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Summary

High-speed robots induce large fluctuating reaction forces and moments on
their supports, inducing disruptive vibrations and limiting the precision at the
end-effector. Dynamic balance targets these fluctuating reaction forces and mo-
ments to enable robots that are both fast and precise. This can be achieved
by adding counter-mechanisms such as counter-rotating balance shafts or du-
plicate mirrored mechanisms, potentially leading to an unfavourable increase in
complexity, mass and motor torque. Fortunately, a few parallel mechanisms are
known that may be balanced by a specific design of the mass distribution, po-
tentially enabling simple, low-weight and cost-effective balance solutions. The
design process of this particular class of mechanisms is however impeded by
the intricacy of the dynamic balance conditions. These conditions typically
contain complex kinematic models to ensure that dynamic balance holds for all
poses, velocities and accelerations of parallel mechanisms. Especially for spatial
mechanisms with multiple degrees of freedom (DOF), it is difficult to find new
dynamically balanced solutions. Another obstacle in the balance process is that
it is not fully known which types of mechanisms can be dynamically balanced
by design of the mass distribution, i.e. without resorting to complex and costly
counter-mechanisms.

This thesis therefore aims to provide analytic tools to extract and solve
the dynamic balance conditions in a uniform manner and find mechanisms
that can be balanced in a favourable way. To that end, screw theory is used
throughout this thesis as it combines a geometric, spatial interpretation of rigid
body motion with a concise and systematic description of differential kinematics
and dynamics.

This resulted in three screw theory based dynamic balance methods. The
instantaneous dynamic balance method solves the necessary conditions for dy-
namic balance in a direct and geometric manner, resulting in parallel, spatial
and multi-DOF mechanisms that are dynamically balanced in a single pose. In
this pose the robot accelerations will not induce shaking forces and moments.
Further away from this pose, the balance quality, typically worsens. Yet, when
combined with partial balancing, the dynamic balance is extended over multiple
paths that intersect in this pose, leading to wider choice of dynamically balanced
motion. Based on this, a 2-DOF demonstrator is designed, the Fuga I, which is
dynamically balanced for motion over two paths that intersect perpendicularly
in the middle of the workspace. Measurements confirm the path balance as well
as the instantaneously dynamically balanced pose of this demonstrator.

The higher-order dynamic balance method expands dynamic balance over
the complete workspace by including a sufficient number of higher-order par-
tial derivatives of the dynamic balance conditions. The resulting necessary
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and sufficient conditions are linear in the inertial parameters such that null
space algorithms provide all possible dynamically balanced designs for any
type of nonsingular linkage. To aid the designer, a partitioning and multipole-
interpretation of the resulting design space is presented, leading to the design of
a spatially moving 3- RS R mechanism that is dynamically balanced for 2-DOF
motion on three symmetric planes.

The pure-inertia method treats a specific class of mechanisms, the symmet-
ric subspace motion generators. It is shown that two prominent examples in
the dynamic balance literature share kinematic mirror symmetry and a mass
distribution of the links that is equivalent to pure moments of inertia. Based
on these observations, a novel 2-DOF planar dynamically balanced mechanism
is presented.

These three dynamic balance methods provide the means to solve the dy-
namic balance conditions of arbitrary linkages and a direction for the search
of new kinematic structures that permit simple and efficient dynamic balance
solutions.



Samenvatting

Frametrillingen zijn ongewenst voor hoge-precisie robotica. Echter, hoe sneller
een robot beweegt, des te groter deze ongewenste trillingen worden. Dit komt
voornamelijk doordat robots zich tijdens de beweging afzetten tegen het ba-
sisframe; het frame gaat vervolgens trillen en geeft deze ongewenste trilling
ook door aan de eindeffector, de vloer en eventuele precisie-instrumenten in
de omgeving. Grotere versnellingen resulteren in grotere variérende reactie-
krachten (schudkrachten) en reactiemomenten (schudmomenten) en dus in meer
trillingen. Dit betekend dat hoge precisie en hoge doorvoersnelheid conflicte-
rende ontwerpeisen zijn.

Door het robotmechanisme dynamisch te balanceren kunnen deze ongewenste
frametrillingen tegen worden gegaan om de combinatie van hoge snelheid en
hoge precisie mogelijk te maken. Bij een dynamisch gebalanceerd mechanisme
zijn de onderdelen zo ontworpen dat ze precies tegenovergestelde bewegingen
maken waardoor het frame geen schudkrachten en schudmomenten hoeft te
weerstaan. Dit kan door bijvoorbeeld door het mechanisme uit te breiden met
contragewichten en contraroterende elementen. Dit leidt echter ook tot com-
plexe, zware en economisch minder rendabele robots.

Gelukkig bestaan er ook enkele mechanismen met gesloten ketens die dy-
namisch gebalanceerd kunnen worden door een specifieke keuze van armleng-
tes en massaverdelingen zodat er geen extra contra-elementen nodig zijn. Het
blijkt echter lastig om deze effectieve balansoplossingen te vinden, zeker voor
ruimtelijk bewegende, parallelle mechanismen met meerdere vrijheidsgraden.
Momenteel bestaat er geen systematische, algemene en volledige balansaanpak,
waardoor de kinematische en dynamische vergelijkingen op een handmatige ma-
nier opgelost moeten worden. Daarnaast is het nog niet duidelijk welke typen
mechanismen zonder extra, zware en complexe contraroterende elementen geba-
lanceerd kunnen worden. Dit maakt dynamisch balanceren tot een tijdrovend
trial-and-error proces.

Dit proefschrift is gericht op een systematische methode om de dynamische
balansvergelijkingen op te stellen en op te lossen zodat er eenvoudig nieuwe en
efficiént gebalanceerde ontwerpen gevonden kunnen worden. Daartoe wordt in
dit proefschrift de schroeftheorie toegepast. De schroeftheorie is een wiskundig
raamwerk dat een systematische en beknopte beschrijving geeft van de diffe-
rentiéle kinematica en dynamica. Bovendien geeft het daarbij een geometrische
interpretatie van ruimtelijke bewegingen waardoor de gevonden oplossingen een-
voudig te visualiseren en te interpreteren zijn.

Dit resulteert in drie dynamische balansmethoden. De eerste, de momen-
tane dynamische balansmethode, lost de noodzakelijke balansvoorwaarden op

vii



viii Samenvatting

door middel van de geometrische beschrijving van de schroeftheorie. Deze ba-
lansoplossing geldt echter maar in één gekozen stand. In deze stand wekken de
versnellingen van de robot geen schudkrachten of schudmoment op. Voor andere
standen is de dynamische balans niet gegarandeerd. In combinatie met traject-
balans wordt deze specifieke stand het snijpunt van meerdere gebalanceerde
trajecten, zodat er een groter werkgebied op een gebalanceerde wijze bereikt
kan worden. Op basis van deze methode is er een proefopstelling ontwikkeld
met twee vrijheidsgraden, de Fuga I. Deze robot is dynamisch gebalanceerd voor
bewegingen over twee trajecten die elkaar haaks snijden in het midden van het
werkgebied. Metingen aan deze opstelling bevestigen zowel de trajectbalans als
de stand waarin de momentane dynamische balans geldt.

De hogere-orde dynamische balansmethode breidt deze dynamisch gebalan-
ceerde stand uit over het gehele werkgebied door een voldoende aantal hogere
partiéle afgeleiden van de balansvoorwaarden mee te nemen. Dit resulteert in de
noodzakelijk en voldoende balansvoorwaarden die bovendien lineair zijn in de
inertiéle parameters. Met behulp van nulruimte-algoritmen geeft dit alle moge-
lijke dynamische balansoplossingen voor een willekeurig, niet-singulier mecha-
nisme dat bestaat uit eenvoudige scharnieren. De resulterende ontwerpruimte,
de nulruimte, wordt gesplitst aan de hand van de seriéle kettingen waaruit het
mechanisme is opgebouwd. Vervolgens wordt deze ontwerpruimte weergegeven
met de veelpool-representatie zodat de oplossing eenvoudiger te interpreteren
is. Dit leidt tot een 3-RSR mechanisme dat dynamisch gebalanceerd is voor
bewegingen in drie spiegelsymmetrische vlakken.

De methode van een puur traagheidsmoment is gericht op de dynamische
balans van een specifieke klasse van mechanismen, de bewegingsvoortbrengers
van een symmetrische deelruimte. Spiegelsymmetrie blijkt de basis te zijn voor
twee prominente voorbeelden van dynamisch gebalanceerde mechanismen uit de
literatuur. Daarnaast blijkt dat de massaverdeling van de lichamen equivalent
is aan een puur traagheidsmoment. Op basis van deze twee observaties wordt
er een nieuw spiegelsymmetrisch mechanisme gepresenteerd dat dynamisch ge-
balanceerd is voor de twee vrijheidsgraden.

Deze drie dynamische balansmethoden bieden naast de oplossingswijze ook
een richting voor de zoektocht naar nieuwe kinematische structuren die geba-
lanceerd kunnen worden op een simpele en efficiénte wijze.
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CHAPTER 1

Introduction

Dynamic balance removes disruptive base vibrations of high-speed robots
by eliminating the dynamic reaction forces and moments. This design
principle aims to provide robots that combine a high throughput with
a high end-effector accuracy. This chapter discusses the need for dy-
namic balance and the possibilities and limitations of current dynamic
balance techniques, leading to the research objectives and the outline of
this thesis.

1.1 Dynamic balance and its potential for industrial
robots

High-speed robots have a problem: they induce large fluctuating reaction forces
and moments on their base and surroundings, exciting vibrations and noise, and
disrupting of neighbouring robot cells or precision equipment [67), 55}, [73], [108].
These shaking forces and shaking moments are caused by rapid acceleration
and deceleration of the load, links, motors and other components of the robot.
Large and heavy support structures, additional dampers and passive or active
vibration isolation are used to mitigate these vibration effects [39] [56].

Instead of dealing with the adverse effects, dynamic balance treats these
vibrations at the source by reducing or eliminating the shaking forces and mo-
ments through a specific design of the mechanism, for example by addition
of counter-mechanisms, mirrored mechanisms or by design of the mechanism’s
kinematics and mass distribution, i.e. the mass, centre of mass (COM) and
moments of inertia (MOIs) of the moving links [67, [68] [5] 4]. In a dynamically
balanced mechanism, all links counteract each other exactly, leading to station-
ary net interface forces and moments of the mechanism as whole. A mechanism
is force balanced when the shaking forces are zero, moment-balanced when the
shaking moments are zero, and dynamically balanced when both the shaking
forces and moments are zero . Note that in this definition the base
is assumed fixed, such that relative motion of mechanism with respect to the
base completely determines its dynamics.

Dynamic balance is of interest to high-speed robots for two reasons. Firstly, a
dynamically balanced robot induces no vibrations of the base and surroundings
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Fn a

(2) (b) (c)

Figure 1.1: @ A hinged lever arm induces a fluctuating reaction force fm, on the
base during motion, joint acceleration ¢ in this case. @ By addition of a countermass
force is balanced by fc and the common COM (depicted in grey) is made stationary.
The shaking moment may be cancelled by additional counter-rotating devices, such
a counter-rotating countermass [47].

since the loads on the base are stationary [68, 2] [5]. Therefore, dynamic balance
potentially increases the precision of the robot’s end-effector as well as the
sensors, and precision-mechanisms in the vicinity. Secondly, a dynamically
balanced robot is also highly dynamically decoupled [107]. This means that —
under the assumption of rigid body dynamics — the motion of the base will
induce no or reduced internal forces and moments on the robot. A dynamically
decoupled mechanism therefore moves with the base as if it were a rigid body,
allowing for a precise positioning with respect to the moving base. For example,
when a dynamically decoupled short stroke robot is placed on a high-speed
long stroke robot, the accelerations of the long stroke will induce no disrupting
forces and moments on the short stroke and vice versa, allowing for a fine end-
effector positioning [55]. This is in contrast to vibration isolation techniques,
such as active hard mount vibration isolation [94] [05], that maintain precision
with respect to the inertial frame of reference. Moreover, these techniques due
transmit shaking forces and moments depending on effective moving mass and
the bandwidth of the vibration isolation.

Besides the application in high-speed robotics, dynamic balance is also of
interest in other fields where vibrations are detrimental, such as telescopes [86],
space manipulation [I}, [63] and hand-held tools [I07]. It should furthermore be
noted that force balance leads to a fixed (or constant velocity of the) common
COM of the mechanism [46].This is for example to increase the load-bearing
capacity of slow-moving, heavy-duty robots [21], [37].

In the past, the dynamic balance principle has been applied to single de-
gree of freedom (DOF), constant-speed machines such as steam locomotives
(Fig. 1.2a)), internal combustion engines (Fig. 1.2b)), and industrial sewing ma-
chines [35]. Their cycle times could thereby be reduced without amplifying
the dynamic loads that would lead to wear and uncomfortable vibrations. Mo-
tor cycles engines, for example, consist of several countermasses and counter-
rotating balance shafts to balance the rectilinear, reciprocating motion of the
pistons, allowing for a comfortable ride at high speeds [110] (Fig. 1.2d). With
a similar trend in robotics [51} [82], i.e. a desired reduction of the cycle times
without the adverse effects of vibrations, it is urgent to extend dynamic balance
to these multi-DOF, spatially moving mechanisms with varying trajectories
while keeping the structures simple and low in weight.
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(c)

Figure 1.2: Balance masses I@l in the wheels of steam locomotives and l@l on the
crankshafts of combustion engines partly balance the reciprocal motion of the pistons
[110]. The first harmonic, inline component of shaking forces f, of the piston is
compensated by the inertial force f., induced by the rotational velocity g of the coun-
termasses. Other pistons and counter-rotating balance shafts, which are not shown
here, balance the remaining shaking forces and moments. ((a)| Photograph by Sean
Lamb, distributed under a CC-BY-AS 2.0 license. @ Yamaha YZF-R1 crossplane
crankshaft, accessed on 23 December 2019 www.yamaha-motor.eu)

1.2 State-of-the-art dynamic balance methods

The dynamic balance methods may be divided according to their respective
starting point, leading to two main categories. On the one hand, the analysis
methods start from given a kinematic design and search for mass distributions
that result in a dynamically balanced mechanism. The synthesis methods on the
other hand, initially leave the kinematic design open, but start with a set of ele-
mentary dynamically balanced modules or concepts that are stacked, combined
or modified, to come up with a dynamically balanced mechanism to fulfils the
desired motion requirements. The analysis methods are therefore used when
the kinematics are given and the mass distribution is open, while the synthesis
methods are applicable when both the kinematics and mass distribution are free
to choose. First, these two main categories are discussed, followed by several
intermediate methods and partial balancing methods, which do not fall in either
category.

Analysis methods for dynamic balance

The analysis methods for dynamic balance rely on satisfying force and moment
balance conditions for a given mechanism in order to find sets of dynamically
balanced mass distributions. Typically, these conditions prescribe a constant
linear and angular momentum of the complete mechanism [116], thus elimin-
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Figure 1.3: @ The dynamically balanced Hummingbird minipositioner was de-
veloped by IBM for high-speed, high-accuracy testing of chips [55]. Accelerations up
to 50 g were achieved within 3 micron positioning accuracy. @ Due to its hinged
parallelogram structure, only countermasses at the base links are needed for force bal-
ance, which in this case are formed by the moving parts of the actuators. Moment
balance was obtained by a reaction wheel placed on top of the mechanism, not shown
here. (Figures are adapted from [70]. Courtesy of International Business Machines
Corporation, (© 2005 International Business Machines Corporation)

ating their derivatives, the shaking forces and moments. In practice, when the
mechanism is initially at rest these conditions prescribe a zero linear and angu-
lar moment. Please note that the force balance conditions also imply a constant
common COM of the mechanism [67] or a constant velocity of that COM. A
mechanism’s mass distribution that satisfies both the force and moment balance
conditions is termed a dynamic balance solution, whereas the complete charac-
terization of all dynamically balanced mass distributions is said to constitute
the space of dynamical balanced designs; for simplicity called the dynamically
balanced design space.

Robots consisting of revolute joint in a serial chain can be force balanced
with relative ease by placing countermasses on each link. Starting from the
end-effector, the movement of the last joint is force balanced when the COM
of the last link is on this joint axis. For the second-to-last joint the aggregated
COM — the combined COM of the last two links — is on the joint axis.
When this is done for all joints in the chain, the mechanism is force balanced.
For increasing number of DOFs, the total amount of balancing mass quickly
escalates, resulting in a costly and unwieldy force balance solution. Moment
balance of serial linkages requires additional structures, such as counter-rotating
inertia wheels [14} 8, [47], cams [53] or duplicate mechanisms [67, 5] to generate
an opposing angular momentum, further increasing the complexity, cost and
required motor toques.

This ‘serial’ dynamic balancing solution also applies to parallel or closed loop
mechanisms, since they can be regarded as a connection of several serial chains
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(a) (b)

Figure 1.4: Dynamic balance of a planar 4R four-bar linkage is possible only for@
the kite type and@ anti-parallelogram type [75]. (Figures from [120])

[93], as formalized for the planar case in [I125]. Similarly, the required num-
ber of balancing mass and counter-rotating devices lead to the disadvantages
mentioned before [59] [104].

Fortunately, parallel mechanisms exhibit a larger dynamically balanced design
space, due to the additional kinematic relations between the moving links, and
thus require fewer balancing masses, as well as fewer counter-rotating devices
(e.g. and [73]). Some parallel mechanisms can, under specific con-
ditions, even be dynamically balanced without additional structures [19] such
as the 4R four-bar linkages of the kite and anti-parallelogram type. Ricard
and Gosselin obtained this result in 2000 by starting from a known force bal-
ance solution [15], 86]. With this, they wrote the moment balance conditions in
redundant coordinates. Consecutively, the dependent coordinates were elimin-
ated by judicious incorporation of the kinematic loop-closure constraints and
trigonometric identities, leading to the essential dynamic balance conditions.
The pose-dependent parts in these rather lengthy expressions could be elimin-
ated, resulting in a range of dynamically balanced masses, COMs, and MOIs
. Later it was proved that indeed only these two kinematic types of
the four-bar linkage can be dynamically balanced without resorting to counter-
rotating mechanisms [75].

The dynamic balance solution of the four-bar linkage shows that dynamic
balance enforces specific kinematics, i.e. geometry and modes of assembly, on
top of a specific mass distribution. These specific kinematic conditions that en-
able dynamic balance are termed the essential kinematic conditions. Further-
more, this case shows that it may be difficult to obtain the complete dynam-
ically balanced design space for parallel linkages — even for relatively simple
kinematic structures — as it invokes the loop-closure constraints to eliminate
the dependent coordinates.

To deal with the kinematic complexity of parallel mechanisms, several sys-
tematic analysis methods were developed. The force balance of single-DOF
planar linkages is facilitated by the ‘linearly independent vector method’ of
Berkoff and Lowen [15]. This method systematically eliminates one dependent
joint coordinate per kinematic loop from the force balance equations, simpli-
fying the conditions significantly. Based on this, the ‘complex mass method’
and extensions have been presented that incorporates the loop-closure con-
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straints implicitly, directly yielding the general force balance solution for planar
[10, 114) [124] and spatial linkages [57} 23] [60].

These methods indeed result in the complete force-balanced design space for
most mechanisms. However, in some special kinematic cases — such as the
parallelogram type four-bar linkage — these methods are too strict, leading to
a spurious set of force balance conditions and consequently to only a subset
of the design space [43] [42]. This is because a specific relation exists between
the link motions, in the parallelogram case an equal angular velocity of the
crank and the rocker, which would permit a larger design space. With an
incomplete kinematic model these special relations are not taken into account,
and restricting the solution. Moreover, these methods are intrinsically limited
to force balance as they start from a constant common COM condition.

Alternatively, Moore, Gosselin, and Schicho [75] used toric geometry and
factorization of Laurent polynomials for the dynamic balance of planar 4R four-
bar linkages. This generalization of [86] led to a system of symbolic polynomial
equations which, through the use of polynomial division [44], resulted in the
aforementioned balanceablity proof. Later, the algebraic method was extended
to the force balance of the spatial 4R Bennett linkage [75] and the dynamic
balance of the spherical 4R four-bar linkage [76]. It was shown that the latter
cannot be dynamically balanced without additional counter-rotating devices.
Although these algebraic methods seem generally applicable, they still need
to be tailored to the kinematics at hand, and an extension to more complex
multi-DOF mechanisms has not been reported yet. Furthermore, the algebraic
nature of the balancing procedure limits the development of intuition, which is
desired from the designer’s point of view.

