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ABSTRACT
In this study, we model the bus scheduling problem considering transfer synchronizations. Our
mathematical model accounts for the variability of the travel and dwell times of bus trips, the regu-
larity of individual bus lines, and the regulatory constraints related to the schedule sliding preven-
tion and the layover time limits. To perform a synchronization of multiple bus lines that is robust to
travel time and dwell time variabilities, we tackle this problem using the minimax decision rule of
2-player games where one player selects the optimal dispatching times for some specific travel and
dwell time noise, whereas the other player selects the worst-case travel and dwell time noise for
a given dispatching time solution. In a validation of this approach in two bus lines in Stockholm
using 1 month of actual vehicle location and passenger counting data, we demonstrate the potential
improvement in terms of service regularity and increased synchronizations. Finally, we examine
how the performance of bus schedules in common-case scenarios is affected when their robustness
to extreme deviations is increased.

Keywords: timetabling; high-frequency services; robust optimization; transfer coordination; non-
linear programming
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INTRODUCTION
Bus timetabling is a sub-problem of the tactical planning phase. Other tactical planning stages such
as route design, frequency settings and vehicle allocation precede the timetabling problem (Ceder
(1), Farahani et al. (2), Gkiotsalitis and Cats (3), Gkiotsalitis and Kumar (4)). After the timetabling
stage, transport operators can apply dynamic control strategies such as bus holding, stop-skipping
or dispatching time changes (Gavriilidou and Cats (5), Adamski and Turnau (6), Fu and Yang (7),
Zhao et al. (8), Bartholdi and Eisenstein (9), Hickman (10), Gkiotsalitis and Stathopoulos (11),
Berrebi et al. (12), Eberlein et al. (13)) to adjust to the spatio-temporal variations of passenger
demand and travel times and improve the service reliability.

In practice, the timetables of bus lines are typically determined at the line level treating each
bus line in isolation Gkiotsalitis and Maslekar (14). Timetabling approaches that account for the
network-wide synchronization do not consider the variability of the bus travel times during the ac-
tual operations (Chakroborty et al. (15), Wong et al. (16)). This, however, yields high inefficiencies
which were already outlined in the early 1990s (Bookbinder and Desilets (17)).

This study focuses on the determination of the dispatching times of bus trips that favor the
synchronization among different bus lines and are robust to travel time variations during the daily
operations. In this study, we solve the network-wide synchronized scheduling problem to generate
timetables with trip dispatching times that favor the synchronization among different bus lines
while also improving the regularity of each individual bus line. Note that in line with the theory
of robust optimization, we refer as robust timetables the timetables that maintain their operational
performance in worst-case scenarios of travel time disturbances Bertsimas and Sim (18).

The remainder of this study is structured as follows: in the remaining part of this section we
discuss the most relevant research studies in bus scheduling considering transfer synchronizations.
In section 2, we formulate our problem and we introduce the objectives and constraints of our
main mathematical model. The mathematical model is presented in section 3 and is reformulated
to ensure its feasibility after relaxing its soft constraints. In section 4, we introduce our solution
method to the minimax problem which is based on the concept of alternating optimization. A
detailed demonstration of our approach in a toy network is presented in section 5. This demonstra-
tion facilitates the reproduction of our work. In addition, the application of our approach to two
bi-directional bus lines in Stockholm is presented in the same section. Finally, section 6 provides
the concluding remarks and discusses the future direction.

Related Studies
Coordinating multiple bus lines by synchronizing their timetables has been studied by (Daduna
and Voß (19), Jansen et al. (20), Wong et al. (16), Vansteenwegen and Van Oudheusden (21),
Gkiotsalitis and Maslekar (22)). A typical objective of that problem is the reduction of passenger
waiting times at transfer stops while maintaining even dispatching headways (Gkiotsalitis et al.
(23)). Cevallos and Zhao (24) and Cevallos and Zhao (25) proposed simple pertubations by merely
shifting the pre-existing timetables to solve the aforementioned problem and resorted into a Genetic
Algorithm (GA) given the computational complexity of the problem.

Zhigang et al. (26) coupled the problem of vehicle scheduling with the timetabling problem
that considers transfer synchronizations. Despite that, most approaches treat those two problems
in isolation because, as it was demonstrated in Zhigang et al. (26), those two problems can only be
solved at different levels using bi-level programming.

Typically, the timetabling problem that considers network-wide synchronizations is solved
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with heuristics due to its computational complexity. This results in approximate solutions, such
as in the works of Ceder et al. (27) and Ceder and Tal (28) that introduced a mixed integer linear
program and used a heuristic algorithm for its solution. The follow-up works of Eranki (29) and
Ibarra-Rojas and Rios-Solis (30) modified the mathematical model of Ceder and Tal (28) by relax-
ing the synchronization requirements and allowing a time buffer for transfer synchronization. With
this time buffer, a synchronization is achieved even if bus trips from different lines do not arrive
at the transfer point simultaneously, but with a small delay that lies within the limits of the pre-set
time buffer. Both works of Eranki (29) and Ibarra-Rojas and Rios-Solis (30) resorted into heuris-
tics. Notably, Ibarra-Rojas and Rios-Solis (30) developed a multi-start, local search algorithm for
converging as close as possible to the global optimum.

Coffey et al. (31) treated the synchronization problem as a demand-supply matching problem.
In their approach, they optimized the timetables of public transport modes by matching the pas-
senger demand expressed via journey planners with the public transport supply in order to reduce
missed connections. Other works that expand the synchronization problem to mixed (rail-bus) op-
erations such as Chien and Schonfeld (32), Sun and Hickman (33), Sivakumaran et al. (34), Verma
and Dhingra (35) proposed multi-modal synchronization methods based on the so-called "feeder
model" that prioritizes the transport modes and forces the bus schedules to adjust to the less flexible
rail schedules.

In the above-mentioned works, the variability of travel and dwell times and the resulting ef-
fect on the number of boardings/alightings at stops was not considered at the optimization stage.
However, this is a very important aspect because the expected and the actual arrival times of buses
at stops can differ significantly in real operations resulting in missed connections. For instance,
Knoppers and Muller (36) explored the waiting times of passengers at transfer stops in the case of
rail synchronization and showed that synchronization has no effect in real operations if the arrival
times at the transfer stops fluctuate significantly from the expected ones.

