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ABSTRACT
Encryption can protect data in outsourced databases – in

the cloud – while still enabling query processing over the

encrypted data. However, the processing leaks information

about the data specific to the type of query, e.g., aggregation

queries. Aggregation over user-defined groups using SQL’s

GROUP BY clause is extensively used in data analytics, e.g.,

to calculate the total number of visitors each month or the

average salary in each department. The information leaked,

e.g., the access pattern to a group, may reveal the group’s

frequency enabling simple, yet detrimental leakage-abuse

attacks.

In this work we present SAGMA – an encryption scheme

for performing secure aggregation grouped by multiple at-

tributes. The querier can choose any combination of one

or multiple attributes in the GROUP BY clause among the

set of all grouping attributes. The encryption scheme only

stores semantically secure ciphertexts at the cloud and query

processing hides the access pattern, i.e., the frequency of

each group. We implemented our scheme and our evaluation

results underpin its practical feasibility.
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• Security and privacy → Management and querying
of encrypted data; Privacy-preserving protocols.
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1 INTRODUCTION
Outsourcing databases and analytics to third-party cloud

providers is commonplace in enterprise computing. Cus-

tomers of cloud computing profit from a more flexible pay-

per-use cost model than available for in-house computing

centers. Outsourcing, however, implies novel security threats,

i.e., the cloud service provider must be trusted.

Encryption at the client side can be used to mitigate those

security threats. Standard encryption schemes, such as AES-

GCM or RSA-OAEP, render database operations at the cloud

provider impossible. Fully homomorphic encryption (FHE)

enables the execution of arbitrary queries on encrypted data,

but is currently still too inefficient for most practical use [1,

15]. Secure multi-party computation (MPC), e.g., SMCQL [3],

requires multiple, mutually distrustful cloud providers in-

creasing cost and administrative burden. Cloud providers can

use trusted hardware modules, such as Intel’s SGX [8, 27],

but this only shifts the trust anchor from the cloud provider

to the hardware manufacturer. Recent bugs in the Intel Man-

agement Engine [10] and bugs based on speculative execu-

tion [5] create doubts in the security those hardware modules

provide. An active line of research addresses these shortcom-

ings by developing encryption schemes that enable query

processing over encrypted data, e.g., [13, 17, 25, 26].

Recently, Kamara and Moataz [22] introduced the first

system supporting a large class of SQL queries without using

property-preserving encryption. However, their proposal

lacks an efficient solution for data aggregation on the server

side but they propose data aggregation on the client side

after data filtering and decryption.

In this work, we bridge this gap and consider aggregation

queries grouped by multiple attributes over encrypted data

combined with filtering. Aggregation queries are the most

common form of query in data analytics. For example, Piwik,

a popular web analytics tool, which – among others – we use
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to evaluate our encryption scheme, determines the number

of visitors of a site by country, browser, referrer, time and

many other attributes.

Designing a secure aggregation scheme is challenging,

since the tuples composing a group are aggregated into one

result, i.e., the access pattern of an aggregation query re-

veals the frequency of each group. Currently, there exist two

approaches in encryption schemes for secure aggregation.

First, revealing the access pattern: Deterministic encryption,

e.g., used in CryptDB [26] allows grouping on ciphertexts

in combination with partial homomorphic encryption for

data aggregation. This approach allows grouping by any

combination of attributes, but leaks the frequency of each

grouping attribute value. Simple, yet efficient leakage-abuse

attacks exploit this frequency information to reconstruct

plaintext values with high accuracy as recent work demon-

strates [16, 23]. Second, pre-computing the groups into an
index: Seabed [25] thwarts frequency analysis attacks by

flattening the histogram of attribute values. It uses multiple

columns per attribute and inserts dummy tuples. However,

all group values and possible combinations of grouping at-

tributes in queries must be known at encryption time and

pre-computed to be outsourced; thus increasing server stor-

age requirements exponentially. Further, filtering clauses

(SQL’s WHERE) must be mostly handled at the client.

In this work, we present SAGMA – secure aggregation

grouped by multiple attributes secure against a persistent,

honest-but-curious adversary controlling the service provider.

It reveals only semantically secure ciphertexts to the cloud

and hides the frequency of attribute values during query

processing. The querier can choose any combination of at

most t grouping attributes where t is a threshold chosen at

setup time. At a high level, we use somewhat homomorphic

encryption to compute a ciphertext-packed aggregation of a

linear combination of attribute values. Grouping attribute

values are mapped to buckets balancing the storage and com-

putational requirements. This approach supports additional

filtering clauses without relying on property-preserving en-

cryption while significantly reducing the storage require-

ments compared to previous solutions. We summarize the

contribution of our work as follows:

• We present SAGMA, an encryption scheme for secure

aggregation grouped by multiple attributes, that en-

ables the querier to choose any combination of t or
less grouping attributes.

• We rigorously prove the security of SAGMA using a

simulator of the real view of a cloud service provider

using precisely defined leakage.

• Wepresent the results of an evaluation of an implemen-

tation of SAGMA and queries from real-world systems

Nextcloud, WordPress and Piwik.

2 PROBLEM DESCRIPTION
In the remainder of this workwe assume a relational database

table with the following general layout (we use the terms

column and attribute interchangeably):

(1) We assume at least one column, called value column,
to be aggregated (e.g., summed, counted, averaged),

(2) further, we assume one or multiple attributes, called

group columns, the GroupBy clause is executed on,

(3) and finally, we assume zero or multiple auxiliary at-

tributes, called filtering columns, additional filtering
clauses are executed on.

One can define group and value columns as filtering columns

as well. We give an example sketched in Table 1 to demon-

strate this setting. Here, “Salary” is a value column, “Gender”

ID Salary Gender Name Department

1 1000 male Henry Sales

2 5000 female Jessica Sales

3 1500 female Alice Finance

4 3000 male Bob Sales

5 2000 male Paul Facility

Table 1: Example table supported by our construction.

SELECT SUM(Salary), Gender, Department FROM Example

WHERE Department = ‘‘Sales’’ GROUP BY Gender, Department;

Listing 1: Example SQL query

SUM(Salary) Gender Department

5000 female Sales

4000 male Sales

Table 2: Result of executing SQL 1 on Table 1.

and “Department” are group columns and “Name” and “De-

partment” are filtering columns. A possible query formulated

in SQL is given in Listing 1 yielding the corresponding result

depicted in Table 2. We revise previous approaches before

we outline SAGMA and briefly highlight the differences. We

refer to Section 6.2 for a thorough comparison.

One approach for secure aggregation in previous work

reveals the access pattern. For example, CryptDB [26] sup-

ports data aggregation with arbitrary GroupBy attributes

and combinations thereof on encrypted data. The evaluation

of the GroupBy clauses is based on deterministic encryption

of values in group columns and additively homomorphic

encryption of values in value columns. Deterministic en-

cryption Encdet (·) preserves equality: given two plaintexts

a and b with a = b it holds that Encdet (a) = Encdet (b). We

denote the encryption of a plaintext value x using an addi-

tively homomorphic encryption scheme by JxK⊕ . Given two

ciphertexts JxK⊕ and JyK⊕ one can compute the encrypted

sum of the underlying plaintexts using the operation ⊕ on
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ciphertexts: JxK⊕ ⊕ JyK⊕ = Jx + yK⊕ . In combination, the

DBMS can perform GroupBy operations on encrypted data,

e.g., grouping by Encdet (a) and subsequently perform aggre-

gation operations for each such group using the operation ⊕.

