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ABSTRACT
This study proposes an exact model for timetable recovery after disturbances. Our model is ap-
plicable to high frequency services that operate under frequencies of at least 5 trips per hour. The
objective of our model is the minimization of the deviation between the actual headways and their
planned (target) values - a typical objective in high frequency services that indicates the service
regularity. In the formulation of the timetable recovery model, we focus on metro lines with sta-
ble dwell times at stations that are not sensitive to changes in passenger demand. The resulting
model is nonlinear and non-smooth; thus, it cannot be solved to optimality. To rectify this, we pro-
pose a model reformulation using slack variables. The reformulated program is equivalent to the
original one and can be solved to global optimality in real time with exact optimization methods
for quadratic programming. With our model, we investigate how many upstream trips should be
rescheduled to respond to a service disturbance using real data from the red metro line in Washing-
ton D.C. Our experiments demonstrate an improvement potential of the service regularity by up to
30% if we reschedule the five upstream trips of a disrupted train.

Keywords: rescheduling; high-frequency services; disturbance management; metro recovery;
regularity-based services
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INTRODUCTION
The planning of metro lines consists of the strategic stage (determination of stops and routes),
tactical stage (frequency settings, timetable design, crew and vehicle schedules), and the opera-
tional stage (timetable rescheduling, holding, short-turning/stop-skipping). Metro line operators in
dense urban areas operate under regularity-based schemes that aim at maintaining the headways
among successive trips Zhu and Goverde (1). To achieve this, timetables are developed consid-
ering robustness to travel time variations and are frequently rescheduled to adapt to operational
disturbances (i.e., unexpected travel or dwell times). The real-time rescheduling of timetables is
classified under the category of disturbance management and differs from disruption management
which deals with large incidents, like station closures, and requires further control measures such
as the cancellation of trips, re-routing or short-turnings Jespersen-Groth et al., Cacchiani et al.
(2, 3).

In Zilko et al. (4) and Ghaemi et al. (5), methods for the reliable disruption length estimation
were proposed to reduce the negative impact inflicted by a disruption. Zhu and Goverde (1) pro-
posed a mixed integer linear programming (MILP) model that allows to skip/add stops or perform
short-turnings when a disruption occurs. Other studies propose contingency plans based on the
original timetable to deal with disruptions, e.g. Chu and Oetting (6). Since extensive disruptions
and disruption management are not the primary focus of this work, we refer the interested reader
to the comprehensive literature study of Ghaemi et al. (7) on disruption management.

In this study, we focus on the problem of disturbance management to produce an efficient
model that can react to disturbances and re-time the dispatching times of trips in real-time. So-
lutions to this problem commonly adopt local re-timing to adjust the timetable, see D’Ariano
et al., Corman et al., Meng and Zhou (8, 9, 10). D’Ariano et al. (8) aimed at improving the punc-
tuality of trains by routing and sequencing trains in an iterative manner - first, an optimal train
sequencing was produced for the given train routes, and then this solution was improved by lo-
cally rerouting some trains. Their solution method was based on local search and Branch and
Bound (B&B) given the discrete nature of the problem. This work was extended in Corman et al.
(9) incorporating effective rescheduling algorithms and local rerouting strategies in a Tabu search
scheme. Corman et al. (9) alternated between a fast heuristic and a truncated B&B algorithm for
computing train schedules within a short computation time, without guaranteeing the convergence
to a globally optimal solution.

Pellegrini et al. (11) aimed at minimizing delays after an unexpected disturbance perturbs the
operations by seeking the best train routing and scheduling. The proposed model was a mixed
integer linear program, representing the infrastructure with fine granularity. Solving the model
of Pellegrini et al. (11) to global optimality is not feasible in most of the cases, and the reported
computational costs are typically beyond one and a half minute, even with the use of heuristics.

Most relevant to our work, Krasemann (12) focuses solely on the timetable rescheduling after
a disturbance. In Krasemann (12), the rescheduling problem was not solved to global optimality.
Instead, a greedy heuristic was introduced to ensure that a (hopefully) good-enough solution is
obtained within a short time (within 30 seconds). To this end, Krasemann (12) introduced directly a
heuristic solution method without modeling the timetable rescheduling problem as a mathematical
program.