Synthesis methods for dynamic balance

The synthesis methods start from a set of dynamically balanced modules or
concepts, which are combined, modified and stacked into dynamically balanced
mechanisms. This is advantageous since dynamic balance can be considered
directly at the beginning of the design process. Then, when the kinematics
are still open, dynamic balance may be achieved with relative ease, whereas at
a later stage it may be obtained only by additing of countermasses, counter-
mechanisms or counter-rotating devices [97].

Ricard et al. used the dynamically balanced four-bar linkage as a module
to create a 3-DOF planar parallel mechanism [86]. Six of these four-bars were
stacked and modified to form three dynamically balanced arms connected at a
platform. For the extension to spatial moving linkages, Wu et al. required two
four-bars per dynamically balanced module [120]. This resulted in a 3-DOF and
a 6-DOF dynamically balanced spatial mechanism, consisting of respectively 4
and 12 four-bar linkages. The large number of links and countermasses seem
impractical and lead to an unfavourable mass-to-payload ratio [104].

Based on Fisher’s ‘principal vector method’ for the study of the dynamics
of the human gait [40], Van der Wijk et al. derived a method to constrain
the motion of a set of bodies such that the common COM remains stationary
[I07]. This method provides a range of linkages, typically modified pantographs
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Figure 1.5: The synthesis of multi-DOF dynamically balanced principal vector link-
ages. @ The mirror symmetric dynamically balanced 2-DOF gripper (from [107] ).
@ The 3-DOF DUAL-V, which is dynamically balanced along its symmetry axes

(from [109]).

that trace the common COM location of a given initial (principal) set of linked
bodies. By adding this linkage, the common COM becomes a physical point on
the mechanism. Then, by fixing this point to the base, all remaining DOF of the
mechanism will be force balanced. This method has subsequently been extended
by treating not only bodies but also sub-linkages such as dyads [98] and triads
[99] as mass equivalent [100], through relying on a graphical interpretation of
the complex mass method [124]. As these synthesis methods solely enforce
the essential kinematic requirements for force balance, i.e. a common COM, in
principle all force-balanced mechanisms can be found. Indeed, a range of planar
and spatial, multi-DOF, force-balanced mechanisms was synthesized through
this method [100, 101].

These force-balanced principal vector linkages may also be dynamically bal-
anced, for instance by means of an additional counter-rotating device [109],
mirror symmetry [107] or reduction of the DOF [96]. Mirror symmetry resul-
ted in a 2-DOF dynamically balanced gripper (Fig. 1.5a) and a planar 3-DOF,
overactuated robot, the DUAL-V (Fig. 1.5b)), which is dynamically balanced
for motion along two perpendicular paths [109].

Yet, as shown in [96], not all results from the dynamic balance literature
could be replicated using this principle. Furthermore, there is a fundamental
difference between force balance and moment balance that hinders the general-
ization of this method to dynamic balance. In other words, the moment balance
conditions are nonintegrable or nonholonomic conditions [80]. That means that
the general moment balance condition are a function of pose and velocity and
cannot be formulated as a set of admissible positions and orientations of bodies
alone. Therefore, it is not readily clear which kinematic structure should be
added to exactly enforce dynamic balance for an arbitrary set of bodies.

Other methods

Several intermediate methods can be found in literature that rely on a combin-
ation of synthesis and analysis methods. For example, the designer may start
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from a kinematic structure for which dynamic balance is obtained by adding
balancing linkages such as dyads [7] or counter-mechanisms [64) [63], or by repla-
cing linkages by counter-mechanisms such as four-bars [45] [17] and crank-sliders
[19] [I7], or by using duplicate and mirrored mechanisms [59] [108§].

Furthermore, several partial dynamic balance methods exist that use a re-
duced set of dynamic balance conditions to enable a larger design space and po-
tentially more practical designs. Examples include frequency balancing, which
eliminates only the first few harmonic loads [I10], path balancing, which re-
stricts the mechanism’s motion to reactionless paths [84} 126}, [T, 18], and optimal
dynamic balancing [92] [36, 111} 25], which optimizes motor torques, bearing
loads, or other requirements in conjunction with the shaking forces and mo-
ments.

Although these topics are outside the scope of this thesis, it may be expected
that new insights from the synthesis or analysis methods will further these
balancing methods as well.

1.3 Research objectives and approach

Dynamic balance through synthesis seems preferable to the analysis methods
as it allows the mechanism designer to consider dynamic balance directly at the
beginning of the design process when most of the kinematics and dynamics are
not determined yet. This enables a larger design freedom and potentially more
effective balance solutions. However, the state-of-the-art synthesis methods
[86],120] that rely on recombination of dynamically balanced modules have only
a few of these modules at disposal. The principal vector method [97] on the
other hand has shown to be a versatile method for synthesizing force-balanced
mechanisms. Yet, the method itself cannot be readily extended to dynamic
balance since it is not fully known what kinematic conditions a mechanism
should enforce for additional moment balance.

To ultimately derive a comprehensive synthesis method, more insight is
needed to fully understand the relation between the kinematic design and the
dynamic balance conditions. However, the current analysis methods are either
incomplete, limited to force balance, hindered by the kinematic and symbolic
complexity, or provide limited intuition or interpretation, which seem essential
to derive new synthesis methods.

This thesis therefore aims to strengthen the mathematical basis of dynamic
balance and provide insight into the essential kinematic conditions of both
planar and spatial linkages. Two research objectives are formulated:

1. To develop a holistic analysis method that provides all dynamically bal-
anced mass distributions for any planar or spatial parallel linkage with
single or multi-DOF.

2. To understand the underlying principles needed to achieve dynamic bal-
ance through mass distribution design.

This envisioned analysis method (Objective 1) should deal with the intrinsic
kinematic and algebraic complexity associated with the loop closure without in-
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tervention of the user. Additionally it should uniformly treat force and moment
balance of planar and spatial linkages, and provide an intuitive description of
the resulting solution space. Furthermore, since not all dynamically balanced
solutions can be built as they might require negative masses or MOI, a check
is needed to ensure the feasibility of the solution. Such a method would enable
a systematic investigation (Objective 2) into the mechanisms that can be dy-
namically balanced by design of the mass distribution, i.e. without additional
counter-devices, and as such, provide a basis for novel synthesis methods.

In search of this holistic, intrinsically spatial dynamic balance method that
is applicable to arbitrary multi-DOF mechanism, screw theory [I1] is applied
throughout this thesis. Screw theory is a mathematical formulation for rigid
body kinematics and dynamics. It treats the linear and angular velocity as a
single 6-vector, termed twist. Likewise, the force and moment are unified as
a wrench. This leads to a concise and frame-invariant description of spatially
moving mechanisms. Furthermore, these 6-vectors are interpreted geometrically
as lines in space. For example, a twist is equivalent to an infinitesimal rotation
around a line in space and a translation along this line. A similar interpretation
exist for wrenches, which can be represented as a force along a line and torque
around this line, enabling a graphical representation of the dynamic balance
conditions. Additionally, the derivatives of both the twists and the wrenches
can be found in a concise and structured manner. This is used to find necessary
and sufficient balance conditions that do not require a closed-form solution of
the loop-closure constraint equations.

1.4 Contributions and thesis outline

This thesis is organized as follows: in the screw theory basis and
notations as used in this thesis are presented in conjunction with an explora-
tion of two fundamental differences between force and moment balance. Firstly,
it is confirmed that moment balance is a nonholonomic condition. This poses
challenges for synthesis methods, as indicated above, but also enables a wider
choice of dynamically balanced paths than expected from the number of DOF's
and number of dynamic balance conditions. Secondly, unlike what is assumed
in literature, it is shown that, due to its definition, dynamic balance is a ne-
cessary but not a sufficient condition for dynamic decoupling. This means that
a dynamically balanced robot placed on top of a rotating base, e.g. a satel-
lite, vehicle or another robot, may still experience dynamic effects due to the
motion of the base, potentially degrading its performance. This also indicates
that dynamically balanced modules cannot always be simple stacked to form
larger structures. This chapter therewith underlines two challenges faced by
the synthesis approaches. This underpins the need for a uniform mathematical
basis in order to advance the dynamic balance of higher DOF and spatially
moving mechanisms.

[Chapter Jexplores the geometric interpretation of the dynamic balance con-
ditions as furnished by screw theory. Dynamic balance is represented by a set
of spatial vectors whose sum is zero. This results in a zero-order, instantaneous
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dynamic balance method for planar and spatial, multi-DOF mechanisms (Ob-
jective 1). This results in a specific pose in which the robot accelerations will
not generate any shaking forces and moments. Further away from this pose,
the robot’s balance quality worsens. In combination with path balance this
method yields a pose in which multiple dynamically balanced paths intersect.
This might prove useful in pick-and-place applications where a part is to be
placed very precisely at a single location while precision is of less important for
the rest the workspace. The robot can then start from an arbitrary location
and follow these reactionless paths in the approach of the placement point, res-
ulting in less vibration when desired. The method is applied to a 2-DOF 5R
five-bar linkage, yielding an experimental demonstrator with force balance over
the complete workspace and moment balance along two perpendicular paths
that intersect in the middle of the workspace, the instantaneously dynamically
balanced pose. Measurements confirm the force balance of the mechanism and
the existence of an instantaneously dynamically balanced pose.

In and [ this instantaneous dynamic balance method is exten-
ded to the complete workspace, by using he higher-order derivatives of kin-
ematics, dynamics and of the dynamic balance conditions. This results in a
higher-order dynamic balance method that yields the design space of dynam-
ically balanced inertial parameters for any given linkage (Objective 1). It is
conjectured that with sufficient derivatives this comprise the complete design
space of non-singular mechanisms. This balancing method depends on and
is preceded by a screw theory based algorithm for higher-order derivatives of
the solution to the loop-closure constraint equations, as presented
In this higher-order kinematic approach is extended to rigid body
dynamics, leading to the formulation of a generic dynamic balance method. Al-
though serial mechanisms — and most parallel mechanisms — do not possess
a feasible design space, i.e. demanding negative masses or negative MOlIs, the
complete description of the design space enables the selection of the favourable
(minimal) number of counter-rotating devices. Moreover, this chapter confirms
that special geometries exhibit a larger and even feasible design space (Object-
ive 2). The method is illustrated by three examples, a 6-DOF serial robot, a
planar 4R four-bar linkage, and a 3-DOF, spatially moving 3-RSR mechan-
isms. This last example shows a novel design which is dynamically balanced
over three intersecting planes of motion. This allows for 2-DOF dynamically
balanced motion on these planes of symmetry and a local 3-DOF motion on
the intersection line.

The choice of kinematics, i.e. the topology and dimensions, completely de-
termines whether a mechanism can be dynamically balanced by design of the
mass distribution (Objective 2).The previous two balancing methods compute
the design space for a given mechanism, yet yield little clues on the kinemat-
ics are favourable for dynamic balance. therefore investigates these
essential kinematic conditions. More specifically, it is shown that several dy-
namically balanced planar mechanisms from literature share kinematic mirror
symmetry and a mass distribution that can be represented by a single pure
moment of inertia per link. Based on these insights, a pure-inertia method to
dynamically balance symmetric, planar mechanisms is presented, resulting in
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a 2-DOF planar mechanism that is dynamically balanced over its entire work-

space.
This thesis closes with an overarching discussion (Chapter 7) and conclusion

(Chapter 3).

Thesis note: [Chapter 3|[f] present the main contributions of this thesis. These
chapters are reprints of published or submitted papers with minor adjustments.
Due to this format, the introductions of the chapters may present some over-
lap whereas the chapter itself is not specifically framed within the flow of this
thesis. Therefore, each of these chapters is accompanied with a footnote that
describes the place and function of each chapter in the overall story of the
thesis. The next chapter , not in paper form, serves as an intro-
duction to the bulk of the mathematics and notation that are used throughout
this thesis. The discussion section highlights the connections and
differences between the chapters to ensure the coherency of the thesis. In the
appendix, supplementary information on the higher-order partial derivatives
is found, which is used in and ] A combined bibliography and

nomenclature is found at the end of the thesis.







CHAPTER 2

Fundamental concepts

Three fundamental concepts are treated to form the starting point of
this thesis: 1) A screw theory based formulation of rigid body dynamics
is used to obtain a tractable and concise description of dynamic balance.
2) Moment balance is, as opposed to the force balance, a path dependent
or nonholonomic condition, meaning that this condition cannot be for-
mulated in terms of pose alone. This fundamental difference, on the one
hand, hinders the extension of current force balance methods to moment
balance, but on the other hand also offers a wider choice of dynamically
balanced paths. 3) Dynamic decoupling does not automatically hold for
dynamic balance, as is suggested in literature. A mechanism is dynam-
ically decoupled when the relative pose of mechanism is not affected by
the motion of the base. Such a mechanism can therefore be treated as a
virtual rigid body. These dynamically decoupled mechanisms form the
basis of several synthesis methods as they can be stacked and combined
to form larger DOF dynamically balanced mechanisms. Force balanced
mechanisms are decoupled as the translations of the base do not influ-
ence the internal dynamics of the mechanism. Therefore no additional
motor effort is required to maintain a relative position to a translating
base. The same is not necessarily true for the rotational domain. Here it
is shown that, beside dynamic balance, also a constant total moment of
inertia is needed. These two fundamental differences between force and
moment balance are derived formally and illustrated by simulations.

2.1 Introduction

The dynamics of rigid body systems is sometimes counter-intuitive. Especially
in the rotational domain, unexpected effects may arise. Classical examples are
the spinning top [119], the gyroscopic precession of a bicycle wheel [65] and the
free-falling cat [54]. The latter example is of particular interest in the current
context as a cat falling from a tree is by definition moment balanced. How
is it possible that, although it experiences no external moment, it is still able
to reorient itself in flight and land on its feet without violating the
law of conservation of angular momentum? If the cat were to be considered

13
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as a single rigid body, it would certainly violate this law. If it simply counter-
rotated its front part with respect to its back part, the cat might land on its
feet, but it would end up with a twisted spine. Instead, the cat consecutively
flexes and bends its spine to generate a net angular velocity [54]. Swapping this
sequence leads to net rotation in another direction (Fig. 2.1b: . This means that
conservation of angular momentum dictates a condition depending on both the
orientation and the angular velocity of the cat and not on the orientation alone.
The cat can also reach any orientation depending on the sequence in which
it bends and flexes the spine. The conservation of angular momentum and
hence moment balance are therefore a nonintegrable, nonholonomic conditions
[80]. That means that in general, these conditions cannot be integrated to be
solely dependent on pose, they will also be depending on velocity. In contrast,
force balance is a holonomic condition. This means that it can be alsways be
formulated in terms pose alone, i.e on the location of COMs of the bodies. For
that cat this means that it will hit the ground regardless of its internal motion.

As indicated in the previous chapter, the nonholonomicity of the moment
balance condition challenges the extension of force balance techniques — e.g.
the complex mass method [10], or the method of principal vectors [107] —
to moment balance. Since force balance is a holonomic condition, it can be
enforced by a condition on pose, namely by making the total centre of mass
stationary. Based on this property, force balance can be intuitively achieved
by adding a linkage to a set of bodies, typically pantograph-like structure, such
that this added linkage physically traces the total COM location. The total
COM, which is now a point of the linkages, is fixed in such away that the
remaining motion of the system is force-balanced. This enables a synthesis
method that, on outset, should yield all possible force-balanced linkages as it
constrains only the essential kinematic conditions for force balance.

Now, for the generalization of this synthesis method to dynamic balance, a
description is needed of the poses (i.e. positions and orientations) to which an
arbitrary set of bodies can move to without inducing shaking forces and mo-
ments. If these bodies then were to be constrained to these poses by a suitable
linkage, the whole system would be dynamically balanced. Since this is not
possible on the pose level alone, alternative measures are needed to derive a
comprehensive synthesis method. Fortunately, as the falling cat problem shows,
moment balance may also permit unexpected motion. In this chapter, this non-
holonomic behaviour of dynamically balanced mechanisms is investigated and
illustrated by an example.

Another fundamental difference between force and moment balance is their
relation with dynamic decoupling. A mechanism is dynamically decoupleﬂ 1)
when the motion of the mechanism does not induce forces and moments on a
moving base, and 2) when the movement of the base does not require additional
actuator forces or torques to execute an internal motion of the mechanism [97].

1Note the difference with another use of the term dynamic decoupling, which is the internal
decoupling of the DOFs of the mechanisms from each other. In such mechanisms, the
movement of a single DOF does not require actuation effort in other DOF's [3], potentially
simplifying the control laws by minimizing cross talk.
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Figure 2.1: @A falling cat reorients itself in midflight by consecutive forward flexion
of the spine, then sideways bending, backward flexion and bending to the other side
54]. @ Kane et al. [64] modelled the front and the back part of the cat as two rolling
cylinders with angular velocities of w; and wg respectively. The angular momentum,
respectively &, and &, induced by the internal rolling of the bodies, respectively wg
and wy, induces an opposite momentum &. and a counter-rotation w. of the cat as a
whole. @ Photograph taken form [54])

Such mechanisms are important for dynamic balance as they behave as a single
rigid body. Therefore, they are used as modules which can be recombined and
stacked, as done by Ricard et al. [86] and Wu et al. [120]. These systems may
also be used in space robotics. For example, by dynamically decoupling the
motion of the robot arm from the moving base (e.g. space ship, satellite), the
manipulation of the arm does not require corrective controls of the base [126].

Some literature suggests that dynamic balance will result in dynamic de-
coupling. For instance, in [97] p. 3] dynamic decoupling and its relation to
dynamic balance is introduced as follows: “Because a dynamically balanced
mechanism is dynamically decoupled from its base, dynamic behaviour of the
base does not affect the relative motion of the mechanism. When the base is
accelerated linearly or rotationally, e.g. by another device or due to external
vibrations, a dynamically balanced mechanism behaves as a single rigid body
with the base”. Others imply that dynamic balance will result in constant
total moment of inertia [86] [120], or that dynamically balanced mechanisms
will conserve the momentum of a moving base [120 [63], and therefore behave
as if dynamically decoupled. Yet no evidence is given to support these state-
ments. In this chapter it will be shown that dynamic balance is a necessary but
not sufficient condition for dynamic decoupling.

A rigorous description of rigid body dynamics is essential to describe these
effects and to extend the current dynamic balance methods. A naive descrip-
tion of rigid body dynamics of spatially moving mechanisms quickly becomes
unwieldy for mechanisms with a large number of bodies. The reference frames
associated to each body, their kinematic transformations and the derivatives of
these transformations all have to be systematically taken into account, poten-
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tially leading to complicated sets of equations, and complicating the develop-
ment of analytic dynamic balance methods.

In this thesis, the screw theory formulation is adopted. Screw theory is a
systematic approach to describe spatial motion of rigid bodies and mechanisms
[I1]. It enables the use of mathematical tools such as the Lie bracket for ri-
gid body motion [90, [O1], resulting in a concise, frame-invariant description.
Moreover, screw theory provides a geometrical interpretation of the linear and
angular velocities and of the forces and moments acting on such systems. These
properties are used in this chapter and throughout this thesis to obtain a better
understanding of dynamic balance.

This chapter introduces screw theory and discusses the two fundamental dif-
ferences between force and moment balance. More specifically, it shows that
the nonholonomicity of the moment balance condition precludes a straightfor-
ward extension of forces balance synthesis methods, but also that it enables
more motion possibilities than perhaps expected. Additionally, it shows that
dynamic balance does not automatically lead to the dynamic decoupling of the
mechanism from the base, i.e. the mechanism will still feel some of the motion
of the base. This chapter aims to familiarize the reader with the concepts used
in this thesis and sharpen the understanding of dynamic balance in the process.
Governing equations are presented alongside examples and simulations.

This chapter is organized as follows: first a screw theory description of rigid
body dynamics is introduced , then the dynamic balance conditions
are presented and integrated to show the nonholonomic behaviour of moment
balance (Section 2.3)), and finally the effect of dynamic balance on dynamic

decoupling is investigated (Section 2.4J).