While additively homomorphic encryption offers semantic

security, the security of deterministic encryption is question-

able. Deterministic encryption leaks joint group membership

for all rows enabling an attacker to reconstruct a histogram

of all group values. In many cases, this histogram enables

simple, yet powerful attacks as shown by Naveed et al. [23].

An alternative approach with the goal to address this se-

curity issue for aggregation is to compute (and encrypt) an

index over the group columns as proposed by Papadimitriou

et al. with Seabed [25]. Seabed also uses a combination of

deterministic and additively homomorphic encryption. How-

ever, by splitting group attributes into multiple columns and

introducing dummy elements they flatten the leaked plain-

text frequencies thwarting frequency analysis. Compared

to CryptDB, this approach provides better security for the

grouping values; however, it restricts the choice of attribute

combinations in one GroupBy statement. Further, statements

containing additional filtering clauses in combination with

data aggregation requires computation effort by the client

linear in the filtering result size.

The naïve strategy is pre-computing the aggregation re-

sults for combinations of group column values initially dur-

ing encryption time. However, there are an exponential num-

ber of such combinations of group column values requir-

ing excessive storage space. Considering additional filter-

ing statements, the number of potential results to be pre-

computed becomes impractical.

Our novel encryption scheme SAGMA does not unveil

the access pattern for individual grouping values. At the

same time, SAGMA enables queries with GroupBy clauses

over multiple group columns and arbitrary number of value

attributes together with support for additional filtering state-

ments; one example for such query is given in Listing 1. In

details, SAGMA employs row-wise encryption such that it

can be easily combined with searchable encryption schemes,

e.g. supporting filtering for specific keywords [9], ranges

or substrings [11, 18] and is even compatible with complete

systems [22]. Hence, it is possible to process queries by first

executing the filtering operation and then using SAGMA on

the result set yielded by the access pattern leakage for secure

aggregation. We emphasize that this filtering is not feasible

for secure aggregation schemes based on pre-built indexes

or pre-computed results.

3 CONSTRUCTIONS
In this section, we develop the ideas for our construction for

SAGMA step-by-step before we give a formal description of

these ideas in Section 4. Our constructions use ciphertext

packing initially published by Ge et al. [14] for performance

improvements of additively homomorphic encryption. We

divide the plaintext into several blocks enabling encryption

of multiple values in one single ciphertext. One can deter-

mine these blocks either during the initial encryption step or

during the actual data aggregation as elaborated in the fol-

lowing subsections. Applying homomorphic addition allows

us to add values componentwise.

3.1 Initial Static Shifting
We re-use the idea of ciphertext packing, however, instead of

increased performance we aim for increased security. Basi-

cally, each ciphertext consists of multiple blocks and during

aggregation each block contains the current subtotal for one

group attribute value. More specifically, we interpret the

plaintext spaceM of an additively homomorphic encryp-

tion scheme as multiple separate value blocks with value

domain DV . For example, using secure parameters the plain-

text space M of the additively homomorphic encryption

scheme published by Pailler [24] has a size of 2048 bits, and

a value domain DV has a size of 32 bits corresponding to the

common integer size. We encode the value v and a group

attribute д (of small sized group attribute domain D) in a

transformed value v ′ to be encrypted afterwards: The group

attribute value is encoded by the index of the block contain-

ing value v . All remaining blocks are set to zero. Given the

group attribute domain, e.g., D = {male, female} as sketched

in Table 1 and value domain DV = {0, . . . , 2
32 − 1} we can

encode the tuples (1000,male), (5000, female), (1500, female),

(3000,male), (2000,male) as given in the following Figure 1,

where each block has bitlength 32.

0 1000 ⇒ J1000K⊕
5000 0 ⇒ J5000 · 232K⊕
1500 0 ⇒ J1500 · 232K⊕

0 3000 ⇒ J3000K⊕
0 2000 ⇒ J2000K⊕

Figure 1: Example encoding for tuples consisting of
value and group attributes as given in Table 1.

From a mathematical point of view, we use a mapping
function f : D → {0, . . . , |D |} mapping group attributes to

positive integers and use f to determine the blockwise left
shift s encoding the group membership of value v ∈ DV into

one transformed value v ′ by multiplication

v ′ = v · s(д) = v · |DV |
f (д).

This transformed value v ′ is then encrypted using an ad-

ditively homomorphic encryption scheme resulting in ci-

phertext Jv ′K⊕ . The sum over all data in combination with
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GroupBy statement is then transformed to a general aggrega-

tion over encrypted data computed by additively homomor-

phic encryption. The client can decrypt the result and extract

the individual group totals by extracting the corresponding

block. This approach increases security for individual group

values as it hides their access pattern.

While this scheme inherits security of the additively ho-

momorphic encryption scheme, the group attribute domain

size is restricted: the number of distinct group attribute val-

ues must be smaller than the maximum number of value

blocks fitting in the plaintext domain, i.e.

⌈
|M |

|DV |

⌉
≥ |D |.

This constraint can be addressed by concatenating multi-

ple ciphertexts and executing homomorphic addition com-

ponentwise. That is, given an additively homomorphic en-

cryption scheme with plaintext size |M| divided in b blocks

(i.e.

⌈
|M |

|DV |

⌉
= b), hence supporting group attribute domains

up to size b, we can extend the size by factor n by concate-

nating n plaintext messages each encrypted separately, i.e.

m′ = m1,m2, . . . ,mn ∈ M
n
. As one major drawback, how-

ever, this construction results in additional storage overhead

where most parts ofm′ contain zeros but still provides se-

mantic security.

3.2 Statically Shifted Bucketization
To reduce the storage overhead, we divide the complete

group attribute domain D in separate buckets each with

bucket size B. Hence, each transformed value only consists

of B instead of |D | blocks and thus requires less storage space.
Aggregation is performed in each bucket separately but dis-

closes the bucket membership for each row. Still, values of

the same bucket are indistinguishable for an adversary.

To map the group attribute value to one of the B blocks

we use a simple modulo operation. The value v is shifted to

the appropriate block by multiplying it by the shift s(д) =
|DV |

f (д) mod B
. Here, the mapping function f can be seeded

with an additional secret key, preventing (and hiding) coher-

ent group values to be mapped to the same bucket.

Note that the bucket membership of rows itself can be

protected, e.g., using searchable symmetric encryption with

support for Boolean search queries such as published by

Cash et al. [6], for databases where the aggregation is only

computed over a subset of the complete outsourced data set

determined by additional filtering attributes. This supplemen-

tary protection unveils the same bucket membership only

for rows matching the additional filtering clause. The bucket

size B is an additional parameter providing the possibility to

trade security for required storage space for each encrypted

value as well as computation time since the aggregation is

executed componentwise. We give a more detailed security

analysis on the bucket size B and bucketing strategies in

Section 5.

3.3 Dynamically Shifted Bucketization
So far, we have only addressed secure aggregation protocols

for databases containing a single value attribute to be aggre-

gated, however, we strive to generalize our construction to

provide functionality for multiple different columns to be

aggregated. For simplicity, we assume them to have the same

value domain DV . This construction can also be used for ad-

ditional aggregation functionality, e.g., count queries can be

supported by encrypting value attributes fixed to one. The

construction described before can be extended canonically to

support multiple value attributes by repeated application for

each value column. However, the group membership is then

encoded in each value separately, resulting in redundant

information. In order to achieve better storage efficiency,

we store the value attributes and the shift values s(дi ) deter-
mined by the group valueдi separately and multiply them on

the server when queried. Since these values are assumed to

be sensitive, they have to be stored encrypted in a way still

supporting multiplication (over ciphertexts). This can be re-

alized using somewhat homomorphic encryption (SWHE) Σ
= (Gen, Enc, Dec, ⊕, ⊗) supporting one single multiplication

and being additively homomorphic even after multiplica-

tion [4]. We use the notation JxK⊗⊕ to describe the encryption
of a plaintext x using algorithm Enc of a SWHE scheme.