Apart from the works on disturbances at rail operations, several algorithms for the recovery
of timetables have been developed for bus operations, which are inherently prone to disturbances
given that they typically operate in mixed-traffic environments, e.g. Gkiotsalitis and Cats, Gkiot-



gkiotsalitis et al. 3

salitis et al., Gkiotsalitis and Van Berkum (13, 14, 15). Bus operators apply dynamic control strate-
gies such as stop-skipping (Sun and Hickman, Liu et al., Chen et al., Gkiotsalitis (16, 17, 18, 19)),
bus holding (Newell, Hernández et al., Wu et al., Gavriilidou and Cats, Gkiotsalitis and Cats
(20, 21, 22, 23, 24)) or rescheduling (Adamski and Turnau, Strathman et al. (25, 26)) to improve
the service regularity. Nevertheless, rescheduling methods typically resort to heuristics, such as
evolutionary optimization approaches, to obtain a solution in real-time given the computational
complexity of the problem Gkiotsalitis and Alesiani (27).

Unlike past works that propose complex mixed integer programs that cannot be easily solved
in real-time or heuristics that do not return a globally optimal solution, in this study we propose
a novel quadratic programming formulation which is proved to be convex and can reschedule a
timetable every time a disturbance occurs. The contributions of our work to the state of the art are:

• a novel mathematical program for train rescheduling that can be solved in real-time;

• problem reformulation and a solution approach that guarantees convergence towards a
globally optimal solution.

The remainder of this study is structured as follows: in section 2, we formulate our problem
and we introduce the objectives and constraints of our main mathematical model. The mathemati-
cal model is presented in section 3 and is reformulated to ensure its feasibility after relaxing its soft
constraints. This mathematical model is non-smooth and its objective function is not differentiable
at every point of its domain - prohibiting the application of an exact solution method. To rectify
this, in section 4 we propose a model reformulation with the introduction of slack variables. The
reformulated program is proved to have a globally optimal solution and can be easily solved with
exact optimization methods. A detailed demonstration of our model in a toy network is presented
in section 5. This demonstration facilitates the reproduction of our work. In addition, the appli-
cation of our approach to the red metro line in Washington D.C. is presented in the same section
demonstrating that we can achieve a significant benefit if we reschedule the dispatching times of up
to 5 upstream trips of a train that exhibits a disturbance. Finally, section 6 provides the concluding
remarks and discusses the future direction.

PROBLEM DEFINITION
Trip re-indexing after a disturbance
We consider a metro line operating in a loop that serves a set of ordered stations S = 〈1,2, ...,s, ...〉
with 1 being the dispatching station (see Fig.1). The ordered set of daily trips operating in this line
is N. When the operations of a trip m∈N are disturbed, the set of its following up trips (henceforth
referred as upstream trips) is Nm = {m+1,m+2, ...} with Nm ⊂ N. To alleviate the effects of the
disturbance, the dispatching times of all trips j ∈ Nm are modified following a headway-based
optimization process.
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FIGURE 1 : Illustration of loop-formed metro line

The choice of the length of set Nm has significant practical implications. For instance, if
Nm = {m+1,m+2, ...} contains all remaining daily trips the computational cost of rescheduling
their dispatching times increases. In addition to the increase of the computational costs, modifying
the dispatching times of trips that are expected to be dispatched in the far future might be proved
irrelevant if further disturbances occur in the near future and we need to re-optimize. For this
reason, the sensitivity of the solution performance to the number of rescheduled upstream trips,
Nm, is investigated in our case study.

Let us re-index set Nm = {m+ 1,m+ 2, ...} into Nm = {0,1, ...,n} where trip 0 has already
been dispatched and exhibits a disturbance, and n the last trip in Nm. Thus, trips 0 and n+ 1 are
the "boundaries" of our problem because their dispatching times cannot be modified.

Let δ j ∈ R≥0 denote the originally planned dispatching time of each trip j ∈ {1,2, ...,n} (the
time reported at the timetable). Then, δ1 < δ2 < ... < δ j < ... < δn. The decision variable is an
n-valued vector x = {x1,x2, ...,xn} which expresses the dispatching time modification (offset) of
each trip j ∈ Nm, where x ∈ Rn. Thus, the adjusted dispatching times of trips {1,2, ...,n} are
{δ1 + x1,δ2 + x2, ...,δn + xn}.

Before introducing the vehicle motion law that determines the train trajectories, we list the
main assumptions from past literature that also apply to our study:

1. Dwell times are pre-determined at the station level and are not influenced by the passen-
ger demand due to service provider policies or opening/closing the doors automatically.

2. Service supply is determined at the frequency settings stage and ensures that the passen-
ger demand can be accommodated even at the maximum load point Marguier, Lin and
Wilson, Eberlein et al., Daganzo (28, 29, 30, 31). That is, dispatching time changes will
not lead to overcrowding because the service supply can accommodate the demand.