The travel time variability was explored in the work of Hall et al. (37). Hall et al. (37) studied
thoroughly the importance of travel time variability at the multi-line synchronization problem. The
main focus of Hall et al. (37) was on real-time bus holding of buses at transfer stops for improving
synchronization via adjusting to the travel time changes and not on network-wide synchronized
scheduling. In their work, the bus trips were held at the transfer stops in anticipation of the arrival
of passengers from other trips in order to perform the transfer. In addition, the transfer times were
minimized under stochastic travel time conditions by modeling the noise of the bus arrivals at the
transfer stop with the use of normal distributions.

As in Hall et al. (37), our work considers the potential variability in the travel times and
dwell times of daily trips and has the following additional features: (i) is concerned with tactical
planning, in particular bus timetabling (i.e., offline optimization of the dispatching times of the
daily trips); (ii) it has a dual objective and minimizes the regularity of individual bus lines while
ensuring the synchronization of trips at the transfer stops; and (iii) considers operational regulatory
constraints such as schedule sliding prevention and layover time limits.

PROBLEM FORMULATION
Travel time and dwell time noise due to external traffic or incidents is one of the key reasons be-
hind the unreliability of the bus operations. Most timetables assume that the operational arrival
times of bus trips at stops will be close to their expected values, something that is rarely the case
in real-world operations. Several studies such as Berrebi et al., Gkiotsalitis and Cats, Gkiotsalitis
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and Van Berkum (12, 38, 39) have identified the travel time noise that affects the boardings and
alightings of passengers as the main factor of bus bunching and missed passenger transfers. The
mechanism behind it is that if one bus is postponed because of traffic, the headway with its preced-
ing bus increases and this will increase the number of boardings (and the associated dwell time);
therefore, this domino-effect will make it difficult for the bus which is left behind to rebound later
on.

This work makes a number of reasonable assumptions such as: (i) the number of bus trips per
line is decided during the frequency settings phase and all of the assigned trips are expected to be
performed during the day; (ii) bus trips from the same line are not expected to overtake one another
(an assumption that is used in several studies such as Xuan et al. (40), Chen et al. (41)); and (iii)
the actual travel time of a bus trip between two consecutive stops can deviate from its expected
value due to external traffic or road works.

Before proceeding to the description of the multi-line synchronization problem, the following
notation is introduced.

NOMENCLATURE
Sets
L = {1, ..., l, ...} are the different bus lines in the study area
N(l) = {1, ...,n, ...} is the set of all daily trips of each bus line l ∈ L
S(l) = {1...,s, ...} is the set of bus stops of each bus line l ∈ L ordered from the first to the

last
Bl j all transfer stops between lines l and j where the arrival times of trips that

belong to line l need to be synchronized with the arrival times of trips that
belong to line j

Parameters
fl is the number of trips for each line l ∈ L which are needed to fulfill the

demand (note: the number of trips is already determined at the frequency
settings stage)

T the planning period (note: the suggested planning period is at most one
day of operations)

h∗l =
T
fl

the ideal headway of bus line l ∈ L that should be maintained at all bus
stops for attaining a perfectly regular service (sec)

tl,n,s denotes the expected travel time of bus trip n of line l between stops s−1
and s (sec)

δ min
l is the dispatching time of the first trip of the planning period (sec)

δ max
l is the latest possible time where all trips of line l ∈ L must have completed

their service for preventing schedule sliding (sec)
kl,n,s is the expected dwell time of bus trip n of bus line l at stop s (sec)
ψl is the required layover time for line l after completing each bus trip (sec)
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Decision Variables
xl,n is the dispatching time of the nth trip that belongs to line l (sec)

Uncertainty Parameters
ξl,n,s ∈ [ξ min

l,s ,ξ max
l,s ] is an uncertain parameter that represents the travel time ‘noise’ between

stops s− 1 and s for trip n of line l (in sec). The parameter ξl,n,s can
take any value within the range [ξ min

l,s ,ξ max
l,s ] where ξ min

l,s is the minimum
possible travel time and ξ max

l,s the maximum possible travel time (i.e., free-
flow travel time) between stops s−1 and s

ζl,n,s ∈ [ζ min
l,s ,ζ max

l,s ] is the uncertain parameter that represents the dwell time noise at stop s
for trip n of line l (in sec)

Note that we do not make any assumption with respect to the probability distribution of the
uncertain parameters ξl,n,s and ζl,n,s, but we allow them to take any value withing the uncertainty
sets [ξ min

l,s ,ξ max
l,s ] and [ζ min

l,s ,ζ max
l,s ]. Following the above notation, the arrival time of any trip n that

belongs to a bus line l ∈ L at stop s ∈ S(l)\{1} is:

al,n,s = xl,n +
s

∑
z=2

(
tl,n,z +ξl,n,z

)
+

s−1

∑
z=1

(
kl,n,z +ζl,n,z

)
(1)

where ξl,n,z is the travel time deviation from the expected travel time value tl,n,z for the road
section defined by bus stops z− 1 and z and ζl,n,z is the dwell time deviation from the expected
dwell time at stop z. In Eq.1 the arrival time of a trip n at stop s is set equal to departure time of
the trip, xl,n, plus the sum of the expected travel times and the respective travel time deviations
between consecutive stops until reaching stop s, ∑

s
z=2
(
tl,n,z +ξl,n,z

)
, plus the expected dwell time

at each bus stop until reaching stop s, ∑
s−1
z=1
(
kl,n,z +ζl,n,z

)
. From Eq.1 one can note that the arrival

times of buses at stops vary based on the departure times of the trips and the travel time/dwell time
noise.