The operations ⊕ and ⊗ denote the additively homomorphic

and multiplicatively homomorphic operation. We denote

the multiplication of a ciphertext JxK⊗⊕ by a plaintext y as

JxK⊗⊕ ⊗y = Jx · yK⊗⊕ . This operation uses the additively homo-

morphic property of the encryption scheme only and should

not be confused with the multiplicatively homomorphic op-

eration that multiplies two ciphertexts.

Given the previous example in Table 1, the transformed

table using dynamically shifted bucketization is given in

Table 3 with s(male) = 1 and s(female) = 2
32
.

E_Salary E_Gender . . .

J1000K⊗⊕ J1K⊗⊕
J5000K⊗⊕ J232K⊗⊕
J1500K⊗⊕ J232K⊗⊕
J3000K⊗⊕ J1K⊗⊕
J2000K⊗⊕ J1K⊗⊕

Table 3: Encrypted table with dynamic shifts.

To generalize the construction for multiple attributes, we

evaluate the shift s(дi ) of a group attribute value дi on the

server described as polynomials instead of storing it: deter-

mine the coefficients of the polynomial P(X ) =
B−1∑
i=0

ai · X
i

such that P(x) = (|DV |)
x = s(дi ) for x ∈ {0, . . . ,B − 1} given

by x = f (дi ) mod B withmapping function f . Recall, that en-
cryptions of a somewhat homomorphic encryption scheme
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can be multiplied by a plaintext value. Thus, the server can

evaluate polynomials given plaintext coefficients ai of P

and encrypted monomials J1K⊗⊕ , JxK⊗⊕ , Jx2K⊗⊕ , . . . , JxB−1K⊗⊕ ,
where the degree of this polynomial increases linearly with

the bucket size B. We transfer the coefficients to the server

during encryption of the database to reduce the network

bandwidth of aggregation queries.

3.4 Multiple Grouping Attributes
Based on the previous ideas we describe our final SAGMA

construction supporting GroupBy statements with multiple

grouping attributes in the same query as stated in Section 4.

Referring to the example from Table 1 this construction sup-

ports statements grouping by “Gender” and “Department” or

arbitrary subsets thereof, e.g., solely GroupBy “Department”.

Naïve scheme. While inefficient, this can be implemented

using the previous scheme with the power set of group at-

tributes. Note, that it is necessary to use a combined bucket

size of Bi for a subset of i attributes in order to avoid ad-

ditional leakage. Assuming two attributes and the bucket

size B = 2, we demonstrate a potential attack where an ad-

versary can query a GroupBy operation for both attributes

separately and their combination. These queries leak the

bucket membership for both attributes individually and the

combination, as illustrated in Table 4. Based on the two indi-

vidual attributes, the two rows are indistinguishable since

they are part of the same buckets. However, the two rows do

not contain the same values, thus they might be mapped to

separate buckets of the combined attribute. Mapping them

to separate buckets leaks the fact that these two rows do

not contain the same values. Both buckets Gen1 and Dept
1

contain two values, therefore there are four possible value

combinations of the two buckets. To prevent this leakage,

all value combinations of the two buckets are mapped to the

same bucket of the combined attribute requiring a bucket

size of B = 4. More generally, an attribute combination of i
attributes requires a bucket size of Bi to achieve the same

leakage as in the single attribute case.

ID Gender Department Gender, Department

1 Gen1 Dept
1

GenDept
1

2 Gen1 Dept
1

GenDept
2

Table 4: Possible bucket memberships for Table 1.

Improved scheme. We use the polynomial approach de-

scribed in Section 3.3 and extend it to multivariate poly-

nomials where one variable represents one group attribute.

The shift for a combination of attributes G1, . . . ,Gl can be

determined by the polynomial of l variables:

P(G1, . . . ,Gl ) =
∑

i1, ...,il

ai1, ...,il ·G
i1
1
· · ·Gil

l .

We improve the naïve scheme by reusing the monomials

required for individual attribute grouping for the grouping

of attribute combinations. More generally, to group a set of

attributes all monomials of the subsets can be used, thus

reducing the number of monomials required to be stored on

the server. Due to the empty product, only B − 1 monomials

are necessary for a single attribute using bucket size B.
Considering three group attributes G1, G2 and G3 we

demonstrate the difference. The naïve scheme requires one

monomial for each of the individual attributes G1, G2 and

G3, three monomials for the attribute combinations of size

two and seven monomials for the combination of all three

attributes. The improved scheme also requires one monomial

for each individual attribute; however, the attribute combi-

nations of size two only require one additional monomial

because the two monomials of the individual attributes can

be reused. The idea of monomial reuse is sketched in Fig-

ure 2; here the beginning of an arrow represents monomials

required to support grouping by a specific attribute combi-

nation where monomials can be re-used for the attribute

combination denoted at the arrowhead. This relation is tran-

sitive, i.e. the attribute combination of all three attributes can

reuse the monomials of all its subsets, thus only requiring

one additional monomial. In this case, we can reduce the

required number of monomials from nineteen to seven.

G1 G2 G3

G1G2 G1G3 G2G3

G1G2G3

Figure 2: Monomial reuse that supports multiple at-
tributes.

Based on Table 1 we give an example that demonstrates

grouping of multiple attributes. In this example, we assume

bucket size B = 2 resulting in the following buckets: one

bucket for the “Gender” attribute named Gen1 containing

{male, female} and two buckets for the “Department” attribute

named Dept
1
containing {Sales, Finance} and Dept

2
contain-

ing {Facility}. Bucket membership for each row is indexed us-

ing searchable symmetric encryption as sketched
1
in Table 5.

1
This is a sketch for demonstration purpose only and constructing efficient

SSE indexes is its own line of research.
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For readers unfamiliar with searchable symmetric encryp-

tion (SSE) we give a high-level summary of its functionality

but omit technical details.

Definition 1. A searchable symmetric encryption scheme
consists of the following four algorithms:

KSSE ← GenSSE(1
λ): Generates a private key.

I ← EncSSE(KSSE,D): Creates an encrypted index from a
document collection. A document collection is a collection
of documents identified by unique document identifiers
and consisting of multiple keywords.

tw ← TokenSSE(KSSE,w): Creates a token t for a keyword
w using the private key.

D(w) ← SearchSSE(I , tw ): Uses token tw and an encrypted
index I to search for documents containing the keyword
w . Returns the document identifiers of all matching doc-
uments.

In our use case for SSE, the encrypted index is created

for all bucket identifiers of the complete table consisting

of multiple rows. Particularly, the document collection D
then corresponds to the complete table and one document

corresponds to one specific row, where each such “docu-

ment” contains its specific bucket identifiers as searchable

keywords.

Using SSE, rows belonging to a specific bucket can only

be determined using a token generated by the client. As-

Bucket Rows

Gen1 1, 2, 3, 4, 5

Dept
1

1, 2, 3, 4

Dept
2

5

Table 5: Bucket index supporting multiple attributes.

sume mapping functions f1(male) = 0, f1(female) = 1 and

f2(Sales) = 0, f2(Finance) = 1 and f2(Facility) = 2. Note that

each value is reduced mod B before encryption. Further, in

order to support grouping by both attributes Gender and

Department, the client must generate and outsource an addi-

tional monomial, namely their product. This results in the

encrypted and outsourced data sketched in Table 6.

