standard is available for micro-
cantilever devices. It was therefore necessary to assess the 
reproducibility of measurements within and between runs, 
and between cantilevers. With regard to the reproducibility 
tests, although the sample size was small, results show that 
two different micro-cantilevers coated with the same polymer 
differ in Δf /f 0 readings, which suggests polymer coating or 
micro-cantilever fabrication methods require further develop-
ment to improve reproducibility. As the RSD values are high 

for non-biological samples this can represent a high varia-
tion in ppmv terms. A calibration measurement may also be 
required prior to sample analysis.

Several strengths and limitations were identified throughout 
this work. Although not able to offer the same level of reprodu-
cibility and sample resolution as mass-spectrometry based 
instruments, the sensor system used in this study is compact, 
portable, a fraction of the cost of GC-MS analysers, and has 
a lower detection limit of 5 ppmv using acetone on PAA (sen-
sitivity of 0.2 Hz ppm−1). Although this detection limit was 
comparatively less than other studies and dependent on the gas 
delivery set up, it was achieved without pre-concentration, and 
further work would involve additional pre-concentration and 
reducing the synthesizer step size, where both would improve 
the sensitivity of detection. However, pre-concentration 
may reduce the potential real-time analysis capability of the 
sensor. The lack of selectivity may also impact the accuracy of 
acquired data. Future studies may use an enhanced gas delivery 
setup where VOCs are sampled in parallel or introduce water 
vapour (as breath is humid) when analysing VOCs to observe 
the effect of humidity on VOC differentiation. This can be achi-
leved by using synthetic air instead of N2 as CO2 can dissolve 
in humidity, which may cause reprodu-cibility issues for sensor 
polymers. In addition, as breath gas is near 100% humidity, a 
water purging or heated permeable membrane may be required 
to avoid saturating the sensor polymers. To add to this, humidi-
fied air is less dense than dry air which can explain humidity 
measurement issues in addition to polymer absorption.

It is important to note that sensor chips can hold an array 
of polymer coated micro-cantilevers (from tens to hundreds), 
each with a chosen polymer coating to interact with a targeted 
set of VOCs, generating a detailed ‘breathprint’, and can theor
etically be replaced by the operator with ease. Sensor chips 
can be tailored for different disease types or personalised 

Table 1.  Mean Δf  (±SD) and relative standard deviation (% RSD) for each polymer coated microcantilever.

VOC (ppmv)

PEI PAA PEG

Mean (±SD) %RSD Mean (±SD) %RSD Mean (±SD) %RSD

Intra-run repeatability (×10) Octane (1316) −2.7  ×  10−6 
(±8.6  ×  10−7)

−2.0  ×  10−6 
(±8.4  ×  10−7)

−2.4  ×  10−5 (±4.6  ×  10−6)

31.9 41.8 19.0

Inter-run reproducibility 
(×3)

Water (1303) −6.6  ×  10−6 
(±1.4  ×  10−6)

— −2.1  ×  10−6 (±6.3  ×  10−6)

21.1 29.3
Acetone 
(1568)

−3.6  ×  10−6 
(±3.7  ×  10−7)

−3.0  ×  10−6 
(±3.2  ×  10−7)

−4.0  ×  10−6 (±2.8  ×  10−7)

10.2 10.5 7.0
Ethanol 
(1158)

−3.4  ×  10−6 
(±6.9  ×  10−7)

−2.2  ×  10−6 
(±5.4  ×  10−7)

−5.0  ×  10−6 (±1.2  ×  10−6)

20.2 24.5 24.6
Octane (1316) −6.2  ×  10−6 

(±1.5  ×  10−6)
−5.0  ×  10−6 
(±9.6  ×  10−7)

−5.8  ×  10−6 (±2.0  ×  10−6)

23.6 19.1 34.3

Notes: Three replicates were used to calculate the RSD for each pair (VOC and polymer-coated microcantilever), and only octane was 
used to assess intra-run repeatability. Water vapour did not react with PAA at this concentration therefore no signal was extracted. 
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depending on patient characteristics. The advantage here is 
that a high volume of sensor chips ready for immediate use 
may be batch produced, keeping manufacturing costs low. In 
addition to increasing sample size, several variations and rep-
licates of a polymer coating would increase statistical signifi-
cance and fingerprinting analysis. Complex VOCs may then 
be used, where the aim may be to show differences between 
functional groups or molecular mass.

The sigmoid curve fitting model was used as this provided 
several features that could be interpreted. Further invest
igations may include evaluating curve features such as AP and 
SP, as these could be directly linked to interactions between 
VOCs and the polymer layer. Other curve features may be 
extracted such as a ‘desorption point’ where the Δf /f 0 returns 
to baseline. An exponential curve model may be used instead, 
where the coefficients describe the observation. Regarding 
real-time measurements, a delayed exponential fit would be 
more appropriate. In its current state, the system allows for 
further research on the optimal readout and data processing, 
and novel polymer coatings for highly selective chemical 
interactions.

Conclusions

In this study we have developed a MEMS-based device to mea-
sure VOCs in a gas sample. We show that with three polymer 
coated micro-cantilevers, we were able to differentiate between 
individual VOCs and between polar and non-polar mixtures. 
Micro-cantilever-derived resonant frequency fluctuations cor-
related with ambient temperature changes. Further work is 
required to develop sensor micro-cantilever reproducibility 
and validate long term measurement reprodu-cibility. Overall, 
we have demonstrated that a low cost, stand-alone micro-canti
lever sensor is capable of detecting VOCs, although further 
experiments are required to determine whether this device can 
be used for routine VOC sample analysis.
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