Formulating the objectives of the Network-wide synchronization problem
To increase the regularity of bus services, the actual time headways1 at bus stops should be as
close as possible to their scheduled values. The ideal headway h∗l =

T
fl

of a bus line l ∈ L is already
defined at the frequency settings stage. In addition, the time headway between two consecutive
services n−1,n of line l at stop s is:

hl,n,s = al,n,s−al,n−1,s where n ∈ N(l)\{1} (2)

The difference between the actual headways and the ideal headways at stops is the sole key
performance indicator of regularity-based services and has been in use in London, Singapore,
Barcelona and many other densely populated areas where the bus services operate in high frequen-
cies (Randall et al. (42)). The main reason of its use in high-frequency services is that it indicates
the excessive waiting times of passengers at stops, where the excessive waiting times are the dif-
ference between the actual waiting times and the scheduled ones. Note that in high-frequency
services, the waiting time of a passenger of trip n at stop s is half the headway between trip n and

1the time headway between two consecutive bus trips n,n+1 of a line l at bus stop s is the headway between the
front bumpers of the respective buses at the time of their arrival at stop s
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trip n−1, hl,n,s
2 , because the passenger arrivals at stops are considered as random2 and are uniformly

distributed.
In order to reduce the difference between the actual waiting times of passengers at stops and

the ideal ones for a bus line l ∈ L, one should minimize the sum of the squared difference between
the actual and the ideal headways:

∑
s∈S(l)

(
∑

n∈N(l)\{1}

(
hl,n,s

2
−

h∗l
2

)2
)

=
1
4 ∑

s∈S(l)

(
∑

n∈N(l)\{1}

(
hl,n,s−h∗l

)2

)
(3)

Remark 2: The key performance indicators of service regularity, such as the excess waiting time
indicator, consider the squared difference between the actual and the ideal headways because the
squared difference penalizes progressively the headway deviations from the ideal case. Conse-
quently, the optimization is steered towards avoiding extreme abnormalities.
Remark 3: If all bus lines l ∈ L have the same importance, the average regularity level of all
bus lines can be expressed as ∑

l∈L

1
4 ∑

s∈S(l)

(
∑n∈N(l)\{1}

(
hl,n,s−h∗l

)2
)

. Notwithstanding, if some

bus lines have more importance than others, the network-wide regularity can be indicated by the
weighted sum of the daily excessive waiting times for all bus lines:

∑
l∈L

wl

4 ∑
s∈S(l)

(
∑

n∈N(l)\{1}

(
hl,n,s−h∗l

)2

)
(4)

where wl are weight factors that give more importance to the regularity of some bus lines in
the expense of others. Note that wl ≥ 0,∀l ∈ L, and ∑

l∈L
wl = 1.

Plugging Eq.1 and 2 into Eq.4 yields:

f (x,ξ ,ζ ) := ∑
l∈L

wl

4 ∑
s∈S(l)

∑
n∈N(l)\{1}

((
xl,n +

s

∑
z=2

(
tl,n,z +ξl,n,z

)
+

s−1

∑
z=1

(
kl,n,z +ζl,n,z

))
−

(
xl,n−1 +

s

∑
z=2

(
tl,n−1,z +ξl,n−1,z

)
+

s−1

∑
z=1

(
kl,n−1,z +ζl,n−1,z

))
−h∗l

)2 (5)

where f (x,ξ ,ζ ) is the daily, network-wide excessive waiting time of passengers that indicates
the service regularity.

Now let us consider the waiting times of passengers at transfer stops. Reckon that Bl j is the
set with all transfer stops between lines l and j where the arrival times of trips that belong to line
l need to be synchronized with the arrival times of trips that belong to line j. Let also Y bnm

l j be
a dummy variable where Y bnm

l j = 1 if trip n ∈ N(l) needs to synchronize its arrival time with trip
m ∈ N( j) at the transfer stop b ∈ Bl j and Y bnm

l j = 0 otherwise. Ceder et al. (27) considers a perfect
synchronization when trip n arrives at the transfer stop b ∈ Bl j exactly at the same time as trip
m ∈ N( j). In this way, the waiting times of passengers that want to transfer from bus trip n ∈ N(l)

2several studies, such as Randall et al. (42), Welding (43), have shown that passengers cannot synchronize their
arrivals to the arrivals of the bus trips in high-frequency services.
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to bus trip m ∈ N( j) at bus stop b ∈ Bl j are minimized when al,n,b− a j,m,b = 0. Later studies by
Eranki (29) and Ibarra-Rojas and Rios-Solis (30) proposed a more flexible scheme where the bus
trip n is still considered synchronized if it arrives within a time range of [0,∆t] seconds after the
arrival of trip m at the transfer stop b.

In our study, we also allow a more flexible synchronization by treating the required synchro-
nizations at transfer stops as problem constraints:

0≤ Y bnm
l j

(
al,n,b−a j,m,b

)
≤ ∆t, ∀l, j ∈ L,∀n ∈ N(l),∀m ∈ N( j)\{1},∀b ∈ Bl j (6)

Obviously, when the dummy variable Y bnm
l j = 0 the inequalities of Eq.6 hold for any value of

the arrival times al,n,b and a j,m,b because in such case there is no requirement to synchronize the
arrival time of trip n ∈ N(l) with the arrival time of trip m ∈ N( j) at stop b ∈ Bl j. Plugging Eq.1
into Eq.6 yields the expanded form:

0≤ Y bnm
l j

((
xl,n +

b

∑
z=2

(
tl,n,z +ξl,n,z

)
+

b−1

∑
z=1

(
kl,n,z +ζl,n,z

))
−

(
x j,m +

b

∑
z=2

(
t j,m,z +ξ j,m,z

)
+

b−1

∑
z=1

(
k j,m,z +ζ j,m,z

)))
≤ ∆t,

∀l, j ∈ L,∀n ∈ N(l),∀m ∈ N( j)\{1},∀b ∈ Bl j

(7)

Regulatory constraints
This study considers layover constraints. The layover time of a bus that finishes one bus trip is
the minimum required time before starting its next trip. Hence, the layover time is equal to the
required time for traveling from the last stop of the finished trip to the first stop of the next trip
(known as deadheading time) plus the recovery time for the bus driver (in most cases, bus drivers
must take a short break after completing a bus trip).