2.2 Mathematical framework: screw theory

The description of dynamic balance of a collection of linked rigid bodies may
rely on a mix of relative and absolute velocities. For instance, the dynamic
balance conditions, i.e. zero shaking forces and moments are dependent on
the absolute velocities and accelerations of bodies, whereas the possible motion
of the mechanism is described by a minimal set of local coordinates, i.e. joint
rates. In order to express the balance conditions in minimal coordinates several
transformations are required. In screw theory these transformations may be
described in a concise frame-invariant manner.

Here, a short overview is given to familiarize the reader with the screw theory
and the notation used in this thesis. Starting from a conventional description of
rigid body motion, the kinematics and dynamics in a screw theory context are
revisited. This section is by no means a complete description of screw theory.
It highlights only a few features of screw theory that will be used later on in
this thesis. For a complete introduction into screw theory, proofs and details,
consult the seminal books of R. Murray, Z. Li and S. Sastry [80] and of R.
Featherstone [38].
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Figure 2.2: The velocity of all points a on a rigid body are determined by the velocity
o of a reference point o and the angular velocity w. The inertial frame is denoted by

0.

Rigid body motion

The velocities a of the particles that form a rigid body can be expressed by the
angular velocity w of the rigid body and velocity o of a reference point o on
that body, according to

a=0+wx (a—o0) (2.1)

in here the vectors a and o, pointing respectively from the origin of the reference
frame to the particle and from the origin to the point of reference A

Now consider two bodies, hinged at r, moving relative to each other and
relative to the frame of reference . In this case, body 2 is rotating
with an angular velocity of w3, relative to body 1. The velocity of point o3
relative to the reference point on body 1 is 63. The absolute angular velocity of
body 1 is w?. The velocity of point o1 is 01. It should be mentioned that the
subscripts denote the reference frames or the bodies that twist belongs to. The
superscripts denote the frame or body to which the twist is relative. Later on,
a second superscript will be introduced to denote the frame of expression. If
the situation permits, the subscripts and superscripts are dropped for the sake
of convenience. For the computation of the absolute angular body 2 we may
sum angular velocities directly

wy = wi 4+ wi (2.2)
For computation of absolute velocity o2, the rotation of the reference point o2
due to wi has to be taken into account (Eq. 2.1)), yielding

09 = 05 + 6] + wi x (03 — oY) (2.3)
If reference points oY and o9 are chosen arbitrarily, the velocities cannot be
summed directly since the angular velocity of the body 1 has to be taken into
account. In the opposite case, when the reference points are chosen instant-
aneously coincident 0o} = 03, the computation of the sum of instantaneous
velocities simplify to

63 =6 + o5 (2.4)
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Figure 2.3: The summation of relative and absolute velocities in articulated bodies.

Consequently, the instantaneous velocities form a system of linear equations,
just as the angular velocities . These new velocities belong to the vir-
tual particles, although attached to different bodies, which instantaneously pass
through the same point of reference. During finite motion different particles
may be identified with this velocity. Typically, this point is chosen as origin of
the reference frame. In screw theory, the two 3-vectors of the linear and angular
velocity are unified in a single 6-vector t, termed twist. Now the instantaneous

motion of body 2 reads
0 0 1
Wa |  |wWi (5]
) - (o] 5] 9

In the remainder, the velocities 0, are the velocities of the frame of reference
and simply referred to as the linear velocity v; of body i.

A similar treatment holds for the forces and moments acting on a body.
Conventionally, the forces f and moments 7T are expressed with respect to one
application point per body. Now in order sum multiple forces and moments
acting on a system, they first have to be transferred to the same point. In screw
theory, the same point of reference is used for all bodies, unifying the treatment
of forces and moments. This leads to a single 6-vector termed wrench w. Both
types of 6-vectors are termed screws.

Now, the power P generated by a twist and a wrench is simply their product,
since they have the same application point, i.e. the origin of reference frame

P=flo+r w=w't (2.6)

The expression of different velocities and torques around a single point of
reference is an important distinctive feature of screw theory that enables a
uniform treatment of the translational and rotational domain.

Twists and wrenches

Another feature of screw theory is the geometrical interpretation of these 6-
vectors or screws. Mozzi-Chasles’ theorem states that the twist of the body
can be decomposed into an angular velocity around a line in space and a linear



2.2. Mathematical framework: screw theory 19

Figure 2.4: The linear and angular velocity of body form a helical velocity field
for all particles @ of a body. This twist ¢ is denoted with a double arrow, with
a helix representing the twist pitch A\;. The velocityv is the velocity of the points
instantaneously passing through the origin of reference .

velocity along this line . This screw-like interpretation of motion gives
screw theory its name. This follows from the fact that the linear velocity of
a body v can be decomposed into a part which is co-linear with the angular
velocity, in the form of A\:w, and a part which is perpendicular to the angular
velocity, in the form of w X r:. The scalar A\; and vector r; are computed via

w X v wTv

Ty = — + 5tw, )\t = 4T (27)
[[wl? lwll
in which d; can be chosen freely. The \; is interpreted as the amount of trans-
lation per rotation, known as pitch. The point r; can be any point on the twist
axis. Finally the twist of any rigid body may be written as

el e

In this interpretation two special cases exist: 1) Where the body is purely
rotating the angular velocity is orthogonal to the linear velocity, so the pitch
is zero (A¢ = 0). 2) Where the body is in pure translation its rotation axis lies
at infinity and the pitch becomes infinite (A\; = 0o). This corresponds with the
notion that all points of a purely translating body have the same velocity. For
the two cases the twist is given as

to = Lt‘;’ w] , too = m (2.9)

For the wrench w a similar spatial interpretation exists. The Poinsot’s
theorem states that any combination of forces f and moments 7 acting on a
body can be represented by a single force on a line passing through a point 7.,
and a pure torque around that line, the pitch A,

Gl e
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Similarly to the linear velocity, this torque 7 is specified as the torque around
the origin of the reference frame. Here, the wrench axis location and pitch are
given by

fxT fir
Tw = +5w.fﬂ Aw = (211)
I£12 17117
where §,, indicates the free coordinate along the wrench axis. Zero and infinity
pitch screws exist for the wrenches as well. The former is a pure force through
7w and the latter is a pure moment. This corresponds to the notion that a pure
couple has no point of application. The two special cases are given as

wo = [““fx f} , too = m . (2.12)

It should be noted that the two types of screws differ in the sense that for
the twist the angular part w determines the screw axis direction, while for the
wrench the linear part f determines the direction of the screw axis.

Mechanisms and Jacobians

The application of these two features, the uniform treatment of the translation
and rotation domain and the geometric interpretation of the twist and wrench
are now used for the velocity analysis of serial and parallel mechanisms.

Mechanisms are formed by a number of bodies connected through a set of
joints, typically revolute (R), prismatic (P) or helical (H) joints. In serial
chains the global twist of each body is determined by the joint velocities of the
joints lower in the chain, i.e. between the body and the base . If
a single joint is actuated, all bodies higher in the chain experience the same
twist. If multiple joints are actuated, the contribution of each joint is added
since the linear and angular velocities are additive when expressed in the same
frame of reference. The relative twist generated by actuation of each joint is
termed instantaneous screw axis (ISA). These ISAs are denoted by s; and are
numbered from 1 to n, in which n is the most distal joint. For any body i, the
ISAs lower in the chain completely determine the possible motion of that body,
and therefore form its twist basis. This twist basis, or Jacobian — relating the
joint velocities g to the twist of that body — is therefore found by stacking all
preceding twist axes

ti=Y sig;=[s1 - s 0]¢g=Jq (2.13)

j=1
The geometrical interpretation of the previous section (Eq. 2.8|) directly gives
the ISAs, based on the joint type, axis and location. For example, the end-

effector Jacobian of a 6-DOF industrial robot (Fig. 2.5) consisting solely of
revolute joints is directly written as

Jee=[s51 - s6], si:[ i } (2.14)
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Figure 2.5: The end-effector twist tsee of an industrial 6-axis robot is formed by a
linear combination of the instantaneous screw axis of each joint (s;, for ¢ = [1...6]),
passing through the shoulder rs, elbow 7, and wrist 7y, expressed in the inertial
frame of reference ¢. (Figure adapted from Adept: Viper Six-Axis Robot (s1300
Series), accessed on 23 December 2019, www.e-motionsupply . com)

in which n; is the unit vector of the joint axis and 7; the joint location, all
expressed in the inertial frame of reference (See [Fig. 2.5)):

re  fori=1[1,2]
ri =<7, fori=][3] (2.15)
rw fori=[4,5,6]

For parallel mechanism, the twist basis of a may be deducted by regarding it
as a set of connected serial chains. The twist of such closed loops can therefore
be analyzed by cutting one body per loop, leaving multiple pairs of serial chains
of which the end links must have equal twists. For example, a single loop system
is opened by cutting a single body, inducing two virtual bodies, a and b, of which
the twists must be equal

to = ty, Jodq = Jud (2.16)

By selecting the proper amount of dependent u and independent d coordin-
ates with respect to the number of constraints, this system is solvable for the
dependent joint velocities.

g=Cu (2.17)

in which C is referred to as the loop-closure Jacobian. The body twists may
now be obtained by

t; = JiCu (2.18)

It should be noted that the columns of the J;C-matrix are again geometric
entities, termed unit twist is Chapter 3. Such a t;; is the twist of body i as
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Figure 2.6: To each body a reference frame 1) is associated to express points, twists,
wrenches, etc. A coordinate transformation, denoted by H f changes the reference
frame of expression.

a consequence of unit velocity of DOF j. Please note the distinction between
t;.; and s, the former is dependent on the choice of independent coordinates
whereas s are associated to physical entities, that are joint type, location and

orientation.

Transformations and derivatives

Up to now all screws were expressed in (or seen by) an inertial reference frame.
Sometimes, especially in differential kinematics, it is convenient to express
twists in a local, body-fixed reference frame. For example, ISA s; is rigidly
attached to the two connecting bodies i and i 4+ 1. This means that this ISA is
constant when expressed in the local frames of these bodies, potentially leading
to simpler equations. To encode this finite coordinate transformation, a refer-
ence frame v; is attached to each body i . A rotation matrix R and
translation vector o encode the relative rotation and translation between these
frames, such that point a changes its frame of expression from frame i to frame
j according to

a’ = Rla' + 0! (2.19)

The subscripts and superscripts denote the respective frames of reference. This
successive rotation and translation is combined in a single operation through a
transformation matrix H

=7 _ a’ _ ppigi _|R o
a —[1]—Hia, H—{O 1] (2.20)

The a denotes that the a vector is appended with a 1 to account for the
translation. This notation is dropped when it is unambiguous. The matrix
inverse yields the inverse transformation, i.e. form frame j to ¢

(H))™' = Hj (2.21)

This transformation matrix encodes the relative pose between two frames.
It is therefore not surprising that the derivative of the transformation matrix
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may be expressed through the relative twist of these frames

. YY) o .
HI = [131 ‘B] = [t79 x| H, [tx] = {[“’OX] g} (2.22)
The [wx} denotes the 3 x 3 skew symmetric matrix of the angular velocity
vector. With a slight abuse of notation the 4 x 4 twist matrix also has the same
symbol. Here a second superscript is used to denote the frame of expression
of the twist. In this notation a twist tf’j of body i is with respect to body j
and expressed in frame k. For convenience the subscript and superscripts are
omitted when unambiguous. For example, the ISA sf’i_l of joint 4 is always

with respect to the lower body i—1, such that this second superscript is dropped
£5171 = 85, (2.23)

When the twist is constant has a uniform solution for the finite motion
of a body

HY (t) = exp([t}7 x]t) HI (0) (2.24)

in which H?(0) and H?(t) are transformation matrices at the initial and final
time respectively. The exp(A) denotes the matrix exponential of A. This
expression gives rise to an elegant formulation of the forward kinematics of
serial chains [20]

H)(t)=HH, -...-H; ' = Hexp([s?x]qi)Hg(O) (2.25)

7

Additionally, the twists are expressed in another frame by the adjoint trans-
formation matrix Ad(H) of H
t0° = Ad(HI)t.", Ad(H) = [[ R 0}

ox|R R (2.26)

in which the e denotes frame numbers which are not altered by the transforma-
tion. The time derivative of this adjoint transformation is formed by an adjoint
twist matrix, denoted by ad(t), as follows from the inclusion of [Eq. 2.22| in

[Eq. 2.26]
da

dt(Ad(Hf)):ad(t{’j)Ad(Hf), ad(t) = [[“’X] o ] (2.27)

[ox]  [wx]
This adjoint twist matrix dictates how a twist changes under the influence of
another twist. For example, the ISA higher in a serial chain change under
actuation of the lower chain according to

9 ;o0 0 9 i1 i 0y 0 S
In this derivation the chain of [Eq. 2.25]is decomposed into constant and vary-
ing part. By inclusion of [Eq. 2.27] and [Eq. 2.26] these partial derivatives are
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expressed in the inertial frame. This operation — also termed the adjoint
representation of the Lie bracketEI — enables the concise description of the
derivatives of kinematics and dynamics as used in Chapter 4 and 5.

A wrench changes its expression through the transposed inverse of the joint
transformation matrix, since the power is invariant under transform-
ation:

P=w)"t=w)"¥ (2.29)
(W TAd(H)t = (w’) Tt (2.30)

from which the transformation rule for wrenches is deduced
w! = Ad(H})'w' (2.31)

Note that this transformation uses the inverse transformation of

Momentum and rigid body dynamics

For the study of dynamic balance, the momentum and rigid body dynamics
are considered in the screw theory framework. Consider the linear momentum
p and angular momentum £ around the origin of the reference frame, which is

generated by a particle of dm mass located at r, subject to a twist t| = [wT, vT]
p =dmr = —dmr X w + dmwv, (2.32)
E=rxp=—-dmrxrXxw+dnrxwv (2.33)

Together the linear and angular momentum form a screw h which is termed
momentum wrench in this thesis, or impulsive wrench by Ball [11]

h— [ﬂ — Mt (2.34)

The mass matrix M of a rigid body is obtained by an integral over all particles
of the body. Using[Eq. 2.32| and [Eq. 2.32|the following mass matrix is obtained

m= [ Bllam= [0l nlod] o

Here m = fV dm denotes the mass, ¢ the location of the COM and G the
second moment of inertia tensor around the COM, in short moment of inertia
. A 3 x 3 identity matrix is denoted with I3

The mass matrix couples a twist with a wrench and therefore changes its
frame of expression by following transformation rule

M = Ad(H}) " MIAd(H)) (2.36)

This can also be deduced from the frame invariance of kinetic energy K =
1/2 t" Mt.

2The Lie bracket is given by [t;,t;] = [wi X w; w; X vj — v; X w;] = ad(t;)t;
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By rotation and translation along its principal axes, the mass matrix may be
diagonalized. The corresponding transformation can be found through eigen-
value decomposition. The resulting principal moments of inertia tensor G, =
diag(g) is characterized by three principal moments of inertia g = [gl g2 93] .
From|[Eq. 2.35]it can be shown that for all feasible — or constructible — bodies the
principal moments of inertia are positive and that a triangle inequality holds.
Together with the mass positivity the following set of inequality equations on
the mass matrix are obtained

m >0, g>0, gi +95 > gk (2.37)

For the process of dynamic balance it is essential that these positivity equa-
tions are respected in order to be able to construct the envisioned bodies and
mechanism.

According Newton-Euler laws, the wrench acting on a body is the derivative
of the momentum wrench . Therefore the derivatives of both the
twist and the mass matrix are needed. The derivative of the mass matrix of
body i is found by transforming it into a body-fixed frame. In this frame it is
constant M} = 0 under the assumption of rigid body dynamics. Therefore the
time derivative of the mass matrix becomes

70 0 i) | i i NT aqi O i
MY = o (Ad(HG)) MIA(H;) + Ad(HG) Mo (Ad(HS))  (238)
= —ad(t?°) " M? — Mad(t°) (2.39)
after inclusion of[Eq. 2.36]and [Eq. 2.27} From now on all elements are expressed

with respect to the fixed inertial frame, unless specified otherwise, such that
the superscripts are dropped. Following Featherstone [38], the wrench acting
on body ¢ becomes

WwW; = hl = Mztl — ad(ti)TMiti (2.40)

in which the self-annihilation property of the adjoint twist matrix (ad(t)t = 0)
eliminates the second part of[Eq. 2.39] The first part of the wrench is due to the
acceleration twist . The second part, termed bias wrench, is a combination of
the centripetal force and gyroscopic effects due to the misalignment of the an-
gular velocity vector with the principal axes of the body. This shows that a free-
floating body (w = 0) can experience acceleration twists £ = M ~tad(t)" Mt
even though the momentum wrench is constant.

With this, the introduction of the rigid body dynamics in screw theory frame-
work is completed. The dynamic balance conditions in this formulation will be
derived and integrated in the following section to show their nonholonomic
character.

2.3 Nonholonomic moment balance conditions

Force balance of a general set of bodies is ensured by a condition on pose,
namely by making the total COM of these bodies stationary, or moving with
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a constant velocity. This allows for several analysis and synthesis tools for
dynamic balance [I0, [I07]. Moment balance conditions on pose level alone do
not exist in general, due to the nonhonomicity nature of angular momentum
conservation [80]. The moment balance conditions of an arbitrary set of bodies
are dependent on both pose and velocity of the bodies.

In this section, the implications of this property on dynamic balance will be
investigated. Firstly, the integration of the dynamic balance conditions from
shaking wrenches to conditions on pose is attempted. Secondly, an example is
shown to illustrate that the nonholonomic behaviour allows for a wider choice
of dynamically balanced trajectories than expected from the number of DOF
and dynamic balance conditions.

Dynamic balance conditions

Dynamic balance requires zero shaking wrench ws of the system. The shaking
wrench is the time derivative of the sum of the momentum wrenches in a system.
For a system with n bodies the dynamic balance conditions therefore read

n

Wy = th =0 (2.41)

i=1

Since these dynamic balance conditions depend only on a sum of derivat-
ives, they may be integrated with respect to time ¢ through through anti-
differentiation

/Ot Wy = Z hi(t) — Z h;(0) = const. (2.42)

For convenience the summation bounds are dropped. By applying the proper
boundary conditions the dynamic balance condition resolves to

> hi(t) = > hi(0) (2.43)

This shows that the sum of the momentum wrenches in the system has to be
constant. If the system is initially at rest (gini = 0, h;(0) = 0), the dynamic
balance condition may be equated to zero

> hi(t)=0 (2.44)

The force and moment balance conditions are now separated (Eq. 2.34)) to
show that a second integration step leads to uniform conditions on pose for

force balance
Zpi = Zmlcl =0 (245)

When the masses are assumed constant (r; = 0) [Eq. 2.45| can be integrated a
second time to yield the force condition on the centre of masses in the system

Z mici(t) = Z mzcl(O) (2.47)
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Figure 2.7: @A force balanced pantograph is dynamically balanced by a counter-
rotating inertia wheel. @The nonholonomic behaviour of this system can be used to
reach any pose in its configuration space in a dynamically balanced manner.

from which the force balance condition on the total centre of mass et is deduced

1 m;c; = ¢t = const. (2.48)
mr
with mT as the total mass of the system.

When the moment balance conditions (Eq. 2.46) are integrated in a similar
fashion, the resulting condition will in general be dependent on both the pose
(ci, R;) and the velocities (¢;,w;) of the bodies during motion. In other words,
the moment balance condition cannot be integrated to obtain unique conditions
on admissible orientations and positions of the bodies only. Therefore these
conditions constrain paths and not poses, as shown by the falling cat example.
For the cat any orientation could be obtained dependent on the choice of path.