Vehicle trajectories
With assumptions 1-2, we can outline a set of rules governing the vehicle movements. For this, we
briefly introduce the notation in Table 1.
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Sets
S = {1, ...,s, ...} ordered set of consecutive stations;
Nm = {1,2, ...,n} ordered set of future trips under consideration;

Indices
j index of vehicles;
s index of stations;

Parameters
hmin,hmax Minimum and maximum headways (agency’s requirements) between two

successive dispatches from the first station
β j latest possible dispatching time of any trip j ∈ Nm to avoid schedule sliding

and/or disrupting crew schedules
π j the earliest possible dispatching time of any trip j ∈ Nm to ensure vehicle

circulation
δ j originally planned dispatching time of trip j ∈ Nm

h∗js scheduled (target) headway of trip j ∈ Nm at station s ∈ {2,3, ..., |S|−1}
t j,s expected inter-station travel time of trip j ∈ Nm from station s to station s+1
k j,s pre-determined dwell time of trip j ∈ Nm at station s ∈ {2,3, ..., |S|}
ā0s the realized arrival times of trip 0 at stations s = {2,3, ..., |S|}
δ̄0 the realized dispatching time of trip 0

Decision Variables
{x1, ...,xn} the dispatching time offsets of trips j ∈ {1,2, ...,n} from δ j;

Variables
a j,s arrival time of trip j at station s, where s ∈ {2,3, ..., |S|}
h js headway between trips j and j−1 at station s.

TABLE 1 : Nomenclature

The expected arrival time a j,s of a trip j ∈ {1,2, ...,n} at station s ∈ {2,3, ..., |S|} is

a j,s := (δ j + x j)+
s−1

∑
φ=1

τ j,φ +
s−1

∑
φ=2

k j,φ (1)

where δ j is the planned dispatching time, x j the dispatching offset, τ j,φ the travel time from
station φ to φ + 1 and k j,φ the dwell time at station φ . In addition, ∑

s−1
φ=1 τ j,φ is the total travel

time from the first station until station s and ∑
s−1
φ=2 k j,φ the accumulated dwell times from stations

2,3, ...,s−1. Note that the dwell times are aggregated starting from station 2.
From Eq.(1), the arrival time of each trip j ∈ Nm at each station s varies according to the

decision variable values of x j. Therefore, Eq.(1) can be succinctly written as:

a j,s := x j + c j,s, ∀ j ∈ Nm,∀s ∈ {2,3, ..., |S|} (2)
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where

c j,s := δ j +
s−1

∑
φ=1

τ j,φ +
s−1

∑
φ=2

k j,φ , ∀ j ∈ Nm,∀s ∈ {2,3, ..., |S|} (3)

The time headway h j,s of two successive trips j−1 and j ∈Nm \{1} at the time of their arrival
at station s ∈ S\{1} is defined as

h j,s := a j,s−a j−1,s = (x j + c j,s)− (x j−1− c j−1,s), ∀ j ∈ {2,3, ...,n},∀s ∈ {2,3, ..., |S|} (4)

Boundary conditions
Eq.(1) and (4) are interrelated and express the dynamic equations of the movement of trains. To
apply them in practice, initial conditions are required. The first initial condition is that the arrival
times ā0,s of trip 0 at stations s ∈ {2, ..., |S|} are not affected by the decision variables since trip 0
has already been dispatched.

Incorporating this initial condition, the time headways between trip 1 and its preceding one,
0, are:

h1,s := x j + c j,s− ā0,s ,∀ s ∈ {2,3, ..., |S|} (5)

Thus, Eq.(5) links the time headways between trip 1 and 0 with the dispatching time offset of
trip 1, x1.

Constraints
A first constraint is imposed by the latest possible dispatching time of a trip. While some works
compute the vehicle and crew schedules together with the departure times of trips Walker et al.
(32), most works treat them separately Krasemann (12). Therefore, it is not practical to delay
the dispatching time of a trip further than a certain threshold because that would lead to schedule
sliding. If β j is that pre-planned threshold, then

δ j + x j ≤ β j, ∀ j ∈ Nm (6)

Additionally, agencies have specific requirements on the minimum and maximum allowable
dispatching headway, hmin,hmax, to ensure a minimum level of service Ceder (33). This constraint
can be expressed as:

hmin ≤ (δ j + x j)− (δ j−1 + x j−1)≤ hmax ∀ j ∈ {2,3, ...,n} (7)

and, in the boundary case where j = 1,

hmin ≤ (δ j + x j)− δ̄0 ≤ hmax (8)

where δ̄0 is the realized dispatching time of trip 0.
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Lastly, to ensure the circulation of vehicles, each trip j should depart after time π j which is
the time that the vehicle and driver assigned to perform trip j have completed their previous trip
and are ready to start trip j. The vehicle circulation constraint is modeled as:

δ j + x j ≥ π j ∀ j ∈ {1,2,3, ...,n} (9)

Objective Function
In high-frequency services, each one of the trips {1,2, ...,n} has a target headway h∗j,s with its lead-
ing train at any station s ∈ {2, ..., |S|−1} Gkiotsalitis et al. (34). The target headway is determined
at the tactical planning stage and should be maintained during the daily operations Trompet et al.
(35).

