
An Efficient Scheme for Prototyping kNN
in the Context of Real-Time Human

Activity Recognition

Paulo J. S. Ferreira1(B) , Ricardo M. C. Magalhães1(B) ,
Kemilly Dearo Garcia2(B) , João M. P. Cardoso1(B) ,

and João Mendes-Moreira1(B)

1 INESC TEC, Faculty of Engineering, University of Porto, Porto, Portugal
{up201305617,up201502862,jmpc,jmoreira}@fe.up.pt

2 University of Twente, Enschede, The Netherlands
k.dearogarcia@utwente.nl

Abstract. The Classifier kNN is largely used in Human Activity Recog-
nition systems. Research efforts have proposed methods to decrease the
high computational costs of the original kNN by focusing, e.g., on approx-
imate kNN solutions such as the ones relying on Locality-sensitive Hash-
ing (LSH). However, embedded kNN implementations need to address
the target device memory constraints and power/energy consumption
savings. One of the important aspects is the constraint regarding the
maximum number of instances stored in the kNN learning process
(being it offline or online and incremental). This paper presents simple,
energy/computationally efficient and real-time feasible schemes to main-
tain a maximum number of learning instances stored by kNN. Experi-
ments in the context of HAR show the efficiency of our best approaches,
and their capability to avoid the kNN storage runs out of training
instances for a given activity, a situation not prevented by typical default
schemes.

Keywords: k-Nearest Neighbor · Classification · kNN prototyping ·
LSH · Human Activity Recognition (HAR)

1 Introduction

Human Activity Recognition (HAR) (see, e.g., [1]) aims to recognize the activi-
ties performed by humans through the analyses of a series of observations using
sensors, e.g., carried by users.

k -Nearest Neighbor (kNN) [2] is one of the most popular classifiers used in
HAR systems. kNN is based on lazy learning, which means that it does not have
an explicit learning phase. Instead, it memorizes the training objects, keeping
them in a buffer memory. The kNN popularity in classification problems comes
from its simplicity and straightforward implementation. The main disadvantage

This work has been partially funded by FCT project POCI-01-0145-FEDER-016883.

c© Springer Nature Switzerland AG 2019
H. Yin et al. (Eds.): IDEAL 2019, LNCS 11871, pp. 486–493, 2019.
https://doi.org/10.1007/978-3-030-33607-3_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33607-3_52&domain=pdf
http://orcid.org/0000-0001-6553-4220
http://orcid.org/0000-0002-0647-4675
http://orcid.org/0000-0003-1688-6769
http://orcid.org/0000-0002-7353-1799
http://orcid.org/0000-0002-2471-2833
https://doi.org/10.1007/978-3-030-33607-3_52


An Efficient Scheme for Prototyping kNN in the Context of Real-Time HAR 487

of kNN is the necessity of high storage requirements in order to retain the set of
training instances and the number of distances to be calculated [5]. This problem
becomes more evident when incremental/online learning is used in devices with
limited memory and computing capacity. In such devices, it is necessary to limit
the number of instances kNN can store and provide efficient real-time schemes
to substitute/update the training instances.

In this paper, we propose substitution schemes that, when it is necessary to
store a new instance during the incremental learning phase, allow to keep the
number of instances limited and at the same time maintain the distribution of the
number of instances per activity, thus preventing, during the incremental phase,
that certain activities run out of instances. In addition, the paper evaluates the
substitution schemes and compares their results with the results of using the
default scheme which substitutes the oldest instance stored.

This paper is organized as follows. Section 2 introduces some related work.
Section 3 describes the implication of kNN and LSH [11] + kNN limitation as
well as descriptions of the substitution schemes proposed. Section 4 describes
the setup used in the experiments performed. Then, Sect. 5 shows experimental
results and, finally, Sect. 6 draws some conclusions and summarizes future work
planned.

2 Related Work

This section presents previous work using kNN for classification. The presented
approaches use different methods to select and remove instances from the kNN
buffer memory.

The method ADWIN (ADaptive sliding WINdowing) [9] monitors statistical
changes in a sliding window. The window stores all the instances since the last
detected change. The window is partitioned into two sub-windows of various size
until the difference of their average error exceeds a threshold, depending on the
size of the sub windows and a confidence parameter, a change is detected and
the older window is dropped.

The method PAW (Probabilistic Approximate Window) [8], stores in a sliding
window only the most recent and relevant instances according to a probabilistic
measure. To decide which instance to maintain or discard, the algorithm ran-
domly select the instances that is kept in the window, which makes a mix of
recent and older instances.

In [8], ADWIN is coupled with kNN with PAW. In this case, the ADWIN is
used to keep only the data related to the most recent concept of the stream and
the rest of instances are discarded.

