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Abstract—Emotion recognition during music listening 
using electroencephalogram (EEG) has gained more attention 
from researchers, recently.  Many studies focused on accuracy 
on one subject while subject-independent performance 
evaluation was still unclear. In this paper, the objective is to 
create an emotion recognition model that can be applied to 
multiple subjects. By adopting convolutional neural networks 
(CNNs), advantage could be gained from utilizing information 
from electrodes and time steps. Using CNNs also does not need 
feature extraction which might leave out other related but 
unobserved features. CNNs with three to seven convolutional 
layers were deployed in this research. We measured their 
performance with a binary classification task for 
compositions of emotions including arousal and valence. The 
results showed that our method captured EEG signal patterns 
from numerous subjects by 10-fold cross validation with 
81.54% and 86.87% accuracy from arousal and valence 
respectively. The method also showed a higher capability of 
generalization to unseen subjects than the previous method as 
can be observed from the results of leave-one-subject-out 
validation.  

Keywords—emotion, electroencephalogram, convolutional 
neural networks, music 

I. INTRODUCTION 
Nowadays, many researchers are interested in emotion 

recognition [1]. An electroencephalogram (EEG), which is 
adopted to track and record brainwave patterns, is one of the 
tools popularly used in this task. Numerous studies mainly 
focus on accuracy on one subject. However, another aspect 
that should be emphasized is the capability of generalization 
to different subjects. It will be more useful to have a model 
which is independent of any subjects. Creating a subject-
independent emotion recognition model is a challenging 
topic. There is still no standard approach. Yet, the 
performance was limited due to numerous reasons such as 
high disparity in EEG settings for each subject and 
fluctuation of brainwaves. 

There could be plentiful types of stimuli in order to 
evoke emotions such as videos [2], images [3], or even HCI 
games [4]. Nevertheless, music is one of the most frequently 
used tools in this research field because it is a powerful 
method that can arouse a wide diversity of emotions [5]. 
Moreover, incorporating music in EEG-based emotion 
recognition can enable several useful applications such as 
music therapy [6], music recommendation system [7], and 
multimedia tagging [8]. 

To classify emotions, many studies have demonstrated 
the use of multimodal approach which can significantly 
enhance accuracy of this quest. For instance López-Gil et al. 
incorporated eye-moving factor in the study [9]. 
Additionally, during measuring stress response while using 
a wheelchair [10], four sensors were used which included 
EEG, heart inter-beat interval (IBI), galvanic skin response 
(GSR) and stressor level lever. In addition, according to the 
study of Verma and Tiwary [11], assorted elements were 
accounted for identifying depression, such as EEG, GSR, 
blood volume pressure, respiration pattern, skin 
temperature, electromyogram (EMG) and electrooculogram 
(EOG). Musical features and EEG signals were combined 
in several studies as well [12, 13]. 

Approaching emotion recognition task using only EEG 
signals may gain lower accuracy, especially in subject-
independent fashion due to signals discrepancy across 
subjects. Nonetheless, the test cannot be intervened by other 
modalities. Previously, there have been several single-
modality ways based on feature extraction [14]. On the other 
hand, this step could be cumbersome for implementation. 
Features that are taken out also have to certainly be 
embedded in every individual’s brainwave. Additionally, it 
could not be guaranteed that all essential features have been 
addressed. All of these issues are possibly obstacles that can 
back performance. Finding alternative ways to improve 
classification performance is always a captivating topic. 

Recently, convolutional neural networks (CNNs) were 
introduced to EEG-based emotion recognition to obtain 
higher performance in subject-dependent task [15]. CNN 
utilizes information directly from different electrodes and 
time steps to predict emotions unlike other traditional 
methods where feature engineering is necessary due to the 
non-stationary and complexity of raw EEG signals, e.g., 
support vector machine (SVM). As stated previously, this 
according step cannot warrant that all relevant informative 
features will be extracted. Applying CNN with deep layers 
can learn more complex features with advantage of being 
one of the end-to-end models. Furthermore, the 
spatiotemporal patterns tend to be simultaneously learned. 
From these differences, CNN may have ability to capture 
patterns to gain higher performance. 

