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ABSTRACT
Two distinct directions of research have emerged for the vehicle holding problem: (i) single vari-
able optimization approaches that determine the holding time of a single vehicle when it is about
to depart from a bus stop; and, (ii) multivariable, periodic optimization approaches that use rather
complex mathematical programs to determine the holding times of all running vehicles. Compre-
hensive mathematical programs that consider multiple decision variables cannot be easily solved
in real time, and are typically reserved for periodic control in longer time horizons. For this reason,
this study focuses on single variable optimization approaches which determine the holding time of
a vehicle when it arrives at a control point stop. Up to now, single variable optimization methods
resort to rather simple, rule-based control logics. One of them is the one-headway-based logic
which determines the holding time of a bus based on its headway with its preceding bus without
addressing other implications, such as overcrowding. To rectify this, we introduce a new nonlinear
model for the single variable bus holding problem that considers the passenger demand and vehicle
capacity limits. Then, we reformulate this problem to an easier-to-solve program with the use of
slack variables and we prove that it can be solved to global optimality. A simulation-based inves-
tigation of the performance of our model against the performance of classic control logics that do
not consider vehicle capacity limits is finally performed in bus line 302 in Singapore.

Keywords: timetabling; high-frequency services; robust optimization; transfer coordination; non-
linear programming
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INTRODUCTION
Decisions regarding the operations of bus services are made at different planning stages. At the
tactical planning stage, one has to determine the frequency Yu et al., Gkiotsalitis and Cats (1, 2),
the timetable Sun et al., Wu et al. (3, 4), and the crew and vehicle schedules Wren and Rousseau,
Gintner et al., Kliewer et al. (5, 6, 7) of every bus line. Tactical plans are communicated well in
advance, and all stakeholders (i.e., public transport authorities/operators, bus drivers, passengers)
are aware of them prior to the start of the daily operations Ceder (8).

The fixed service interval (time headway) of every bus line is determined from the tactical
planning stage and is equal to the inverse of the service frequency Ceder (8). That is to say, a bus
line with a service frequency of 6 trips per hour operates under a 10-minute time headway. The
time headway of two trips, which is the time difference between the time instances they were at
the same location, will henceforth be simply called headway.

The main challenge in high-frequency services with more than 5 trips per hour is to maintain
the planned headways among buses at every bus stop Trompet et al. (9). If the demand and the
travel times of all bus trips that operate in a service line are equal and stable, bus trips will maintain
their even headways at all downstream stops. This will result in a regular service where the actual
passenger waiting times at stops meet the passengers’ expectations. Nevertheless, travel time and
passenger demand variations during the actual operations result in unreliable and inconsistent ser-
vices Chen et al., Daganzo (10, 11). Knoppers and Muller, Berrebi et al., Gkiotsalitis and Maslekar
(12, 13, 14) and Knoppers and Muller (12) have shown that the fixed service intervals cannot be
maintained at all stops. Indeed, even if buses are dispatched according to their planned headways,
their headways are expected to deviate from their scheduled values as they are moving towards
downstream stops Hans et al. (15). This leads to irregular services where buses are too close or too
far away from each other instead of maintaining their scheduled headway.

To address the adverse effects of the demand and travel time variability, several flexible
scheduling approaches have emerged over the past 40 years. Such flexible approaches have a
shifted focus towards operational control that reacts to changes in quasi-real-time. Operational
control includes a variety of options, such as bus holding Bartholdi III and Eisenstein, Delgado
et al. (16, 17), stop-skipping Liu et al., Chen et al. (18, 19), short-turning Cortés et al. (20), inter-
lining Gkiotsalitis et al. (21), re-scheduling Gkiotsalitis and Stathopoulos (22), and speed control
Daganzo and Pilachowski, Muñoz et al. (23, 24). All options aim at improving the reliability of
services during the actual operations and correcting potential inconsistencies due to operational
disruptions.

In this study, we specifically focus on the problem of real-time bus holding that holds buses
at specific bus stops to reduce the deviation between the actual and the planned headways. In so
doing, bus trips will maintain their even distribution, and the waiting times of passengers will be
closer to their expected values. In its simplest form, bus holding holds a trip n at a stop s for a time
period x ≥ 0 if its actual headway with its preceding trip, n−1, is lower than the planned headway,
Hs. This is the well-known one-headway-based holding logic which strives to maintain the planned
headway between a trip n and its preceding one, n− 1 (Fu and Yang (25)). Its simplicity is very
useful when one wants to apply bus holding in real time because then the holding time of every
trip should be determined immediately upon its arrival at the respective bus stop (Daganzo (11)).
Other approaches do not consider only the headway between one bus trip, n, and its preceding
trip, n− 1, but also the headway with the following trip, n+ 1. Such approaches are known as
two-headway-based methods (see Fu and Yang (25)).
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An entirely different line of research determines the holding times of multiple bus trips, instead
of only trip n, following a periodic optimization approach Gkiotsalitis and Cats (26). Periodic
optimization approaches consider multiple decision variables and are based on iterative, finite-
horizon optimization(s) of a bus holding model. At time t, the current state of the bus operations
(i.e., current positions of running trips) is used as input and, together with the expected travel
times within a relatively short time horizon t +T , the holding times of multiple running trips are
determined. This is equivalent to scheduling the bus holding times of all running trips within a
short time horizon with the use of travel time expectations Eberlein et al. (27). There are two main
issues with the periodic optimization methods:

• if the number of bus trips, i = {1,2, ...,}, that are expected to visit control point stops
within a time period t + T is too big, determining the holding times of all those trips
results in complex, multivariable optimization problems that cannot be solved in real
time (see Hickman, Sánchez-Martínez et al. (28, 29));

• if the short-term travel time predictions are not close to the realized travel times, the
scheduled holding times of trips i = {1,2, ...,} might have a limited effect - or even
be counterproductive. Due to that, their values should be recomputed every time new
information becomes available. This will result in receding horizon control, or “rolled"
rolling horizon optimization Eberlein et al. (27).