ID E_Salary E_Gender E_Department E_Gender · Dept

1 J1000K⊗⊕ J0K⊗⊕ J0K⊗⊕ J0K⊗⊕
2 J5000K⊗⊕ J1K⊗⊕ J0K⊗⊕ J0K⊗⊕
3 J1500K⊗⊕ J1K⊗⊕ J1K⊗⊕ J1K⊗⊕
4 J3000K⊗⊕ J0K⊗⊕ J0K⊗⊕ J0K⊗⊕
5 J2000K⊗⊕ J0K⊗⊕ J0K⊗⊕ J0K⊗⊕
Table 6: Encrypted table with multiple attributes.

We determine a multi-variate polynomial P(G1,G2) that

maps combinations of attribute values to the proper shift,

using a system of linear equations. In the following,G1 repre-

sents the attribute Gender andG2 the attribute Department.

However, the solution of the linear system can be reused for

other attributes using the same bucket size.

©­­­«
1 G1 G2 G1 ·G2

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

ª®®®¬ ·
©­­­«
a0
a1
a2
a3

ª®®®¬ =
©­­­«
1

2
32

2
64

2
96

ª®®®¬
One solution for the system isa0 = 1,a1 = 2

64−1,a2 = 2
32−1,

a3 = 2
96 − 1 − (264 − 1) − (232 − 1). These coefficients are

transferred to the server in plaintext during the encryption

phase. Later, the client wishes to execute the query from

Listing 2 grouping by both attributes.

SELECT SUM(Salary), Gender, Department

FROM example GROUP BY Gender, Department;

Listing 2: Query grouping by two attributes.

Therefore, the client determines SSE tokens for the buckets

Gen1, Dept1
and Dept

2
to send them to the server in addition

to the identifier of the attribute Salary to be aggregated and

the identifiers of the attributes Gender and Department to be

grouped. The server uses these tokens to determine the rows

that belong to a specific bucket. Then, by calculating the

intersection, the server determines the rows that belong to a

specific bucket combination. Alternatively, an SSE scheme

that supports Boolean queries can be used to determine joint

bucket membership without leaking the bucket membership

of individual attributes.

In our example, the first four rows belong to the same

bucket combination (Gen1,Dept1), while the last row with

ID 5 belongs to bucket combination (Gen1,Dept2). The server
determines the (encrypted) shift for each row by evaluating

the polynomial
2 P on the encrypted grouping monomials

P(G1,G2) = a0+a1 ·G1+a2 ·G2+a3 ·G1 ·G2. For the first row,
the polynomial evaluates to 1, for the second row to 2

64
and

so on. Notice that the result of the evaluation is encrypted,

hence hiding the shift value in each bucket. Multiplication

of the corresponding entry in the value column Salary by

the encrypted shift yields the shifted value to be aggregated.

The server adds up all the shifted values for each bucket

combination separately and returns the result. By decrypting

the result, the client receives the packed plaintexts depicted

in Table 3. Since the client has chosen the shifts of all value

combinations by determining the polynomial’s coefficients,

the client can map each part of the plaintext to a group

attribute combination. Table 7 shows the final result of the

2
This is possible without calling ⊗ since the polynomial’s coefficients are

outsourced in plaintext.
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1500 5000 0 4000

(a) Bucket combination (Gen1,Dept1)
0 0 0 2000

(b) Bucket combination (Gen1,Dept2)

Figure 3: Sketch of decrypted aggregation result for
different buckets.

query. Note that the coefficients can be reused for other

attributes if they use the same bucket size.

SUM(Salary) Gender Department

4000 male Sales

5000 female Sales

1500 female Finance

2000 male Facility

Table 7: Result of query stated in Listing 2 on Table 1.

4 FORMALIZATION
Before we give a comprehensive formal description, we de-

fine the interface of the SAGMA construction for secure

aggregation of k aggregation values and supporting a combi-

nation of up to t arbitrary grouping attributes in one query.

SAGMA consists of the following six possibly probabilistic

polynomial time (PPT) algorithms:

(pp,K) ← Setup(1λ,D1, . . . ,Dl ) : Executed on the client.

Generates the cryptographic keys and outputs the pub-

lic parameters pp and the secret key K . D1, . . . ,Dl de-

note the value domains of the grouping attributes.

C ← EncTable(K, {{vi , j }
k
j=1, {дi , j }

l
j=1}

rows
i=1 ) : Executed on

the client. Using the given cryptographic keys it en-

crypts the table executing EncRow for each row. De-

pending on the concrete construction, an index for

grouping or additional filtering is created. The result

is then outsourced to the untrusted server.

c ← EncRow(pk,v1, . . . ,vk ,д1, . . . ,дl ) : Is executed on

the client for each database row. Encrypts the row.

This operation enables the client to add subsequent

rows to the initially encrypted table.

tgrp ← AggGrpByToken(K,V ,Q) : Executed on the client.
Creates a grouping token to execute grouping by up

to t grouping columns in Q and aggregation of value

columns in V .

cagg ← AggGrpBy(pp, tgrp,C) : Executed on the server.

Aggregates the encrypted data with GroupBy state-

ment using the tokens generated in the previous step.

res← DecAgg(K, cagg) : Executed on the client, decrypts
the encrypted result of the queried aggregation with

GroupBy statement.

We refer to Table 8 for an overview of the used variables

in our algorithm descriptions. Founded on the formalization,

Variable Description

Di Value domain for i-th grouping attribute

l Number of grouping attributes

λ Security parameter

fi Pseudorandom function mapping grouping attribute

values of column i to natural numbers

ai Polynomial coefficients used for oblivious shift calcu-

lation

B Bucket size of each bucket containing B group at-

tribute values

pp Public parameters

KSSE Secret key for searchable encryption scheme

K Secret master key

|S | Number of elements in set S
vi , j Attribute value for the j-th value column (in the i-th

row if stated)

дi , j Attribute value for the j-th grouping column (in the

i-th row if stated)

k Number of value attributes

D Document collection for SSE containing the bucket

identifiers of all rows

I Searchable encrypted index for bucket memberships

of all grouping attribute values for each row

ri , j Offset of value in bucket for j-th grouping column in

i-th row

C Encrypted database

mi Monomial for oblivious shift calculation of bucketized

group values

Q GroupBy clause of aggregation query for up to t
grouping attributes

si Number of buckets for i-th grouping attribute

ti , j SSE token for the j-th bucket of the i-th grouping

attribute

p Size of joint bucket

R Rows for aggregation of joint bucket

Si Shift for the i-th row

Table 8: Overview of used variables.

we discuss storage efficiency in Section 4.1, state a theoretical

upper bound for the information leakage of our scheme in

Section 4.2 and compare our construction with the approach

based on pre-computation and Seabed in Section 6.2.

Let Σ = (Gen, Enc, Dec, ⊕, ⊗) be a semantically secure

SWHE scheme supporting one single multiplication as intro-

duced before. Let SSE = (GenSSE, EncSSE,TokenSSE, SearchSSE)
be an adaptively semantically secure SSE scheme as stated

in Definition 1. In the following, we give an intuition for

each SAGMA algorithm together with a formal description

in Algorithms 1– 6.
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Algorithm 1 Key generation algorithm.

Setup(1λ0, 1λ1,D1, . . . ,Dl ):

(pk, sk) ← Gen(1λ0 )

F = (f1, . . . , fl ), fi : Di 7→ {0, . . . , |Di |}

pp = (pk,a0, . . . ,aBl−1)
KSSE ← GenSSE(1

λ1 )

return pp,K = (pk, sk, F ,KSSE)

Setup as stated in Algorithm 1 generates the cryptographic

keys, defines the mapping functions for the group domains

and calculates the polynomial determining the shift values.