The method SWC (Sliding Window Clustering) [10], instead of storing all
instances that fit in a sliding window (for representing both old and current
concepts), stores compressed information about concepts and instances close to
uncertainty border of each class. The clusters are compressed stable concepts
and the instances are possible drifts of these concepts.

The approaches proposed in this paper are focused on simple schemes in
order to avoid execution time and energy consumption overhead and bearing in



488 P. J. S. Ferreira et al.

mind the implementation of kNN in memory and computing power constrained
wearable devices.

3 kNN Substitution Schemes

In our HAR system, features are extracted from the raw data from sensors,
are normalized, and then input to a machine learning (ML) classifier, such as
kNN. The classifiers were implemented using the MOA library [6], since it allows
dealing with data streams and offers a collection of incremental ML algorithms.

The kNN used already includes its own substitution scheme. In this scheme
(herein mentioned as “default”), whenever a new training instance arrives and
the maximum limit of instances that kNN can store is reached, the new instance
substitutes the oldest instance.

When the number of instances that can be stored by the kNN is limited and
with the continued substitution of the oldest instance, whenever a new training
instance arrives, it may happen that, due to this scheme, activities run out of
training instances stored in kNN. This may cause classification errors when kNN
tries to classify an instance for which it has none or insufficient training instances.
Because of this, it is important to propose efficient substitution schemes able to
prevent a given activity from running out of training instances stored by kNN.

The following eight simple, energy/computationally efficient, and real-time
feasible substitution schemes are proposed and implemented:

– Default: In the kNN used (present in the MOA library [6]) when the instance
limit was reached, whenever a new training instance arrives and needs to
be stored, it replaces the oldest instance stored in kNN (regardless of the
activity);

– SS1: randomly selects an instance and replaces it with the new instance of
the same class;

– SS2: selects the oldest instance of a certain class and replaces it with the new
instance of the same class;

– SS3: classifies the new instance. If the new instance is incorrectly classified,
SS1 is applied. Otherwise the new instance is discarded;

– SS4: classifies the new instance. If the new instance is incorrectly classified,
SS2 is applied. Otherwise the new instance is discarded;

– SS5: classifies the new instance. If the new instance is correctly classified, the
scheme randomly selects to apply SS1 or to discard the new instance. If the
instance is classified incorrectly it applies SS1;

– SS6: classifies the new instance. If the new instance is correctly classified, the
scheme randomly selects to apply SS2 or to discard the new instance. If the
instance is classified incorrectly it applies SS2;

– SS7: classifies the new instance. If the new instance is incorrectly classified,
the new instance replaces its nearest neighbor;

– SS8: classifies the new instance. If the new instance is correctly classified, the
scheme randomly selects to replace the nearest neighbor of the new instance
by the new instance, or to discard the new instance. If the new instance is
incorrectly classified, the new instance replaces its nearest neighbor.



An Efficient Scheme for Prototyping kNN in the Context of Real-Time HAR 489

kNN is a lazy learner, which means that it does not have an explicit learning
phase, but instead stores the training instances. For each learning instance, a
vector of features is stored in conjunction with its label (class). Imposing a
maximum limit of N means that the kNN can only store N instances. For LSH [11]
+ kNN, a maximum limit implies that a maximum number of instances are
stored in the hash tables of the method. In our experiments, we use the LSH
parameters empirically selected in our preliminary experiments, i.e., 20 hash
tables, 1 random projection per hash value, and 10 as the width of the projection.

4 Experimental Setup

4.1 Dataset, Feature Extraction and Normalization

On our experiments, we used PAMAP2 (Physical Activity Monitoring for Aging
People) [7], a dataset where 18 different activities were recorded for 9 different
individuals, each wearing 3 IMUs (Inertial Measurement Units) and a heart-
rate monitor. Each IMU presents 3D-data from accelerometer, gyroscope and
magnetometer.

For each sliding window with sensor data, and according to the number of
axis of each sensor, several features are extracted. In the case of our prototypes
the features are associated to 3D and 1D sensors. Each 1D and 3D sensor has,
respectively, 2 (mean and standard deviation) and 10 features (x mean, y mean,
z mean, mean of the sum of the 3 axes, x standard deviation, y standard devia-
tion, z standard deviation, xy Pearson Correlation, xz Pearson Correlation, and
yz Pearson Correlation) extracted. Additionally, all features were subsequently
normalized by dividing each value in a vector with the vector’s magnitude.