Let us consider a dummy variable Φl
n,n′ where Φl

n,n′ = 1 if bus trip n′ ∈ N(l) is operated after
the completion of bus trip n ∈ N(l) by the same bus and Φl

n,n′ = 0 otherwise. Then, if the required
layover time for bus line l ∈ L is ψl where the layover time consists of the required deadhead time
for traveling from the last to the first stop and the resting time of the bus driver, the dispatching
time, xl,n′ , of trip n′ should satisfy the inequality:

Φ
l
n,n′

(
xl,n′−

(
xl,n + ∑

s∈S(l)\{1}
(tl,n,z +ξl,n,z)+ ∑

s∈S(l)
(kl,n,z +ζl,n,z)

))
≥Φ

l
n,n′ψl , ∀n,n′ ∈N(l),∀l ∈L

(8)
which yields:

Φ
l
n,n′xl,n′ ≥Φ

l
n,n′

(
ψl + xl,n + ∑

s∈S(l)\{1}
(tl,n,z +ξl,n,z)+ ∑

s∈S(l)
(kl,n,z +ζl,n,z)

)
, ∀n,n′ ∈N(l),∀l ∈L

(9)
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Note that the inequality of Eq.9 is satisfied when bus trip n′ is not operated by the same bus as
trip n because in such case Φl

n,n′ = 0 and the inequality holds. If Φl
n,n′ = 1 the dispatching time of

trip n′ ∈ N(l) which is denoted as xl,n′ should be greater than (i) the arrival time of trip n at the last
stop plus the dwell time at that stop, plus (ii) the layover time ψl .

Finally, to prevent schedule sliding and maintain the duration of the planned operations, all
trips of any bus line l ∈ L must have been completed before time δ max

l . The schedule sliding
constraint ensures that the operations of the examined planning period are not prolonged because
this will have adverse effects on future operations and increase the working hours of bus drivers
(the latter is not typically allowed because of the respective contractual agreements). Avoiding
schedule sliding yields the following inequality constraints:

xl,n + ∑
s∈S(l)\{1}

(tl,n,z +ξl,n,z)+ ∑
s∈S(l)

(kl,n,z +ζl,n,z)≤ δ
max
l , ∀n ∈ N(l), l ∈ L (10)

which ensures that each trip n of line l has arrived at the last stop and has completed all
passenger alightings before time δ max

l .

MATHEMATICAL PROGRAM OF THE NETWORK-WIDE SYNCHRONIZATION PROB-
LEM
The proposed network-wide synchronization problem that explicitly considers uncertain travel and
dwell times is formulated as a mathematical optimization problem. The mathematical program can
be written in a compact form as:

(Q) : min
x

max
ξ ,ζ

f (x,ξ ,ζ ) (11)

s.t.: x ∈F (ξ ,ζ ) =
{

x x satisfies Eq. 7, 9, 10
}

(12)

xl,1 = δ
min
l , ∀l ∈ L (13)

ξ
min
l,s ≤ ξl,n,s ≤ ξ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)\{1} (14)

ζ
min
l,s ≤ ζl,n,s ≤ ζ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l) (15)

Program (Q) is a minimax optimization problem (see Wald (44), Wald (45)) and ranks the
dispatching time solutions on the basis of their worst-case outcomes. Therefore, the objective of
the minimax problem is to find a dispatching time solution which performs best at a pessimistic
scenario of worst-case travel time and dwell time noises, ξ ,ζ . (We note that in (Q) the uncertain
parameters (ξ ,ζ ) appear as variables).

Solution Existence and Reformulation
The optimization problem (Q) is difficult to solve numerically. Intuitively, the set F (ξ ,ζ ) depends
on the choice of the noise parameters, while the choice of the noise depends on the choice of x.
This is a non-probabilistic decision-making approach based on common rules from game theory
where the objective is to minimize the possible loss of the worst-case scenario. In this section, we
formulate a relaxed problem of (Q) that can be solved using any optimization toolbox. Therefore,
we analyze program (Q) in more detail.
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Given ξ 0,ζ 0, the objective function f (x,ξ 0,ζ 0) is continuous and convex. Therefore, the
optimization problem

(P(ξ 0,ζ 0)) min
x

f (x,ξ 0,ζ 0)
x ∈F (ξ 0,ζ 0)
x satisfies 13

(16)

can easily be solved to global optimality with parameters (ξ 0,ζ 0) if the corresponding feasible
set F (ξ 0,ζ 0) is non-empty (and compact). Let us now examine the "behavior" of the inequality
constraints of Eq.7, 9, 10 and the equality constraints of Eq.13.

First, the equality constraints of Eq.13 can be always satisfied because the dispatching times
of the first trips of the day are not constrained by the travel time/dwell time noise levels. This is
not true though for the inequality, schedule sliding constraints of Eq.10 if the travel time noise is
highly uncertain. That is, a solution that avoids schedule sliding for all travel time and dwell time
noise instances might not exist. If this is the case, then there is at least a travel time and dwell time
noise instance (ξ 0,ζ 0) for which the mathematical program (Q) does not have a feasible solution
x ∈F (ξ 0,ζ 0). Hence, we propose to relax these constraints by introducing penalty terms in the
objective function that penalize the value of the penalized objective function when (at least one) of
the schedule sliding constraints is violated.

We therefore introduce the functions:

ϕl,n(x,ξ ,ζ ) =



0 if xl,n + ∑
s∈S(l)\{1}

(tl,n,z +ξl,n,z)+ ∑
s∈S(l)

(kl,n,z +ζl,n,z)≤ δ max
l

cϕ

(
xl,n+ ∑

s∈S(l)\{1}
(tl,n,z +ξl,n,z)+

∑
s∈S(l)

(kl,n,z +ζl,n,z)−δ
max
l

)2

otherwise

∀l ∈ L,n ∈ N(l)

(17)
where cϕ is a nonnegative constant with a sufficiently high value for ensuring that the sat-

isfaction of constraints is prioritized. This sufficiently high value of cϕ is determined in prac-
tice by starting with a small value, minimizing the penalized objective function with this small
value and then increasing this value incrementally until reaching solution stability. For any fixed
noise (ξ 0,ζ 0), a penalty function ϕl,n(x,ξ 0,ζ 0) penalizes any dispatching time xl,n for which
xl,n + ∑

s∈S(l)\{1}
(tl,n,z + ξl,n,z)+ ∑

s∈S(l)
(kl,n,z + ζl,n,z) > δ max

l and is twice differentiable and convex.

The penalty functions are structured in such a way that will strongly encourage the penalized ob-
jective function to choose the best solution which satisfies as many schedule sliding constraints as

possible while the squared value of
(

xl,n + ∑
s∈S(l)\{1}

(tl,n,z + ξl,n,z)+ ∑
s∈S(l)

(kl,n,z + ζl,n,z)− δ max
l

)2

ensures that trips which are significantly prolonged beyond the time limit δ max
l are penalized more

severely than others which are close to δ max
l .