Example: nonholonomic pantograph

This nonholonomic behaviour can also be exploited [81] to reach more poses in
a dynamically balanced way. For example, consider a symmetric pantograph
which can rotate around its base axis . For simplicity reasons it is
assumed that its inertial properties can be modelled by two point masses at the
ends of the pantograph. The first DOF, i.e., the extension and retraction ¢, is
dynamically balanced since the point masses are equal and move in an opposite
direction on a line. The second DOF ¢, the rotation of the pantograph as a
whole, is dynamically balanced by actuation of a counter-rotation of an inertia
wheel. The angular velocity of the wheel is ¢s.
The moment balance condition of this mechanism becomes

gp(q1)d2 + gegs =0 (2.49)

in which g. = 5 kg m? is the MOT of the counter-rotating wheel and g, (g1) is
the MOI of the pantograph

gp(q1) = 2maqi (2.50)
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with m = 1 kg. Since the MOI of the pantograph is changing due to the
extension and retraction, the velocity of the counter-rotating wheel has to be

gp(ql)q2 (2.51)

gc

Although at each given moment only two DOFs of the system are dynam-
ically balanced, all kinematically admissible combinations of ¢i1, g2 and g3 can
be reached in a dynamically balanced manner by choosing the trajectory, (i.e.

q1, g2, q2)
For example, by sequential extension (A¢gi = —1 m), rotation (Agz = 7
rad), retraction (—Agi = 1 m) and retrograde-rotation (—Agz = —n rad),

the pantograph is back to its initial pose, as shown in The counter-
rotating inertia wheel, on the other hand, must end up in a different orientation,
as it has counter-acted a changed moment of inertia of the pantograph. The
change of angle of the counter-rotating inertia wheel is computed as

2m
Agz = —
g

(2¢1,ini + Aq1)Ag1Age (2.52)
(&

in which ¢1ini = 2 m is the initial opening of the pantograph. By repetitive
application of this cycle, any value for g3 can be obtained.

This shows that, thanks to its nonholonomic character, more poses could
be reached than expected from the number DOF and number of constraints of
the mechanism. This ‘wiggling’, ’cat-like’ behaviour can be used for example
in space to reorient a satellite without applying external torques, i.e. without
using its thrusters.

Implications of nonholonomic conditions for synthesis methods

For the goal of deriving a comprehensive synthesis method, this nonholonomic
character has the consequence that nonholonomic kinematics, such as rolling
contacts, should be used in conjunction with parabola drawing devices, such as
Van Schooten’s linkage, to exactly trace the moment balance condition of an
arbitrary set of bodies. This does not seem very practical as a large number
of additional links and friction contacts are needed, potentially more costly
and impractical than the common solution of an additional motor to actively
generate moment balance. It should be mentioned that it is also possible to
achieve dynamically balanced motion of an arbitrary force balanced linkage by
inserting a spherical joint, or a revolute joint in the planar case, between the
mechanism and the base at the location of the common COM. When this joint
is free to move, the mechanism as a whole will counteract the inbalance of the
internal motion. The disadvantage of this is that the absolute orientation of
the linkage becomes uncontrollable.

When we wish to use conventional linkages, consisting of revolute or pris-
matic joints, an alternative approach is needed since conventional joints apply
only holonomic constraints. They can therefore not be used to exactly trace
the moment balance conditions of an arbitrary set of bodies. However, we
can apply more ‘superfluous’ conditions to balance the motion of an arbitrary
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set of bodies. Alternatively, we could make sure that we start from a set of
bodies with specific dynamic properties. Either way, additional constraints are
needed for the synthesis of dynamically balanced mechanisms. Although some
approaches are presented in literature, such as symmetry or reduction of DOF,
the exact nature of these additional constraints still remains elusive [96]. This
underlines the need for investigation of the essential kinematic properties as
formulated in Objective 2 of this thesis.

Frame-invariant dynamic balance conditions

On a side note, another difference between force and moment balance is revealed

when the dynamic balance conditions|Eq. 2.31|are transformed from one (fixed)
Eq. 2.44]

reference frame (a) to another (b) It shows that force balance (FB,
Eq. 2.45) is a frame invariant property, whereas moment balance (MB, [Eq. 2.46))
is not frame invariant

> pi= (R pl, (2.53)
N——

g = (R & —(Ry) [05x] > pi (2.54)
MB FB

From these equations it is deduced that if a system is force balanced when
expressed in one frame (a), it is also force balanced when evaluated in any
another frame of reference (b). This frame invariance does not hold for mo-
ment balance, that is for moment balance without force balance. Th residual
shaking forces (3 p§) will induce a shaking moment when evaluated around
a different point (oj). This means that a system can simply be referred to a
force balanced or dynamically balanced, while for moment balanced systems the
point of application should always be mentioned. It might discussed that solely
moment balance has some advantages when the application point is chosen fa-
vorable, for example if the point is chosen to be the elastic center of the base.
However, according to the best knowledge of author no examples of moment
balance without force balance are found in literature, whereas force balance
without moment balance is prevalent. This is one of the reasons why in this
thesis moment balance is not treated separately but always in conjunction with
force balance.

2.4 Dynamic balance versus dynamic decoupling

Dynamic decoupling is a concept that is closely related to dynamic balance:
a system is dynamically balanced when the internal motion of the mechanism
does not induce shaking forces and shaking moments on the fized base, whereas
a system is dynamically decoupled when the motion of the base does not induce
inertial forces and torques on the internal DOF's of the mechanism. As these
dynamically decoupled mechanisms may be regarded as rigid bodies they can
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Figure 2.8: A dynamically balanced pantograph with a prismatic joint attached to
a floating base. The red striped spiral denotes a torsional spring between the floating
base and the inertial frame to simulate a base with a finite stiffness. Since we assume
that the spring only induces a torsional stiffness, the location of attachment point has
no influence and is chosen arbitrary.

be stacked and combined to form larger dynamically balanced structures, as
done with several synthesis methods [86, [120].

Some literature seems to suggest that dynamic balance automatically leads
to dynamic decoupling [97] [86] 120, [63]. However, dynamic balance is a neces-
sary but not a sufficient conditions for dynamic decoupling, as shown in this
section. Furthermore, it requires constant moments of inertia of the complete
mechanism.

First, this section gives an example of a dynamically balanced mechanism
which has a variable moment of inertia to show that dynamic decoupling and
dynamic balance cannot be equated. this difference is then described more
formally by providing the equations of motion of an arbitrary mechanism with
a moving base. Lastly, this section closes with remarks on the definition of
dynamic balance.

Example: a free-floating pantograph and a pantograph with a
compliant base

For the purpose of showing the difference between dynamic balance and dy-
namic decoupling, consider a symmetrical, dynamically balanced pantograph
with a prismatic joint attached to a free-floating base . The panto-
graph is actuated by a linear motor governing the extension ¢ of the pantograph.
The mass distribution of the pantograph is chosen to be two point masses of 1
kg each, attached to its ends. This pantograph is dynamically balanced since
the motion of the point masses are co-linear, opposite and equal, just as in
the previous example . Due to the varying distance between the
two point masses, the system’s total moment of inertia is not constant. The
length of the segments of the pantograph [ are all 1 m. The centre of mass of
the complete system, i.e. base and pantograph, is located at ¢. When fully
collapsed (g = 0) the system has a moment of inertia of 1 kg m* around c. The
angle of the base with respect to the inertial reference frame is denoted by 6.
Three cases are simulated to show the effect of a moving base
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Figure 2.9: Simulation results of a dynamically balanced slider pantograph with a
varying total moment of inertia, which is placed on a floating base. Three cases are
simulated; with a free-floating base k = 0 initially at rest éini = 0 (blue), with initial
angular velocity of the base 6in; # 0 and k = 0 (red), and the base that is suspended
by spring k # 0 with an initial vibration 6in; # 0 (yellow).

on the internal motion of the mechanism. In the first two cases the base is
free-floating: 1) with the base initially in rest (6ini = 0 rad/s) and 2) with an
initial base velocity of éini = 10 rad/s. In both cases the extension ¢ of the
pantograph is changed from 2 m to 1.5 m and back again . 3) In
the third case the base is supported by a spring with a finite stiffness to show
the effect of the combination of robot motion and base vibrations. A rotational
spring is attached in ¢ and has a spring constant of k& = 10* Nm/rad. This
yields a natural frequency of the complete system around 5.4 Hz for ¢ = 2 m,
depending on the pose of the pantograph. The base is given an initial velocity of
éini = 1 rad/s to initiate vibration. To show that a dynamic balance mechanism
does affect the base vibration, the pantograph is actuated by a harmonic signal
with an amplitude of 0.3 m at 10.8 Hz, twice the natural frequency of the
system .

In the first case, when the base is initially at rest, it remains in rest, undis-
turbed by movement of the mechanism . This confirms the dynamic
balance of the system. In the second case, the base has a non-zero, but also
a non-constant angular velocity. The angular momentum of the base is there-
fore also not constant. The fact that the pantograph has a variable moment
of inertia around c¢ explains this velocity change of the base. The conserva-
tion of angular momentum of the whole system leads to a change in angular
momentum of the base itself. Furthermore, when the base is rotating, the cent-
ripetal forces acting on pantograph require additional actuator forces as seen
in The third case shows aggravation of the base vibrations due to
inertial motion of the dynamically balanced pantograph. This shows that, al-
though the internal motion with respect to a fixed base is dynamically balanced,
it is not dynamically decoupled and thus it will not feel like a rigid body. This
means that a dynamically balanced mechanism can in fact aggravate existing
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base vibrations.

Governing equations

The difference between dynamic decoupling and dynamic balance can also be
shown from the equations of motion. Consider a general mechanism consisting
of n bodies attached to a free-floating base. The twist of each body can be
broken down into a twist relative to the base & and a twist of the base relative
to the inertial frame of reference tg. All twists and wrenches are expressed in
the inertial frame such that this superscript is dropped. The twist of each body
is therefore written as

Assume that the system is initially at rest (t£ = 0, and tg = 0), such that the
dynamic balance condition (Eq. 2.44)) becomes

hi=>» Mt =0 (2.56)

Now the base starts moving it with ¢tg. This means that the total momentum
of the mechanism becomes

h = Mrts + Y  Mt] = hs + hs (2.57)

Here Mt = Mg + Y, M; is the total mass matrix of the mechanism and base.
By taking the time derivative of the total momentum wrench through a chain
rule with respect to base motion tg and internal motion ¢;, the total wrench w
exerted on the system is found

w = hg + hs (2.58)

. d .
= Mrts —ad(ts) Mrts+ ) % (Mr) teg —ad(ts) "hi +wr  (2.59)

Rigid body Inertia change Dynamic balance

This is the sum of all wrenches acting on the system when the base and the
mechanism is moving. Here wi denotes the shaking wrench due to internal
motion of the mechanisms

w1 = Z % (h1) g (2.60)

Three types of effects appear in

1. The first effect is due to the motion of the base and mechanism as a whole,
i.e. when the mechanism and the base are rigid. This is therefore termed

the ‘rigid body effect’ (Eq. 2.40)). In dynamically decoupled systems only
this wrench remains.

2. The second effect is attributed to a change of the total mass matrix of the
mechanism by internal motion. This effect can be cancelled by making
the total mass matrix constant.
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3. The third effect is due to the change of internal momentum of the mech-
anism. This effect is cancelled by dynamic balance (h; = w1 = 0)

For the system to be dynamically decoupled, effects 2 and 3 should be elimin-
ated, leaving solely the rigid body effects. This means the system should be
dynamically balanced and have a constant mass matrix (0/9q;(Mr)ts = 0, for
all ¢) with respect to the base.

A force-balanced mechanism has a constant total centre of mass with respect
to the base by the definition of [Eq. 2.48 The total inertia matrix G't, on the
other hand, is not necessary constant for dynamically balanced mechanisms,
as illustrated by the pantograph example. Therefore, the partial derivative of
total mass matrix becomes

0 i (Gr)

— (Mr) = | g, (2.61)

This shows that indeed the forces and translations are decoupled by force
balance, whereas moments and rotations are not necessarily decoupled by dy-
namic balance. For the latter, a constant total moment of inertia is required
as well. This means that kinetic energy may be transferred between the base
and a dynamically balanced mechanism, thereby affecting the internal motion
of the mechanism. This illustrates a second fundamental difference between
force balance and moment balance.

On the definition of dynamic balance

The difference between the claims in literature on the equality of dynamic
balance and dynamic decoupling [97), 86], 120, [63], and the results presented
here, is perhaps a matter of definition: dynamic balance may be defined with
respect to 1) a fixed base or 2) to the inertial frame. In the first case, additional
conditions are required to ensure dynamic decoupling, while in the second case
the DOFs of the base have to be included in the moment balance condition.

The claims in literature suggest that the second definition is adopted in these
papers. Yet none of these papers consider the effect of moving the base in the
moment balance condition, and thereby implicitly adopt the first definition of
dynamic balance. This also seems be the logical choice since dynamic balance
is then a property of the mechanism only and does not depend on the (possible)
movements of the base.

Part of the discrepancy in literature can be explained by the fact that three
prominent dynamically balanced mechanisms, the two four-bars in [86] and the
crank-slider [I9], also have a constant moment of inertia [34] and hence are
dynamically decoupled. A further explanation is that force balance leads to
a decoupling of the translations and forces, whereas for moment balance an
additional decoupling condition should be satisfied.

Theoretically, this means that dynamically balanced mechanisms can aggrav-
ate — but not induce — base vibrations, since kinetic energy can be exchanged
with a moving base, as shown also by the simulation. Fortunately, most dynam-
ically balanced robots will be supported by a sufficiently rigid frame, resulting
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in negligible base velocities. Combined with an approximately constant total
moment of inertia, it may be expected that the difference between dynamic
decoupling and dynamic balance is of minor significance for this application.
However, in other applications where the base undergoes larger movements,
such as in satellite applications, the fundamental difference between dynamic
balance and dynamic decoupling has a substantial influence. Also, when a dy-
namically balanced mechanism is to be used as a dynamically balanced module
for synthesis purposes, the mechanism must additionally possess a constant
total moment of inertia in the plane of movement [120].

2.5 Conclusion

In this chapter the screw theory framework is presented alongside two funda-
mental differences between force and moment balance. Screw theory enables a
uniform treatment of the linear and angular domain. It furthermore provides a
geometrical interpretation of the linear and angular velocities, and of the forces
and moments acting on a rigid body. This enables a concise formulation of the
dynamic balance conditions for investigation of the nonholonomic nature of the
moment balance conditions and the difference between dynamic decoupling and
dynamic balance.

The moment balance conditions, as opposed to the force balance conditions,
cannot be formulated as conditions on pose alone. This condition will, in gen-
eral, also be dependent on linear and angular velocities. This nonholonomic
property of the angular momentum conservation complicates the search for
synthesis methods, as the force balance methods cannot readily be generalized
to moment balance. On the other hand, trajectory planning can be used to
enable a larger dynamically balanced range of motion than expected from the
instantaneous DOF of the system.

Dynamic balance does not automatically lead to a complete dynamic de-
coupling of the robot’s internal motion from the base movements. With force
balance, the translations of the base will not influence the relative motion of
the system. For an additional decoupling of the rotations of the base, dynamic
balance has to be combined with a constant total moment of inertia. This adds
an additional constraint on the derivation of new synthesis methods that rely
on stacking and recombination of dynamically decoupled modules.
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CHAPTER

A screw based methodology for
instantaneous dynamic balance]

Fast-moving industrial robots exert large varying reaction forces and
moments on their base frame, inducing vibrations, wear and accuracy
degeneration. These shaking forces and moments can be eliminated by a
specific design of the mass distribution of the robot links, resulting in a
dynamically balanced mechanism. Obtaining the conditions for dynamic
balance proves to be a hurdle even for simple planar parallel mechanisms
due to the required inclusion and inspection of the kinematic relations.
In this chapter, a screw theory based methodology is presented, which
gives and solves the necessary instantaneous dynamic balance conditions
for planar and spatial mechanisms in a uniform and geometrical manner.
Instantaneous dynamic balance yields a pose in which robot accelera-
tions induce no shaking forces and moments. This is interpreted as an
intersection point of multiple reactionless paths. This method is applied
to a 2-DOF planar mechanism, named the Fuga I, for which it resulted
in two perpendicularly intersecting reactionless paths, intersecting in the
middle of the workspace. Experiments on this demonstrator validated
the instantaneous dynamic balance by showing a reduction of approx-
imately 95% of the peak-to-peak shaking forces and moments over the
intersecting reactionless paths.

Dynamic balance through a direct application of screw theory and associated geometric
interpretation is attempted in this chapter (Objective 1). Since screw theory is mainly
confined to instantaneous properties such as velocities and forces, the resulting balancing
method is also instantaneous, meaning it only holds for a single pose. This pose however
can be conveniently chosen to be the reference pose in which the mechanism is defined,
such that the loop-closure constraints are satisfied by definition and the dynamic balance
conditions do not encompass the solution to the loop-closure constraint equations.

This chapter is a reprint with minor adaptations from: J. J. de Jong, J. van Dijk,

J. L. Herder, A screw based methodology for instantaneous dynamic balance. Mechanism
and Machine Theory (2019), vol. 141, pp. 267-282.
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3.1 Introduction

Industrial manipulators moving with high speeds and accelerations induce strong
shaking forces and shaking moments at the base frame, causing disturbing vi-
brations in the frame and the surroundings [55]. These disrupting shaking forces
and shaking moments can be eliminated by design of robot kinematics and in-
ertial parameters, i.e. the mass, center of mass, and moments of ineria[68], 5],
resulting in a dynamically balanced robot. When only the shaking forces are
canceled the mechanism is said to be force balanced, and moment balanced
when the shaking moments are canceled [10§]. Since the shaking forces and
moments are the derivatives of the linear and angular momentum, dynamic
balance is obtained when the linear and angular momentum are constant (or
zero in practice) [116].

Commonly, force balance is considered prior to moment balance and is ob-
tained by choice of counter-masses [15] 83]. Consecutively, moment balance is
achieved by addition of reaction wheels [4I], counter-mechanisms [I7] [63] or
idler loops [7], potentially leading to unfavorable complexity, additional mass
and higher motor torques [108].

Fortunately, some parallel mechanisms, such the kite type and the anti-
parallelogram type 4R planar four-bar, permit a dynamically balanced design
without the need of additional counter-mechanisms [86]. Yet, the process to
find these designs relies on manipulation and factorization of the dynamic bal-
ancing conditions, i.e the momentum equations, in minimal coordinates. The
intrinsic complexity of the loop-closure equations makes this manual process
increasingly difficult for higher-DOF and spatial mechanisms. Therefore, Gos-
selin et al. partially automated the factorization process through toric geometry
[44], and later algebraic geometry [76]. These algebraic methods still require
some case-by-case treatment, and are yet to be extended to multi-DOF mech-
anisms. Furthermore, the algebraic nature of the balance procedure hinders
the derivation of intuition, which is desired from a designers point of view.

Synthesis methods partly overcome the inspection of equations through
stacking and recombination of dynamically balanced elements. Ricard et al.
[86], and later Wu et al. [120], used the dynamic balanced four-bar linkage as a
building block for multi-DOF, planar and spatial, dynamic balanced mechan-
isms, resulting in rather complex structures with unfavorable mass to payload
ratios [I04]. Van der Wijk et al. developed Fishers principal vector method
of describing human motion [40] into a synthesis method, which produces in-
herently force balance mechanisms [I07]. Based on this method, the 3-DOF
over-actuated DUAL V was presented [I09]. Dynamic balance was achieved
over two perpendicular paths by mirror symmetry of the design. Although this
synthesis methodology yields new dynamically balanced mechanisms, it does
not cover all the possible solutions [96], and is currently confined to planar
linkages.

Alternatively, dynamically balanced behavior can be enforced by limiting
the robot motion to reactionless paths [84) [126], or trajectories [6I]. These
methods are less restrictive on the choice of inertial parameters and enable
‘dynamic balance when needed’. For example, during the traveling phase of a
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pick-and-place robot, when accuracy is not essential, the robot can follow any
trajectory but just before and during the pick or placement phase the robot
follows a reactionless path, in order to let vibrations die out and enable an
accurate motion. Currently, only for specific kinematic structures it is known
how to shape these reactionless paths by design of the robot [84] [I09].

In pursuit of an intuitive method that yields all force and moment balanced
designs for arbitrary, planar or spatial linkages, we propose to use screw the-
ory. In this chapter, a screw theory based method is presented that yields
instantaneous dynamic balance for arbitrary mechanisms. Instantaneous dy-
namic balance is a pose in which the accelerations of the robot will not induce
shaking forces and moments. We will show that, with additional conditions,
these poses form intersections of multiple reactionless paths. This enables the
design of reactionless paths by choice of this pose. The current method relies
on a unified, geometric interpretation of the angular and linear momentum,
leading to a set of feasibility bounds on the selection of the dynamic balance
solution. The validity of this method will be shown by design, construction
and measurement of an experimental demonstrator named the Fuga I, which
is completely force balanced over the whole workspace and moment balanced
along two perpendicular paths, which intersect in the middle of the workspace.