When striving to maintain the target (ideal) headways, the objective is to minimize the head-
way variance around the target values. To achieve that, the optimal dispatching offset x= {x1,x2, ...,xn}
should be the solution of:

min
h

|S|−1

∑
s=2

n

∑
j=1

(
h j,s−h∗j,s

)2 (10)

which expresses the variance of headways around their target values which, in the ideal case,
can be equal to zero.

Eq.(10) can be equivalently expressed as:

min
x

f (x) :=
|S|−1

∑
s=2

(
(x1 + c1,s)− ā0,s−h∗1,s

)2
+

|S|−1

∑
s=2

n

∑
j=2

(
(x j + c j,s)− (x j−1 + c j−1,s)−h∗j,s

)2
(11)
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MATHEMATICAL PROGRAM
Combining the expected trajectories of future trips and the objective function yields our main
mathematical program which can be written as:

(Q) : min
x

|S|−1

∑
s=2

(
(x1 + c1,s)− ā0,s−h∗1,s

)2
+
|S|−1

∑
s=2

n

∑
j=2

(
(x j + c j,s)− (x j−1 + c j−1,s)−h∗j,s

)2

s.t. hmin ≤ (δ j + x j)− (δ j−1 + x j−1),∀ j ∈ {2,3, ...,n}
(δ j + x j)− (δ j−1 + x j−1)≤ hmax,∀ j ∈ {2,3, ...,n}
hmin ≤ (δ1 + x1)− δ̄0

(δ1 + x1)− δ̄0 ≤ hmax

(δ j + x j)≤ β j, ∀ j ∈ {1,2, ...,n}
(δ j + x j)≥ π j, ∀ j ∈ {1,2, ...,n}

c j,s = δ j +
s−1

∑
φ=1

τ j,φ +
s−1

∑
φ=2

k j,φ , ∀ j ∈ Nm,∀s ∈ {2,3, ..., |S|}

x j ∈ R, ∀ j ∈ {1,2, ...,n}

(12)

Infeasibility and hard/soft constraints
Program (Q) can be succinctly written as:

(Q) : min
x

f (x)

s.t. x ∈F := {x | x satisfy Eq.(3),(6)-(9),(11)}
(13)

where F is the feasible set. Note that from the above constraints, the equality constraints of
Eq.(3),(11) should be always satisfied because they are physical (hard) constraints that set the val-
ues of arrival times, headways and the objective function. Additionally, the circulation inequality
constraints of Eq.(9) are also hard constraints because a trip cannot start if a vehicle/driver is not
yet available. In contrast, the inequality constraints of Eq.(6),(7),(8) cannot be always satisfied at
the same time and some of them should be prioritized in the expense of others. Indeed, program
(Q) might not have a feasible solution for some values of the inequality constraints of Eq.(6),(7),(8)
yielding an empty feasibility set F (refer to Lemma .1 in the Appendix).

Therefore, we relax the inequality constraints of schedule sliding presented in Eq.(6) which
become soft constraints and are allowed to be violated under certain circumstances. Soft con-
straints are typically treated as penalty terms and are added to the objective function (see Li and
Manya (36)). In this way, program (Q) that, under certain circumstances has no feasible solution,
can be transformed to program (Q̄) by relaxing the inequality constraints of Eq.(6) and adding a
violation penalty to the objective function. This approach will ensure that the constraints of Eq.(6)
are satisfied when possible, or violated as little as possible when there is no feasible solution.
To this end, their relative importance is weighted by introducing a very large number M ∈ R≥0
which ensures that the satisfaction of the schedule sliding constraints prioritized over the objective
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function:

(Q̄) : min
x

f (x)+ ∑
j∈Nm

M max(δ j + x j−β j,0)

s.t. x ∈F := {x | x satisfy Eq.(3),(7)-(9),(11)}
(14)

The penalty term M max(δ j +x j−β j,0) ensures that the soft constraint δ j +x j ≤ β j is priori-
tized over f (x). Indeed, if δ j + x j ≤ β j for some x j, then x j does not add any penalty to the objec-
tive function since M max(δ j +x j−β j,0) = 0. In reverse, when δ j +x j > β j for some x j, then the
penalty term penalizes the objective function by a very large number M max(δ j + x j−β j) and di-
rects the solution search towards another solution that reduces the value of M max(δ j +x j−β j,0).