Similarly, we also propose to relax the inequality constraints related to the synchronization of
trips at transfer stops to avoid infeasibility issues by introducing the following penalty functions to
the penalized objective function.

First, the inequality constraints:



gkiotsalitis et al. 10

0≤ Y bnm
l j

((
xl,n +

b

∑
z=2

(
tl,n,z +ξl,n,z

)
+

b−1

∑
z=1

(
kl,n,z +ζl,n,z

))
−

(
x j,m+

b

∑
z=2

(
t j,m,z+ξ j,m,z

)
+

b−1

∑
z=1

(
k j,m,z+ζ j,m,z

)))
, ∀l, j∈L,∀n∈N(l),∀m∈N( j)\{1},∀b∈Bl j

are approximated by the penalty functions:

µ
bnm
l j (x,ξ ,ζ ) =

{
0 if Y bnm

l j = 0 or al,n,b ≥ a j,m,b

cµ

(
a j,m,b−al,n,b

)2 otherwise
∀l, j ∈ L,∀n ∈ N(l),∀m ∈ N( j)\{1},∀b ∈ Bl j

(18)
where the arrival times al,n,b,a j,m,b are given from Eq.1 and are the compact forms of

(
xl,n +

b
∑

z=2

(
tl,n,z + ξl,n,z

)
+

b−1
∑

z=1

(
kl,n,z + ζl,n,z

))
and

(
x j,m +

b
∑

z=2

(
t j,m,z + ξ j,m,z

)
+

b−1
∑

z=1

(
k j,m,z + ζ j,m,z

))
re-

spectively whereas cµ is a parameter with a sufficiently high value.
Then, the inequality constraints al,n,b− a j,m,b ≤ ∆t,∀n ∈ N(l),∀m ∈ N( j) \ {1},∀b ∈ Bl j are

approximated by the penalty functions:

ν
bnm
l j (x,ξ ,ζ )=

{
0 if Y bnm

l j = 0 or al,n,b−a j,m,b ≤ ∆t

cν

(
al,n,b−a j,m,b−∆t

)2 otherwise
∀l, j∈L,∀n∈N(l),∀m∈N( j)\{1},∀b∈Bl j

(19)
where cν is a sufficiently high value. Note that the penalty functions µbnm

l j (x,ξ ,ζ ) and νbnm
l j (x,ξ ,ζ )

increase the value of the penalized objective function every time a synchronization is missed (i.e.,
the transfer does not occur within the time interval [0,∆t]). In addition, for any given noise in-
stance, (ξ 0,ζ 0), the functions µbnm

l j (x,ξ 0,ζ 0) and νbnm
l j (x,ξ 0,ζ 0) are convex because they are

both piecewise linear and piecewise quadratic.
The penalized objective function now becomes:

f̃ (x,ξ ,ζ ) = f (x,ξ ,ζ )+∑
l∈L

∑
n∈N(l)

ϕl,n(x,ξ ,ζ )+

∑
l∈L

∑
j∈L

∑
b∈Bl j

∑
n∈N(l)

∑
m∈N( j)

(
µ

bnm
l j (x,ξ ,ζ )+ν

bnm
l j (x,ξ ,ζ )

) (20)

which maintains convexity for any noise instance of (ξ 0,ζ 0). The program (Q) can be ap-
proximated by the relaxed program (Q̃) that includes the penalized objective function f̃ (x,ξ ,ζ ):
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(Q̃) : min
x

max
ξ ,ζ

f̃ (x,ξ ,ζ ) (21)

s.t.: Equations 9 (22)

xl,1 = δ
min
l , ∀l ∈ L (23)

ξ
min
l,s ≤ ξl,n,s ≤ ξ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)\{1} (24)

ζ
min
l,s ≤ ζl,n,s ≤ ζ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l) (25)

Note that the inequality constraints of Eq.7 and 10 are not included in the mathematical pro-
gram (Q̃) because they are incorporated into the penalized objective function, f̃ (x,ξ ,ζ ), with the
use of penalty functions. Note also that the remaining inequality constraints are the layover con-
straints of Eq.9. From a mathematical perspective, we have relaxed program (Q) into an easier-to-
study problem (Q̃). The following theorem (Theorem 3.1) shows that for a given noise instance
(ξ 0,ζ 0), the corresponding optimization problem

(P̃(ξ 0,ζ 0)) min
x

f̃ (x,ξ 0,ζ 0) s.t. x satisfies 9, 13

is easy to solve and has always a feasible solution.

Theorem 3.1. Given travel time and dwell time noise instance (ξ 0,ζ 0), the feasible set that cor-
responds to (P̃(ξ 0,ζ 0)) is nonempty and has an optimal solution. If, in addition, for some optimal
solution x∗ it holds that f̃ (x∗,ξ 0,ζ 0) = f (x∗,ξ 0,ζ 0) then solution x∗ is feasible for mathematical
program (Q).

Proof. Since the domain of the dispatching times of the first trips of the planning period is R|L|,
there is always a set of values xl,1, ∀l ∈ L for which xl,1 = δ min

l , ∀l ∈ L satisfying the equality
constraints of Eq.13. In addition, the inequality layover constraints of Eq.9 can be always satisfied
since there exists a xl,n′ ∈ R for which Φl

n,n′

(
xl,n′ −

(
xl,n + ∑

s∈S(l)\{1}
(tl,n,z + ξl,n,z)+ ∑

s∈S(l)
(kl,n,z +

ζl,n,z)
))
≥ Φl

n,n′ψl , ∀n,n′ ∈ N(l),∀l ∈ L since the value of xl,n′ , given that program (Q̃) does
not include the inequality constraints of Eq.7, does not have a finite upper bound of δ max

l −(
∑

s∈S(l)\{1}
(tl,n′,z +ξl,n′,z)+ ∑

s∈S(l)
(kl,n′,z +ζl,n′,z)

)
anymore.