The chapter is organized as follows: Firstly, the screw theory with its applic-
ation to rigid body dynamics will be recapitulated. The dynamic balance con-
ditions are given in the screw theory framework. Secondly, the dynamic balance
conditions are solved in two steps; A) on mechanism level — posing conditions on
a specific number of the bodies, and B) on body level — solving these conditions
to obtain a range of inertial parameters for these bodies. Thirdly, this method
is applied to a five-bar demonstrator, and validated by both simulations and
experiments. This chapter is a generalization of the method presented in [32],
which was confined to planar mechanisms consisting of revolute joints.

3.2 Screw based dynamic balancing method

Screw theory [11] provides a unified geometrical interpretation of the instant-
aneous spatial motion — termed twist — of a rigid body and of the force and
torque — termed wrench — acting on this body. On one hand, screw theory
leans on Mozzi-Chasles’ theorem, which states that all rigid body motion can
be interpreted as a rotation around an axis in space and a translation along
that axis. Similarly, for forces and moments, Poinsot’s theorem states that the
sum of forces and moments acting on a body can be represented by a force
along a line in space and a torque around that line. These spatial interpret-
ations are termed screws. On the other hand, screw theory draws on Lie’s
theory of exponential mappings and manifolds — which can be interpreted as
the configuration space of connected rigid bodies. This states that the admiss-
ible twists lie on the tangent space of this manifold. These screws are therefore
differential and instantaneous properties. Screw theory has been applied to
a wide variety of modeling and design problems including singularity analysis
[129], kinematic synthesis methods [62], and robot dynamics [90, [85] [38]. The




38 Chapter 3. Instantaneous dynamic balance

extension of screw theory to a dynamic balancing procedure for multi-DOF,
closed-loop mechanisms has not been attempted.

Screw theory

The angular and linear velocity, respectively w and v together form the twist
t of a body. The twist is interpreted as the rotation around an instantaneous
axis in the direction of w, passing through point r; and a translation along this
axis, called the pitch A . The velocity v is defined velocity of the
points passing through the origin

t= [‘:} V=T X W+ \w (3.1)

From a given twist the axis location and the pitch can be computed as

T
w X v v w
ry = — + 5tw )\t =
[lwl? lwl?

(3.2)

in which d; is the free variable along the twist axis. The equation of the pitch
gives rise to two special cases if 1) Ay = 0 or if 2) Ay = oo. The first occurs
when w and v are perpendicular. This is interpreted as a pure rotation. The
latter happens when w = 0 and v # 0 and is seen as a pure translation. Later
in the balancing process, these special cases require special attention.
Similarly, the linear and angular momentum — respectively denoted with p,

and & — form a screw, the ‘momentum’ wrench (Fig. 3.1))
_|¢ _
h = p E=rnXp+np (3.3)

This momentum wrench h can be interpreted as a linear momentum in the
direction of p, passing through point r, and an angular momentum around
this axis, here called the momentum pitch Ap

_px§ _E&'p
Pl pll

in which ¢, is the free variable along the wrench axis. It should be noted
that the twist and wrench are dual properties. The screw axis of the twist is
formed by its ‘rotative’ component, the angular velocity. Conversely, for the
wrench its ‘translative’ part, the linear momentum or force, determines the
screw axis. Therefore, a wrench is often denoted as a co-screw. Two special
cases occur on the momentum wrench; if 1) the linear and angular momentum
are perpendicular (A, = 0) or if 2) the momentum wrench is a pure angular
momentum (A = 00).

The momentum wrench is formed by the product of a body’s mass matrix
M and its twist

Th +0np An (3.4)

h = Mt (3.5)
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The body’s mass matrix is formed by the mass integral over all points 7 in the
bodies volume V. This gives rise to a matrix build up with m as the body’s
mass, ¢ the location of the COM and G the angular inertia matrix expressed
around the COM

M:/ {—[rx]z [rx]} dm _ {G’—m[cx}2 m[ex] (3.6)

v f[rx] fm[cx} mlIs

In here [ax] denotes the skew symmetric matrix of a 3-vector. The angular
inertia matrix G is parameterized by three moments of inertia g., gyy, and g--,
and three products of inertia gu.y, gz-, and gy.. Altogether, the body’s mass
matrix is determined by 10 inertial parameters. The angular inertia matrix

can be diagonalized G? = diag(g) by rotating it along its principal axes. Here
g = [91, 92, g3] denotes the vector of principal moments of inertia

Gax Gzy gz T
G=|gzy Gyy Gyz| =R G°R (3.7)

Gzz  Gyz G2z

This rotation matrix R can be found by eigenvalue decomposition. It should
be noted eight orientations result in a diagonal inertia matrix, i.e. for each
octant one. For simplicity sake we choose a sorted inertia vector. From the
integral form of the mass matrix (Eq. 3.6)) and the positivity of mass, it can be
deducted that the principal moments of inertia must be non-negative, and form
a triangle inequality. Therefore we get the following set of inequality conditions
on the mass and inertia of a body

m>0 (3.8)
g>0 (3.9)
g2+t9s > q (3.10)
912922 g3 (3.11)

The lower limits on in these conditions are formed by theoretical objects such
as infinitely slender, flat, or perfectly axisymmetric objects.

Dynamic balance conditions in screw theory

Dynamic balance is obtained when the sum of the momentum wrenches of all
ny bodies in the mechanism is zero for all motion. In the current notation this

reads
ny ny,
> hi=) Mt; =0 (3.12)
i=1 i=1

For a closed-loop mechanism the body twists ¢; are not independent as they
are related through the differential loop-closure constraints. For each of the nq
DOF of the mechanism, whose coordinates are denoted by u, a unique twist is
associated to each body £; ;. This unit twist (denoted with a hat) is defined
as the twist of body i generated by a unit velocity actuation of DOF j. The
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actual body twist ¢; is formed by the weighted sum over the input velocities u;
of these unit twists

nd
ti=Y tijiu, (3.13)
j=1

These unit twist can be found readily by screw theory methods and are not
discussed further, refer to for instance to [129]. Substituting these unit twist
back into the balancing condition of[Eq. 3.12] we can find the dynamic balancing
conditions for each of the nq DOFs

ny, ny
Zﬁi,ju]’ = ZMifi,jﬂj =0 (3.14)
i=1

i=1

in which iL” is the unit momentum wrench of body i as a consequence of unit
velocity of DOF j. Combination of these balance conditions using [Eq. 3.13|
provides a condition on the momentum wrench basis Mp

b
h=> [hi1 -+ hin,]%=Ms(u)u=0 (3.15)
i=1

Clearly dynamic balance requires the sum of the unit momentum wrenches
associated to the same DOF to be zero. As it is algebraically complex to obtain
and solve the closed-form expression of Mg (u) for all u — due to the complexity
or unavailability of the solution to the loop-closure constraint equation — we
confine ourselves to a reference configuration wo in which the mechanism is
defined. In this configuration the loop-closure equation is satisfied by this
definition and we have no problem of obtaining Mpg. Since should
hold for all possible velocities @ in this pose, 6 X nq instantaneous dynamic
balance conditions are obtained for the spatial case and 3 x nq for the planar
case

Mg (uo) =0 (3.16)

If this not only holds for g, but for all w in a specific assembly mode the mech-
anism is globally balanced. In the remainder of this section these equations are
solved for the inertial parameters in the mass matrix as to yield instantaneous
dynamic balance.

Approach to solve dynamic balance conditions

The instantaneous dynamic balance method presented here, consists of two
steps. In Step A, the dynamic balance conditions are solved on
mechanism level by requiring a specific relation between the twist and mo-
mentum wrench for ngq bodies, i.e. on a number of bodies equal to the DOF
of the mechanisms. In Step B, this twist-momentum relation is solved to find
the corresponding mass matrix of these nq bodies. In both steps, special cases
are identified and treated. In order to ensure that feasible inertial parameters

(Eq. 3.8|-[Eq. 3.10) are found in Step B, a detailed description of the attainable
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momentum (momentum span) as function of the inertial parameters and twist
is given. Therefore, in the next paragraphs the description of the two steps is
interleaved with a screw based interpretation of the momentum span.

Step A. Dynamic balance solution on mechanism level

The 6 X ng dynamic balancing conditions (Eq. 3.14) are solved by uniquely
associating a momentum wrench and a twist to nq mass matrices. From this
twist-momentum relation the mass matrix is solved in Step B. Please note the
difference between ng and nyp, as the former is the number of DOF and the
latter is the number of bodies.

The balancing procedure that we present here, relies on isolating and solv-
ing one mass matrix for each of the ngq balance conditions. This is done by
virtually splitting the mechanism into two parts, a ‘proximal’ part and a ‘distal
part’. The proximal part consist of one or more base-grounded serial chains,
whose joints will serve as the independent coordinates. The distal part which
contains the remaining bodies and the dependent joints of the mechanism. In
this approach the mass matrices of the proximal part shall be solved from the
balancing conditions, whereas the distal mass matrices are the free parameters.

The proximal set should consist of nq joints and bodies that together form
serial or tree-like chains connected to the basis. These ‘proximal’ joints will
function as the input or independent coordinates of the mechanism. The in-
ertial parameters of the ng proximal bodies, directly connected to these input
joints, shall be determined as a function of the inertial parameters of the distal
part, whose inertial parameters are free. Now, due to the hierarchy in serial
or tree-like chains, the actuation of the last input joint j of such a serial chain
will not induce a movement or momentum of the other proximal bodies, such
that we have an isolated and solvable balance condition on the body connected
to the last input joint. For this motion to be dynamically balanced, the mo-
mentum generated by this body should be equal and opposite to the momentum
generated by the distal part of the mechanism

nh
=3 hiy=h;; =Mt (3.17)
i#j

As the other input joints and connected ‘proximal’ bodies are kept fixed, only
the inertial parameters of the distal bodies show up in the left side of this
equation. The inertial parameters M for this body can be solved via equations
which are presented later. After this mass matrix is solved, the approach is
repeated for the second to last link and so on, until all inertial parameters of
the nq proximal bodies are determined. As the choice of input joints is not
unique, a variety of sequences can be used as long as no passive joints are in
between the input joints and the base and the chosen input joints are single
DOF joints whose parameterization does not result in a singular mechanism.
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Figure 3.1: A geometrical representation of the momentum h generated by a twist
t and body with a COM at c.

Intermezzo: Screw theory interpretation of the linear and
angular momentum to determine solution bounds

Before the mass matrices M are extracted from we need to know
which momentum wrench is produced from a given twist-mass matrix combin-
ation. Later on, this relation is inverted to find the mass matrix for a given
momentum wrench and twist. Moreover, we wish to know how to ensure that
feasibility bounds (Eq. 3.8|-|Eq. 3.10) are respected by the solution. Further-
more, special cases need to be identified to see if additional conditions are
required. In the first part, the twist-momentum relation is interpreted in a
screw theory manner, following the work of Selig et al. [91]. In the second part,
a detailed study on the effect of the body orientation on the generated angular
momentum is conducted to ensure that the feasibility bounds on the moments
of inertia are satisfied.

As we are concerned with the general geometric interpretation of the twist-
momentum relation, we write the linear and angular momentum for and ar-
bitrary body and twist, and hence drop the sub- and superscript notation.
Using[Eq. 3.3]and [Eq. 3.6|the expression for the linear and angular momentum
becomes

pP=—mec X w+mv (3.18)
=m(r: — ¢) X w + mA\w (3.19)
E=Gw+cxp (3.20)

Following the interpretation of [91], a plane may be constructed through the
twist-line ¢t and the COM location ¢, the t-c-plane (Fig. 3.1|). The point where
the momentum wrench passes through this t-c-plane is termed 75, . In their
paper, following the work of Ball [II], Selig et al. show that this point is
simultaneously the shortest distance point between ¢ and h. The corresponding
shortest distance point on the twist axis is r;s. Without any moment of inertia,
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i.e. when the body is a point mass, the momentum wrench passes through c.
With increased angular momentum the wrench line moves further away from ¢
and c. The exact extent of the angular momentum span will be studied later in
this section. The linear momentum vector is not always normal to the t-c-plane

(cos(¢) = mA¢/||p||) due to the influence of the twist pitch (Eq. 3.19).

In the general finite twist pitch case, the momentum pitch is found to be

7 &'p B )\thGerwT[cfrtx]Gw
Pl mllwl[2(A +12)

in here [; is the distance between the COM and the twist axis.

An

(3.21)

Special cases

Special cases for the momentum occur when 1) the momentum pitch is zero,
or 2) when the momentum pitch is infinite. The combination of twist and the
mass of the body for which these special conditions occur are given here. We
exclude trivial cases such as m = 0.

1. The zero pitch momentum (A, = 0) occurs when p L £&. The momentum
pitch (Eq. 3.21)) is zero when the twist pitch has a specific relation with
the angular velocity

-
w [c -7y ><] Guw
MN=——"—"—— 3.22
‘ w' Gw (3.22)
Furthermore, when the twist pitch is infinite (A\: = o0), |[Eq. 3.20| and

[Eq- 318 reduce to
p=mv E=cxp (3.23)
such that in p L &, resulting in a zero momentum pitch.

2. An infinite pitch momentum (A, = oo) appears when ||p|| = 0. From
it is deduced that this is only the case when the body is in pure
rotation (A¢ = 0) around the COM (I, = 0).

This means that an infinite pitch twist always results in a zero pitch momentum
and furthermore, an infinite pitch momentum can only be generated by a zero
pitch twist. Refer to for an overview of these conditions.

Angular momentum as function of body orientation

The angular momentum span is required to completely define the momentum
limits for a given body. This will be used later on to determine feasible balance
solutions. For brevity reasons, we group the influence of the COM on the
angular momentum

€e=€—cxp=Gw (3.24)

Now, we are interested to see what values for £. can be obtained for any given
angular velocity, principal moments of inertia and orientations of the body

¢ =R G°Rw (3.25)
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Figure 3.2: For all orientations of a body, the angular momentum &, generated by
angular velocity w will lie inside a sphere with two spherical cavities, of which the
dimensions and position are determined by the bodies principal moments of inertia
g1, g2, and g3. Here the orientation of the body is parameterized by ¢1, ¢2, and ¢3
(currently ¢3 = 0) around local ., n;, and n. axes.

Without loss of generality we choose w along the global z-axis and R with
three consecutive rotations according the z-z-z convention

R =R.(¢1)R:(d2)R:(¢3) (3.26)

Since w is invariant for R, we have for the angular momentum the following
product of matrices

e = R (¢3) Ry (d2) R. (61)G” Ra (1) R (¢2)w (3.27)
Which after expansion this becomes:

& = gsw +sin(¢2)RI (¢3)Ry (92 + 5)

(91 gQQ R,(261)w — (92 gt g1 ggz) w) (3.28)

The effect of the angles ¢1, ¢2 and ¢3 on the angular momentum is depicted
in |[Fig. 3.2l From the previous equation it follows that angular momentum &.
lies on circle — parameterized by 2¢1 — which, in turn, lies on a plane passing
through gsw. The angle of the plane with the y-axis is given by ¢2. The
size and center of the circle scale with sin(¢2). This whole figure is rotated
by ¢3 around the m,-axis. This means that, for all orientations, the angular
momentum &. will be contained inside a sphere with two spherical cavities.
These three spheres touch at giw, gow, and gsw. From this interpretation,



3.2. Screw based dynamic balancing method 45

three bounds on &, can be deducted, which are respected for any orientation of
the body

1€ = 1/2(g1 + gs)wl| < 1/2(g1 — g3) (3.29)
[€c = 1/2(g1 + g2)wl| = 1/2(91 — g2) (3.30)
1€ = 1/2(g2 + gs)wl| = 1/2(g2 — g3) (3.31)

These conditions should be respected later when selecting a dynamically bal-
anced mass distribution. This also gives a critical maximal value for the prin-
cipal moments of inertia, such that a given &. lies on the surface of one of the
spheres. The cosine law yields the maximal moment of inertia:

53 (gQw — Ec)
< crit = 3.32
9 S Grent = S5 ST (3.32)
T
c (g3w — £C)
< crit = 3.33
92 = g2,crit wT (ggw — Ec) ( )
T
c (glw — gc)
3 < crit — .34
93 = G3,crit U-’T(glw—fc) (33 )

When the principal moments of inertia are chosen equal, i.e. g1 = g2 or g2 =
g3, the angular momentum span collapses to the surface of a sphere. In case
all principal moments of inertia are equal, i.e. g1 = g2 = g3, the angular
momentum span collapses to a point on the w-axis.

Furthermore, from the interpretation of and the positivity of the
principal moments of inertia, it follows that the angle 6 between the momentum
and the angular velocity always smaller is than 7/2. Therefore

w' & = |wll|€] cos(8) > 0 (3.35)

With this interpretation of the relation between the momentum wrench,
twist and mass matrix we have obtained several conditions to which the balance
solution should adhere for solvability and feasibility.

Step B. Dynamic balance solution on body level

Now that we have a geometric interpretation of the possible momentum for a
given twist, we will extract the inertial parameters from the 6 xnq4 instantaneous
dynamic balance condition as obtained in Step A. These conditions
state that the momentum generated the body that is directly connected to
the independent joint must be equal and opposite to the momentum of the
rest of the mechanism. So we assume that we now know the twist £;; and
the momentum h;; of a body but not yet the mass matrix M; that couple
these. This section aims to obtain these mass matrices. For each of the nq
bodies we have to satisfy 6 dynamic balance conditions, for which we can use
10 parameters. This means that in general we can choose 4 parameters (within
bounds) and solve for the remaining 6 parameters. We will do this in three
steps. First, the force balance conditions are solved. Second, the moment
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balance solution are obtained. Third, the special cases such as the planar case
are discussed. At last we will discuss the implications of this procedure for
global dynamic balance and path balance (reactionless paths).

Force balance

From dynamic balance conditions, as found in[Eq. 3.17} we can solve the mass
and COM by recasting it into the form of

1 w'p [WX] (mv — p)
m= — , c=——"—————"" 4w (3.36)
As [|w][? mfjw]|?
For brevity reasons we omit the subscripts of It can be seen that

mass is completely fixed and that the COM must lie on a line parametrized
by a variable § along w. These equations furthermore show for that a positive
mass (m > 0) it is required that w'p and A\ have the same sign.

Moment balance

Moment balance imposes three conditions which are function of the
6 inertial parameters. We solve this undetermined set of equations by selecting
the principal moments of inertia g and solving for the orientation of the body
(R in . An equally valid approach would be to choose an orientation
and then solve for the principal moments of inertia. However, in that case
the incorporation of the feasibility constraints (Eq. 3.9|and [Eq. 3.10) is much
harder. It should be noted that &. depends on ¢ and therefore on the choice
of §. Furthermore, we have already seen that several special cases and bounds
exist, that should be taken into account.

To solve the moment balance, firstly a local frame will be aligned with the
principal axis of inertia. Secondly, the angular velocity as expressed in this
local frame (w®) will be determined. Thirdly, the rotation matrix — mapping
the global to the local angular velocity w® — will be extracted. We have the
following set of equations for which we wish to solve R

w® = Rw, . =R'GPLP (3.37)

It can be seen that three conditions hold for the local angular velocity vector

llwl* = [|ewP|? (3-38)
w'é = (W) GPWP (3.39)
€]l = (W) T(GP)*w® (3.40)

This can be rewritten in matrix-vector form on the element-wise quadratic of
the principal moments of inertia vector (g02 = [g%, g2, gg]) and of local angular

velocity ((wP)°? = [(WD)?, (wh)?, (WH)?])
Jeo? :
wie =1 g g7 (W)™ (3.41)
€11
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Figure 3.3: The four types of bounds on the selection of the principal moments of
inertia in the balancing process. (a) positive principal moments of inertia g > 0, (b)
The triangle inequality g; < g; + gk, (c) the sorting condition g1 > g2 > g3 (d) and

the critical principal moments of inertia (Eq. 3.32|- [Eq. 3.32) for a given w and &..

in here 1 denotes a 3-vector of ones. This leads to a solution of the local angular
velocity vector as

, [ llel?
@)= g g¢°] wTS; (3.42)
€l

This matrix inversion can be done as long as all principal moments of inertia are
different g1 # g2 # gs. In the next section, equal principal moments of inertia
will be investigated. Eight distinct solutions for w? = diag([+1, £1, £1])4/(wP)°?
are found, each corresponding to an octant. The positivity conditions (wP)°% >0
are satisfied as long as g is chosen such that the previously determined angular
momentum limits [Eq. 3.29] - [Eq. 3.51] are satisfied.