Program Q̄ is a nonlinear programming (NLP) problem. Additionally, our new objective is
a non-smooth function because of the non-smooth term ∑

j∈Nm

M max(δ j + x j − β j,0); hence, the

objective function of Q̄ is not differentiable at every point of its domain. This results in a non-
linear, non-convex function that cannot be solved to global optimality with exact optimization
methods. As a remedy, we propose a reformulation to cast the problem as an easier-to-solve
quadratic program.

REFORMULATION TO A QUADRATIC PROGRAM AND EXACT SOLUTION
The "max" term of ∑

j∈Nm

M max(δ j + x j−β j,0) makes the objective function of program Q̄ non-

smooth. To rectify this, we implement the "max" penalty by introducing a new set of vari-
ables ν j, j ∈ Nm that, due to their bounds and the direction of optimization, will take the value

∑
j∈Nm

M max(δ j + x j−β j,0) at the solution. The reformulated program is:

(Q̃) : min
x,ν

f (x)+ ∑
j∈Nm

Mν j

s.t. x ∈F := {x | x satisfy Eq.(3),(7)-(9),(11)}
ν j ≥ 0, ∀ j ∈ Nm

ν j ≥ δ j + x j−β j, ∀ j ∈ Nm

(15)

which is reduced to a quadratic program (QP). As shown in the Appendix (Theorem .2), pro-
gram (Q̃) is strictly convex and can be easily solved to global optimality since any locally optimal
solution returned by a quadratic programming solver is also a globally optimal one.

NUMERICAL EXPERIMENTS
Demonstration for a toy network
To demonstrate the application of our mathematical program (Q̃) on timetable recovery, we in-
troduce a small-scale idealized scenario (toy scenario). Trip 0 has already been dispatched at
time d̄0 = 0 s and has exhibited a disturbance. Its arrival times in our 4-stop toy network are
a0,2 = 900 s and a0,3 = 1600 s. Note that we only report the arrival times at the 2nd and the 3rd
station because the service regularity in f (x) is not measured at the first/last station (Fig.2).
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FIGURE 2 : Toy metro line

To proceed with the timetable recovery, we are allowed to modify the dispatching times of its
three following trips (namely 1, 2 and 3). The originally planned dispatching times of trips 1, 2
and 3 are: δ1 = 600 s, δ2 = 1200 s and δ3 = 1800 s.

The expected inter-station travel times of trips 1, 2 and 3 are:

(τ1,1,τ1,2,τ1,3) = (900,720,800) s
(τ2,1,τ2,2,τ2,3) = (920,700,800) s
(τ3,1,τ3,2,τ3,3) = (880,640,800) s

The target time headways are 10 minutes, thus h∗j,s = 600 s, ∀ j ∈ {1,2,3}, ∀s ∈ {2,3}. In
addition, the minimum and maximum dispatching headways are (hmin,hmax) = (300 s, 900 s). The
pre-determined times a metro train remains at the station for boardings and alightings is k j,s = 30
s ∀ j ∈ {1,2,3},∀s ∈ {2,3}. Due to the vehicle circulation, the earliest possible dispatching times
of trips 1,2,3 are (π1,π2,π3) = (600 s,1220 s,1820 s). Finally, to avoid schedule sliding, the latest
dispatching times of our trips are (β1,β2,β3) = (660,1260,1860) s.

Our mathematical model (Q̃) is programmed in Python 3.7 and the experimental tests are
performed in a general-purpose computer with Intel Core i7-455 7700HQ CPU @ 2.80GHz and 16
GB RAM. To solve our model to global optimality, we use Gurobi. To facilitate the reproduction of
our work, our source code is publicly released at Gkiotsalitis (37). Starting from an initial solution
guess, Gurobi converged to a globally optimal solution in 10 iterations (see Table 2).
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TABLE 2 : Iterations until convergence and computational cost of obtaining the optimal dispatch-
ing times with Gurobi

Iteration f̃ (x,ν) Computational Time

0 1.70E+09 0 s
1 7.79E+07 0 s
2 1.48E+07 0 s
3 1.41E+05 0 s
4 3.71E+04 0 s
5 1.92E+04 0 s
6 1.04E+04 0 s
7 8.23E+03 0 s
8 8.08E+03 0 s
9 8.08E+03 0 s