Proving that there is always a feasible solution for the program (Q̃), if x∗ is such that f̃ (x∗,ξ 0,ζ 0)=
f (x∗,ξ 0,ζ 0), then

∑
l∈L

∑
n∈N(l)

ϕl,n(x∗,ξ 0,ζ 0)+∑
l∈L

∑
j∈L

∑
b∈Bl j

∑
n∈N(l)

∑
m∈N( j)

(
µ

bnm
l j (x∗,ξ 0,ζ 0)+ν

bnm
l j (x∗,ξ 0,ζ 0)

)
= 0

which, in addition to the fact that all penalty functions are non-negative by definition, means that
ϕl,n(x∗,ξ 0,ζ 0) = 0, ∀l ∈ L,n ∈ N(l) and thus x∗l,n ≤ δ max

l , ∀l ∈ L,n ∈ N(l) which proves the
satisfaction of all schedule sliding inequality constraints and, at the same time, µbnm

l j (x∗,ξ 0,ζ 0) =

νbnm
l j (x∗,ξ 0,ζ 0) = 0,∀n ∈ N(l),∀m ∈ N( j)\{1},∀b ∈ Bl j, which proves that all synchronizations

at transfer stops are performed according to plan. Therefore, solution x∗ satisfies all inequality
constraints of the mathematical program (Q) including those of Eq.7 and 10 and is a feasible
solution of (Q) for the given travel time and dwell time noise instance (ξ 0,ζ 0).
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SOLUTION METHOD
Alternating Optimization
The minimax problem of (Q̃) can be conceptualized as a two-player game where player 1 chooses
his/her strategy (i.e., finds the values of the uncertain parameters ξ ,ζ from the corresponding
uncertainty sets for maximizing the penalized objective function f̃ (x0,ξ ,ζ ), given x0) and player 2
selects the dispatching times, x, so that the function f (x,ξ 0,ζ 0) is minimized while satisfying the
constraints for a fixed (ξ 0,ζ 0). In this way, the decisions of player 1 and player 2 are interrelated
(a decision made by player 1 affects player 2 and vice versa).

Let xk, k ∈ N be an initial guess of the dispatching time modifications that satisfies Eq.9 and
13. The worst-performing scenario for such solution can be determined from the maximization
problem with parameter xk:

(P(xk)) : max
ξ ,ζ

f̃ (xk,ξ ,ζ )

s.t.: ξ
min
l,s ≤ ξl,n,s ≤ ξ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)\{1}

ζ
min
l,s ≤ ζl,n,s ≤ ζ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)

(26)

By solving the maximization problem (P(xk)) the values of the uncertain parameters related
to the travel and dwell times that result in a worst-performing scenario for the solution xk can be
determined as ξ k and ζ k.

Given the worst-case noise of the uncertainty values (ξ k, ζ k) for the realization of xk, an up-
dated solution, xk+1, can be computed. The updated solution minimizes the optimization problem
(P̃(ξ k,ζ k)).

This alternating optimization continues iteratively until a termination criterion is satisfied. The
termination criterion can be related to the stability of the solution performance. If, for instance,
consecutive solutions xk−q, ...,xk−1,xk have stable worst-case performances, then this can be an in-
dication that there are no further oscillations and the solutions have a relatively stable performance
in worst-case scenarios.

This can be summarized in the following algorithm:

Step 0: Choose x1 that satisfies Eq.9 and 13, set k := 1;

Step 1: Solve P(xk) and obtain (ξ k,ζ k);

Step 2: Solve P̃(ξ k,ζ k) for (ξ k,ζ k) and obtain xk+1, set k := k+1;

Step 3: If the performance of the most recent solutions is stabilized, STOP. Else, go to Step 1.

NUMERICAL EXPERIMENTS
Illustrative example in an idealized network
Figure 1 shows the idealized network under consideration. Even though the numerical experiment
includes two bus lines, the analysis can be expanded to a full-scale city network without loss of
generality.
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FIGURE 1 : Idealized bus network with two bus lines l, j ∈ L

The idealized bus network has two bus lines. Bus line l serves 5 stops, S(l) = {1,2,3,4,5}
and line j serves 4 stops, S( j) = {1,2,3,4}. The transfer stops of bus lines l, j are Bl j = {2,3}. Let
assume that bus lines l, j operate three trips each, N(l) = {1,2,3} and N( j) = {1,2,3} during the
planning period, where the first trip of bus line l should be dispatched at δ min

l = 8:00 am (which, if
we start counting seconds from the beginning of the day, is 28,800) and the first trip of bus line j at
δ min

l = 8:02 am (or 28,920 sec). Let also assume that all bus trips are operated by different buses.
Each trip of bus line l needs to synchronize its arrival time at stops b ∈ Bl j with the arrival

time of the corresponding trip of line j (6 synchronizations in total) where a synchronization is
successful if the arrival time difference remains within the range [0,∆t], where ∆t = 300 sec. The
ideal time headways between successive bus trips at bus stops are 8 minutes (or h∗l = 460 sec) for
line l and 10 minutes (or h∗j = 600 sec) for line j. In addition, to prevent schedule sliding, all trips
of bus lines l and j should have been completed before 10:00 am, thus δ max

l = δ max
j = 36,000 sec.

Finally, the expected travel times, dwell times and the respective bounds of the travel and dwell
time noises are presented in Table 1.

Note that we start the analysis from a mild scenario where we want to be robust for travel
time deviations of up to 1 minute and dwell time deviations of up to 20 sec. Evidently, the bus
operator might either prefer to maintain robustness in common-case scenarios where program (Q̃)
is optimized considering tight travel time and dwell time noise bounds or might desire to ensure
robustness in more extreme scenarios by increasing the travel time and dwell time noise bounds in
the optimization (in the latter case, it is expected that the computed schedules will not perform as
well as the former ones in practice if the disturbances in the actual operations are minor).