The rotation matrix R is found by recognizing that the following system of
equations must hold

R [w £ wX EC] = [wp GPwWP WP x Gpwp] (3.43)
RA=B (3.44)

which can be inverted if w and &. are not co-linear, yielding
R=BA' (3.45)

In this approach the principal moments of inertias are free to choose. How-
ever, we saw that for the resulting (wP)°2 to be positive, g must be selected
such that [Eq. 3.29] - [Eq. 3.31] are respected. Furthermore, also the positive
definiteness of the moment of inertia matrix must be respected in
addition to the triangle inequality [Eq. 3.10| and the sorting condition [Eq. 3.11}
These constraints can easily be incorporated by limiting the choice of g. Giving
a total set of 9 limiting conditions of the choice of g. gives a graphical
interpretation of these conditions.

Now to summarize, feasible instantaneous dynamic balance solutions can be
found as long as 1) the twist pitch A+ and w " p have the same sign ,
and 2) w' & > 0 . In general, there are four parameters to choose
within bounds: 6 on the COM and g on the moment of inertia matrix.
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Special conditions

In several special conditions this general solution requires additional conditions.
Firstly, when the principal moments of inertia are chosen equal and the inverse
in[Eq. 3.42]does not exist. Secondly, when w and €. are collinear and the inverse
in mdoes not exist. Thirdly, when the pitches of the twist or momentum
wrench are either zero or infinite. Fourthly and lastly, in the planar case the
out of plane components can be ignored leading to a reduced solution space.

1) In case an axisymmetric body is chosen such that g1 = g2 or g2 = g3 the
solution to w? in gains a freedom, allowing for different orientations
of the body without changing the corresponding moment of inertia matrix. In
that case, the values of the equal (g2 = g.) principal moments of inertia cannot
be chosen freely as €. should lie on the surface of a sphere (Eq. 3.32|-[Eq. 3.34)
and therewith determining the remaining moment of inertia (g )

o £Z(guw - £c)

g2 = ge = wT(guw — £C) (3'46)

Equal principal moments of inertia g1 = g2 = g3 can only be chosen if &
and w are co-linear, then R is a free choice that does not change the inertia
matrix. For the g;’s the following condition must hold

&
g1 =092 =03 = 7 3.47
o] (3.47)

2) In general, when &. and w are co-linear, both should be aligned along
one of the principal axis, fixing only the corresponding principal moment of
inertia. The other principal moments of inertia and the orientation around
that principal axis are free to choose.

3) In previous sections several special cases of the twist and momentum
wrench are identified. For the dynamic balance some of these require special
attention. We have seen that both the twist and the required momentum
wrench can be finite, infinite or zero pitched (co-) screws. This leads to 9
cases as shown in table @ Based on twist pitch and momentum pitch
equations, respectively [Eq. 3.2] and [Eq. 3.21} we discuss 3 conditions, from
which the whole table can be deducted.

e In the limit case Ay = 0, the body is in pure rotation. Therefore w and
p should be perpendicular. This leaves m in indeterminate and
free to choose.

e In the limit case Ay = oo the body is in pure translation w = 0. Therefore,

this requires v || p. This bounds ¢ to line due to & = ¢ x p in [Eq. 3.20
The balancing equations become

_ Il _px¢
llvll |pll?

Therefore € and p should be perpendicular, requiring A, = 0. Other
values for Ay, are not possible. Therefore, G is free to choose.

+op (3.48)
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Table 3.1: For several special cases the general instantaneous dynamic balance condi-
tions (G.C.) of [Eq. 3.36|and [Eq. 3.45|do not hold. Either the combination of twist and
wrench are not possible (N.P.) or require additional conditions. Additional parameter
freedom is denoted with a ;.

| 1M = (0,00) M =0 M| = oo
[Ar| = (0, 00) G.C. wlp, m=, N.P.
|An| =0 G.C. wlp m=, v|p, G=;
[An] = o0 N.P. p=0, m=| N.P.

e The limit case A;, = 0o occurs only when p = 0. This places ¢ = r; + dw
on the twist axis. Therefore, it requires Ay = 0. Other values for \; are
not possible in this case.

4) In the planar case we can ignore the out of plane parts and we are left
with a single inertia value g. We have two cases either A; = 0, in which m is
indeterminate, or Ay = oo, in which g is indeterminate. In the first case
and are solved by

lwxp
=p——=2 3.49
MR PR (349
T 2
w (E-—rexp) 1 ]p|
g= - = (3.50)
[|ewl[? m [lw||?

In the second case A+ = oo the body is in pure translation and we require
v || p, refer to Therefore, similar to the spatial case m and ¢ are
determined according to and g is undetermined.

All these special conditions impose additional requirements on ¢t and h.
When following the hierarchical dynamic balancing procedure, as presented in
this chapter, these additional constraints are inherited over to the bodies higher
in the chain, limiting their choice of mass distribution.

Global dynamic balance

With approach we have solved a necessary subset of the dynamic balance con-
ditions, the instantaneous dynamic balance in reference pose. Outside this
particular pose the dynamic balance is not necessarily maintained. To extend
this global dynamic balance, the previously derived dynamic balance solutions
should be valid for all possible poses and motions. The homogenization of this
step is outside the scope of this chapter.

Reactionless paths

When a multi-DOF mechanism is partially balanced, for example when only the
shaking forces are canceled, a part of its motion can still be fully dynamically
balanced by moving over a reactionless path [84) 126]. Such a path balance
is generally possible when the mechanisms has more DOFs than unbalanced
directions, i.e. directions in which shaking forces or shaking moments are felt.
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In these cases a part of the DOFs may be chosen to compensate the unbalance
caused by the other DOF.

These reactionless paths are computed, similar to [126], by choosing the
coordinate velocities on the null-space of the momentum basis

@ € ker(Mg) (3.51)

and integrating these into paths. In general, this Mg matrix is full rank and
does not possess a null-space. However, in the case the mechanism has more
DOF than unbalanced directions, a null-space appears, which can be integ-
rated into reactionless paths. In an instantaneous dynamic balance pose, the
momentum basis (Mg) is a null matrix, locally allowing for the full mobility to
be used. This means that for a partially balanced mechanism, multiple reac-
tionless paths meet in these poses. Furthermore that in these poses the shaking
wrench is not influenced by the joint accelerations.

3.3 Design of a dynamically balanced five-bar
mechanism

Kinematics and dynamics

To illustrate the presented instantaneous dynamic balancing methodology, and
to show that instantaneous dynamic balance results in intersecting reactionless
paths, we apply the method to a 2-DOF planar 5R mechanism. This five-bar
mechanism is parameterized as two serial chains with revolute joints at o, till
04, joined together at the end-effector o5, as shown in The distance
between the base joints 01 and o3 is length lo. The length of the four moving
bodies are Iy till l4. For later use in the differential kinematics, auxiliary angles
Bi; between body i and body j are used. To each body, a mass m;, and a
moment of inertia g; are associated. The center of mass ¢; of each body is
defined by a distance d; and an angle ~;.

For instantaneous dynamic balance, only the differential kinematics are re-
quired. The loop-closure equations are assumed to be satisfied, and not dis-
cussed here. According to the hierarchical balancing procedure, as described in
previous sections, the two base joints ¢1 and g3 are chosen as the input joints.
For each of the DOF's the mechanism will act as a four-bar mechanism. We will
only apply this procedure for the first DOF (g1). The second DOF (g3) can
be treated similarly. The angular velocity of the input link is the unit vector
perpendicular to the plane of the robot @11 = n.. The twist of the bodies due
unit velocity of joint 1 become

r n, s w21 : > W41
ti1 = [ ] to1 = |:’r2,1 % &;271:| t31 =0 t41 = [04 % &4,1:| (3.52)

in which the angular velocities of link 2 and 4 are

li sin(/6'14)

l1 Sil’l(ﬂm)
l2 sin(B24) Pz

A sin(Ba1) n, (3.53)

w21 = W41 =
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Figure 3.4: The kinematics of the 5R planar five-bar mechanism. The solid arrows
indicate axis of rotation of moving bodies due to actuation of g1 and fixation of ¢s.
For body 2, the axis of rotation lies at r2 1.

The instantaneous center of rotation of body 72,1 is on the intersection of the
line through o1 and o2 and the line through o4 and os

l4 Sin(ﬁm)

Iy sin(Bra) (01 — 02) (3.54)

r2,1 = 02 +

Similar conditions can be derived for the second DOF, the rotation of base joint
3, yielding 52’3, 5373, and 54,3.

Dynamic balance conditions of a five-bar

Instantaneous dynamic balance is obtained by inspecting the two DOFs of the
mechanism independently. In this procedure is depicted graphically.
For instantaneous dynamic balance of the first DOF, the momentum of the two
distal bodies 2 and 4 should be equated to that of the proximal body 1

hiy = —ha1 — hay (3.55)
Such that the linear and angular momentum generated by body 1 becomes

P11 = —P2,1 — P41 él,l = —€A2,1 — é4,1 (3.56)

with the linear and angular momentum (Eq. 3.19| and [Eq. 3.20) of the distal
bodies as

P21 =ma(r21 — €2) X W21 Pa1 = ma(0s — €1) X @a1 (3.57)

fo1 = —gs@a1 — €2 X Pas €11 = —gaa1 — €4 X Pan (3.58)

Now, with the previously derived solutions to force and moment balance for
planar linkages, respectively [Eq. 3.49] and [Eq. 3.50, we can find the moment of
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T43Q

Figure 3.5: A graphical representation of the instantaneous dynamic balance pro-
cedure of a 5R planar five-bar. Left shows that the momentum wrenches of the bodies
(straight arrows) due to the actuation of the first DOF (joint g1) sum to zero. Right
shows the zero sum of the momentum wrenches for the second DOF, the actuation of
joint g3.

inertia and COM of base links 1 and 3 as function the inertial parameters of
links 2 and 4 and a choice of mass. For link 1 we have
2 X (P21 + Pa1)

e =014 2 , (3.59)
mi

P21 + panl?
mi

g =mn. (01 X (P21 +Pa) —Ea1 — 64,1) (3.60)
For link 3 similar conditions hold.

This means that the inertial parameters of link 2 and 4 and the masses of
link 1 and 3 can be chosen freely as long as the resulting moments of inertia are
positive. This positivity is ensured if the required momentum lines fALLl and
ﬁg,g pass counter-clock wise around their revolute joints. Already the solutions
to six dynamic balance conditions are found; four force balance and two moment
balance conditions.

Global force balance

From literature it is known that six constraints should be satisfied to obtain
global force balance [83]. Since instantaneous dynamic balance is a necessary
subset of global force balance, we have found and solved already four force
balance conditions, such that only two additional constraints are required for
global force balance. These are

l
ds = m2 4d2, Yo =T + Y2 (361)

M4l2

Global dynamic balance of the five-bar mechanism is not possible without neg-
ative moments of inertia or counter rotations. This can be deducted from
special kinematic conditions required for the dynamic balance of the four-bar
mechanism [86].
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Figure 3.6: The designed mechanism permits one DOF of dynamically balanced
movement, in each pose. The pink arrows indicate the corresponding traces of the end-
effector o5. Path 1 and 2 are reactionless paths that in the middle of the workspace,
the instantaneous dynamic balance pose. Path 3 is the non-moment balanced path.
The dashed line denotes the workspace boundary.

Reactionless paths

Now that global force balance — and hence partial dynamic balance — is es-
tablished for the five-bar mechanism, only one unbalanced dimension remains,
the shaking moment. This means that rank (Mg) = 1 and that, in reference to
one of the DOFs can be used to render moment balance, i.e. coun-
teract the unbalance of the other DOF. In each pose we therefore have at least
one dynamically balanced motion freedom. This motion freedom is computed
using the null space operation and plotted for a grid of end-effector
positions . Numerical integration of this null-space operation yields
reactionless paths. In the points where the instantaneous dynamic balance con-
ditions are satisfied (here in [0,0]), multiple of these reactionless paths meet,
locally allowing a two dynamically balanced DOF.

Design of demonstrator

Based on this result, a force balanced five-bar mechanism is designed that
has two intersecting reactionless paths to demonstrate the existence of instant-
aneous dynamic balance. The system is designed to be placed on a 6-axis
force/torque sensor to quantify its balance quality. The present dynamic bal-
ance conditions (Eq. 3.60| and [Eq. 3.61) place conditions on ¢1,¢3, ¢4, g1, and
g3. This leaves a design freedom on kinematic parameters (lp - l4) and the re-
maining inertial parameters (mi - ma, c2, g2 and g4). These parameters can be
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Figure 3.7: The 2-DOF dynamically balanced robot Fuga I mounted on a 6-DOF
force/torque sensor (outlined) to measure the shaking forces and moments during
motion.

chosen freely as long as all the masses and moments of inertia are positive. Here
we aim to show that the current method opens a larger design freedom while
permitting comparable reactionless paths as mechanisms obtained by existing
methods, i.e by connecting two mirror symmetric dyads [19] or by the DUAL
V [109].

Therefore, the final design of the robot is chosen based on the following
aspects: 1) The reactionless paths should be perpendicular and as straight
as possible. 2) The mechanism must be constructible e.g. links should have
sufficient stiffness. 3) Workspace should be sufficiently large. 4) Motor torques
should be minimal. 5) The demonstrator should fit on a 6-DOF force/torque
sensor. 6) The center of mass of all links should be in a single plane to avoid
out of plane torques.

Finally, an symmetric M-shaped design of the five-bar mechanism is selected
and constructed The base joints are 400 mm apart. The upper arms
and the lower arms have a length of 190 mm and 180 mm, respectively. Refer
to for the other dimensions and design parameters. This gives the
mechanism a singularity free workspace of with a diameter of approximately
380 mm. The instantaneous dynamic balance pose lies in the middle of the
workspace. The first reactionless path is along the symmetry line and the second
is approximately along the base link . This second reactionless path is
an approximate straight line with a deviation +/- 0.5% (0.9 mm deviation over
a stroke of 200 mm). The exotically shaped upper arms are used for sufficient
stiffness while providing the required moments of inertia. Direct drive brushless
motors of Maxon EC-flat 90 are used. These have a peak torque of 7.4 Nm and a
moment of inertia of 3060 g cm?. A joint-space PID+ controller with computed
torque control is used to steer the robot.
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Table 3.2: The kinematic and inertial parameters of the Fuga I.

Name Symbol  Value Unit
Base width lo 400 mm
Upper arm length l1, I3 190 mm
Lower arm length l2, ls 180 mm
COM upper arm di, ds 69 mm
COM lower arm da, d3 140 mm

COM angle upper arm 1, 73 150 deg
COM angle lower arm Y2, Ya 90 deg

Mass upper arm mi, ms 0.66 kg
Mass lower arm ma, mg  0.21 kg
MOTI upper arm gi, g3 1.46  gm?
MOI lower arm g2, g4 1.66 gm?

3.4 Evaluation of a dynamically balanced five-bar
mechanism

Evaluation approach

To evaluate the instantaneous dynamic balance of this demonstrator, the shak-
ing forces and moments were measured over three paths, which all intersect in
theinstantaneous dynamic balance pose. The first two paths are the reaction-
less paths and the third is a non-moment balanced path. As shown in[Fig. 3.6
the first path is over the z-axis, the symmetry line of the mechanism. The
second path is over the y-axis. The third and unbalanced motion is a diagonal
over the workspace. To show that in this pose the shaking moments are not
affected by accelerations, a second-order motion profile is chosen such that the
accelerations switch in this instantaneous dynamic balance pose. These paths
have an equal length of 200 mm and the traveling time is 0.4 s. This gives a
maximum end-effector velocity and acceleration of 1 m/s and 5 m/ s2, respect-
ively. The measured shaking forces in the plane (z- and y-direction) and the
measured shaking moment out of plane (z-direction) will be reported for these
motions. The average of 15 runs are given. As the measurement setup and
the mechanism showed an eigenfrequency around 27 Hz, a lowpass filter with
a cut-off of 10 Hz was applied to the force/torque measurements.

The mechanism is modeled in a multibody dynamics software. The measured
joint angles are fed into this model to simulate and explain the resulting force
and moment measurements. Firstly, this gives an estimation of the bearing
forces at the two base joints. In the perfectly force balanced case these two forces
completely cancel out each other. Therefore, the measured residual shaking
forces are compared to the modeled internal forces for reference. Secondly,
the modeled shaking moments are a measure for the shaking moments caused
by deviations from the reactionless paths, whereas the difference between the
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Figure 3.8: The z- and y-position of the end-effector (top row), the controller error
e in end-effector coordinates (middle row) and the used motor torque o (bottom row)
for the three trajectories. Trajectory 1 and 2 follow the two reactionless paths through
the center of the workspace. Trajectory 3 follows a non-moment balanced diagonal.
The vertical lines indicate where the robot passes through the instantaneous dynamic
balance pose.

modeled and the measured shaking moments gives a measure for construction
and measurement errors.

Results

[Fig—3.9shows the shaking moments and forces as measured for the three paths.
The peak-to-peak shaking moment for the two reactionless paths are 0.06 and
0.04 Nm respectively, for the unbalanced path this is 0.80 Nm. This corresponds
to a reduction of 93% and 95% of the shaking moment with respect to the
unbalanced path. The difference between the measured and modeled shaking
moment is maximally 0.04, 0.02 and 0.10 Nm for the three paths. In addition,
the third trajectory shows instantaneous dynamic balance in the center of the
workspace. In this pose, the switch of accelerations does not affect the shaking
moments, as indicated by the arrows.

The shaking forces for the three paths have a peak-to-peak value of 0.26, 0.11
and 0.04 N respectively. When comparing these shaking forces to the estimated
bearing forces, which are 5.93, 4.51, and 2.58 N, it shows that approximately
96, 98, and 99 % of the forces in the mechanism cancel out.

ig. 3.8|shows that the paths could be followed up to an end-effector accuracy
of 2 mm. This corresponds to 1% of the length of the path. This is computed
by transforming the measured joint space error to the end-effector error under
the assumption of perfect rigidity.
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Figure 3.9: The measured shaking forces fsm (top and middle) and moments 75 m
(bottom) are shown with thick solid lines. For comparison the estimated bearing
forces on the base joint are given in thin dashed and thin solid lines, respectively
fb,e,1 and f, ¢ 3. In the bottom row the estimated shaking moment 75 is shown with
a thin dashed line. The vertical lines indicate where the robot passes through the
instantaneous dynamic balance pose.

From the difference between the measured and the modeled shaking moments
it is deduced that for the two reactionless paths 23% and 57% of the residual
unbalance can be explained by controller inaccuracies causing the robot to
deviate from the reactionless path. Other causes for the difference between
measured and modeled shaking moments can be internal vibrations, production
tolerances and inaccuracies. High frequency internal vibrations required low
pass filtering of the force/torque sensor signal to eliminate the measured high
frequency vibration. It is expected that this filtering influences the comparison
between measured and modeled shaking forces and moments.

3.5 Discussion

Instantaneous dynamic balance can be found when the momentum wrenches
in a mechanism sum to zero for all velocities in a certain pose. By following
a specific sequence through the chains, unique and solvable constraints are
placed on the proximal part of the mechanism. From these conditions, the
mass, COM and inertia matrix can be deduced for all cases. The remaining
variables are the COM location along w axis and principal moments of inertia
g. This fixes the mass, COM, and the orientation of the body. The positivity
of mass and inertia, the triangle inequality put bounds on the choice of inertia
matrices. This requires that A; should have the same sign as w'p and that
w' €. > 0. In several special cases, additional requirements on t and h are to be
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satisfied . These requirements are inherited over to bodies higher in
the chain, limiting the choice of their inertial parameters. By satisfying these
bounds, the mechanism can be constructed in theory. In practice, however,
additional constraints on stiffness, shape, etc. will further limit the choice of
inertial parameters.

The instantaneous dynamic balance conditions can be found for any robot,
provided that resulting parameterization must be nonsingular and the proximal
part solely consists of single DOF joints, as the method selects of a set of
serially connected joints as independent coordinates. The method relies on the
differential kinematics only, which are readily available through screw theory
and does not require the solution to or inspection of the loop-closure equations.

The instantaneous balance pose and path balance might prove useful in pick-
and-place applications where high precision is only needed at specific moments
and poses. For example, precision is typically only of importance during the
placement phase, whereas during the traveling phase it is not needed. By fol-
lowing a dynamically balanced trajectory shortly before and during placement,
the base vibrations are given time to dampen out. This enables a high-precision
end-effector motion when needed, while still providing for the whole workspace.
Now, with the availability of the instantaneous dynamic balance pose a wider
choice of trajectories is possible to reach a preselected pose of interest.