10 8.08E+03 0 s

Value of global minimum: 8.08E+03

The globally optimal solution is:

x∗ = {x1 = 2.5,x2 = 20,x3 = 60} s

ν
∗ = {ν1 = 0,ν2 = 0,ν3 = 0} s

In Fig.3 we show how this solution is expected to improve the squared headway deviations at
stations 2 and 3 from their target values. Fig.3 demonstrates the theoretical improvement in terms
of service regularity compared to the do-nothing case where rescheduling is not applied.
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FIGURE 3 : Squared deviation between the actual and target headways at stations 2 and 3 when
our rescheduling solution is applied and when it is not (do-nothing case).

We finally note that if we do not consider the schedule sliding constraints (that is, β j =
+∞,∀ j ∈ {1,2,3}), the globally optimal solution is

x∗ = {x1 = 2.5,x2 = 20,x3 = 90} s
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ν
∗ = {ν1 = 0,ν2 = 0,ν3 = 0} s

with a solution performance of 6.28E+03. Hence, if we had additional resources (i.e., trains)
to perform the next trips when our dispatching time adjustments result in schedule sliding, our
service regularity would have been improved by 22.3%.

Finally, to demonstrate how our mathematical model treats the case where schedule sliding
cannot be avoided, let us consider the same scenario with (β1,β2,β3) = (600,1200,1800) s. Obvi-
ously, for such values of β j the schedule will slide because the earliest possible dispatching times
of trips to ensure vehicle circulation are (π1,π2,π3) = (600,1220,1820) s. Hence, our program
returns a globally optimal solution that slides the schedule as little as possible:

x∗ = {x1 = 0,x2 = 20,x3 = 20} s

ν
∗ = {ν1 = 0,ν2 = 20,ν3 = 20} s

with a performance of 4.02E+06. Note that the schedule sliding is indicated by the positive
values of ν2,ν3 which are always equal to zero when a feasible solution of (Q) exists.

Case study and sensitivity analysis
Our case study is the red line in Washington D.C. The red line is a rapid transit line of the Washing-
ton Metro system, consisting of 27 stations in Montgomery County, Maryland, and Washington,
D.C., in the United States. It is a primary line through downtown Washington and forms a long,
narrow "U", capped by its terminal stations at Shady Grove and Glenmont. Its topology in the
metro network is presented in Fig.4.
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FIGURE 4 : Red line in the Washington Metro route diagram. Source: en.wikipedia.org/wiki/Red_
Line_(Washington_Metro)#/media/File:Washington_Metro_diagram_sb.svg

Our data covers the period from 11/3/2018 until 29/3/2018 and includes the arrival time and
departure time from each station together with the time period between opening and closing the
doors. From this data, we can easily derive the dwell time at each station, which exhibits a slight
variation from the median as presented in Fig.5. Fig.5 presents the observed dwell times in this
time period using the Tukey boxplot convention McGill et al. (38). The upper and lower boundaries
of the boxes indicate the upper and lower quartiles (i.e. 75th and 25th percentiles denoted as Q3
and Q1, respectively). The black lines vertical to the boxes (whiskers) show the maximum and
minimal values that are not outliers. The whiskers are determined by plotting the lowest datum
still within 1.5 the interquartile range (IQR) Q3-Q1 of the lower quartile, and the highest datum
still within 1.5 IQR.

en.wikipedia.org/wiki/Red_Line_(Washington_Metro)#/media/File:Washington_Metro_diagram_sb.svg
en.wikipedia.org/wiki/Red_Line_(Washington_Metro)#/media/File:Washington_Metro_diagram_sb.svg
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FIGURE 5 : Tukey boxplot of observed dwell times at all stations from 11/3/2018 until 29/3/2018.

From Fig.5 one can note that the median dwell time at all stations is 18 s and the interquartile
range between the 25th and the 75th percentile is only 6 s. Additionally, the mean and standard
deviation of our observed dwell times is 18.38 s and 4.16 s, respectively resulting in a coefficient
of variation (CV) equal to 0.22. Therefore, the red metro line is suitable for the application of our
model because of its relatively stable dwell times.

The target headways of the red metro line at each station vary between peak and off-peak
hours and between weekdays and weekends. Table 3 summarizes the expected headways which
the operator strives to meet to perform a regular service.