In this paper, we constructed a hypothesis that CNN may 
have tendency to create a subject-independent emotion 
recognition model based solely on EEG signals. Moreover, 
multiple network architectures were deployed to investigate 
their performance in this task. 
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Fig. 1. The two-dimensional emotion model.  

II. BACKGROUND

A systematic emotion representation is crucial for a 
computational emotion recognition. One of the most 
outstanding models is the emotion model proposed by 
Russell [16]. Its principle is that human emotions could be 
represented as points in a two-dimensional space of arousal 
and valence. The illustration can be seen from Fig. 1. 
Arousal is the vertical axis designating activation levels of 
emotions while valence is the horizontal axis indicating 
positivity or negativity of emotions. In this study, the 
emotion model was adopted to represent emotions. 
 From our review, music has been used for inducing 
emotions. According to Lin et al. [17], multilayer 
perceptron (MLP) and SVM were employed for recognizing 
four pre-labeled classes of emotions from EEG signals 
captured from subjects undergoing a music-listening task. 
Their results were evaluated by 10-fold cross validation 
achieving accuracy of 81.52 ± 3.71 for MLP and 82.29 ± 
3.06 for SVM. As noted in the study of Khalili and Moradi 
[18], pictures from IAPS were used as stimuli and emotions 
were categorized into three classes. The outcomes from five 
subjects using only EEG signals were 66.66% and 76.66% 
when correlation dimension was combined. One study [19] 
used deep learning network with covariate shift adaptation 
whereas another study employed music videos from the 
DEAP dataset [20] as stimuli. They measured with a leave-
one-out cross validation scheme on three levels of valence 
states and arousal states obtaining 53.42% and 52.05% 
accuracy. In the study of Lin et al. [13], SVM was used on 
leave-trial-out evaluation depending on individual’s dataset. 
Furthermore, in the research conducted by Thammasan et 
al. [12], time-varying characteristics of emotion during 
music listening were addressed resulting in both subject-
dependent and subject-independent. In this study, the same 
dataset was also employed. Comparison with this work can 
be found in the section beyond. 
 CNN has been used to recognize emotions obtained 
from the DEAP dataset [20] but it was evaluated separately 
on each subject [15] obtaining 77.98% and 72.98% accuracy 

1 https://docs.oracle.com/javase/7/docs/technotes/guides/sound/

on valence and arousal respectively. Additionally, 
performance of Long Short-Term Memory (LSTM) [21] 
and combination of CNN and Recurrent Neural Network 
(RNN) [22] were also investigated on the same dataset. 
They achieved average subject-dependent accuracy of 
85.65% and 85.45% respectively from LSTM model and 5-
fold accuracy of 74.12% and 72.06% from CNN and RNN 
for arousal and valence respectively. 

III. RESEARCH METHODOLOGY

A. Experimental Protocol 
The experimental data was collected from twelve 

healthy male students of Osaka University. The average age 
was 25.59 years and SD was 1.69 years. None of them had 
formal music education. Music collection was used as a 
source of emotion stimulation. Our collection comprised 40 
MIDI files with different instrument and tempo. Therefore, 
emotions induced by lyrics were abolished. Each subject 
was instructed to select 16 MIDI songs from 40 MIDI songs. 
Next, they were assigned to listen to the selected songs 
which were synthesized by the Java Sound API’s MIDI 
package1. Each song ended with a 16-second silent resting 
period in order to reduce any effect from the previous song. 
EEG signals were recorded at sampling rate of 250 Hz from 
twelve electrodes on a Waveguard EEG cap 2  placed in 
accordance with the 10-20 international system using Cz as 
a reference electrode. Twelve electrodes located near frontal 
lobe which is a significant part in emotion regulation [6] 
were picked out of total 21 electrodes, i.e., Fp1, Fp2, F3, F4, 
C3, C4, Fz, Pz, F7, F8, T3 and T4. The placement 
illustration is shown as Fig. 2. The impedance of all 
electrodes was less than 20 kΩ. EEG signals were passed to 
Polymate AP1532 amplifier and visualized using 
APMonitor. Both tools were developed by TEAC 
Corporation3 . The amplifier was set to include a 60-Hz 
notch filter. Thus, power line artifact was removed. During 
each session, all subjects were asked to close their eyes and 
stay still to avoid unrelated artifacts. After listening to all 
songs, each subject had to remove the EEG cap and start 

