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Broadband Stimulated Raman Scattering Microscopy  
with In-Line Balanced-Detection  

Alejandro De la Cadena, Andrea Ragni, Giuseppe Sciortino, Giorgio Ferrari, Marco Sampietro,  
Giulio Cerullo and Dario Polli 

Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano (Italy) 
 
Stimulated Raman scattering (SRS) is an increasingly employed technique in optical nonlinear microscopy, as 

it is capable of identifying different chemical species and their concentration in a sample. It exploits the third-order 
nonlinear optical response of the specimen to ultrashort pump and Stokes pulses, by setting up and detecting a 
vibrational coherence within the ensemble of molecules inside the laser focus. In its broadband modality, SRS 
excites a manifold of molecular vibrational bands, thus providing more information about the chemical 
composition of the sample compared to the narrowband version. It therefore opens up the possibility to 
discriminate chemical species with overlapping Raman signatures.  

We report here on an innovative broadband SRS setup capable of high-speed imaging in the C-H stretching 
region (2800-3050 cm-1). It is based on a homemade optical parametric oscillator at 80-MHz repetition rate [1]. It 
delivers broadband pump pulses in the 780-810 -1) Stokes pulses at 1040-nm, 

. To increase the 
signal-to-noise ratio, which is typically limited by the relative intensity noise fluctuations of the laser source, we 
take advantage of the in-line balanced detection scheme [2] (see Fig. 1(a)). A birefringent plate is placed before 
the sample in the broadband pump branch, to generate two replicas with orthogonal polarization, one serving as 
the pump pulse for SRS and the second as a reference for balancing purposes. Both replicas interact with the 
sample, although only one temporally coincides with the narrowband Stokes beam . In this 
way, the reference pulse experiences the same local attenuation, due to spatially varying sample transmission, but 
it does not bear any modulation transfer due to SRS. After the sample, a spectral filter rejects the Stokes while the 
pump/reference pulses are dispersed with a transmissi , separated with a 
polarizing beam splitter and sent to different photodiodes for the pump and the reference beams. Their intensities 
are electronically subtracted before demodulation, thus reaching close to shot-noise-limited detection. 

SRS detection can be performed in two modalities. In the first (IBD-G, see left inset of Fig. 1(a)), an off-the-
shelf balanced photodiode with two single-pixel detectors is employed, whose output is connected to a standard 
single-channel lock-in amplifier, employed at maximum speed (1.8- . Retrieval of the 
vibrational spectrum is performed by varying the detected pump wavelength after the sample by means of a single-
axis galvanometric scanning mirror. Figures 1(b-c) report imaging results on a test sample made of dispersed 
PMMA (6- 2956 cm-1) and polystyrene (3-
spheres in panel (d) at 3066 cm-1) beads. Panel (d) shows the image collected at 3005 cm-1, in which both specimens 
are visible due to overlapping vibrational features. Fig. 1(e) reports exemplary SRS spectra of PS and PMMA. In 
the second detection modality, a home-made multi-channel lock-in amplifier (M- , see right inset of Fig. 1(a)) 
[3] is employed with 4 parallel channels and 10-  constant, thus allowing very fast SRS imaging 
at 4 distinct frequencies. In the future, the system will be upgraded to a 32-channel M-  

 
Fig. 1 (a) Scheme of the experimental set-up, showing the two possible detection schemes employing either a galvanometric 
scanner (IBD-G, on the left) or a multi-channel lock-in amplifier (M- (b-c-d) SRS imaging of PMMA and 
PS beads at 2956 (c), 3066 (d) and 3005 cm-1 (e) Raman shift.  (e) Raman spectra of the two components. 
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Retrieving the complex vibrational susceptibility  
with interferometric stimulated Raman scattering (iSRS) 
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Coherent Raman Scattering (CRS) [1] is a class of third-order optical processes, which drive a nonlinear 

polarization in the sample, proportional to the third order nonlinear vibrational susceptibility 
. This is a mixture of a complex resonant term, associated to the different vibrational transitions, and a purely 

real and frequency-independent non-resonant term. The two most common CRS techniques, in their standard 
implementation, do not allow the retrieval of the full complex  signal: the CARS signal is a mixture of its real 
and imaginary parts, while SRS only retrieves the imaginary part . Measurement of the complex  signal would 
offer instead a richer spectroscopic information to be used, e.g., to distinguish molecules with similar amplitude 
response but different spectral phase [2]. Numerical methods [3] can be used to reconstruct the full vibrational , 
but their main limitation is the requirement of the entire vibrational spectrum, which often cannot be acquired at 
high speed. Interferometric techniques can overcome this limitation and have been demonstrated for CARS [4].  