To extend the instantaneous dynamic balance to global dynamic balance,
additional conditions are to be met. It requires not only that the momentum
is zero in a certain pose, but also in all other poses. Harmonizing this step is
beyond the scope of this chapter.

The Fuga I was constructed to demonstrate that the presented method res-
ults in instantaneous dynamic balance. Although its unusual mass distribution
is not likely to be used in industry, its dynamic balanced paths are comparable
to that of the DUAL V [109], yet is achieved through a design with two in-
stead of four motors. Also, the COM does not have to lie on the line through
the pivots, and the upper and lower link lengths can differ. This shows that
with this method, novel dynamic balance solutions can found for mechanisms
with reactionless paths, and that the location of their intersection points can be
chosen freely. The shape of the reactionless paths is determined by the remain-
ing parameters, the choice of which is outside the scope of this chapter. Here an
iterative approach was adopted, which resulted in perpendicular, approximately
straight paths.

The dynamic balance measures, as reported here, are dependent on the
cycle time, motion profiles and the choice of paths. This is due to the velocity
dependent terms in the shaking forces and moments and hence in the dynamic
balance measures. Here, the worst and best the trajectories for this setup are
compared. These are therefore regarded as representative of the robot.

3.6 Conclusion

For the first time, screw theory has been applied to derive a subset of the
dynamic balance conditions for any planar or spatial, single or multi-DOF
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mechanism in a general, geometrical manner, without requiring the closed-form
solution to the loop-closure constraint equation.

The presented screw-based dynamic balance method provides and solves six
conditions per DOF in spatial case, and three per DOF in the planar case.
These conditions yield instantaneous dynamic balance, which is a prerequisite
for global dynamic balance. This is interpreted as pose, in which multiple re-
actionless paths intersect. The freedom and bounds on the choice of masses,
centers of mass, and moments of inertia where interpreted in a geometric man-
ner.

This method is applied to a planar five-bar mechanism and gave six instant-
aneous dynamic balance conditions; four out of six conditions for global force
balance and two conditions on instantaneous moment balance. The mechanism
was designed such that two reactionless paths intersect in the middle of the
workspace and are approximately perpendicular straight lines. Measurements
and simulations showed that the shaking forces where at least 96% lower then
the internal bearing forces, indicating force balance. The measurements also
confirmed the existence of two intersecting reactionless paths. When compar-
ing the non-moment balanced paths with the two reactionless paths, a shaking
moment reduction in the order of 95 % was achieved. This shows the existence
of an instantaneous dynamic balance pose in the middle of the workspace.






CHAPTER

Higher-order Taylor approximation
of finite motions of mechanisms|

Higher-order derivatives of kinematic mappings give insight into the
motion characteristics of complex mechanisms. Screw theory and its
associated Lie group theory have been used to find these derivatives
of loop-closure equations up to an arbitrary order. In this chapter,
this is extended to the higher-order derivatives of the solution to these
loop-closure equations to provide an approximation of the finite motion
of serial and parallel mechanisms. This recursive algorithm, consisting
solely of matrix operations, relies on a simplified representation of the
higher-order derivatives of open chains. The method is applied to a
serial, a parallel and an overconstrained mechanism. In all cases ad-
equate approximation is obtained over a large portion of the workspace.

4.1 Introduction

Screw theory is frequently used to analyze the instantaneous motion of spatial
kinematics. This theory gives the instantaneous kinematic relations between
the spatial angular and linear velocities of bodies (twists) and constraint forces
and moments (constraint wrenches) acting on a mechanism. This differential
analysis is only available in the pose of inspection, and in general does not
give a description of the finite motion of a mechanism. On the other hand,

The dynamic balance conditions as derived in the previous chapter are only solved for a
single ‘reference’ pose, the instantaneous dynamic balance pose. In order to extend dynamic
balance over the whole workspace, the next chapter attempts to satisfy all
higher-order partial derivatives of the dynamic balance condition. This chapter paves
the way, by providing an algorithm that recursively yields the higher-order derivatives of
the solution to the loop-closure equation that are required for this balancing approach.
This higher-order kinematic approach thereby bypasses the need to solve the loop-closure
constraint equations in closed-form whose solution might not be available or too involved
for algorithmic treatment.

This chapter is a reprint from: J. J. de Jong, A. Miiller, J. L. Herder, Higher-order

Taylor approximation of finite motions in mechanisms. Robotica (2019) vol. 37 (7), pp.
1190-1201
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closed-form solutions to the geometric closure equations are not always avail-
able or are intricate to obtain for more complex mechanisms. This hinders the
use of algebraic methods for expressing the finite motion of a mechanisms. For
synthesis and analysis purposes, attempts have been made to extend the infin-
itesimal screw analysis using higher-order derivatives. Bartkowiak and Woernle
[12] used the higher-order derivatives of screws to find the conditions such that
overconstrained single loop linkages have a single degree of freedom. Their nu-
merical method yields an estimated maximum number of derivatives required
to guarantee finite local mobility. Wohlhart [117] [I18] coined the term ‘order of
shakiness’. It defines to which order an arbitrary input still satisfies the higher-
order derivatives of the loop-closure equations. In [22] several mechanisms are
discussed that do not possess a finite mobility but still exhibit a higher-order
local differential mobility which in practice leads to an unexpected large range
of motion. Derivatives up to an arbitrary order of loop-closure equations can
be found by taking Lie brackets of instantaneous screw axes, which can be
expressed as matrix multiplications of twists [87, [77]. This paves the way for
algorithmic differentiation-free derivatives of the loop-closure equations [7§].

However, higher-order derivatives and approximations of finite motion in
closed-loop mechanisms were not yet reported. This involves finding the higher-
order derivatives of the solution to implicit closure equations. These solutions
can be an inverse kinematic model (IK), forward kinematic model (FK) or other
types of mappings, relating the dependent and independent coordinates in the
kinematic loop.

These higher-order derivatives and approximations of finite motion can be
used for the analysis of admissible motions of mechanisms. It also can be
used to enhanced numerical methods for the simulation of the kinematics and
motions. Furthermore, the derivatives of the design criteria can be algebraically
expressed as a function of geometric properties such as link lengths, potentially
aiding the synthesis of specific kinematics, such as straight line mechanisms.
Another possible application is the description of the derivatives of the dynamics
of mechanisms, particularly to determine the conditions for dynamic balance
in arbitrary mechanisms. A system is dynamically balanced when all shaking
forces and moments vanish for all admissible motions [I07]. This implies that
the angular and linear momentum should be constant (for practical purposes
usually zero) and all its derivatives should remain zero throughout motion.
These higher-order derivatives of momentum should provide the geometric and
dynamic conditions for dynamic balancing. For path planning, a sufficient
smooth function in the actuator coordinates is required, i.e. necessitating a
sufficient number of higher derivatives of kinematic mappings between the end-
effector and actuators.

Unfortunately, processing these higher-order multivariate derivatives requires
elaborate bookkeeping, as can be seen in the implementation of the higher-order
chain rule, the Faa di Bruno’s rule [69]. This renders it arduous to find the solu-
tion to the implicitly formulated higher-oder constraints.

In this chapter a simplified representation of the higher-order derivatives
of the screw systems is presented, which directly follows from the product of
exponentials of Brockett [20]. With Vetter’s method for managing matrix deriv-
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atives [I12] this enables us to obtain a recursive, differentiation-free algorithm
for higher-order derivatives of the solution to the closure equations. Using these
resulting higher-order derivatives of the Jacobians, a Taylor approximation of
open and closed-loop kinematics is performed. The method is illustrated with
an approximation of the finite motion of three mechanisms: 1) a serial 6 DOF
manipulator, 2) a parallel five-bar mechanism, 3) and an overconstrained but
mobile Bennett linkage. A preliminary version of this work is presented in [29]

Before we introduce the higher-order derivatives of the loop-closure solution,
the screw algebra is revisited and applied to an open chain . Based
on this, a simplified representation of the higher-order derivatives of an open
chain is presented (Section 4.2). Subsequently, the loop-closure equations and
the matrix derivatives are revisited (Section 4.2]—.. Using these rules the
algorithm for determining the higher-order derivatives of the loop-closure and
its Taylor expansion are presented (Section 4.2) and its implementation is shown

in three examples (Section 4.3}4.3).

4.2 Method

Concepts and notation

In the notation of screw theory, as used in this chapter, a reference frame 1); is
associated to each rigid body i. Points in space a can be expressed with respect
to this reference frame (denoted with superscript a’). In the homogeneous
representation the a-vector is appended with a 1. A change of reference frame
from frame i to j follows from the homogeneous transformation matrix Hf
which consists of a rotation matrix R and a translation vector o
R o]

J— HIqt —
a’ = Hja H7{0 1

(4.1)
The time derivative of the transformation matrix is given by the twist tf’j , l.e.
the generalized velocity of body ¢ with respect to body j expressed in frame
k. For clarity reasons the subscript and second superscript are omitted when
unambiguous. The twist is a vector containing the angular w and translational
v velocity ¢ = [wT7 UT]. The [w ><] denotes the skew symmetric matrix of w

. o . wx] v
5 = [t %) o) =[] (1.2
The twist’s ‘frame of expression’ changes with the adjoint transformation matrices
here denoted with Ad(H )

(4.3)

t = Ad(H)t' Ad(H) = [ R 0]

[ox ]R R
The time derivative of adjoint transformation matrix is given in terms of in-
stantaneous transformation matrix ad (t)

% (Ad(Hg')) —ad(#7)Ad(H?)  ad(t) = H‘;’ﬂ [woxﬂ (4.4)
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This matrix itself can be expressed in another reference frame according to a
nested transform

ad(t’) = ad (Ad(H?)t') = Ad(H/)ad (') Ad () (4.5)

Using these twists and their exponentials, a concise formulation for the for-
ward kinematic mapping of an open chain is available in the form of Brockett’s
product of exponentials [20]

n

HY = [ H (0 = [ explas[s0 ) H2(0) (46)

=0 =0

Here, the instantaneous screw vector s?, specifies the amount of twist of body 4
generated by the unit actuation of joint 7 expressed in global frame. This screw
vector is therefore a purely geometric entity. As this screw vector is defined
according the ordering of the chain — always with respect to the previous body
— the second superscript is omitted. This also means that the instantaneous
screw vectors of lower kinematic pairs are constant when expressed in the con-
necting frames, i.e., d/dt(si™') = d/dt(s}) = 0.

Derivatives of twist systems (open chain)

For an open chain, the higher-order partial derivatives can be found using
the transformations of the previous section. A chain of transformations can
be decomposed into a part which is constant and part which is varying with
respect to this particular derivative. The nested transform of the twist
gives a concise formulation of the derivative of a chain, provided that ¢ <n

a% (Ad(Hy)) = Ad(H?_l)a% (Ad(Hf’l)) Ad(H}) (4.7)
= Ad(H;_,)ad(s;"")Ad(H; ')Ad(H,) (4.8)
= ad(s])Ad(H,)

For the second-order, such a concise representation also exists. For the consec-
utive derivative with respect to joint j there exist two possibilities, it is either
after body 7 in the chain (case 1) or before ¢ in the chain (case 2), provided
that 7 < n.

1. Case 1. (¢ < j) In the case that joint j is higher in the chain than 4, the
twist is unaffected (8/9g;(ad(s{)) = 0). Therefore, the second partial
derivative becomes

0 9
dq; 0g

(Ad(H,)) = ad(s})ad(s})Ad(H,) (4.10)

2. Case 2. (i > j) In the case that j is below ¢ in the chain we use the nested
transform property to split the chain into a dependent and independent
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part. It may be verified that 9/9dg; (ad(sg)Ad(Hﬁ)) = 0. Therefore

S e (AA(H) = 5 (A(E)sa () Ad(E)) (a1
6‘2 (Ad(H®)) ad(s!) Ad (H) (4.12)

Using (Eq. 4.9) a chain of matrix products can be found and collected
again using the nested transform [Eq. 4.5]

0 0

9 90 (Ad(HY,)) = ad(s))ad(s])Ad(H,)) (4.13)

This leaves us with an expression similar to 7 with the difference that
sequence of multiplication is swapped. This also follows from the symmetry
(commutativity) property of mixed partial derivatives.

A consecutive application of and gives us the geo-
metrical higher-order partial derivatives of the adjoint transformation matrix.
The mixed partial derivative with respect to the elements of q are denoted
by D = 9%/(9¢y" - - 9gam™). Vector e = (eu,...,a,) comprises the order
of derivatives corresponding to g, running from the base to the end-effector.

k=ai+ ...+ an = |a is the total order (Appendix |A). The mixed partial

derivative of the adjoint transformation matrix is
DS (Ad(H Had )*"Ad(H,) (4.14)

and similarly for the higher partial derivatives of the instantaneous screw vec-
tors

n—1
=[] ad(s:)* s (4.15)
i=1

These results (Eq. 4.14] and [Eq. 4.15) are similar to that of [77], with the
difference that the index ranges — to distinguish between the sequence of de-
rivatives — are taken into account by the ordering of a. From the commutative
property of mixed partial derivatives it follows that for any sequence of differ-
entiation the same results are obtained.

Loop-closure equations

The open-loop derivatives (Eq. 4.14/and [Eq. 4.15)) can be used for the derivatives
of loop-closure equations, as a closed loop can be seen as a connection of open
loops, e.g. a simple loop can be seen as an open chain of with the last link fixed
to the base. The loop-closure constraint equation (lc) states how the members
of the loop are constrained. It can be written in terms of locally validly chosen
independent u and dependent coordinates d, also termed input and output,
respectively. The total set of coordinates we call 7' = [uT dT]

le(u,d) =0 (4.16)
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The solution to this condition is denoted by km, which can be the inverse,
forward, or any other kinematic model giving an exact relation between inde-
pendent and dependent coordinates

d = km(u) (4.17)

The solution (km) to the loop-closure equation is not necessarily available for
complex mechanisms. Therefore, we are looking for a Taylor expansion using
higher-order derivatives of the constraint formulation and the open loop deriv-
atives of section [Section 4.21 We start with the first-order time derivative of
the closure equation. This reads

% (Ic) = Dy(lc) @t + Dyg(lc) ® = Uu+ Vd = 0 (4.18)
Here D, (Ic) = U and Dy(lc) = V' denote the matrix collection of all the first-
order partial derivatives (Jacobians) of the constraint equations with respect
to uw and d while assuming independence of w and d. This gives rise to the
Jacobians C and Q, respectively linking d and 7 to d

d= -V 'Ud = Qu=D,(km)a 7 =Cu= H a (4.19)

We already have seen that closure equations can be written as a function of
transformation matrices of the open chain. Therefore, the higher-order partial
derivatives of the open loop equivalent (Dg¥(Ic)) are available. Now we are
looking for a method of writing the higher-order derivatives of the constraint
Jacobian Qj = D (km).

Multivariate matrix derivatives using Kronecker product

The higher-order partial derivatives of matrices can be managed with the use of

the Kronecker product [I12]. Refer to[Appendix|A|for definition and properties
of the Kronecker product as used in this chapter. Different from [112], the

higher-order derivatives of matrices are organized here as the concatenation of

the derivatives of the columns A = [a1 ... am]
Du(A) = [Dy(a1) ... Dy(am)] (4.20)
D2(A) =D, (D,(A)) = [Di(a1) ... Di(am)] (4.21)

The partial derivatives of the product rule, the chain rule, Kronecker product,
and the inverse matrix derivative are given as follows:

e Product rule of A(x) € R"*™ and B(x) € R™*?, with & € R?, in which
I, is the p X p identity matrix

D,(AB)=D_,(A) (B® I,) + AD,(B) (4.22)
e Chain rule of nested variables b and ¢

Dc(A(b(c))) = Dyp(A) (Im ® Dc(b)) (4.23)
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e Derivatives of the Kronecker product can be given with the use of per-

mutation matrices (refer to [Appendix |A))
D,(A® B) = (Dz(A) ® B)(In ® P;p) + A®D,(B) (4.24)

e Derivative of matrix inversion
D,(A7") =-A"'D,(A) (A" ® I,) (4.25)

Recursive application of these rules allows the extension of these derivatives to
higher orders.

Higher-order derivatives of the constraint Jacobians

Using the rules from the previous section, the second-order derivatives (Hes-
sian) of the solution to the constraint equations are found. This is done by
consecutive application of the chain rule, the product rule, and the inverse

matrix derivative to the constraint Jacobian
Q:=Du(@)=-D, (V) UeD) -V 'DU)JI&C)  (426)
=-V'DJ(V) (@ ®I)+D,.(U)(I®C) (4.27)

After reordering the Kronecker products, we can find a concise formulation of
the Hessian matrix

Q:=-V ' [D.(V) D.(U)](C®C)=-V 'FL, (4.28)

in which Fy = Di(lc). A further derivation is applied to show that a similar
structure as the Hessian can be found for the 3™ derivative
Q:®C
Qs =D,(Q2) = -V ' [D.(V) D.(F) F]|L:®C|=-V 'FLs
Du(LQ)
(4.29)

For higher orders this process can be repeated until the desired order is reached,
giving us a recursive algorithm

. Qr10C )
Qr=-V ' [D.(V) Dup(Fi-1) Fp1] |Li-1®C| =-V "FiLy (4.30)
Du(kal)

This algorithm consist of three steps:

1. The higher-order derivatives of V and U are substituted into the proper
location of Fj. These can be found a priori by higher-order screw deriv-
atives of the open-loop equivalent.

2. The Lk matrix is filled with precursory, lower-order results.

3. The combination of the three matrices gives the subsequent partial deriv-
ative of the constraint Jacobian.

It should be noted that repeating terms occur which could be combined to mit-
igate the computational burden. The simplification of this recursive formulation
is outside the scope of this chapter.
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Higher-order Taylor approximation of closure equation

The Taylor approximation of the loop-closure solution can now be written using
the partial derivatives of the constraint Jacobians up to the k-th order. We
assume that at the evaluation point the closure constraint is satisfied, and that
the evaluation point is at zero such that the Taylor series becomes a Maclaurin
series. The input for the independent variables is given as a power (denoted
with ®%) of Kronecker products [112]

d(u) = d(0)+Qiut g Q2(u®u)+ Qs(u@u@u Z% a® (4.31)

4.3 Examples

To show the performance of this procedure for single- and multi-DOF mech-
anisms, three examples are presented here. In the first example, the Taylor
approximation along a trajectory of a serial robot is investigated to see its
performance close to the workspace boundary. In the second example, a multi-
DOF approximation of a parallel manipulator is shown. In the third example,
the method is applied to a Bennett linkage to compare two approaches to deal
with overconstrained mechanisms.

The computation times for these examples are recorded and reported in
The time reported is for an average over 10 trails with 200 evaluation
poses each. These computations were done with Matlab 2014b running on a
PC with an Intel Core i7 4800MQ running at 2.70GHz.

Approximate solution of the inverse kinematics of a 6 DOF
serial manipulator

The inverse kinematic model of general serial linkages are not readily available.
For a 6 DOF serial manipulator the IK is found by Husty et al. [50] by invoking
algebraic methods to find and solve a univariate polynomial of order 16. In this
first example we will show the procedure to find the higher-order derivatives
and Taylor approximation of a 6 DOF serial manipulator following a straight
line, rendering it a single DOF expansion.

This manipulator consists of 6 bodies with 6 joints and an end-effector which
should follow a straight line in the y-direction. Therefore the constraints are
written as

le: HE(q)HS, = Hos(Yaes)

in which HS, describes the location of the end-effector expressed in the 6
body fixed frame, and HS,. the desired end-effector pose in global frame. The
independent coordinate is the the y-position along the straight line © = yges.
The dependent coordinates are the set of joint angles d = q.
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Figure 4.1: Top The 7*"-order Taylor expansion of the inverse kinematic model of a
6 DOF serial manipulator (solid black) over a desired horizontal trajectory yqes. The
evaluation point is [0,0,0.3]. The trajectory is approximated well until close to the
end of the workspace at [0,1.4,0.3]. Bottom left and right The approximation error
for translation ey and orientation e,, respectively. The vertical line denotes the end of
the workspace.