2 https://www.ant-neuro.com/products/waveguard_caps
3 https://www.teac.co.jp/int/

Fig. 2. The 10-20 system of electrode placement showing the selected 
electrodes. 
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annotating. The subject listened to the same songs and 
annotated by continuously clicking on a corresponding 
point in arousal-valence displayed on a screen. Arousal and 
valence were recorded independently. After all these 
processes, the collected data were passed to preprocessing 
step. 

B. EEG Preprocessing 
 A bandpass filter was applied to filter signals between 
0.5-60 Hz. EEGLAB [23], an open source environment for 
EEG processing under MATLAB, was utilized to remove 
distinct artifacts contaminating data based on independent 
component analysis (ICA) such as eye movement, muscle 
activity and noise. Then, we associated signals with emotion 
annotation via timestamps. 
 Next, mean and standard deviation from the signals of 
every electrode at every time step were calculated to 
perform feature scaling using standardization. For the sake 
of simplicity, emotion recognition was measured with a 
binary classification task for arousal and valence. Arousal 
values were separated into high and low classes while 
valence values were divided into positive and negative 
classes. Following previous preprocessing steps, EEG 
signals were recorded in a form of columns and rows which 
represent electrodes and time steps respectively. 
Consecutive time steps of EEG signals from twelve 
electrodes with the same valence and arousal classes were 
considered as a single block. Sample plots could be seen in 
Fig. 3. Blocks may have different sizes, so they were divided 
into the size of 55 × 12. If necessary, zero padding was 
added equally to particular sub blocks. 

C. Emotion Classification 
As mentioned earlier, our task was to measure emotion 

recognition with binary classification of arousal and valence 
classes. Deep CNNs were applied to recognize these values. 

CNNs with different number of layers ranging from three to 
seven layers were trained allowing the comparison of 
performance from each network architecture. Every model 
was designed to keep information of all electrodes although 
there were max pooling layers. For regularization, dropouts 
[24] were employed in every model. After detecting high 
level features from numerous convolutional layers, fully 
connected layers were attached at the end of each model. At 
this point, networks were separated into two parts which 
may independently predict arousal and valence classes. 
Detailed architecture models are shown in Table 1. 

During training, Adam optimizer [25] was also used to 
speed up the training. Cross-entropy loss was employed in 
order to adjust weights in the networks. We used the 10-fold 
cross validation method (10-fold CV) to investigate the 
networks potential on capturing wave patterns depending on 
different time steps and electrodes. Moreover, we also used 
leave-one-subject-out cross validation method (LOSO CV) 
to evaluate performance focusing on generalizing to unseen 
subject. Validation set was randomly selected from training 
sets of both evaluations. Importantly, the selected validation 
set was taken out of the training set. Once validation loss 
increased, training was terminated to avoid overfitting. 

Regarding a performance evaluation, emotion 
recognition accuracy was calculated by finding the 
percentage of the number of test instances that were 
classified correctly in the total number of test instances. This 
can be calculated by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 	𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁	× 	100	, 
(1) 

while TP is the number of true positives, TN is the number 
of true negatives, FP is the number of false positives and FN 
is the number of false negatives. 

Fig. 3. Sample plots of scaled signals from all 12 electrodes in a 12-second duration. 