EncTable as stated in Algorithm 2 creates and indexes the

group buckets for all grouping attributes using SSE. Note that

EncRow is called for a set of rows encrypting aggregation

values and bucketized group values.

Algorithm 2 Encryption algorithm for the complete table.

EncTable(K, {{vi , j }kj=1, {дi , j }
l
j=1}

rows
i=1 ):

D = {{j :
fj (дi , j )

B }lj=1}
rows
i=1

I ← EncSSE(KSSE,D)
ri , j = fj (дi , j ) mod B
ci ← EncRow(pk,vi ,1, . . . ,vi ,k , ri ,1, . . . , ri ,l )
return I ,C = c1, . . . , crows

Particularly, EncRow as stated in Algorithm 3 determines

monomials of the bucketized group values required to deter-

mine appropriate shifts on the server later on and applies

somewhat homomorphic encryption to the aggregation val-

ues and the monomials to support dynamic shifting. Note

that this algorithm can be used for database updates after

the initial table encryption if the bucket index I is updated
correspondingly.

Algorithm 3 Encryption algorithm for a single row.

EncRow(pk,v1, . . . ,vk ,д1, . . . ,дl ):

m1, . . . ,mBl =

{
l∏
i=1

дeii | ∀ 0 ≤ ei < B

}
return c = (Jv1K⊗⊕, . . . , Jvk K

⊗
⊕, Jm1K⊗⊕, . . . , JmBl K

⊗
⊕)

AggGrpByToken as stated inAlgorithm 4 creates SSE search

tokens for all buckets of the grouping attributes and outputs

the identifier of the attribute to aggregate, the identifiers of

the group attributes and the SSE tokens.

Algorithm 4 Group token generation algorithm.

AggGrpByToken(K,V ∈ {1, . . . ,k},Q ⊆ {1, . . . , l}):
for all q ∈ Q do

sq =
⌈
|Dq |

B

⌉
for all 1 ≤ b ≤ sq do

tq,b ← TokenSSE(KSSE,q : b)

return V ,Q, {tq,b | q ∈ Q,b ∈ {1, . . . , sq}}

AggGrpBy as stated in Algorithm 5 uses the encrypted

index to determine the rows of all buckets of the group at-

tributes. By calculating the intersection, rows belonging to

joint buckets are determined and aggregation is executed

for each joint bucket. Aggregation involves determining the

appropriate shift for each row and multiplying the shift by

the value attribute. Finally, one encrypted result is returned

for each joint bucket.

Algorithm 5 Aggregation algorithm over encrypted data.

AggGrpBy(pp,V ,Q, {tq,1, . . . , tq,sq | q ∈ Q},C, I ):

sq =
⌈
|Dq |

B

⌉
, for q ∈ Q

p = B |Q | − 1
determine coefficients a0, . . . ,ap for Q
determine indices i1, . . . , ip for Q
for all (b1, . . . ,b |Q |),bi ∈ {1, . . . , sQi }

3 do

R ←
|Q |⋂
i=1

SearchSSE(I , tQi ,bi )

for all r ∈ R do

Sr = Ja0K⊗⊕ ⊕
p⊕
j=1

aj ⊗ Jmi j K
⊗

⊕

aggb1, ...,b |Q | =
⊕
r ∈R

JvV K⊗⊕ ⊗ Sr

return all aggregates aggb1, ...,b |Q |

DecAgg as stated in Algorithm 6 decrypts and unpacks

the packed ciphertexts that result from the aggregation.

Algorithm 6 Decryption algorithm for query result.

DecAgg(K, agg
1
, . . . , aggs ):

for 1 ≤ i ≤ s do
ui ,1, . . . ,ui ,B |Q | ← Dec(sk, aggi )

return u1,1, . . . ,us ,B |Q |

3
Enumerates joint buckets using the cartesian product of the buckets of the

queried attributes.
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4.1 Efficiency
By precomputing Bl −1 monomials for the polynomial evalu-

ation, our construction requires a SWHE scheme supporting

only one single multiplication. On the other hand, storing

the monomials limits the bucket size B and the number of

group attributes l .
Particularly, our SAGMA construction requires Bl − 1

monomials with exponential increase in the number of group

attributes l . Generally, only small subsets of group attributes

occur together in one query. Limiting the number of group

attributes stated in one query allows us to reduce the number

of required monomials. More particular, assume the number

of attributes is limited by a constant t . We denote the num-

ber of monomials that have to be stored for each row in a

database with l group attributes bym(l, t). We can apply our

naïve construction to all subsets of attributes of size t , which

requires to storem(l, t)naive =
(l
t

)
· (Bt − 1) ≤

(
l ·e
t

)t
· (Bt − 1)

monomials per row. As a result, the number of required

monomials is bounded polynomially, instead of exponen-

tially in l . However, the monomial reuse in our improved

scheme reduces the number of required monomials further.

To calculate the exact number of monomials necessary, we

t m(l, t) −m(l, t − 1)
1 l · (B − 1)

2

(l
2

)
·
(
B2 − 1 − 2 · (B − 1)

)
3

(l
3

)
·

(
B3 − 1 −

(
3

1

)
· (B − 1) −

(
3

2

)
· (B − 1)2

)
...

...

t
(l
t
)
·

(
Bt −

t−1∑
i=0

(t
i
)
(B − 1)i

)
Table 9: Required number of monomials to support
grouping up to k attributes.

examine how many monomials are necessary to support

grouping of t attributes, if we already support grouping of

t − 1 attributes. Notice thatm(l, 0) = 0. The result of this iter-

ative construction is given for some t in Table 9. In the first

step, we aim to support grouping of a single attribute. This

requires storing B − 1 powers of all attributes. To support

grouping of two attributes B2 − 1 monomials are required

for each subset of attributes of size two (−1 because of the

empty product). The B − 1 powers of the two attributes can

be used and thus be subtracted. This can be generalized for

an arbitrary t resulting in the following equation:

m(l, t) −m(l, t − 1) =

(
l

t

)
·

(
Bt −

t−1∑
i=0

(
t

i

)
(B − 1)i

)
∗
=

(
l

t

)
· (B − 1)t .

The above transformation (∗) can be verified using a proof by

induction. More precisely, we define the number of monomi-

als required to support grouping of t attributes in one query

given a database with l possible group attributes as:

m(l, t) =
t∑
i=1

m(l, i) −m(l, i − 1) =
t∑
i=1

(
l

i

)
· (B − 1)i .

A lower bound of this number grows polynomially in l and
thusm(l, t) ∈ Θ(l t · Bt ):

t∑
i=1

(
l

i

)
· (B − 1)i ≥

(
l

t

)
· (B − 1)t ≥

(
l

t

)t
· (B − 1)t .

4.2 Security
Given a semantically secure SWHE encryption scheme Σ and

an adaptively semantically secure SSE scheme, the construc-

tion as stated in Algorithms 1– 6 essentially leaks the bucket

membership of all queried group attributes. We emphasize

that our construction offers improved security compared to

the encryption of individual group attributes either deter-

ministically or searchable. While deterministic encryption

as well as searchable encryption leaks the frequencies of the

whole plaintext domain after the execution of one aggrega-

tion query, our construction only leaks the frequencies of

distinct buckets.