4.2 Setup

In the experiments presented in this paper, our HAR system begins with a
model built offline using the N−1 users. Then, we emulate the use of the HAR
system and the real-time behavior using data from a different user representing
the actual user of the system. After preliminary studies, user 5 was selected
to represent the user of the system. This selection was because user 5 is the
one of the users with more activities collected and also being the user with the
highest number of instances. A sliding window of 300 sensor readings and a 10%
overlap were used. With these settings and the data of the remaining 8 users,
6186 training instances are considered for creating the offline model.

In these experiments, the maximum number of instances the kNN (k = 3)
could store was limited to 100, 200, 500, and from 1000 to 8000 with increments
of 1000. The limit of 8000 allows storing the entire original training set plus
the instances for incremental training. In order to reduce the initial training set
with 6186 instances, a random-based filter reduces the original training set for
the various limits tested, maintaining the global distribution of instances per
activity of the original set.



490 P. J. S. Ferreira et al.

5 Experimental Results

5.1 Substitution Schemes Comparison

In these experiments, all substitution schemes presented above were evaluated
varying the kNN and LSH kNN storage maximums. Figure 1 shows the results
obtained.

Fig. 1. Impact on accuracy of substitution schemes for the different limits considered:
(a) kNN; (b) LSH kNN

According to Fig. 1(a), the best substitution schemes are 1, 3 and 5, with the
scheme 1 showing slightly better results than the other two. The substitution
scheme 8 is the one that presents the worst results of all. The results show a
significant difference between the schemes with better results (1, 3 and 5) and
those with worst results (2, 4, 6, 7 and 8). On average, there is a decrease of
about 9% in accuracy between the best and worst schemes.

The convergence of all the lines of the chart to the same point is due to the
fact that for 8000 all the learning instances are kept stored in the kNN. So, for
the 8000 limit, substitution schemes are not applied.

According to Fig. 1(b), all substitution schemes behave similarly and differ-
ences in accuracy are minimal. However, scheme 3 achieves the best average
accuracy (≈ 98.56%), while scheme 7 presents the worst result (≈ 98.17%).
Globally, there is a difference of ≈ 0.39% on average.

Since all schemes achieve an already high accuracy, the substitutions done
incrementally are not capable of improving or decreasing the accuracy of the
classifier in a considerable amount on average.

The best scheme, 1, is compared with the methods kNN (default scheme),
kNN with PAW (kNNP ) and kNN with PAW with ADWIN (kNNPA). The
results are present in Table 1.

The results presented in Table 1 show that all methods obtained very close
accuracies, with kNNPA being the only one that got lower accuracy than our
best scheme. However, none of the other methods guarantee that no class runs
out of instances in the kNN feature space.



An Efficient Scheme for Prototyping kNN in the Context of Real-Time HAR 491

Table 1. Average accuracy for each method.

kNN (SS 1) kNN (default) kNNP kNNPA

Average accuracy 88.54 88.90 88.75 88.51

5.2 Proposed Substitution Schemes vs Default Scheme

In order to study the impact of the substitution schemes, an experiment was
carried out where in one case the substitution scheme which obtained better
results in the previous experiment was used and in the other case, no substitution
scheme was used. In this experiment, the accuracy was measured throughout the
incremental training, that is, the accuracy is calculated whenever a new instance
is classified. Figure 2 shows the results obtained.

Fig. 2. Accuracy of kNN throughout the incremental training, using a maximum limit
of 5000 instances, the best substitution scheme over the default scheme.

Analyzing the results of the left chart of Fig. 2, it can be concluded that the
best proposed substitution scheme can match the results of the default scheme
of kNN, failing to improve on the default scheme. Focusing on the right chart, we
can conclude the proposed best scheme for LSH kNN is not capable of improving
the default scheme for the most part, only achieving higher accuracy on the last
classifications performed.

The limits used so far, were high enough to keep instances for all activities. In
order to test the behavior in one extreme case of the default scheme as compared
to the proposed substitute schemes, an experiment was performed where all
1008 instances of User 5 were used for incremental training and then used again
for testing the accuracy of kNN. For this experiment, the maximum limit of
instances that kNN can store has been set to 100, 200, and 500. PAMAP users
data is organized by activity. Using the default scheme and such small limits,
it turns out that in incremental training the kNN feature space will only save
instances of the latest User 5 activities.

The results presented in Table 2 show that the default substitution scheme
achieves very low accuracy. This is due to the fact that the default scheme always



492 P. J. S. Ferreira et al.

Table 2. Impact on accuracy for the different limits and when considering online
learning with longer time periods followed by classification of activities.