Continuing in the analysis, starting from a randomly selected dispatching time solution, x1,
we need to obtain the worst-case noise (ξ 1,ζ 1). An obvious choice for the initial dispatching time
solution is the one that optimizes the normal case (i.e., the case where the travel time and dwell
time noises are not considered). This solution can be easily obtained by solving the program (P̃)
without the consideration of noise. Our initial dispatching time solution reads:

x1 =

{
(xl,1 = 28800, xl,2 = 31000, xl,3 = 33200) in sec
(x j,1 = 28920, x j,2 = 31120, x j,3 = 33320) in sec
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TABLE 1 : Travel time and dwell time values for the idealized bus network in seconds

bus line l bus line j

Trip Stop tl,n,s kl,n,s [ξ min
l,s ,ξ max

l,s ] [ζ min
l,s ,ζ max

l,s ] Trip Stop t j,m,z k j,m,z [ξ min
j,z ,ξ max

j,z ] [ζ min
j,z ,ζ max

j,z ]

n=1 s=1 na 0 na [0,+20] m=1 z=1 na 0 na [0,+20]
s=2 450 20 [-60, +60] [-10,+20] z=2 610 38 [-60,+60] [-10,+20]
s=3 445 22 [-60,+60] [-10,+20] z=3 480 33 [-60,+60] [-10,+20]
s=4 450 20 [-60,+60] [-10,+20] z=4 710 26 [-60,+60] [-10,+20]
s=5 452 25 [-60,+60] [-10,+20]

n=2 s=1 na 0 na [0,+20] m=2 z=1 na 0 na [0,+20]
s=2 450 24 [-60,+60] [-10,+20] z=2 590 46 [-60,+60] [-10,+20]
s=3 460 25 [-60,+60] [-10,+20] z=3 490 32 [-60,+60] [-10,+20]
s=4 445 22 [-60,+60] [-10,+20] z=4 745 22 [-60,+60] [-10,+20]
s=5 450 25 [-60,+60] [-10,+20]

n=3 s=1 na 0 na [0,+20] m=3 z=1 na 0 na [0,+20]
s=2 450 24 [-60,+60] [-10,+20] z=2 630 35 [-60,+60] [-10,+20]
s=3 462 22 [-60,+60] [-10,+20] z=3 480 41 [-60,+60] [-10,+20]
s=4 450 31 [-60,+60] [-10,+20] z=4 770 27 [-60,+60] [-10,+20]
s=5 448 28 [-60,+60] [-10,+20]

To obtain the worst-case noise (ξ 1,ζ 1) for x1, we need to solve the maximization problem of
the program (P(x1)). The maximization program of (P(x1)) can be transformed to an equivalent
minimization problem:

(P̃(x1)) : min
ξ ,ζ

− f̃ (x1,ξ ,ζ )

s.t.: ξ
min
l,s ≤ ξl,n,s ≤ ξ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)\{1}

ζ
min
l,s ≤ ζl,n,s ≤ ζ

max
l,s , ∀l ∈ L,∀n ∈ N(l),∀s ∈ S(l)

(27)

where P̃(x1) seeks to minimize a concave function over a convex polyhedron. This problem
can be solved to optimality using an algorithm for nonlinear optimization such as the Limited-
memory Broyden-Fletcher-Goldfarb-Shanno algorithm that accepts Bounds (L-BFGS-B) and uses
derivatives of the penalized objective function as a key driver of the algorithm to identify the
direction of steepest descent, and also to form an estimate of the Hessian matrix (see Byrd et al.
(46)). An implementation of this algorithm in Python 3.4 via SciPy yields travel time and dwell
time noise solutions with a penalized objective function value of 1.727E+10 which indicates that if
the bus operator uses the dispatching times x1, at the worst-case scenario of travel time and dwell
time noise: (i) the (average) excessive waiting time of a typical passenger at each stop will be 2.66
minutes; (ii) 6 out of the 6 synchronizations will be missed where all three trips of line l will arrive
earlier to transfer stops Bl j = {2,3} than the corresponding trips of line j by 430, 633, 410, 612,
450 and 629 sec, respectively; and (iii) no schedule sliding violations will occur.

Solving program (P̃(ξ 1,ζ 1)) for the worst-case noise that was computed above for x1 will
give us a new solution x2 and this procedure can continue iteratively until convergence as shown in
Fig.2. From Fig.2 one can observe that after some initial oscillations, a robust solution is obtained
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in iteration 12. For this dispatching time solution, the worst-case value of the penalized objective
function is 0.701E+10 (a 59% improvement from the worst-case performance of the initial dis-
patching time solution). After iteration 12, this solution is not improved any further because the
minimax game between the two players has reached an equilibrium (neither the player that controls
the dispatching times nor the player that controls the travel and dwell time disturbances is willing
to change strategy because there is no foreseeable payoff and both players act rationally).
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FIGURE 2 : Convergence of the alternating optimization. The robust solution reduces the worst-
case penalized objective function value from 1.727E+10 to 0.701E+10

The robust solution for the travel time and dwell time noise scenario of Table 1 that appears
for the first time at the 12-th iteration in Fig.2 is:

x∗ =

{
(xl,1 = 28800, xl,2 = 30835, xl,3 = 32616) in sec
(x j,1 = 28920, x j,2 = 30661, x j,3 = 32406) in sec

At the presence of the worst-case travel time, the robust solution results in an (average) exces-
sive waiting time for a typical passenger of 2.125 minutes and allows the synchronization of the
second trip of line l with the second trip of line j at both transfer stops. In addition, the deviation
of the arrival times of trips at transfer stops are closer to the synchronization ranges (the worst-case
deviation reduces from 430+633+410+612+450+629=3164 sec to 430+633+0+0+117+319=1499
sec).

Application for two bi-directional lines in Stockholm
In this application, we solve the robust synchronization for two bi-directional bus lines in Stock-
holm (l is bus line 1 and j is bus line 4). As illustrated in Fig.3, bus line l comprises of direction 1
(Essingetorget to Stockholm Frihamnen) and direction 2 (Stockholm Frihamnen to Essingetorget).
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Bus line j comprises of direction 1 (Gullmarsplan to Radiohuset) and direction 2 (Radiohuset to
Gullmarsplan).

The planning period of this experiment is from 2:00pm to 7:30pm because this is one of the
four periods of the day where a uniform frequency is set. There are five transfer stops between the
two bi-directional services: {Västerbroplan, Mariebergsgatan, Fridhemsplan T-bana, Jungfrugatan,
Värtavägen}.