For a formal security analysis, we use a simulation-based

security definition following the work on searchable symmet-

ric encryption by Curtmola et al. [9]. Basically, simulation-

based security definitions consist of two experiments, the real

and the simulated experiment. The real experiment describes

a regular protocol sequence, i.e., in our case an adversary

A chooses a plaintext database table to be encrypted and

queries the grouping tokens to be created. Encryption of the

database table and generation of grouping tokens is executed

by the regular algorithms of the scheme. In contrast, in the

simulated experiment the encrypted database and the group-

ing tokens are created by a simulator S that only has access

to limited information about the plaintext database and the

queries. This limited information is modeled by a leakage

function L, whose output is given to the simulator. Both

experiments output the encrypted database and the created

grouping tokens. Intuitively, a scheme is secure if the output

of both experiments is computationally indistinguishable, i.e.

no PPT algorithm exists that has non-negligible advantage

in distinguishing the two distributions. A formal description

of these two experiments is given in Figure 4. The security

notion is stated in Definition 2. Notice, that our security

definition is adaptive, i.e. the adversary has access to the

grouping tokens created for earlier queries and can choose

the next query in dependence on the tokens. In contrast, non-

adaptive security definitions require the adversary to choose
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all queries at once, which is a weaker security definition and

a far less realistic scenario for applications.

Definition 2 (AdaptiveL-Security). The SAGMA scheme
as defined in Section 4, is adaptively L-secure, if for all PPT
adversariesA = (A0, . . . ,Aq+1), there exists a PPT simulator
S = (S0, . . . ,Sq+1) such that for all PPT algorithmsD it holds
that��
Pr [D(v, stA) = 1 : (v, stA) ← Real∗A(λ)]

− Pr
[
D(v, stA) = 1 : (v, stA) ← Sim∗A,S(λ)

] �� ≤ negl(λ)

where q = poly(λ) and negl(λ) is negligible in λ.

Formalized Information Leakage. We construct a simula-

tor S fulfilling Definition 2. S has restricted information in

form of the identifiers of the value attribute and the group

attributes (V ,Q) of all queries. BothV and Q are only identi-

fiers of the queried attributes and do not contain the actual

values of these attributes, i.e., they identify the column to be

aggregated and to be grouped by. Further, the trace τ , that is
the information leaked by SSE is forwarded to S, hence the

overall leakage we proof as upper bound is formalized as:

L (T , (V1,Q1) . . . , (Vi ,Qi )) = ((V1,Q1) , . . . , (Vi ,Qi ) , τi ) .

We do not explicitly mention the number of rows and

columns of the database and the bucket size B in the leakage

but assume them to be public. Notice that each aggregation

query involves multiple SSE queries, one for each bucket of

the queried group attributes. Thus, the trace after i aggre-
gation queries contains the access and the search pattern

of i ′ ≥ i keyword queries, namely τi = τ (D,w1, . . . ,wi′).
The trace itself consists of the sizes of the documents and

the access pattern (i.e. the document identifiers of match-

ing documents) and the search pattern that discloses if two

tokens correspond to the same keyword. In our case, the

search pattern corresponds to a bucket identifier and the

access pattern reveals the rows contained in each bucket. In

summary, the overall leakage of our SAGMA construction

can be described as follows: the identifiers of the grouping at-

tributes are leaked and for each queried group attribute, the

construction leaks the mapping of rows to bucket identifiers,

which is included in the access pattern of SSE.

We use SSE as black box, including its common security

definition as introduced by Curtmola et al. [9].

Theorem 1. If the used SSE scheme is adaptively seman-
tically secure, and the used SWHE scheme Σ is semantically
secure, then our SAGMA construction as stated in Algorithms 1–
6 is adaptively semanticallyL-secure according to Definition 2.

Proof. For our proof sketch we give an intuition why a

simulator exists such that the outputs of the experiments

Real∗A and Sim∗A,S are computationally indistinguishable

for every possible PPT adversaryA. Using a standard hybrid

Real∗A(λ):
D1, . . . ,Dl , stA ←A0(1

λ
)

pp,K ← Setup(1
λ,D1, . . . ,Dl )

T , stA ←A1(stA, pp)
C ← EncTable(K,T )
for 1 ≤ i ≤ q do

Qi , stA ←Ai+1(stA, pp,C, tgrp,1, . . . , tgrp,i−1)
tgrp,i ← AggGrpByToken(K, (Vi ,Qi ))

return pp,C, tgrp,1, . . . , tgrp,q, stA

Sim∗A,S(λ):
D1, . . . ,Dl , stA ←A0(1

λ
)

pp, stS ← S0(1λ,D1, . . . ,Dl )

T , stA ← A1(stA, pp)
C, stS ← S1(stS,L(T ))
for 1 ≤ i ≤ q do

Qi , stA ← Ai+1(stA, pp,C, tgrp,1, . . . , tgrp,i−1)
tgrp,i, stS ← Si (stS,L(T , (V1,Q1), . . . ,Vi ,Qi ))

return pp,C, tgrp,1, . . . , tgrp,q, stA

Figure 4: Security Experiments – Real vs. Ideal

argument, we show that our construction satisfies the secu-

rity definition. The output of both experiments has the same

structure, that is, pp,C ′ = (C, I ), tgrp,1, . . . , tgrp,q, stA . Since
the public parameters pp have been created by the same algo-

rithm Setup, their distribution is identical. If a PPT algorithm

exists that distinguishes the encrypted databaseC of the two

experiments, then an adversary can be constructed breaking

semantic security of Σ contradicting our assumption. Simi-

larly, if the encrypted index I or the SSE tokens contained

in the grouping tokens tgrp can be distinguished, then the

security of the SSE scheme can be broken. Furthermore, the

grouping tokens tgrp contain the identifiers of the queried

value attribute and group attributes. Since these identifiers

are contained in the leakage, they are identical in both ex-

periments.

Because no single component of the output can be dis-

tinguished by a PPT algorithm, using the hybrid argument

it follows that the outputs of both experiments are indis-

tinguishable and thus our construction fulfills the security

definition. □

Rows that are part of different buckets can be distinguished

using the access pattern; however, the underlying group

values for each row cannot be extracted from this leakage.

More precisely, distinct group values that are mapped into

the same bucket are indistinguishable for any adversary; an

adversary successfully distinguishing these rows with non-

negligible probability can break the somewhat homomorphic

Research 7: Security, Privacy, and Blockchain  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

596



encryption scheme, i.e. distinguish encrypted monomials.

Given a pseudorandom function that maps individual group

values to buckets, an adversary cannot tell which group

value is mapped into which bucket for group values with

the same frequency. Thus, the provided security heavily

depends on the characteristics of the underlying plaintext

values – we emphasize, that this is true for all searchable

symmetric encryption schemes. As already highlighted by

the designers of Seabed [25] the best security can be achieved

by adding dummy rows to each bucket until the same value

frequency t is reached for each bucket hence making all

buckets indistinguishable. However, a naïve implementation

of such dummy rows would result in best security but induce

high computational overhead. Specifically, assuming bucket

size B and the B most-frequent group values occur r times in

total then t is set to r . Assuming all other group values occur

exactly once, each bucket is filled upwith t−B dummy values.

The number of different buckets is bounded by ⌈
|D |
B ⌉, thus

the number of total dummy values is bounded by (⌈
|D |
B ⌉ −

1) · (t − B). In addition to dummy values we describe further

mechanisms, such as optimizing the mapping function and

splitting group attribute values in the next section. These can

be used to optimize the total overhead for a targeted security

level. We emphasize, that these protection mechanisms are

entirely data-dependent and their effect should be analyzed

for individual use-cases.