In this work, we introduce single-frequency interferometric SRS (iSRS), thanks to a simple modification of a 
standard SRS setup, which allows to measure the full complex . The Stokes arm is equipped with a common-
path interferometer, similar to that employed by Orrit and coworkers [5], but based on an ultra-stable birefringent 
common-path interferometer (GEMINI by NIREOS S.R.L). It simply requires the addition of a birefringent plate 
before the sample, creating two replicas of the Stokes beam with perpendicular polarization, and two birefringent 
wedges after the sample, to bring the pulses back to zero time delay. Finally, the combination of a quarter-wave 
plate and a linear polarizer set at a proper angle before the photodiode allows us to disentangle and independently 
measure the real and imaginary components of . Figure 1 shows imaging results on PMMA and PS beads (with 
6 and 3- m diameter, respectively) at 3000 cm-1 vibrational frequency. While PMMA displays a strong signal in 
the imaginary component (see Fig. 1(a)), as expected at this Raman shift, its real counterpart almost vanishes (see 
Fig. 1(b)). The opposite behavior is seen for PS, so that the two specimens can be distinguished and quantified 
without the need for scanning the frequency detuning between pump and Stokes. Even more strikingly, the phase 
image (Fig. 1(c)) enables us to distinguish the two components clearly even at their thin borders, demonstrating 
that it provides a more robust discrimination criterion than the Raman amplitude.  

 
Fig. 1 
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Suppression of Stimulated Raman Scattering via Photon Depletion in a
Two-Color Three-Beam Setup
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Sub-diffraction limited imaging schemes have become widely used in fluorescence microscopy [1]. However, the

need for labeling with fluorescent dyes remains a major downside of fluorescence microscopy. The size, avail-

ability, toxicity as well as photo-bleaching of the used dyes can complicate measurements [2]. In contrast, Raman

imaging is inherently label-free. Unfortunately, the super-resolution schemes used in fluorescence microscopy are

currently not transferable to Raman microscopy. This paper presents the development of a scheme for the suppres-

sion of coherent Raman scattering through the depletion of probe photons, inspired by the work of M. Cho et al.

[3, 4], who showed the suppression of coherent Raman scattering using two Raman resonances and laser pulses at

three different colors.

In our case, probe depletion is achieved by saturated femtosecond stimulated Raman scattering (FSRS) ad-

dressing a single Raman resonance in a three-beam setup with only two colors involved. Fig. 1 (a) and (b) present

the working principle: in the unsuppressed case, the simultaneous irradiation of the sample with pump and probe

pulses induces stimulated Raman loss (SRLP) of the probe and stimulated Raman gain (SRGP) of the pump. In the

suppressed case a second strong pump pulse, working as the depletion pulse, depletes the probe pulse via stimu-

lated Raman scattering (SRLD) and induces a shortage of probe photons at the Raman resonances. Thus, if SRLP

is detected while the depletion beam is turned on, only a small amount of additional SRLSup < SRLP induced by

the pump can be measured. The energy transferred via the FSRS process is visualized for the (weak) pump and the

(strong) depletion by the red and blue arrows, respectively.

Fig. 1 (a) Scheme for stimulated Raman loss (SRLP) and gain (SRGP) induced by the pump in the unsuppressed case. In (b)

the suppression of SRGSup by photon depletion is shown. The arrows visualize the energy transferred via the Raman process.

(c) Raman spectra in the CH-stretch region of acetonitrile for different depletion pulse energies. For details see text.

This method enables the suppression of a Raman signal by stimulated Raman scattering without the need for a

second Raman resonance and further, no a priori information about the molecular spectrum is necessary in contrast

to reference [4]. Fig. 1 (c) shows the stimulated Raman spectra of the CH-stretch region of acetonitrile for a

depletion pulse energy of 0 nJ, 113 nJ, 202 nJ and 320 nJ and a constant pump pulse energy of 60 nJ. A reduction

of the Raman signal at the resonance of up to 79 %, calculated by the suppression efficiency η = 1−SRLSup / SRL,

for a depletion pulse energy of 320 nJ could be measured.