Evidently, periodic optimization approaches are not computationally efficient because they re-
quire to solve complex mathematical models with many holding decisions, from which only some
will be implemented in practice by the time new information becomes available. This inefficiency
is well-known in model predictive control (MDP), where multiple decisions are made but only
some of them have the chance to be implemented by the time new information becomes available
triggering a repeat of the optimization process Nikolaou (30).

Mathematical models for periodic bus holding control are very advanced, and some of them,
such as Delgado et al., Sánchez-Martínez et al. (17, 29), incorporate the bus loads and vehicle
capacity limitations in the bus holding optimization process. Notwithstanding this, their complex
nature does not allow to compute a globally optimal bus holding solution in real time. This mo-
tivates our work: our study proposes an easy-to-solve mathematical program for the bus holding
problem under capacity limitations that can determine (immediately) the holding time of a bus trip
upon its arrival at a bus stop. To the best of the authors’ knowledge, our proposed model is the first
of its kind and is based on the modeling of the real-time bus holding problem as a regularity-based
optimization problem under bus load variations and capacity limitations.

The remainder of this paper is structured as follows: in section 2, we model the bus holding
problem with the objective of maintaining the service regularity while meeting the vehicle capacity
limits. This problem is proved to be nonlinear and non-smooth; thus, it cannot be solved to global
optimality because its functions are not differentiable at every point in their domain. In section 3,
we reformulate the aforementioned bus holding problem by introducing slack variables. Then, we
prove that its reformulated version has a globally optimal solution because its objective function
is convex, and its feasible region is a convex set. In section 4 we perform numerical experiments
in idealized, toy networks and bus line 302 in Singapore to demonstrate the potential improvement
of using our model, instead of control logics that do not consider the capacity limits of the running
vehicles. Finally, in section 5, we summarize our findings and propose potential future directions.
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PROBLEM DEFINITION AND MATHEMATICAL PROGRAM
A typical objective of bus holding strategies is to minimize the variation of the actual (realized)
headways from their scheduled values (also known as target or ideal headway values) Berrebi
et al. (13). One of the most common approaches to achieving that is the two-headway-based bus
holding method Ibarra-Rojas et al. (31). The two-headway-based bus holding strategy is not a
periodic optimization approach. Instead, it is a rule-based method that determines the holding time
of a trip n when it arrives at a control point stop s based on the realized and expected headway(s)
with its preceding, n−1, and following, n+1, bus trips (see Fu and Yang (25)).

The holding logic of Fu and Yang (25), which does not consider capacity limitations, is sum-
marized in algorithm 1. Alg.1 determines the holding time of trip n at stop s, and the holding
decision is made when trip n has completed all its boardings/alightings and is ready to depart.

The notation used in Alg.1 is summarized in Fig.1, where

• t is the time when trip n has completed its boardings/alightings at stop s and is ready to
depart,

• dn,s is the determined departure time of trip n from stop s,

• dn,s − t is the determined holding time of trip n at stop s,

• dn−1,s is the realized departure time of the preceding trip n−1 from stop s,

• Hs is the scheduled (target) headway of adjacent bus trips at stop s,

• d̃n+1,s is the expected departure time of the following trip, n+1, from stop s.

Time

Control stop, s

𝐻𝑠

𝑑𝑛−1,𝑠 𝑡

𝑛 − 1
𝑛

𝑑𝑛,𝑠

𝑛 + 1

Bus trajectory

realized trajectory

expected trajectory

𝑛 − 1

𝑛

𝑛 + 1

Space

ሚ𝑑𝑛+1,𝑠

FIGURE 1 : Realized and expected trajectories of the preceding, n−1, and following, n+1, bus
trip of n.
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Algorithm 1 Two-headway-based holding control logic of Fu and Yang (25)

0: If t < dn−1,s +Hs, then:

1: If 1
2(d̃n+1,s −dn−1,s)< Hs, then:

2: dn,s = dn−1,s +Hs

3: Else:

4: dn,s = dn−1,s +[1
2(d̃n+1,s −dn−1,s)+Hs]/2

5: Else:

6: dn,s = t

In the control logic of Alg.1, if bus trip n completes its boardings/alightings at time t ≥ dn−1,s+
Hs, it has to depart immediately because it is behind schedule. On the contrary, if t < dn−1,s +Hs,
trip n has some buffer time which can be spent at stop s to reduce the deviation from the target
headway(s). This simple control logic will be used as a benchmark in our numerical experiments
to investigate the potential benefits of our single variable bus holding model that considers vehicle
capacity limitations.

Proceeding to the introduction of our method, we present the main assumptions of our work,
which are also commonly used in past literature related to the bus holding problem of high-
frequency services:

(1) In high-frequency services, passengers who cannot board a bus will wait for the next
trip of the same bus line because their waiting times are relatively small Delgado et al.,
Muñoz et al., Delgado et al. (17, 24, 32).

(2) Passengers cannot coordinate their arrivals at stops to the arrival times of buses at high-
frequency services Berrebi et al. (33). Thus, we assume a demand-based passenger
arrival rate, λs, at any stop s Delgado et al., Fu and Yang (17, 25).

(3) The allowed holding time of buses at stops has an upper (maximum) limit, ζ , due to the
inconvenience caused to on-board passengers (typically, this is set to 90 seconds Cortés
et al. (34)).