Gullmarsplan

Essingetorget

Frihamnen

Radiohuset

common

bus stops

--- bus line 1

--- bus line 4

FIGURE 3 : Bus lines 1 and 4 in Stockholm

Note that our robust optimization method can be applied even if the historical travel and dwell
times do not follow a specific probability distribution. Consequently, we can directly use historical
data as input in our minimax problem without defining the respective probability distributions. In
an illustrative example, we present the historical travel times of a trip of line 1 between the first
two bus stops and the resulting Tukey boxplot McGill et al. (47) in Fig.4.
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FIGURE 4 : (a) Example of interstation travel time observations and (b) resulting Tukey boxplot

In Fig.4b, the red line in the boxplot is the median of the dataset. The bounds of the box are
the lower and upper quartile Q1 and Q3. The lower and upper whiskers are the minimum (lowest
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datum still within 1.5 the interquartile range (IQR) of the first quartile), and the maximum (highest
datum still within 1.5 IQR of the third quartile). In addition, the travel time observations in blue
are outliers.

Defining realistic lower and upper limits for the travel time and dwell time noises, (ξ min
l,s ,ξ max

l,s ),

(ζ min
l,s ,ζ max

l,s ), plays an important role in finding robust designs. By definition, a robust design has
the best performance at the worst-case scenario. The worst-case scenario depends on the adversary
(in our case, the travel and dwell time noise). If we impose strict limitations on our adversary
(i.e., consider that the travel and dwell times are always equal to their expected values), this will
result in designs that perform well on average, but are not able to cope with changes. In contrary,
if our adversary is unlimited (i.e., the travel times are allowed to take unrealistically high values),
our robust design will perform the best at scenarios that never occur in practice whereas it might
underperform in common-case scenarios.

To examine the importance of the limits of the adversary in a robust design, we consider three
scenarios:

(i) the adversary is inactive. I.e., we consider only the expected travel and dwell times (red
lines in Tukey boxplot)

(ii) the environmental variables of the adversary are allowed to take any value from the lower
to the upper quartile Q1−Q3

(iii) the environmental variables of the adversary are allowed to take any value from the lower
to the upper whisker

Scenario (i) does not yield a robust design because we do not have an adversary (there is no
travel or dwell time noise). Scenarios (ii) and (iii) are robust designs where the adversary is more
limited in (ii) and has more loose restrictions in (iii).

To investigate the performance of different robust designs in realistic operations, we sample
actual values from the observed travel and dwell times using 1 month of Automated Vehicle Lo-
cation (AVL) and Automated Passenger Count (APC) data (15 Nov 2011-15 Dec 2011). For each
one of the 30-day travel time and dwell time scenarios that are based on real data, we evaluate the
performance of designs (i), (ii), (iii). After applying designs (i), (ii), (iii) at each day, the results
in terms of (average) passenger excessive waiting times and waiting times at transfer stops due to
missed synchronizations are presented in Table 2. The improvement of the median (that indicates
the potential performance improvement on the average case) and the upper whisker (that indicates
the potential performance improvement at the worst-case scenario) when applying designs (i), (ii)
and (iii) is summarized in Fig.5.
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TABLE 2 : Validation results

Average Excessive Waiting Time per passenger (min)

lower upper
whisker Q1 median Q3 whisker

Design (i) 1.443 1.583 1.626 1.673 1.810
Robust Design (ii) 1.372 1.495 1.542 1.587 1.710
Robust Design (iii) 1.442 1.622 1.654 1.661 1.681

Average Waiting Time for Transferring (min)

lower upper
whisker Q1 median Q3 whisker

Design (i) 1.888 2.229 2.381 2.579 2.910
Robust Design (ii) 1.511 1.692 1.710 1.984 2.811
Robust Design (iii) 1.819 2.231 2.403 2.468 2.581
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FIGURE 5 : Validation results: investigating the potential improvement of robust designs (ii) and
(iii) compared to design (i)

Fig.5 indicates that design (i) is inferior to the robust designs by 3.4%-11.31% in extreme
scenarios. This is in line with the results reported from the daily operations of schedules that
are optimized for the average case without considering potential travel/dwell time fluctuations
Gkiotsalitis and Maslekar (14).

Allowing the adversary to take more extreme values (i.e., design (iii)) will result in a robust
design that:

• performs better at extreme scenarios (upper whisker improved by 7.13% and 11.31%,
respectively);

• might exhibit similar performances to design (i) on the average-case (median deteriora-
tion of 1.72% and 0.92% for excessive waiting time and transfer waiting time, respec-
tively).



gkiotsalitis et al. 19

In contrast, allowing the adversary to take more common values (design (ii)) will result in a robust
design that:

• performs better in common-case scenarios (significant median improvement by 5.17%
and 28.18%, respectively);

• yields improvements in extreme scenarios (upper whisker improved by 5.52% and 3.40%,
respectively).

Therefore, it is evident that the limits of the adversary when we determine a robust design play
an important role in the performance of our design in real operations. This can be exploited by bus
operators who might prefer robust designs that perform better in common case scenarios or robust
designs that are more resilient to severe disruptions.

CONCLUDING REMARKS
This study formulated the multi-line synchronization problem considering the potential variability
in the travel and dwell times of daily trips, the regularity of individual bus lines and the operational
regulatory constraints such as schedule sliding prevention and layover time limits. After proving
that for some travel and dwell time noise levels schedule sliding and missed synchronizations
cannot be prevented, a flexible problem formulation was introduced that incorporated the constraint
violations with the use of penalties.

Solving the resulting mathematical program in a small-scale, idealized network with alternat-
ing optimization, it was demonstrated that at some point the minimax problem reaches an equi-
librium for which neither the "decision-maker" that selects the dispatching times of trips, nor the
"decision-maker" that selects the travel and dwell time disturbances is willing to change strategy.
In a further application in two bus lines in Stockholm with five transfer stops, it is clear that there
is a trade-off between: (a) robust designs that impose stricter limits to the adversary and result in
solutions that perform better at common-case scenarios, and (b) robust designs that prepare for a
wide-range of values of the adversary and overperform at extreme-case scenarios. This sensitivity
of the generated robust designs to the limitations of the adversary can be exploited by bus operators
to generate designs that fit their specific needs/preferences.

In future studies, a broader set of robust timetables can be examined by solving the mathe-
matical program (Q̃) for different percentages of travel and dwell time deviations from the average
case and selecting the "dominant" solution(s) that yield the highest payoffs in terms of service reg-
ularity and synchronization improvements at both the common-case scenarios and the abnormal
ones.
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