5 BUCKET PARTITIONING
The choice of the mapping function directly influences the

bucket distribution and hence information leakage. For in-

stance, consider bucket size B = 2 and three group values

д1,д2 and д3 with frequencies 1, 2 and 3. Mapping д1 and д3
into the same bucket results in bucket frequency 4 and д2 is
mapped into a separate bucket with bucket frequency 2. An

attacker aware of the group attribute distribution can recon-

struct the mapping since the bucket frequencies are unique,

i.e. they can only be generated by one mapping. In contrast,

mapping д1 and д2 into one bucket and д3 into a separate

one, results in two buckets with the same frequency. Thus,

the indistinguishability of values can be extended beyond

values of the same bucket by proper partitioning.

Ceselli et al. [7] examine the use of hash functions for par-

titioning. They examine selection queries and introduce the

exposure coefficient, which quantifies the average probabil-

ity of correctly guessing the attribute value of an encrypted

row based on auxiliary information. The exposure coefficient

depends on several factors, e.g., the number of mapping func-

tions resulting in the same bucket distribution, the number of

attribute values and the number of buckets with the same fre-

quency, the individual value distribution inside each bucket.

In order to reduce exposure, they propose a larger collision

factor of the hash function corresponding to larger bucket

sizes in our scheme. Founded on the work by Caselli et al.

we propose the following additional security mechanisms

that increase security compared to deterministic encryption.

(1) Optimal choice of the mapping function, i.e. bucket

partitioning with minimal exposure.

(2) Supplementing dummy rows and thus altering the

number of values in buckets.

(3) Attribute value splits allow us to partition one group

attribute value д with high frequency in two distinct

values д.1 and д.2.

Optimal mapping function. We choose a bucket distri-

bution that minimizes exposure. Note, that this approach is

limited by the plaintext distribution and the bucket size. For

example, given bucket size 2 and three group values д1,д2
and д3 that occur 1, 2 and 4 times respectively, all possible

bucket partitions are distinguishable. Here, a specific choice

of the mapping function does not introduce a large compu-

tational overhead and can be combined with dummy values

and attribute value splits as further protection mechanisms.

Supplementing dummy values. The structure of indi-
vidual buckets can be altered by adding dummy values. Par-

ticularly, the number of elements in one bucket can be in-

creased by adding dummy values containing value attributes

all set to zero into specific buckets. Thus, they do not in-

fluence the aggregation result, but hide the distribution of

attribute values. While inserting dummy rows for the use

case of Ceselli et al. raises additional client overhead to filter

rows, it only increases the server overhead in our use case.

Attribute value splits. A group attribute value д can be

split into two values д.1 and д.2 and thereby the frequency is
split into two summands. This requires the client to aggregate

the sum for д.1 and д.2 after decryption but modifies value

distribution in buckets, hence increases security.

6 EVALUATION
We implemented SAGMA described in Section 3.4 using

the SWHE scheme published by Boneh, Goh and Nissim

(BGN) [4] based on bilinear maps. BGN is themost prominent

homomorphic encryption scheme being additively homomor-

phic and supporting one single multiplication of ciphertexts.

We implemented SAGMA in Java using parallelization during

query execution and decryption to use multiple cores.

Decryption of BGN requires to calculate the discrete loga-

rithm in a prime-order group, thus the plaintext space has

to be restricted to support efficient decryption. Nevertheless,

the decryption of a ciphertext with restricted plaintext space

of 32 bits takes several seconds on a current laptop and is too

inefficient for the evaluation of database aggregations. Hu et

al. propose to use the Chinese remainder theorem (CRT) to

speed up the decryption of BGN [21]. They split a message
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into several parts; homomorphic operations are executed for

each part and the result is reconstructed after the decryp-

tion of all parts using CRT. This approach offers a trade-off

between decryption time on the client and running time

of homomorphic operations on the server. Since ciphertext

components can only be decrypted if they are small enough

and homomorphic operations increase the components, the

use of homomorphic operations is limited.

Our implementation supports three different aggregation

operations, namely summation, row count and average. The

row count can be calculated by aggregating the shifts instead

of the shifted values. As the result is limited by the total

number of rows the CRT scheme is not required.

6.1 Results
We use the lineitem table of the TPC-H

4
benchmark to eval-

uate aggregation time and decryption time. The evaluation

runs on a machine with two Intel Xeon E5-2670 CPUs with

eight cores each running at 2.60 GHz and 256 GB of RAM.We

execute every query ten times and calculate the mean run-

ning time, as well as the 95% confidence interval. Network

latencies between client and server are not considered. Since

performance of SSE has been analyzed extensively before,

our implementation uses a plaintext index located on the

client to determine the bucket identifiers of rows. We instan-

tiate a cryptographic key with 1024 bits providing about 80

bits of security [2, 12] since BGN is based on the hardness

assumption of factorizing a composite modulus.
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Figure 5: Processing time for varying number of rows.

We evaluate the performance of our SAGMA construc-

tion in dependence on the number of rows to be aggregated.

Figure 5 shows a linear increase of the aggregation time. Ag-

gregating the count of 1000 rows requires 1.9 s and 10, 000
rows lasts 17.7 s. Summation is less efficient, since it is based

on the CRT scheme. The decryption time of the count oper-

ation stays constant, while it increases for the summation

operation. Again, this is due to the CRT construction limiting

the number of supported additions.

4
See http://www.tpc.org/tpch/.

We emphasize that most queries contain WHERE clauses

to filter rows which limits the number of rows that have

to be aggregated in real use cases making our construction

also suitable for larger databases. Such preceding selection is

orthogonal to our work and can be implemented efficiently

using SSE. Runtime for different bucket sizes B are evaluated
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Figure 6: Aggregation time for varying bucket size and
varying number of combined attributes in one query.

in Figure 6a. The aggregation time increases superlinearly,

summation takes 5.7 s for bucket size 2 and 71.3 s for bucket
size 7 due to the use of unit shifts to reduce the size of the

CRT components. Instead of one polynomial of degree B,
B polynomials are required to evaluate the shifts for each

row. Hence, the running time increases quadratically in the

bucket size. Again, the count operation is more efficient than

summation.

Finally, we evaluate the impact of the number of attributes

to be grouped. According to Figure 6b, the aggregation time

increases superlinearly. Here, the running time increases

polynomially in the total number of attributes of the data-

base table if the number of grouping attributes in a single

query is limited by t . This enables us to store and combine Bt

monomials to evaluate the polynomial. Note that this does

Application

Grouping attributes

1 ≤ 2 ≤ 3

Nextcloud 100 % 100 % 100 %

Wordpress 97 % 99 % 100 %

Piwik 25 % 83 % 95 %

Figure 7: Grouping queries with attribute numbers.

not limit the applicability of our construction severely. As

summarized in Table 7, many applications only group by

a small number of attributes in each query as our analysis

of popular applications such as Nextcloud, WordPress and

Piwik showed. Nextcloud only groups by a single attribute

and uses the row count operation exclusively. Similarly, 97%

of the grouping queries used by WordPress contain a single

group attribute; the largest grouping query contains three
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attributes. Finally, Piwik, being an analytics platform, uses

grouping functionality extensively. We report that 95% of

the grouping queries contain three group attributes or less.

The largest grouping query contains five attributes. This in-

dicates that an upper limit of the number of group attributes

supported in a single query is no practical restriction.

6.2 Comparison
We compare our solution SAGMA with i) pre-computing

all results as discussed in Section 2 and ii) Seabed [25], a

recent proposal for secure aggregation. We analyze storage

requirements on the server and computation efforts required

by the client for grouping operations with multiple attributes.