To formulate our bus holding problem that considers vehicle capacity limits, we introduce the
following notation.
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Notation
Sets/Indices
S = ⟨1,2, ...⟩ ordered set of bus stops.
n index of the trip for which a holding decision needs to be made at the

current time instance.
n−1 index of the preceding trip of trip n.
n+1 index of the following trip of trip n.
s specific bus stop at which a holding decision for trip n needs to be made.

Note that s ∈ S\{1, |S|}.

Parameters
t time when bus trip n has completed its boardings/alightings at stop s and

is ready to depart if there is no further holding.
dn−1,s realized departure time of trip n−1 from stop s.
λs arrival rate of passengers at stop s (i.e., passengers per sec).
c j capacity of bus trip j, where j ∈ {n−1,n,n+1}.
ϕn observed bus load of trip n at time t including the number of passengers

who are refused to board trip n at stop s due to overcrowding. By defini-
tion, ϕn can be greater than cn.

l̃n+1 expected bus load of trip n+1 at the time of its arrival at stop s.
β̃n+1 expected passenger alightings of bus trip n+1 at stop s.
ãn+1,s expected arrival time of trip n+1 at stop s.
Hs target (ideal) headway of adjacent trips at stop s.
tb required time for each passenger boarding.
ta required time for each passenger alighting.
ζ maximum allowed holding time.
M1,M2 very large numbers, where M1 ≫ M2 ≫ 0.

Decision Variable
x holding time of trip n at stop s. Note that {x ∈ R | 0 ≤ x ≤ ζ} according

to assumption (3).

Variables
dn,s departure time of trip n from stop s. Note that dn,s , t + x.
d̃n+1,s expected departure time of trip n+1 from stop s.
ln stranded passengers by bus trip n at stop s.

Problem Objective
The objective of the bus holding problem in high-frequency services is to adhere to the target
(scheduled) headways. When we determine the holding time of trip n at stop s, we strive to mini-
mize the squared deviation between the realized/expected headways with its adjacent trips, n−1,
n+1, and the ideal headway, Hs.

This is expressed in Eq.(1) where (t+x) is the determined departure time of trip n from stop s,
dn−1,s the realized departure time of trip n−1 from stop s, and d̃n+1,s the expected departure time
of trip n+1 from stop s. Note that d̃n+1,s is an expected value because trip n+1 has not arrived at
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stop s when the holding decision of trip n is made.

f (x),
(
(t + x)−dn−1,s −Hs

)2
+
(
d̃n+1,s − (t + x)−Hs

)2 (1)

We should note here that Eq.(1) uses the squared deviation between the expected/realized
headways and their target values. This is in line with the key performance indicators used to
monitor the regularity of bus services Trompet et al., Newell (9, 35).

Constraints and Infeasibility
A first constraint when we consider the vehicle capacity limits is that trip n cannot serve more
passengers than its capacity, cn. This can be expressed as:

ϕn + xλs ≤ cn (2)

where xλs is the number of additional passengers that are willing to board bus trip n if it is
held at stop s for time x after it completes its boardings/alightings. Additionally, ϕn is the sum of
the bus load of trip n and the number of (potentially) stranded passengers when it has completed
its boardings/alightings at stop s.

Lemma 2.1. ∃ ϕn | ϕn + xλs > cn, ∀x ∈ R≥0.

Proof. ϕn is the observed bus load of trip n at time t plus the number of passengers unable to
board trip n at stop s due to overcrowding. Hence, ϕn does not have an upper bound in R≥0. In
contrast, the capacity of trip n, cn, is a fixed integer number in R≥0. Hence, ∃ ϕn ∈ R≥0 | ϕn > cn.
Additionally, xλs ≥ 0 ∵ x,λs ≥ 0. Therefore, for ϕn > cn ⇒ ϕn + xλs > cn.

Lemma 2.1 proves that there is no holding time x ≥ 0 which can guarantee that the capacity of
trip n suffices. Thus, the number of stranded passengers, ln, by bus trip n at stop s can be expressed
as:

ln , max(0,ϕn + xλs − cn) (3)

Since constraint ϕn+xλs ≤ cn cannot be always satisfied, it can be perceived as a soft constraint
which is allowed to be violated if, and only if, our holding time x cannot ensure that there are no
stranded passengers by bus trip n at stop s. This soft constraint is added to the objective function
as a penalty term M1 max(0,ϕn + xλs − cn):

f (x),
(
(t + x)−dn−1,s −Hs

)2
+
(
d̃n+1,s − (t + x)−Hs

)2
+M1 max(0,ϕn + xλs − cn) (4)

Note that the very large positive number M1 in the penalty term M1 max(0,ϕn + xλs − cn)

ensures that the satisfaction of constraint ϕn+xλs ≤ cn is prioritized over
(
(t+x)−dn−1,s−Hs

)2
+(

d̃n+1,s− (t +x)−Hs
)2. Indeed, if ϕn+xλs ≤ cn, then this solution does not add any penalty to the

objective function since M1 max(0,ϕn + xλs − cn) = 0. In reverse, when ϕn + xλs > cn, the penalty
term penalizes the objective function by a very large number M1(ϕn + xλs − cn) and directs the
program towards another solution x that reduces the value of M1 max(0,ϕn + xλs − cn) as much as
possible. Consequently, a solution x that minimizes the objective function would be such that the
number of stranded passengers by bus trip n at stop s is reduced to the greatest extent.
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A second constraint is related to the vehicle capacity limit of the following trip, n+ 1. Note
that the vehicle capacity limit of the preceding trip, n− 1, is not considered because our decision
variable, x, cannot affect its value. When trip n+ 1 arrives at stop s it has a bus load l̃n+1 and is
expected to alight β̃n+1 passengers. Because of the time needed for the alightings, β̃n+1ta, we get
β̃n+1taλs more passenger boardings. In addition, the stranded passengers by trip n, ln, are willing to
board trip n+1. Furthermore, by the time trip n departs stop s, (t +x), until trip n+1 arrives there,
we have (ãn+1,s − (t + x))λs more passengers willing to board trip n+ 1. Thus, the expected bus
load of trip n+1 when it departs from stop s is l̃n+1 − β̃n+1 + β̃n+1taλs + ln +(ãn+1,s − (t + x))λs.
Note that this is the lowest possible bus load of trip n+1 when it departs from stop s because the
holding time of trip n+1 at stop s is not factored in since it is not a decision variable at this time
instance.