TABLE 3 : Target headways at different days of the week and peak/off-peak hours

Weekdays
AM Rush Midday PM Rush Evening Late Night

(5am-9:30am) (9:30am-3pm) (3pm-7pm) (7pm-9:30pm) (9:30pm-close)

4 min 6 min 4 min 10 min 15 min

Saturday Sunday
Daytime Late Night Evening Late Night

(7am-9:30pm) (9:30pm-close) (8am-9:30pm) (9:30pm-close)

6 min 15 min 8 min 15 min

In our experiments, we focus on the PM rush hours of one weekday where the target headways
at the metro stations are 4 minutes. To investigate the improvement potential of our method, we
compare the current regularity of services, as is obtained by the actual data, and the regularity
when using our dispatching time modifications. Our day of interest is the 11th of March 2018, and
our time period of interest is 3pm-7pm.

In addition, we perform a sensitivity analysis of the effect of the number of trips, Nm, that we
are allowed to modify their dispatching times after a disturbance to the service regularity. On one
hand, a limited number of dispatching time modifications is likely to be sufficient to smoothen the
operations after a disturbance. On the other hand, if we are allowed to modify the dispatching time
of a single trip only (i.e., the trip that follows the train that exhibits a disturbance), the positive
impact on the service regularity might be limited. In our experiments, we use realistic travel times
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and dwell times from the actual data. Our assumption is that if we modify the dispatching time of
a trip, its travel times between stations remain unchanged.

In our experiments, all trips that operate from 3pm until 7pm depart according to their actual
departure times. Those dispatching times are allowed to be modified by our model to improve the
service regularity when we reschedule from 1 trip at a time (Nm = {1}) to 12 trips at a time (Nm =
{1,2, ...,12}). That is to say, we perform 12 different experiments to investigate the importance of
considering fewer or more "upstream" trips for which we modify their dispatching times with our
model. The results from this analysis are presented in Fig.6.

1 2 3 4 5 6 7 8 9 10 11 12
number of optimized trips after each disruption, Nm

3.25

3.50

3.75

4.00

4.25
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FIGURE 6 : Improvement of the service regularity expressed by f (x) between 3pm and 7pm on
the 11th of March when applying our model after each disturbance to upstream trips Nm, ranging
from 1 to 12.

From Fig.6 one can note that if we only modify the dispatching time of the following trip
when a disturbance occurs (Nm = 1), the improvement of the service regularity compared to the
actual operations (do-nothing case) is ≈ 10.5%. If we modify the dispatching times of more up-
stream trips, Nm, our performance improvement in terms of regularity increases. If we change the
dispatching times of 5 upstream trips, Nm = {1,2,3,4,5}, every time a disturbance occurs, the
potential benefit rises to ≈ 30%. After that, further regularity improvements are marginal.

CONCLUDING REMARKS
In this study, we proposed a timetable recovery model that modifies the dispatching times of fol-
lowing trips after disturbances. In pursuit of a model that can be solved exactly and applied in real
time, we studied the timetabling problem and introduced a quadratic model reformulation with
penalty terms. This reformulated model was then proved to be solved to global optimality.

With this model, we investigated how many trips, Nm, should we consider for modifying
their dispatching times after a disturbance occurs. This is instrumental in the understanding of the
practical use of the model because it might not be prudent to reschedule the dispatching times of
all daily trips every time a disturbance occurs. This investigation was performed in a case study
using actual data from the red metro line in Washington D.C. From our experimentation with the
use of realistic data, we showed that one can consider the dispatching time modification of up to
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5 upstream trips to smoothen the headways of a metro line after a disturbance. If more trips are
considered, the benefits are marginal and do not justify the inherent disutility of implementing such
changes.

To ensure that this work is reproduced appropriately, we hereby list its main limitations:

• Our approach is suitable for correcting the effects of mild disturbances to the service
regularity by modifying the dispatching times of upstream trips. In the case of severe
disruptions, metro operators should consider changes in the planned service provision
(i.e. rescheduling, trip cancellation, short-turning, expressing);

• Our approach is designed for optimizing regularity-based services that operate in high-
frequencies (more than 5 trips per hour). In the case of low frequencies, the objec-
tive function of our problem is no longer valid because in that case the objective is
punctuality-oriented;

• Our approach is suitable in the context where the dwell times at stations are relatively
stable and do not vary significantly with passenger demand changes. This makes our
approach particularly suitable for automated public transport systems where the process
of opening/closing the door channels is automated.

In future research, some of the limitations of this study can be lifted. The most prominent one
is the application to services with stable dwell times that do not deviate significantly with changes
in passenger demand. This will allow the extension of this work to other public transport services,
such as bus operations which are prone to dwell time variations.
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APPENDIX
Lemma .1. For β1 < hmin + δ̄0, F = /0.