We assume a table with r rows, k value attributes, l grouping
attributes and denote t as the maximum number of grouping

attributes supported in one query. Further, we denoten as the
number of additional filtering clauses queried by the client in

combination with data aggregation, where the i-th filtering

clause has a result set size of ρi . We refer to Table 8 for an

overview of all variables used in the following analysis.

We assume the bucket size for SAGMA and the number

of common values for Seabed to be equal for all grouping

attributes denoted as B. For Seabed and SAGMAwe denoteC
as the number of aggregation results for a query with up to t
grouping attributes, i.e. C = |D |t . Natively, Seabed does not

support grouping bymultiple attributes, i.e. aggregating each

attribute value combination individually. Thus, we assume

all value combinations have been computed on the client

and stored on the server.

Scheme Server Storage Client

Pre-computed

(
t∑
i=1

(l
i
)
· |D |i

)
· k · n 1

Seabed

(
t∑
i=1

(l
i
)
· ((B + 1)i − 1)

)
· k · r ρi ·C

SAGMA

((
t∑
i=1

(l
i
)
· (B − 1)i

)
+ k

)
· r C

Table 10: Complexity of approaches hiding individual
group attribute values. Notation is stated in Table 8.

In Table 10 we summarize the storage requirements on

the server measured in ciphertexts and the required client

computation effort for the different approaches. Naïve pre-

computation requires each possible query result to be calcu-

lated, encrypted by the client and stored on the server. Thus,

we enumerate all possible grouping operations combining

up to t attributes for storage calculation. The number of

distinct combinations for i grouping attributes has size |D |i .
Additionally, a different result is stored for each value at-

tribute and for each possible filtering clause. Pre-computing

and storing the results for all possible filtering clauses is

impractical for real applications, e.g., assuming only one

filtering column containing integer values and solely con-

sidering equality matching, there are already 2
32
different

filtering clauses, increasing exponentially with additional

value domains contained in further filtering columns.

In order to support grouping by multiple attributes with

Seabed, (B + 1)i − 1 columns have to be stored for grouping

by i grouping attributes. Again, we enumerate all grouping

operations combining up to t attributes. Since Seabed en-

codes the value attribute in the group attribute column, all

columns have to be stored for each value attribute separately.

Seabed requires excessive client computation if combined

with additional filtering clauses since ASHE is optimized for

dense datasets. In the worst case, one operation has to be

performed for each row contained in the filtering result for

each of the C results. As a result, the client might have to

perform more operations than there are rows in the data-

base, making it less efficient than downloading the complete

database and aggregating it locally on the client.

SAGMA requires (B − 1)i monomials for a grouping oper-

ation with i attributes. As before, we enumerate all grouping

operations combining up to t attributes. Value attributes and
grouping attributes are stored separately and combined dur-

ing aggregation. Hence, each value attribute is stored only

once. SAGMA is interoperable with searchable encryption

for filtering clauses, i.e. filtering clauses are executed on the

server and the resulting rows are subsequently aggregated

using SAGMA. Client effort is minimal, as the number of dif-

ferent group value combinations is lower bounded by C and

for each combination the encrypted aggregation is decrypted

by the client. SAGMA is the only scheme that scales with the

number of value attributes and the number of possible filter-

ing clauses at the same time. We determine specific values
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Figure 8: Different server storage requirements of the
three schemes: Pre-computed, Seabed and SAGMA.

for the server storage for l = 4, t = 3,k = 2, r = 1000,n = 2

and give the results in Figure 8. We evaluate different values

for the maximum number of supported grouping attributes

t in Figure 8a, and different group attribute domain sizes |D |
in Figure 8b. Seabed requires an excessive amount of storage
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Scheme Aggregation Grouping Security Proof Multiple Attributes

Bucketization [17] × ×/✓ G# × ×/✓
CryptDB [26] ✓ ✓ # × ✓
Seabed [25] ✓ ✓ G# ✓ ×

This paper: w/o buckets (ref. Section 3.1) ✓ ✓  ✓ ×

This paper: SAGMA ✓ ✓ G# ✓ ✓

Table 11: Comparison of related work.

space and SAGMA is superior to the pre-computed scheme

for t ≥ 3 and |D | ≥ 10.

7 RELATEDWORK
The first approach to group encrypted data uses the concept

of bucketization; more specifically, the value domains of the

attributes are split into non-overlapping buckets that are

identified by a unique value [17]. The database is encrypted

row-wise and outsourced together with these bucket iden-

tifiers. Using the bucket identifiers, the server can group

corresponding rows. This bucketization introduces inaccu-

racy, thus the client refines the grouping result for each

bucket after decryption. Here the client exclusively aggre-

gates the grouped values for each bucket after decryption.

The proposed scheme requires to execute most of the work

on the client, has high communication cost and no security

proof is stated. Additional work on bucketization has been

published by Hore et al. [19, 20] implementing elementary

data security while still providing functionality for range

queries on the protected data.

CryptDB uses a combination of homomorphic encryption

and property-preserving encryption (PPE) to support a wide

range of operations for their encrypted database [26]. Ad-

justable encryption allows the client to unveil specific de-

cryption keys enabling the server to adapt the encryption

level of attributes to the requirements of a query. In order to

support GroupBy statements, the involved grouping columns

are encrypted deterministically leaking the frequencies of

the plaintext data. For aggregation queries the authors pro-

pose the Paillier cryptosystem [24]. They provide a practical

security evaluation but no formal proof. Recently, attacks on

PPE have been published [16, 23]. Alternative systems for

encrypted databases refraining from PPE leave server-side

secure aggregation as open problem [22].

Seabed combines additively symmetric homomorphic en-

cryption (ASHE) and deterministic encryption to support

aggregation queries with grouping [25]. ASHE has improved

performance in comparison to asymmetric schemes such

as Paillier, and is optimized for dense datasets, where mul-

tiple consecutive values are aggregated. This optimization,

however, has issues in combination with additional filter-

ing, e.g., expressed by WHERE clauses. In the worst case, the

client’s computation overhead for GroupBy statements in

combination with WHERE clauses is the same as decryption

and aggregation of all records matching the WHERE clause.

Similar to the construction presented in Section 3.1, the au-

thors encode the value attribute and the group attribute into

a single plaintext and encrypt it using ASHE, hence they

avoid deterministic encryption. Instead of using ciphertext

packing, they create a new column for each group attribute

value. To limit storage consumption, they propose an en-

hanced scheme that only introduces new columns for com-

mon group attribute values and one single column for less

frequent ones. A column with deterministically encrypted

group values is added to be able to aggregate the column

of uncommon values correctly. This column only contains

values in rows with uncommon group values, thus rows with

common group values can be used to flatten the histogram

by adding dummy values with no impact on the aggregation

result. Seabed does not support grouping operations with

multiple attributes natively.

In Table 11 we compare all schemes reviewed in this sec-

tion regarding their support for aggregation and grouping

of multiple attributes directly on the server, we classify their

security properties and if these are proven formally.

8 CONCLUSION
We propose SAGMA, an encryption scheme for secure ag-

gregation grouped by multiple attributes using ciphertext

packing and dynamic shifting using somewhat homomorphic

encryption. Our scheme is compatible with additional filter-

ing clauses in the aggregation query and supports database

updates. Previous constructions either leakmore information

or do not support grouping by multiple attributes together

with additional filter clauses.

We partition the grouping attributes into disjoint buckets

where values mapped into the same bucket remain indis-

tinguishable during query execution. The choice of param-

eters, such as the bucket size or the assignment algorithm

for group values to buckets, results in different trade-offs

between security, supported queries, computational over-

head and storage requirements. We analyze the theoretical

implications of these parameters and evaluate combinations

of concrete instances in a prototypical implementation.
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