Fp1 Fp2 F3 F4 

C3 C4 Fz Pz 

F7 F8 T4 T3 
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TABLE II. RESULTS FROM 10-FOLD CROSS VALIDATION 

#Conv 
Layers 

Accuracy (MCC) 
Arousal Valence 

3 77.97% (0.559440) 84.14% (0.682812) 

4 79.41% (0.588295) 85.24% (0.704820) 

5 80.91% (0.618231) 85.97% (0.719308) 

6 81.54% (0.630892) 86.87% (0.737470) 

7 80.59% (0.611720) 86.35% (0.727043) 

Fig. 4. MCC values of arousal and valence over number of convolutional 
layers on 10-fold cross validation method. 
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TABLE I.  NETWORK ARCHITECTURES 

Index Conv3 Conv4 Conv5 Conv6 Conv7 

1 Conv2D 12x12x32 Conv2D 12x12x16 Conv2D 12x12x16 Conv2D 12x12x16 Conv2D 12x12x16 

2 Conv2D 2x1x32 Conv2D 2x1x32 Conv2D 2x1x32 Conv2D 2x1x32 Conv2D 2x1x32 

3 MaxPooling 4x1 MaxPooling 2x1 Conv2D 2x1x64 Conv2D 2x1x64 Conv2D 2x1x64 

4 Conv2D 2x1x64 Conv2D 2x1x64 MaxPooling 2x1 MaxPooling 2x1 Conv2D 2x1x128 

5 Dropout 0.5 MaxPooling 2x1 Conv2D 2x1x128 Conv2D 2x1x128 Conv2D 2x1x256 

6 FC 128x1 FC 128x1 Conv2D 2x1x128 Conv2D 2x1x256 Conv2D 2x1x256 Conv 2x1x512 

7 Dropout 
0.5 

Dropout 
0.5 Dropout 0.25 Dropout 0.25 Conv2D 2x1x512 Conv2D 2x1x1024 

8 FC 2x1 FC 2x1 FC 128x1 FC 128x1 FC 128x1 FC 128x1 Dropout 0.25 MaxPooling 2x1 

9 Dropout 
0.5 

Dropout 
0.5 

Dropout 
0.5 

Dropout 
0.5 FC 128x1 FC 128x1 Dropout 0.25 

10 FC 2x1 FC 2x1 FC 2x1 FC 2x1 Dropout 
0.5 

Dropout 
0.5 FC 128x1 FC 128x1 

11 FC 2x1 FC 2x1 Dropout 
0.5 

Dropout 
0.5 

12 FC 2x1 FC 2x1 

Moreover, our self-reporting emotion annotation 
method might lead to data imbalance. Matthews Correlation 
Coefficient (MCC) [26] was also adopted. It reflects the 
performance including class imbalance factor. MCC can be 
calculated by 

𝑀𝐶𝐶 =	
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

5(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
(2) 

Equation (2) shown above uses the same abbreviations as 
(1). MCC ranges from -1 to 1. The maximal coefficient 
could imply 100% accuracy while the minimal coefficient 
could represent 0% accuracy. 
 This value could help accuracy report become more 
reliable since it reduces effects from class imbalance during 
the experiment. 

IV. RESULTS AND DISCUSSION

From 10-fold CV, the networks showed their potential 
in recognizing EEG signals directly from different 
electrodes and time steps to predict emotions with high 
accuracy. Among them, the model with six convolutional 
layers had the greatest performance. The model predicted 
arousal with the accuracy of 81.54% and MCC value of 
0.630892; at the same time, it achieved valence accuracy of 
86.87% and MCC value of 0.737470. Results are shown as 
Table. 2 and Fig. 4. 
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TABLE III. RESULTS FROM LEAVE-ONE-SUBJECT-OUT 
VALIDATION METHOD 

#Conv 
Layers 

Accuracy (MCC) 
Arousal Valence 

3 50.15% (0.002999) 64.86% (0.297071) 

4 51.82% (0.036507) 68.75% (0.374912) 

5 52.00% (0.036507) 61.59% (0.374912) 