Remark 1. At stop s the number of passengers willing to board trip n + 1 is β̃n+1taλs + ln +
(ãn+1,s − (t + x))λs. While boarding those passengers, (β̃n+1taλs + ln +(ãn+1,s − (t + x))λs)tbλs
more passengers will arrive at stop s and will be willing to board trip n+ 1. While boarding the
new passengers, more passengers, (β̃n+1taλs + ln +(ãn+1,s − (t + x))λs)t2

b λ 2
s , will arrive and this

iterative procedure results in a vicious circle. Thus, it is not possible to establish a closed-form
mathematical expression that determines exactly the number of passengers willing to board trip
n+1 if we assume that the time needed for every extra boarding will always generate new board-
ing demand. To alleviate this, we consider only the passengers that will arrive while boarding
passengers β̃n+1taλs + ln +(ãn+1,s − (t + x))λs and we assume that the number of passenger ar-
rivals during subsequent boardings is negligibly small. That is to say, while boarding passengers
(β̃n+1taλs + ln +(ãn+1,s − (t + x))λs)tbλs the number of new passengers arriving at the stop is in-
significant because the time duration of (β̃n+1taλs + ln +(ãn+1,s − (t + x))λs)t2

b λs is infinitesimal
and (β̃n+1taλs+ ln+(ãn+1,s−(t+x))λs)t2

b λ 2
s ≈ 0. Despite this assumption, our formulation offers

a more accurate representation of the potential passenger boardings compared to past works that
oversimplify the problem by ingoring all passenger arrivals at a stop while the bus is dwelling (see
Fu and Yang, Hickman, Marguier (25, 28, 36)).

The assumption in Remark 1 allows us to determine a closed-form expression of the expected
bus load of trip n+1 from stop s. This bus load should be lower or equal to the capacity of the bus
that operates trip n+1. This is expressed in the inequality constraint of Eq.(5).

l̃n+1 − β̃n+1 +
(
β̃n+1taλs + ln +(ãn+1,s − (t + x))λs

)
(1+ tbλs)≤ cn+1 (5)

Considering the capacity limit of trip n+1, the inequality constraint of Eq.(5) cannot be always
satisfied for x ∈ R | 0 ≤ x ≤ ζ .

Similarly to the capacity constraint of trip n, the capacity constraint of trip n+ 1 expressed
in Eq.(5) can be perceived as a soft constraint which is allowed to be violated if, and only if, our
holding time x cannot ensure that there are no stranded passengers by bus trip n+ 1 at stop s.
This soft constraint is added to the objective function as a penalty term M2 max

[
0, l̃n+1 − β̃n+1 +(

β̃n+1taλs + ln +(ãn+1,s − t − x)λs
)
(1+ tbλs)− cn+1

]
:

f (x),
(
(t + x)−dn−1,s −Hs

)2
+
(
d̃n+1,s − (t + x)−Hs

)2
+M1 max(0,ϕn + xλs − cn)

+M2 max
[
0, l̃n+1 − β̃n+1 +

(
β̃n+1taλs + ln +(ãn+1,s − t − x)λs

)
(1+ tbλs)− cn+1

] (6)
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Remark 2. Note that we use very large numbers M1,M2 to penalize the soft constraints related
to the stranded passengers by bus trips n and n+ 1, respectively. Additionally, we set M1 ≫ M2.
M1 ≫ M2 indicates that if trip n reaches its capacity limit, it will depart immediately from stop s
even if this is expected to lead to the overcrowding of trip n+1. That is to say, we cannot hold an
overcrowded bus trip, n, even if this has a positive effect to its following trip, n+1. This is realistic
in practice because if bus trip n is held after reaching its capacity limit, it will cause inconvenience
to both the driver and the passengers who are refused to board Trompet et al. (9).

The expected departure time of trip n+ 1 from stop s, d̃n+1,s, is equal to the expected arrival
time at stop s, ãn+1,s, plus the required time for boardings/alightings (dwell time). The required
time for boardings/alightings is β̃n+1ta for passenger alightings and

(
β̃n+1taλs+ ln+(ãn+1,s− (t +

x))λs
)
(1+ tbλs)tb for passenger boardings. Note that all

(
β̃n+1taλs+ ln+(ãn+1,s− (t +x))λs

)
(1+

tbλs) passengers might not be able to board trip n+ 1 at stop s if its capacity limit is reached.
Hence, the required time for passenger boardings is min

[(
β̃n+1taλs+ ln+(ãn+1,s−(t+x))λs

)
(1+

tbλs)tb,(cn+1 + β̃n+1 − l̃n+1)tb
]
.

This results to the expected departure time of trip n+1 from stop s:

d̃n+1,s , ãn+1,s + β̃n+1ta +min
[(

β̃n+1taλs + ln +(ãn+1,s − t − x)λs
)
(1+ tbλs)tb,

(cn+1 + β̃n+1 − l̃n+1)tb
] (7)

Mathematical Program
The above-mentioned constraints form the following bus holding program, (Q), that determines
the holding time x of trip n at time instance t.