Proof. Let assume that for β1 < hmin + δ̄0, F 6= /0. Then, ¬ ∃ x0 | (x0,a,h) satisfy Eq.(6)-(8). To satisfy
constraint Eq.(8), hmin≤ δ1+x0

1− δ̄0⇒ δ1+x0
1≥ hmin+ δ̄0. In addition, to satisfy constraint Eq.(6), δ1+x0

1≤
β1. Thus, β1 should be greater than or equal to hmin + δ̄0 and we reached a contradiction. This proves that

https://github.com/KGkiotsalitis/Timetable_recovery
https://github.com/KGkiotsalitis/Timetable_recovery
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F can be an empty set if the inequality constraints of Eq.(6)-(8) are binding (i.e., must be satisfied in all
cases).

Theorem .2. A local optimum of program (Q̃) is also a globally optimal solution

Proof. A local minimizer of Q̃ is the global minimizer of Q̃ if the objective function is strictly convex and the
feasible region is a convex set. The feasible region is defined by linear (in)equalities (affine functions) and is
a polyhedron. Thus, it is also a convex set. Further, we prove that the objective function f (x)+∑ j∈Nm Mν j

is strictly convex with respect to x,ν .
Let f̃ (x,ν) := f (x) + ∑

j∈Nm

Mν j. Then, the Hessian matrix of f̃ (x,ν) is a matrix H ∈ R2n×2n with

elements:

H =



∂ 2 f̃ (x,ν)
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∂x2∂x1
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2
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∂ 2 f̃ (x,ν)
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. . . ∂ 2 f̃ (x,ν)
∂x2∂νn

...
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...
...

...
. . .

...
∂ 2 f̃ (x,ν)
∂xn∂x1

∂ 2 f̃ (x,ν)
∂xn∂x2

. . . ∂ 2 f̃ (x,ν)
∂x2

n
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∂xn∂ν1

. . . ∂ 2 f̃ (x,ν)
∂xn∂νn

∂ 2 f̃ (x,ν)
∂ν1∂x1

∂ 2 f̃ (x,ν)
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∂ν1∂xn

∂ 2 f̃ (x,ν)
∂ν2
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. . . ∂ 2 f̃ (x,ν)

∂ν1∂νn
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. . .
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∂ 2 f̃ (x,ν)
∂νn∂x1

∂ 2 f̃ (x,ν)
∂νn∂x2

. . . ∂ 2 f̃ (x,ν)
∂νn∂xn

∂ 2 f̃ (x,ν)
∂νn∂ν1
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n


(16)

The gradient of f̃ (x,ν) is a R2n vector:

∇ f̃ (x,ν) =
( |S|−1

∑
s=2

(4x1−2x2 +ρ1),
|S|−1

∑
s=2

(4x2−2x1−2x3 +ρ2),

...,
|S|−1

∑
s=2

(4xn−1−2xn−1−2xn +ρn−1),

|S|−1

∑
s=2

(2xn−2xn−1 +ρn),1, ...,1︸ ︷︷ ︸
n

) (17)

where ρ1,ρ2, ...,ρn are parameter values consisting of travel times, dwell times and target headways
which do not vary with x or ν .

This yields the Hessian

H =



4(|S|−2) −2(|S|−2) 0 . . . 0 0 . . . 0
−2(|S|−2) 4(|S|−2) −2(|S|−2) . . . 0 0 . . . 0

...
...

...
...

...
...

. . .
...

0 0 0 . . . 2(|S|−2) 0 . . . 0
0 0 0 . . . 0 0 . . . 0
...

...
...

...
...

. . .
...

0 0 0 . . . 0 0 . . . 0


(18)

f̃ (x,ν) is strictly convex if the Hessian matrix is positive definite. That is, zᵀHz > 0 for any non-zero
vector z ∈ R2n \0.

To simplify the notation, let us set ζ := |S|−2 with ζ > 0. Then, zᵀHz becomes:
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zᵀHz =
[
z1 z2 . . . zn−1 zn

]
H


z1
z2
...

zn−1
zn


=
[
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]
z
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(
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2z2
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√

2)2 +(z2
√

2− z3
√

2)2 + ...+(zn−2
√
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√

2)2 +(zn−1
√
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√

2)2
)

Hence, zᵀHz> 0 for any z∈R2n\0 and thus f̃ (x,ν) is strictly convex. This proves that a local optimum
of the reformulated program (Q̃) is also its unique global minimizer.
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