The developed suppression technique has the potential to enable resolution enhancement in coherent Raman mi-

croscopy similar to stimulated emission depletion (STED, [5]), a super-resolution scheme used in fluorescence

microscopy. Thus, the work presented here opens up a simplified pathway towards label-free and sub-diffraction

limited imaging in comparison to the work of M. Cho et al. [3, 4].
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Study of strain sensitivity and symmetry of color center in diamond 
nanoscale needles by contactless optical piezo-spectroscopy . 
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In this work we report a method to perform optical piezo-spectroscopy of nanoscale systems by electrostatic 
field regulation. 

The nanoscale systems studied are diamond needles containing color centers, that have been investigated since 
two decades, e.g., for the implementation of qubits in quantum informatics protocols [1]. Color centers in diamond 
have also unique applications as nanoscale field sensors. In particular, in the case of strain field, they are key 
components for the realization of strain-coupled hybrid spin-oscillator systems.  

The photoemission of these centers is studied using a micro-photoluminescence ( -PL) system. The application 
of a high electrostatic field at the apex of monocrystalline diamond nanoscale needles induces an energy splitting 
of the photoluminescence lines of color centers [2]. 

The capabilities and unicity of our experimental set-up are presented by the study of the well-known NV0 color 
center in diamond. After that, the strain sensitivity of the color center emitting at 2.65 eV is studied. We compare 
the strain sensitivity of this center with that of the well-known neutral nitrogen-vacancy (NV0) center. We show 
that the 2.65 eV center has a higher strain sensitivity than the NV0 center and can be explored as strain sensor 
and/or for strain-coupled systems. Moreover, we perform polarization-resolved photoluminescence (PL) 
spectroscopy under a high uniaxial tensile stress and the polar behavior reported for the 2.65 eV center points out 
to a defect symmetry which is different from that of NV0 center. 

We also discuss recent results obtained by multiphoton excitation of the -PL signal of NV0 color center. 

Fig. 1 The needle specimen is inserted in a vacuum chamber equipped with an in situ photoluminescence bench, an ion 
spectrometer and a position and time sensitive detector. The high voltage applied to the tip leads to an intense electric field
at the specimen’s apex, which allows field evaporation of ions. Moreover, laser pulses can trigger ion evaporation and photon 
emission. (b) The photoluminescent signal of the NV0 center acquired for different values of the applied voltage.
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Experimental Determination of the Potential Energy Function
of the Copper Dimer Ground State

Peter Bornhauser, Qiang Zhang, Martin Beck, Peter P. Radi
Paul Scherrer Institute, 5232 Villigen, Switzerland

The copper dimer has attracted much interest from both experimentalists and theorists owing to the
relatively simple electronic configuration, the closed d shell and the filled orbital in its electronic ground
state, which makes it a good starting point to understand bonding properties of electronically more com-
plex transition metal dimers. In this talk, we present a spectroscopic study of dicopper aimed at mapping
out its electronic ground state potential energy function at high precision. The Cu2 molecules are pro-
duced in a home-built laser vaporization source and cooled by a near supersonic expansion in a molecular
beam environment. Rotationally resolved stimulated emission pumping (SEP) spectra have been recorded
for both main isotopologues, 63Cu2 and 65Cu63Cu, by applying non-linear two-color resonant four-waving
mixing (TC-RFWM). Double-resonance schemes involving perturbation assisted excitations opened ways
to access high-lying vibrational levels of the ground state. The determined energies and inertial rota-
tional constants of v up to 103 are analyzed by using a near-dissociation equation taking into account the
dominant long-range dispersion term. The applied iteration procedure yields an accurate RKR potential
and refined molecular constants up to the dissociation asymptote. We report the determined dissociation
energy and the vibrational quanta at the upper limit of the bonding. These experimental results extend
our knowledge of the copper dimer bonding and provide a benchmark for assessing the accuracy of ab
initio calculation.
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Fig.1 Dispersed fluorescence and TC-RFWM spectra to high lying vibrational levels in the ground state X 1Σ+
g (0+

g ) of 65Cu63Cu.
Fluorescence is excited by using the P(18) line of the G62 - X(v=0) transition. Significant emission is observed to levels up to

v=101 of the ground state (upper trace, blue). The inverted trace is a simulation taking into account the line positions and
intensities determined in this work. The offset traces show separate SEP-type TC-RFWM scans of the PROBE laser. As for

dispersed fluorescence, the PUMP lasers are tuned to P(18) of line of G62 - X(v=0). The inset is an expanded representation of
the four-wave mixing PROBE scan displaying the P(18) and R(16) branch of the excited J ′=17 level.



Rotational echoes: a versatile tool for investigating ultrafast dissipation  
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