(Q) min
x

f (x)

s.t. (ln, f , d̃n+1,s)
∣∣ (ln, f , d̃n+1,s) satisfy Eq.(3), (6), (7)

0 ≤ x ≤ ζ

(8)

Program (Q) is a nonlinear programming problem (NLP) because of the several non-smooth
“max", “min" terms in the objective function f (x), and the variables ln, d̃n+1,s. Due to the “max",
“min" terms, program (Q) is not convex. Consequently, a solution method cannot guarantee the re-
turn of a globally optimal solution since the associated functions are not smooth and differentiable
at every point in their domain.

REFORMULATION TO A QUADRATIC PROGRAM
Reformulation
Let us consider the nonlinear term max(0,ϕn+xλs−cn) of our objective function that appears also
in the equality constraint ln = max(0,ϕn+xλs−cn) expressed in Eq.(3). Note that the “max" term
introduces non-smoothness to our objective function and our equality constraint. To rectify this,
we introduce a slack variable ν1 that, due to its bounds and the direction of optimization, will take
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the value max(0,ϕn + xλs − cn) at the solution of the program. With the introduction of this slack
variable ν1 that replaces max(0,ϕn + xλs − cn), the objective function becomes

f (x,ν1),
(
t + x−dn−1,s −Hs

)2
+
(
d̃n+1,s − t − x−Hs

)2
+M1ν1

+M2 max
[
0, l̃n+1 − β̃n+1 +

(
β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs

)
(1+ tbλs)− cn+1

] (9)

and the expected departure time of trip n+1 from stop s:

d̃n+1,s , ãn+1,s + β̃n+1ta +min
[(

β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs
)
(1+ tbλs)tb,

(cn+1 + β̃n+1 − l̃n+1)tb
] (10)

Hence, we reformulate program (Q) to

(Q̄) min
x,ν1

f (x,ν1)

s.t. ( f , d̃n+1,s)
∣∣ ( f , d̃n+1,s) satisfy Eq.(9), (10)

ν1 ≥ 0
ν1 ≥ ϕn + xλs − cn

0 ≤ x ≤ ζ

(11)

Note that the term M1ν1 in the reformulated objective function f (x,ν1) forces ν1 to receive its
lowest possible value which is always greater than or equal to zero and has the equivalent effect of
term M1 max(0,ϕn + xλs − cn).

The objective function of program (Q̄) has another non-smooth term: M2 max
[
0, l̃n+1− β̃n+1+(

β̃n+1taλs+ν1+(ãn+1,s− t −x)λs
)
(1+ tbλs)−cn+1

]
. With the introduction of another slack vari-

able ν2 that takes the value of the above term at the solution of the program, the objective function
becomes

f (x,ν1,ν2),
(
t + x−dn−1,s −Hs

)2
+
(
d̃n+1,s − t − x−Hs

)2
+M1ν1 +M2ν2 (12)

and program (Q̄) is reformulated to

(Q̂) min
x,ν1,ν2

f (x,ν1,ν2)

s.t. ( f , d̃n+1,s) | ( f , d̃n+1,s) satisfy Eq.(12), (10)
ν1 ≥ 0
ν1 ≥ ϕn + xλs − cn

ν2 ≥ 0

ν2 ≥ l̃n+1 − β̃n+1 − cn+1+(
β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs

)
(1+ tbλs)

0 ≤ x ≤ ζ

(13)
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The equality constraint of Eq.(10) that defines the value of variable d̃n+1,s is the last non-

smooth term in our reformulated program, Q̂, due to the nonlinear term min
[(

β̃n+1taλs + ν1 +

(ãn+1,s − t − x)λs
)
(1+ tbλs)tb,(cn+1 + β̃n+1 − l̃n+1)tb

]
. As a remedy, we re-write d̃n+1,s as

d̃n+1,s =ãn+1,s + β̃n+1ta +
(
β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs

)
(1+ tbλs)tb −ν2tb (14)

To simplify the notation, let k , 1+tbλs, where k ∈R≥0 because tb,λs ≥ 0. Then, the objective
function can be re-written as

f (x,ν1,ν2),
(
t + x−dn−1,s −Hs

)2
+
[
ãn+1,s + β̃n+1ta +

(
β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs

)
ktb

−ν2tb − t − x−Hs

]2
+M1ν1 +M2ν2

(15)
and this leads to the reformulation of program (Q̂) to

(Q̃) min
x,ν1,ν2

f (x,ν1,ν2)

s.t. ( f )
∣∣ ( f ) satisfies Eq.(15)

ν1 ≥ 0
ν1 ≥ ϕn + xλs − cn

ν2 ≥ 0

ν2 ≥ l̃n+1 − β̃n+1 − cn+1 +
(
β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs

)
k

0 ≤ x ≤ ζ

(16)

This reformulation has introduced two slack variables (ν1,ν2) to transform the non-smooth,
nonlinear program (Q) to a program (Q̃) with a quadratic objective function and linear inequality
constraints that attains an equivalent solution to (Q). As it is shown in the following theorem, a
locally optimal solution of program (Q̃) is also a globally optimal one.

Theorem 3.1. A local minimizer of (Q̃) is a globally optimal solution.

Proof. A local minimizer of (Q̃) is a global minimizer of (Q̃) if the objective function is convex
and the feasible region is a convex set. The feasible region is defined by linear inequalities and is a
polyhedron (thus, it is also a convex set). Further, we prove that the objective function f (x,ν1,ν2)
is convex with respect to x,ν1,ν2.