6 56.22% (0.124365) 65.15% (0.303020) 

7 50.81% (0.016220) 68.54% (0.370895) 

Fig. 5. MCC values of arousal and valence over number of convolutional 
layers on leave-one-subject-out validation method. 
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TABLE IV.  CNNS AND SVM LEAVE-ONE-SUBJECT-OUT RESULTS 
COMPARISON 

Architecture 
Accuracy (MCC) 

Arousal Valence 

SVM 45.17% (-) 55.47% (-) 

CNN 4 Conv Layers 51.82% (0.036507) 68.75% (0.374912) 

CNN 6 Conv Layers 56.22% (0.124365) 65.15% (0.303020) 

As reported by LOSO CV, their performance dropped 
since they were tested with an unseen subject. Regarding 
arousal accuracy, the model with six convolutional layers 
gained the highest performance with 56.22% accuracy and 
MCC value of 0.124365. For valence, the model with four 
convolutional layers had the highest accuracy of 68.75% 
and MCC value of 0.374912. Results of our LOSO CV are 
depicted in Table. 3 and Fig. 5. 

Compared to the supplemental file of the previous study 
using SVM on the same dataset [12], all of our models 
demonstrated superior performance. As reported by this 
research, LOSO CV using only EEG signals had highest 
arousal accuracy of 45.17% and valence accuracy of 
55.47%. Although we counted instances differently, the 
trends could be obviously observed. For clarity, our models 
with four and six convolutional layers were selected as 
representatives of the best valence and arousal results, 
respectively, to be illustrated alongside SVM results in 
Table 4. 

According to our obtained results, valence recognition 
gained higher accuracy in both validation methods. This 
could be implied that valence is more observable than 
arousal from EEG signals during music listening. 

Our proposed methodology employed CNN that 
analyzed data from different electrodes and from different 
time steps to see signal dynamics through time, and thus 
successfully improved the generalization of the 
classification model to unseen subjects. Additionally, 
adding more convolutional layers could possibly be helpful 
to 10-fold CV since the networks might be more capable of 
detecting features in higher dimensions. On the other hand, 
this was not likely to benefit the LOSO CV since the test set 
was less similar to the training set. Under the nonstationary 
characteristic of EEG signals, obtaining elevated 
performance has shown progress in this field. Even though 
computation power has increased compared to our previous 
work [12], accuracy of classifiers from this study have 
clearly shown improvement.  However, there are still 
opportunities for further enhancements since evaluation 
from 10-fold CV had significantly higher performance. This 
suggests that emotion classification model can achieve 
accuracy as high as results from 10-fold CV if the model is 
completely independent to subjects. Therefore, future work 
should focus on increasing the number and diversity of 
subjects, e.g., including female subjects, collecting more 
samples for training and testing models. In addition, 
thoroughly examining relations between subject’s 
characteristics and his brainwave patterns is also 
encouraged for further studies. Besides, furtherance of EEG 
recording device could reasonably increase this quest’s 
performance and decrease inter-subject variation.                

V. CONCLUSION 
 In this work, we have presented a study of subject-
independent emotion recognition during music listening 
based on EEG using deep CNNs according to the hypothesis 
that CNNs could recognize patterns from EEG by having 
advantage from using data from electrodes and time steps 
with automatic feature extraction. According to the 
experiment, EEG signals and emotion annotation on 
arousal-valence space were collected. CNNs with distinct 
architectures were employed to classify arousal and valence 
independently using 10-fold CV and LOSO CV. The results 
showed that all of our models were superior to the old 
methodology  

 

 
 

which used SVM classifier under fluctuation constraint 
from EEG signals. Using CNN with information from 
different electrodes and time steps could gain higher 
performance. Nevertheless, there are still rooms for 
improvement since results from 10-fold CV had 
significantly higher performance as all subjects were seen. 
Obtaining more diverse and bigger datasets along with 
deliberately examining relation between subject’s 
characteristics and brainwave will probably achieve higher 
accuracy. 
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