Substitution scheme kNN limits LSH kNN limits

100 200 500 100 200 500

1 68.25 86.81 91.27 86.21 86.41 85.12

2 57.04 64.68 73.91 77.78 73.91 74.11

3 70.83 85.81 89.78 97.42 99.50 99.80

4 57.54 64.38 73.91 91.17 98.41 96.53

5 67.16 85.81 90.67 88.00 87.40 90.18

6 57.44 64.19 74.01 84.42 85.91 87.10

7 58.23 68.25 74.11 94.84 97.92 98.81

8 54.96 63.10 73.71 80.46 83.63 87.00

Default 11.71 20.54 50.40 11.81 20.73 51.88

eliminates the oldest, leading to situations where a reduced number of activities
is stored in the model. In this case, the kNN using the default scheme conducts
to an incremental update of the model that in the end may represent only the
latest activities used in the online training. This results in a misclassification
of activities that do not correspond to those latest activities learned. In these
situations, the use of the proposed substitution schemes allowed to considerably
increase the accuracy of both classifiers, as substitutions occur at the activity
level, thus preventing certain activities from running out of training instances
stored and keeping the distribution of instances by activity.

As expected, the results show the importance of updating the model with
instances of the user using the HAR system. This is the reason why the substitu-
tion scheme of the oldest instance in the model provides good results whenever
the limit is enough or the sequence of activities do not override completely the
model and make it not representative. This is what happens in the scenario
forced by the learning of the instances of user 5 and then testing with the same
instances.

6 Conclusion

Although kNN is one of the most used classifiers in Human Activity Recognition
(HAR) systems, its storage requirements increase with the number of learning
instances. This paper proposed schemes to substitute/update the set of learning
instances for kNN classifiers in order to maintain a maximum number of train-
ing instances. The proposed schemes are evaluated in the context of a Human
Activity Recognition (HAR) system. Eight different substitution schemes were
proposed and tested to allow incremental online training when there is a maxi-
mum limit of instances that the kNN can store. This approach is useful in the



An Efficient Scheme for Prototyping kNN in the Context of Real-Time HAR 493

case of implementing a HAR system in devices with limited memory (e.g., wear-
able devices). The experimental results show the efficiency of some of the eight
schemes evaluated.

Ongoing work is focused on additional experiments with datasets from other
domains. As future work, we plan to continue researching substitution/update
schemes and compare with other more computational intensive schemes and
verify the overheads regarding response time and energy consumption.

References

1. Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., Li, Z.: A review on human activity
recognition using vision-based method. J. Healthc. Eng. 2017, 31 (2017). Article
ID 3090343

2. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. Inf.
Theory 13(1), 21–27 (1967)

3. Su, X., Tong, H., Ji, P.: Activity recognition with smartphone sensors. Tsinghua
Sci. Technol. 19(3), 235–249 (2014)

4. Calvo-Zaragoza, J., Valero-Mas, J.J., Rico-Juan, R.J.: Improving kNN multi-
label classification in Prototype Selection scenarios using class proposals. Pattern
Recogn. 48(5), 1608–1622 (2015)

5. Garcia, S., Derrac, J., Cano, J., Herrera, F.: Prototype selection for nearest neigh-
bor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 417–435 (2012)

6. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

7. Reiss, A., Stricker, D.: Introducing a new benchmarked dataset for activity mon-
itoring. In: The 16th IEEE International Symposium on Wearable Computers
(ISWC) (2012)

8. Bifet, A., Pfahringer, B., Read, J., Holmes, G.: Efficient data stream classifica-
tion via probabilistic adaptive windows. In: Proceedings of the 28th Annual ACM
Symposium on Applied Computing, pp. 801–806. ACM, March 2013

9. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing.
In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp.
443–448. Society for Industrial and Applied Mathematics, April 2007

10. Garcia, K.D., de Carvalho, A.C.P.L.F., Mendes-Moreira, J.: A cluster-based pro-
totype reduction for online classification. In: Yin, H., Camacho, D., Novais, P.,
Tallón-Ballesteros, A. (eds.) IDEAL 2018. Lecture Notes in Computer Science,
vol. 11314, pp. 603–610. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-03493-1 63

11. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, pp. 604–613. ACM (1998)

https://doi.org/10.1007/978-3-030-03493-1_63
https://doi.org/10.1007/978-3-030-03493-1_63

	An Efficient Scheme for Prototyping kNN in the Context of Real-Time Human Activity Recognition
	1 Introduction
	2 Related Work
	3 kNN Substitution Schemes
	4 Experimental Setup
	4.1 Dataset, Feature Extraction and Normalization
	4.2 Setup

	5 Experimental Results
	5.1 Substitution Schemes Comparison
	5.2 Proposed Substitution Schemes vs Default Scheme

	6 Conclusion
	References