The first-order partial derivatives of f (x,ν1,ν2) are

∂ f
∂x

= 2x+2(t −dn−1,s −Hs)+2x(λsktb +1)2 −2(λsktb +1)
[
ãn+1,s + β̃n+1ta

+
(
β̃n+1taλs +ν1 +(ãn+1,s − t)λs

)
ktb −ν2tb − t −Hs

]
∂ f
∂ν1

= 2k2t2
b ν1 +2ktb

[
ãn+1,s + β̃n+1ta+(
β̃n+1taλs +(ãn+1,s − t − x)λs

)
ktb −ν2tb − t − x−Hs

]
+M1
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∂ f
∂ν2

= 2t2
b ν2 −2tb

[
ãn+1,s + β̃n+1ta+(
β̃n+1taλs +ν1 +(ãn+1,s − t − x)λs

)
ktb − t − x−Hs

]
+M2

Therefore, the Hessian matrix of f reads:

H =



∂ 2 f
∂x2

∂ 2 f
∂x∂ν1

∂ 2 f
∂x∂ν2

∂ 2 f
∂ν1∂x

∂ 2 f
∂ν2

1

∂ 2 f
∂ν1∂ν2

∂ 2 f
∂ν2∂x

∂ 2 f
∂ν2∂ν1

∂ 2 f
∂ν2

2


=


2+2(λsktb +1)2 −2(λsktb +1)ktb 2(λsktb +1)tb

−2(λsktb +1)ktb 2k2t2
b −2kt2

b

2(λsktb +1)tb −2kt2
b 2t2

b


To prove the convexity of f , we should prove that the Hessian matrix, H, with elements Hi j ∈

H, is positive semi-definite (P.S.D.). That is, all the leading principal minors are non-negative:

H is P.S.D. ⇔ H11 ≥ 0,
∣∣∣∣H11 H12
H21 H22

∣∣∣∣≥ 0, det(H)≥ 0.

In our case, we have H11 = 2+2(λsktb +1)2 > 0.

In addition,
∣∣∣∣H11 H12
H21 H22

∣∣∣∣= (2+2(λsktb +1)2)2k2t2
b −4(λsktb +1)2k2t2

b = 4k2t2
b > 0.

Furthermore,

det(H) =(2+2(λsktb +1)2)

∣∣∣∣H22 H23
H32 H33

∣∣∣∣
+2(λsktb +1)ktb

∣∣∣∣H21 H23
H31 H33

∣∣∣∣
+2(λsktb +1)tb

∣∣∣∣H21 H22
H31 H32

∣∣∣∣
=(2+2(λsktb +1)2) ·0+2(λsktb +1)ktb ·0
+2(λsktb +1)tb ·0 = 0.

Thus, f is convex and this completes our proof. We finally note that for strict convexity,
det(H) should have been greater than zero. Since this is not the case, we might have more than one
globally optimal solutions.

Demonstration
In this sub-section, we perform a small demonstration to show that the non-smooth nonlinear
program (Q) and the reformulated one, (Q̃), attain the same solution. In our demonstration, we
use an idealized scenario and report the solutions of both programs. In our idealized scenario,
trip n arrives at control point stop s and completes its boardings/alightings at time t = 1500s. The
parameters of our scenario are presented in Table 1.
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TABLE 1 : Parameter values of the idealized scenario

Parameter Value Unit Parameter Value Unit

di−1,s 1000 s ta 1.5 s
t 1500 s tb 4 s
Hs 600 s an+1,s 2500 s
ϕn 40 passengers ζ 300 s
cn,cn+1 60 passengers M1 10E+14 -
β̃n+1 10 passengers M2 10E+12 -
l̃n+1 50 passengers λs 0.02 passengers / s

As previously discussed, problem (Q) cannot be solved to global optimality due to the non-
smooth terms that yield an objective function which is not differentiable at every point in its do-
main. To find an approximate solution of (Q), we discretize the decision variable, x, and evaluate
the performance of the objective function for every value of x using simple enumeration (brute-
force). In this discretization, the holding time x is discretized into seconds and x ∈ Z | 0 ≤ x ≤ ζ .

Using brute-force, we evaluate the objective function f in program (Q) expressed in Eq.(6)
and we plot its value for every x ∈ Z | 0 ≤ x ≤ ζ . The results are plotted in Fig.2. From Fig.2 it
is evident that the approximate solution of (Q) is x∗ = 296 s. Note that the function f in program
(Q) is not smooth. In more detail, for x ∈ [0,89] the capacity limit of the following bus trip, n+1,
is exceeded and this leads to stranded passengers by trip n+ 1. For a holding time of trip n in
the range of 90 < x ≤ ζ , the capacity limit of n+ 1 at stop s is not reached. Hence, the objective
function of program (Q) has a non-smooth transition at x = 89 s.

0 50 100 150 200 250 300

0

1

2

·106

non-smooth transition

x∗ = 296 s

x (s)

f
(x

)
o
f
p
ro
g
ra
m

(Q
)

f(x)

optimal x∗

FIGURE 2 : Performance of the objective function f of the discretized program (Q) for every
x ∈ Z | 0 ≤ x ≤ ζ .

The non-smoothness of (Q) is avoided with our reformulated program (Q̃) that can be solved
to global optimality with a solution method for quadratic programming. To compute a globally
optimal solution of (Q̃), we solve our mathematical program Q̃ in a general-purpose computer
with Intel Core i7-455 7700HQ CPU @ 2.80GHz and 16 GB RAM using CPLEX 12.8. The
obtained solution is:

(ν1,ν2,x) = (0,0,296.35 s)
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As expected, the globally optimal solution of our reformulated program (Q̃), x = 296.35 s, is
almost equivalent to the solution of the discretized original program (Q), x = 296 s, demonstrating
the validity of our reformulated program (Q̃).

NUMERICAL EXPERIMENTS
This section aims to demonstrate the potential improvement when our solution is adopted instead of
typical two-headway-based approaches that do not account for the capacity limitations of vehicles.
Several experiments are conducted in idealized scenarios to show how our approach mitigates
overcrowding while improving the service regularity. Our proposed model is then applied to bus
line 302 in Singapore where we investigate the potential effect of holding a bus at one stop.

Performance in idealized scenarios
To demonstrate the effectiveness of our control logic against classic control logic(s) that do not
cater for the bus crowding levels, we determine the holding times for each one of the idealized
scenarios in Table 2 with (i) our model, and (ii) the classic two-headway-based approach of Fu and
Yang (25) expressed in Alg.1. The holding times from Alg.1 are presented in the last column of
Table 2.

TABLE 2 : Optimal Holding decisions for idealized scenarios with different values of (λs, ϕn)

scenarios Solving Q̃ with CPLEX Solution of Alg.1

λs ϕn ν1 ν2 x∗ x∗

I 0.02 40 0 0 296 s 199 s
II 0.002 40 0 0 261 s 181 s
III 0.02 58 0 0 100 s 199 s
IV 0.02 55 0 0 250 s 199 s
V 0.05 58 0 38.5 40 s 229 s
VI 0.02 59 0 0.84 50 s 199 s
VII 0.05 40 0 16.9 300 s 229 s
VIII 0.02 62 2.00 1.92 0 s 199 s

As demonstrated in Table 2, the solution of Fu and Yang (25) is not sensitive to the changes
of parameter values, ϕn, since it does not cater for overcrowding, but merely balances the head-
ways between the preceding and following trip(s) using an estimate of d̃n+1,s ≈ ãn+1,s + β̃n+1ta +
(ãn+1,s − t)λstb.

The results of the comparative analysis between our approach and the classic two-headway-
based approach of Fu and Yang (25), which is used as a benchmark, are summarized in Fig.3. Fig.3
demonstrates the potential benefit of our control method in comparison to similar approaches that
ignore the overcrowding of buses in the optimization process. In the left and right sub-figures of
Fig.3 we plot the bus load of trips n and n+1 when they depart from stop s for each one of the 8
scenarios in Table 2. From the left sub-figure, our holding solution leads to stranded passengers
only in scenario VIII, in which 2 passengers were already waiting for trip n when it arrived at stop
s. In contrast, the control logic of Fu and Yang (25) results in refused boardings with regards to trip
n in 4 cases: III, V, VI, and VIII. Regarding trip n+1 (right sub-figure), both control logic(s) result
in refused boardings in 3 cases: V, VII, and VIII. The reason is that bus holding cannot reduce
the passenger demand that affects those 3 cases; thus, extra measures are needed. This validates
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our infeasibility claim in Lemma 2.1 which proved that holding, as a standalone measure, cannot
guarantee the accommodation of all passengers.
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FIGURE 3 : Bus load of trips n and n+1 when they depart from stop s in every scenario with the
implementation of our model and the one of Fu and Yang (25).

Case Study
Our case study is the high-frequency, circular bus line 302 in Singapore. Bus line 302 has 22
stops departing from Choa Chu Kang Loop - Choa Chu Kang Int (44009) and ending at the same
stop. It is operated by SMRT and its regularity is monitored by the Land Transport Authority
(LTA). Normally starts operating at 05:30 and ends at 00:55. Its route length is 8.1 km and its total
travel time typically ranges from 35 to 40 minutes. Bus line 302 is selected because it is one of
the seven high-frequency bus lines in Singapore that are monitored in terms of service regularity
and are placed under the Bus Service Reliability Framework (BSRF) from the LTA Leong et al.
(37). Under the BSRF framework, bus lines that do not maintain their scheduled headways are
penalized, whereas well-performing lines receive monetary incentives (up to 3000$ for every 0.1
min improvement in regularity at the end of each month, as of May 2014).

Bus line 302 is a feeder service that serves residential blocks, schools, and public amenities,
connecting them to Choa Chu Kang Town Centre and Yew Tee Mass Rapid Transit (MRT) station.
Its primary area of service is Choa Chu Kang Neighbourhoods 5 and 6. Typically, in this bus
line operate 12-meter single-decker buses with a seated capacity of 42 passengers and standing
capacity of 33 passengers (75 passengers in total). High capacity, articulated buses have also been
deployed due to high demand from residents. The total number of operating trips per day is 245,
and the scheduled (target) headways differ among peak/off-peak hours.

Our experiments focus on the time period 06:30-08:30, which exhibits the highest frequency
of 15 trips per hour. In that period operate 33 trips with a scheduled headway of 4 minutes. Bus
holding cannot be applied at any stop because: (i) some stops are used from several bus lines and
do not have enough space for holding; (ii) holding a bus at every stop will greatly increase the
inconvenience of onboard passengers and the total trip travel time Cortés et al., Cats et al. (34, 38);
and (iii) several bus trips do not serve all stops. For this reason, past works have used a selected
group of stops, known as intermediate time point stops (ITPs) (or control points), when holding is
applied van Oort et al. (39). The LTA has selected two monitoring points for the service regularity
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of bus line 302 that can serve as ITPs: Yew Tee Stn (45321) and Opp Blk 666 (45421). The
topology of bus line 302 and the two control point stops are presented in Fig.4.

Choa Chu Kang 

Loop - Choa Chu 

Kang Int (44009)

Yew Tee 

Stn (45321)

Opp Blk

666 (45421)

Bus Line 302

Bus stop

Control point stop

Terminal

bus line

direction

FIGURE 4 : Topology and selected control point stops of bus line 302 in Singapore

In this experimentation, we demonstrate the application of our control logic in one bus trip.
This trip is the 2nd trip that operates in the time period 06:30-08:30. To be consistent with our
previous notation, that trip is henceforth denoted as n. The holding time of trip n is decided when
it is about to depart from stop Yew Tee Stn (45321). Using real data from a weekday, bus trip n
departed from stop Yew Tee Stn (45321) at time 06:50. Its preceding trip, n− 1, departed from
the same stop at time 06:48, and its following trip, n+1, arrived there at time 06:54. Additionally,
the bus load of trip n when it was about to depart from stop Yew Tee Stn (45321) was ϕn = 47
passengers and the bus load of trip n+1 at the time of its arrival at stop Yew Tee Stn (45321) was
l̃n+1 = 52 passengers.

The alighted passengers from trip n+1 at stop Yew Tee Stn (45321) were β̃n+1 = 19 and the
boarding passengers 14. Both trips are operated by single decker buses with a total capacity of 75
passengers (including standees). Assuming uniformly distributed passenger arrivals at stop s, the
14 passenger boardings in a time interval of 4 min indicate a passenger arrival rate of λs = 3.5 pas-
sengers per minute. This assumption is borrowed from past works which prove that passengers are
not able to coordinate their arrival times at stops with the arrival times of buses in high-frequency
services Ibarra-Rojas et al. (31).

The observed (average) time for an extra passenger boarding and alighting at that stop is 2 and
1 s, respectively. Our observations are in line with the findings of Meng and Qu (40) that proposed
an extra time of 1.36 s for each boarding/alighting in bus lines in Singapore based on historical
data analysis. To summarize, the actual parameter values when holding trip n at stop Yew Tee Stn
(45321) are presented in Table 3. Note that, as in Cortés et al. (34), we do not allow a holding time
of more than 90 s due to the inconvenience caused to on-board passengers.
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TABLE 3 : Actual parameter values when determining the holding time of the 2nd trip which is
dispatched after 6:30

Parameter Value Parameter Value

di−1,s 6:48 → 24480 s ta 1 s
t 6:50 → 24600 s tb 2 s
Hs 4 min → 240 s ãn+1,s 06:54→ 24840 s
ϕn 47 passengers ζ 90 s
cn,cn+1 75 passengers M1 10E+14
β̃n+1 19 passengers M2 10E+12
l̃n+1 52 passengers λs 3.5/60 passengers / s

In the actual operations (do-nothing scenario), bus trip n+1 departed from stop Yew Tee Stn
(45321) at time d̃n+1,s = ãn+1,s+ β̃n+1ta+

(
β̃n+1taλs+(ãn+1,s− t)λs)

)
(1+ tbλs)tb = 24893 s. This

yielded a squared headway deviation of

(t −dn−1,s −Hs)
2 +(d̃n+1,s − t −Hs)

2 = (−120)2 +52.7422 = 17182 s2

where the headway between trip n and n−1 is 120 s and between trip n and n+1 is 293 s.
Now, if one had applied our model, bus trip n would have been held at Yew Tee Stn (45321)

for:

x = 78.9 s

Our holding time would have yielded d̃n+1,s = 24882 s and a reduced squared headway devia-
tion of 3017 s2 (82% improvement). The headways among trips n−1,n,n+1 and the bus loads of
trips n and n+1 after departing from Yew Tee Stn (45321) with and without applying our control
logic are summarized in Fig.5.
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FIGURE 5 : Headways and bus loads at stop s in the do-nothing case (left sub-figures) and in the
case where we apply the holding suggested by our model (right sub-figures)

The top two sub-figures in Fig.5 show the headway between trips n− 1 and n (which is cal-
culated as dn−1,s − (t + x)), and trips n and n+ 1 (which is calculated as (t + x)− d̃n+1,s). From
those sub-figures, it is evident that the headways among trips n−1,n and n,n+1 are more evenly
distributed after applying our control logic (values of 198.86 s and 203.6 s, respectively). It is im-
portant to note that bus holding cannot guarantee that we can meet the target headway (Hs = 240
s), but it can reduce the deviation of headways from that value and provide more evenly distributed
headways. This is well-reported in the work of Bartholdi III and Eisenstein (16) that started a line
of research on equalizing headways, instead of meeting target headway values.

The two sub-figures at the lower part of Fig.5 indicate the bus load of trips n and n + 1,
respectively, when they depart from stop s. Notably, our control logic will hold trip n in stop s
resulting in an increased bus load for trip n and a reduced one for trip n+1. This action is allowed
as long as none of the trips reaches its vehicle capacity limit.

CONCLUSION
This work provided a model, (Q), for real-time bus holding under capacity limitations. The con-
sideration of the bus load and the vehicle capacity limits added another dimension to the traditional
bus holding problem, and this resulted in a nonlinear, non-smooth model Q. With the use of slack
variables, the nonlinear, non-smooth model Q was transformed into a quadratic program with lin-
ear (in)equality constraints. The reformulated program is proved to be convex and have a globally
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optimal solution. This easy-to-solve program returned solutions for several idealized scenarios
demonstrating the improvement potential in terms of regularity and refused boardings compared to
two-headway-based methods that do not consider the capacity and the bus loads in the optimization
process.

In the case study of bus line 302 in Singapore, we show that our proposed solution can im-
prove the squared headway deviation by up to 82% compared to the case of no holding. In future
research, our approach can be expanded in a wide range of problems involving rail operations.
Other advances could be an expansion of our model to incorporate additional constraints related to
the timetables and the recommended total trip travel times.
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