Based on these constraint equations, the first- and second-order derivatives
the open loop Jacobains are given
D, (Ic) = U = 84 Dy(le) =V = [sl 35]
Dr(U) =0 D’I"(V) = [0 Dr(s2) e D'r(SG)]

in which the product of sequence (Eq. 4.15)) is used to fill the higher-order
Jacobains

Dr(si):[ﬂ P CONREE ﬁ(si) 0]
=[0 ad(s))s, --- ad(s;_1)s;, 0]

The Taylor approximation is made up to the 7" order. The result of this
approximation can be seen in In the initial pose — in which the end-
effector is in [0,0,0.3] — the robot lies in the xz-plane. The desired trajectory
is a motion from this initial pose until 2 m in the y-direction which is beyond
the workspace boundary. The workspace ends at 1.4 m.
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For higher orders it can be seen that tracking converges to the desired path
until the boundary of the workspace. Beyond this point the trajectory estimate
is no longer adequate and the approximation starts to diverge. In this case the
radius of convergence coincides with the edge of workspace.

Approximate solution of a five-bar mechanism’s motion

The higher-order derivatives and Taylor expansion technique is applied to ap-
proximate the inverse kinematic solution of a 5R five-bar mechanism. We choose
to describe the five-bar as a connection of two open chains a and b, with joints
q1 and g2, and g3 and g4 respectively. The interconnection point is the end-
effector «°. This point has to satisfy the constraint equation from both sides (a
and b) calculated in local frame x5 = HS3(q1,2)x* and ) = H{(gs,4)x*. The
closure equation can be written as

0 0

T —x,
Using the end-effector coordinates w = x° as input and the 4 joint angles
d= [ql . q4} T as output, the first-order partial derivatives of the closure

equation become

0

Dute) =0 = 1] Dute)=v = [Pl B e

0

IS}

The higher-order partial derivatives can be found by using the twist derivatives
from and recursive equations from

The Taylor approximation is computed up to the 7" order for 200 positions
of the end-effector x® forming 4 paths over the 2- and y-axes and over the
diagonals, with the aim of finding an approximation of the corresponding joint
displacement of the joints [q1 ...qs]. For the evaluation of the quality of the
Taylor approximation, the end-effector position is approximated from the left
22 and right ) side, and plotted together with input paths.

The result of the Taylor approximation shows that in a large por-
tion of the workspace around the evaluation point ° = 0 the approximation
converges to the target trajectory indicating a correct estimation of finite joint
displacement. However, further from the evaluation point and closer to work-
space boundary the accuracy is less as can be seen in the insert.

The Bennett linkage, an overconstrained linkage

An overconstrained linkage has a redundant set of loop-closure constraints.
That is, the number of dependent coordinates d is smaller than the number of
constraints. This poses a problem for proposed method — as apparent from
— since it requires inversion of the matrix V', which was so far assumed
to be square and nonsingular. Among others, there are two ways to find the
higher-order derivatives of the loop-closure solution: 1) By selection of a subset
of constraint conditions to make a square system 2) or by replacing the inverse
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Figure 4.2: The Taylor approximation of the inverse kinematic model of a five-bar
(solid grey) around evaluation point at ° = [0, 0] up to the 7*" order for 4 different
trajectories. It shows the left (a, red) and right (b, blue) estimation of end-effector
trajectory (dashed black) for the order 1, 3, 5, and 7. The insert shows convergence
for higher-order estimations far from the evaluation point.

with a left pseudo inverse in [Eq. 4.19] This can be done when the columns
of V are independent, otherwise the mechanism is in a singular pose where
its instantaneous DOF increases. Using the left pseudo inverse, the solution is
then

Q.=—(V'V) 'V F.L,=-VTF.L, (4.33)

For the subset method (method 1), the corresponding constraint equation will
be indicated with lcs. A possible disadvantage of this method is that the con-
straint equations can be selected sub-optimally, which may induce parameter-
ization singularities, and thus limiting the Taylor approximation.

An example of such an overconstrained mechanism is the Bennett linkage
[13]. The Bennett linkage consists of a single spatial loop compromising 4
non-parallel revolute joints which do not intersect in a single point. According
to the Chebychev-Griibler-Kutzbach’s criterion such a spatial linkage with 4
bodies and 4 joints should have a mobility of —2. However, the mechanism is
mobile when specific kinematic conditions are satisfied [9} [12]:

1. Equality of the opposite link lengths i1 = I3, l2 = l4
2. Equality of the opposite angles between joint axes a1 = a3, e = au
3. The Bennett condition l;/sin(a;) = l2/ sin(a2)

The joint angles relate according to: q1 + g3 = q2 + qa = 27 with ¢1 and g2 as

sin(a1/2 — a3 /2) tan(q1 /2) tan(g2/2) = sin(a1/2 + as/2) (4.34)
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Figure 4.3: Comparison between the two Taylor approximations of the Bennett
linkage (10" order); 1) using a subset of constraints, and 2) using the pseudo inverse
of the full set. Left shows the Bennett linkage as used, in gray a typical pose and in
black the evaluation pose, which is close to co-linearity. The blue arrows indicate the
joint axes (m;). The magenta circles indicate the motion of the coupler link. Right
shows a comparison between the theoretical joint angles g¢, and the approximated
joint angles using the selection method ¢s and the pseudo inverse method (gt).

To show the Taylor approximation, we assume no prior knowledge of joint
angle relations, and we will write the closure equations in terms of transform-
ation matrices. We do need the kinematic conditions to ensure full mobility.
We use a1 = 0.6 rad, as = 1 rad, [1 = 1 m, and I3 = 1.5 m. The Bennett
linkage is treated as two open chains, the first linkage consisting of bodies 1
till 3 and a second linkage consisting solely of body 4. Both body 1 and body
4 are hinged with the base. For the loop closure, body 3 is considered rigidly
attached to the fourth body. Joint 1 is treated as the independent coordinate
u = ¢1. There exist three dependent coordinates d' = [qg qs3 q4}. Together
with the 6 constraints this makes the mechanism three times overconstrained.
The effect of both strategies will be shown in and around a special configuration
of the robot.

With the selection strategy only the angular constraints are taken into ac-
count. For the complete constraint also the translational constraints are used

les : R3(q1_3)R)(qs) = const.  lcg: H(q1_3)H{(gs) = const.  (4.35)

For the Bennett linkage there exist two special configuration when the mech-
anism is fully collapsed onto a line. In that configuration all the joint axes (n;)
are perpendicular to the same line, as shown in As lcs is selected to
be consisting of the angular constraints, the system is in a parameterization
singularity and the corresponding Vi = ['n,2 ns —n4] matrix is singular.
When the full set of constraints is taken into account V¢ = [32 S3 7.54] has
a rank of 3 and its left pseudo inverse still exists.
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Table 4.1: The mean execution time in seconds of the Taylor expansion for the three
examples. For the overconstrained Bennett linkage the results of the selection (s) and
full (f) method are given.

Order Serial Five-bar ~ Bennett (s) Bennett (f)
1 056x107% 49x107¢ 21x107®* 21x1073
2 69%x107% 15x107® 36x10"% 34x10°3
3 11x107% 3.1x107% 47x10% 34x1073
4 28 x 1073 11x107%  11x1073 11 x 1073
5 85x 1073  47x107% 27 x 1073 19 x 1073
6 0.35 0.47 38 x 1073 48 x 1073
7 2.6 5.4 81 x 1073 85 x 1073

Also close to this special configuration the Taylor approximation using the
selection strategy (lcs) on angular constraints suffers from this parameterization
singularity as can be seen in Here, a Taylor approximation up to
10™® order is made for both strategies. The evaluation pose is close (+0.4 deg
of input joint) to the special configuration. It can be seen that the Taylor
expansion using the selected constraints, follows until roughly 6 deg. With the
full set of constraints an approximation up to 30 deg could be obtained. This
regression can be explained by numerical round off errors accumulating due to
the ill-conditioned matrix inverse of Vi.

It should be noted that although the Bennett linkage has no singularities,
there is a radius of convergence around its evaluation point. This is due to the
fact that the relation between the input and the output angle follows an arctan

relation in

4.4 Discussion

In all three examples it can be seen that the Taylor approximation is confined to
a region of convergence. One limiting cause is the existence of the singularities.
Additionally, as seen in the Bennett linkage, the underlying closure solution
can pose boundaries on the Taylor approximation. Therefore, in the case the
closure solution is not known beforehand, one cannot discriminate between both
causes of bounded convergence, based on a single Taylor approximation.

This method is restricted to lower kinematic pairs by the assumption that the
screw vector associated with the joints is constant when expressed in the frames
of the connecting bodies. For most practical applications this is sufficient.

For the calculation of higher-order partial derivatives, the proposed method
uses Kronecker products of matrices, which can lead to very large matrices for
larger systems and higher orders, as can be seen in This possibly
poses practical limits on the applicability of this procedure. Sparse matrices and
the aggregation of mixed partial derivatives can be used to mitigate computer
memory usage and reduce the number of matrix operations. Also, as seen
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in the Bennett linkage example, an expansion close to singularity leads to ill-
conditioned matrices reducing the numerical accuracy significantly.

The method presented here generates higher-order derivatives of motion by
matrix multiplications without the need of taking derivatives analytically. This
method allows to investigate the finite motion of open- and closed-loop link-
ages without the need to solve the closure equations while maintaining algebraic
insight between the geometrical parameters. This opens up a potential of al-
gebraic investigation and synthesis of motion of closed-loop linkages.

4.5 Conclusion

In this chapter, a recursive method was presented which gives the higher-order
partial derivatives of open- and closed-loop mechanisms consisting of lower kin-
ematic pairs. This method relies on a combination of a simplified representa-
tion of the higher-order twist derivatives, also presented here, and the matrix
derivatives of Vetter. This enables the Taylor approximation of kinematic map-
pings over a given trajectory and workspace, as shown by three examples. The
method showed to be applicable to open- and closed-loop mechanisms with
multi-DOF and to overconstrained mechanisms, yielding an algebraic expres-
sion for the derivatives and the approximation of finite motion.



CHAPTER

Higher-order derivatives of rigid
body dynamics with application to
dynamic balance

The fluctuating reaction forces and moments induced by high-speed ro-
bots may lead to undesired base vibrations, noise and a loss of the end-
effector accuracy. Dynamic balance aims to eliminate these shaking
forces and moments by adding counter-rotating inertia wheels or duplic-
ate, mirrored mechanisms, which may also lead to an unwanted increase
of complexity and motor effort. Alternatively, dynamically balanced can
be obtained for a small number of closed-loop mechanisms solely by a
specific design of the masses, centers of mass and moments of inertia
of the moving links whose solution is potentially a more simple and
cost-effective. Yet, the extension of this set of mechanisms is hindered
by the intricacy of the dynamic balance conditions, as these conditions
typically contain closed-form kinematic models, needed to express them
in minimal coordinates. This chapter presents a novel higher-order dy-
namic balance method that yields the all dynamically balanced designs
of given nonsingular mechanism. This method relies on the higher-order
partial derivatives of the rigid body dynamics, thus avoiding the need for
finite kinematic models. The resulting necessary and sufficient dynamic
balance conditions are linear in the inertial parameters such that general
null space procedures, either numeric or symbolic, yield all dynamically
balanced masses, centers of mass and moments of inertia. The method
is illustrated by known examples, leading to a novel dynamically bal-
anced, spatially moving 3-RSR linkage that is dynamically balanced for
motion over three planes of symmetry.

This chapter aims to expands the dynamic balance solution of over the whole
workspace by finding and solving a sufficient number of higher-order partial derivatives of
the dynamic balance conditions (Objective 1). The aim is to arrive at algorithm a that
is applicable to any given planar or spatial, serial or parallel, single-DOF or multi-DOF
linkage of which a closed-form kinematic model might not be readily available. Therefore
the higher-order kinematic approach of the previous chapter is expended to the dynamics
and the dynamic balance conditions.

75
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5.1 Introduction|

Fluctuating reaction forces and moments generated by fast moving robots cause
unwanted base vibrations and accuracy loss at the end-effector [68]. These shak-
ing forces and moments may be reduced or even eliminated by a specific design
of the robot’s structure and inertial parameters [5]. Such mechanisms, that emit
neither shaking forces nor shaking moments, are termed dynamically balanced,
or force-balanced when only the shaking forces are zero. This feature may
be achieved by the addition of supplementary counter-mechanisms to a given
mechanism, such as counter-rotating wheels [I4} [47] or idler loops [0}, 127} [19].
Alternatively, various synthesis methods combine and recombine elementary
dynamically balanced modules such four-bars [86] [120] or panthograph-like
structures [40}, [I07), [109] into larger DOF, force balanced or dynamically bal-
anced mechanisms. These elementary modules and synthesis approached, on
the other hand, were obtained by analysis (inspection) of the dynamic balance
conditions, resulting in a range of mass distributions, i.e. masses, centers of
mass, and moments of inertia that balance these mechanisms [86] [74], [75].

For the viability of dynamic balance it is essential to find simple and low-
weight mechanisms that still fulfill the desired kinematic task. In this view,
the addition of counter-mechanisms seem undesirable since it will increases the
mass, complexity and the required motor torque. The synthesis approaches,
on the other hand, have proven to be versatile for force balance, yet, incom-
plete for dynamic balance [96]. To expand the scope of the dynamic balance
designs and to enable new synthesis methods the focus of this chapter lies in
the improvement and automation of the analysis approach.

The necessary and sufficient dynamic balance conditions are a constant lin-
ear and angular momentum. This sets their derivatives, the shaking forces and
moments, to zero [116]. In practice, when the system is initially at rest, a
zero linear and angular momentum suffices. A combination of inertial para-
meters that satisfy these conditions is termed a dynamically balanced solution,
whereas the set of all solutions is termed the design space of dynamically bal-
anced inertial parameters, or design space for brevity reasons. It should be
noted that serial mechanisms cannot be dynamically balanced without addi-
tional counter-mechanisms as they would require zero or negative MOIs [47].
For parallel mechanisms is not trivial to obtain the complete design space as
the dynamic balance conditions are to be expressed in minimal coordinates [43].
This involves the incorporation of kinematic loop-closure models, which may
be intricate, even for relatively simple parallel linkages [86], or unavailable in
closed-form for more complex mechanisms [49].

This complexity of the balance conditions is partly overcome by the Lin-
ear Independent Vector Method [15] and derived methods [57} 23] [60] for force
balance, and the Inertia Flow Method [125], which dynamically balance planar
mechanisms with counter-mechanisms. These methods eliminate only a sub-
set of dependent coordinates, leading to simpler balancing conditions while

This chapter is submitted to Machines and Mechanism Theory under the title: ‘Higher-
order derivatives of rigid body dynamics with application to dynamic balance’ by J. J. de
Jong, A. Miiller, and J. L. Herder
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still yielding the complete design space in general. However, in special kin-
ematic cases, such as parallelograms, these incomplete kinematic models lead
to spurious force or moment balance conditions and therefore to an incomplete
description of the design space [43]. Moreover, Ricard and Gosselin [86] showed
that two special kinematic cases of the planar 4R four-bar linkage, the kite-type
and antiparallogram-type, may be fully dynamically balanced by a specific mass
distribution, i.e. without the need for counter-mechanisms. This gives rise to
some of the aforementioned synthesis methods [86, [120].

To prove that the two special cases of the four-bar linkage [86] are indeed
the only dynamically balanced solutions, Moore et al. factorized the balance
conditions and loop-closure equations by toric geometry and Laurent polyno-
mials [44]. Subsequently, through a similar algebraic approach, they showed
that the spherical four-bar linkage cannot be dynamically balanced without ad-
ditional structures [76]. This shows that dynamic balance by mass distribution
require very specific kinematic conditions. Currently, these algebraic methods
still requires tailored inspection per mechanism and are yet to be extended to
multi-DOF mechanisms. An alternative method to deal with the kinematic
complexity of the loop-closure equations was adopted in [33]. There, screw the-
ory was applied to find instantaneous dynamic balance, yielding a single pose
in which robot accelerations will not induce shaking forces and moments. Since
outside this pose the balance quality is not guaranteed, this method yields and
solves only necessary, but not sufficient, conditions for dynamic balance.

To summarize; in literature several systematic analysis methods were presen-
ted that solve the dynamic balance conditions for given linkages. Yet, no
method yields the complete dynamically balanced design space of arbitrary
linkages without a tailored manipulation of loop-closure equations. Such a
method is desired to advance our understanding of dynamic balance and to
find new, simple and lightweight solutions.

In this chapter, this longstanding problem is tackled by extending the in-
stantaneous approach of [33] over the complete workspace by including and
solving a sufficiently number of higher-order derivatives of the dynamic balance
conditions. The loop-closure conditions are automatically satisfied since this
operation is performed in the reference pose, i.e. the pose in which the mech-
anisms dimensions are defined, therefore no closed-form kinematic models are
needed. This method leads to the necessary and (we conjecture) sufficient dy-
namic balance conditions, and an automatic and complete characterization of
all dynamically balanced designs of any given nonsingular mechanism consisting
of lower kinematic pairs.

To this end, a screw theory based recursive algorithm is presen-
ted that, for the first time, yields all higher-order derivatives of the linear and
angular momentum equations (the dynamic balancing conditions) of serial and
parallel kinematics (Section 5.3)). This algorithm strongly leans on the higher-
order kinematic models as derived in [28]. The resulting higher-order mo-
mentum equations are recast into the parameter-linear form [58| [24] to provide
dynamic balance conditions that are linear in the inertial parameters and solv-

able by null space algorithms (Section 5.4)). General null space algorithms, i.e.
singular value decomposition or Gaussian elimination, yield a complete descrip-
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tion of all dynamically balanced mass distributions. The resulting description
however, may be strongly mixed in the inertial parameters, causing a loss of
interpretation and design intuition. Therefore, an alternative, meaningful de-
scription of the design space of serial and parallel linkages is presented. This
basis is derived from the concept of inertia transfer and the multipole repres-
entation of the inertial parameters, as used in the field parameter identification
[88] . This interpretation, here termed the multipole-rod repres-
entation, is shown to aid the feasibility study of dynamic balanced mechanisms.
It is furthermore shown that for serial mechanisms only derivatives up to the
second order are needed for dynamic balance. For parallel linkages such an
upper-bound is found to be case dependent. Case studies of a 6-DOF serial
robot, a 4R planar four-bar linkage, and a 3-RSR mechanism illustrate the
higher-order dynamic balance method . This results in a novel
3-RSR mechanism design that is dynamically balanced for the 2-DOF that lie
on three mirror symmetric planes.

5.2 Synopsis, concepts and notation

In this section the groundwork is laid for the higher-order derivatives of ri-
gid body dynamics in a screw theory framework. It starts with a synopsis of
the method to guide the reader through the following sections. Thereafter the
kinematics and higher-order derivatives of kinematics in screw theory is intro-
duced, followed by a recapitulation of the rigid body dynamics including the
multipole-rod representation of the mass matrix.

Synopsis of the higher-order dynamic balance method

The general dynamic balance conditions (as we will show in [Eq. 5.50) may be
written in the form of

h(u,d,z) =0 (5.1)

in which w are the independent coordinates, d the dependent coordinates and
Z the collection of all inertial parameters of the mechanism, i.e. masses, centers
of mass, and moments of inertia. To design a dynamically balanced mechanism
we which to find Z, such that the balancing condition holds for all independent
u and corresponding dependent coordinates d.

The conventional approach would be to write the dynamic balance conditions
in minimal coordinates, i.e. Write in terms of w and Z only, by invoking
the loop-closure equation

le(u,d) =0 = d =km(u) (5.2)

This however is shown to be a tedious approach as there is in general no solution
to the loop-closure equation, i.e. km is not always known. Furthermore, if the
solution is found nevertheless, it is typically a set of complex equations which
are hard to use in the balancing procedure.
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In this chapter we take a different approach. Here we place the mechanism
in the reference configuration (uo and do) in which the mechanism is defined.
In this pose the loop-closure equation (Ic) are satisfied by definition of the
mechanism. Now we use the fact that the Taylor approximation of
around this pose should be also be zero for dynamic balance. With a slight
abuse of notation this reads

ﬁ(u, d,z)~ ’_‘L(’u,o, do, 2) + D, (’_l(’u.o, do, 2)) (u — UQ)

, 03

1 h —
+ ﬁDi(h(’uO’doyz)) (u _ uO)Z 4.

This should hold for all motion, i.e. for all u, necessitating all Taylor coefficients
(the higher partial derivatives be(h)) to be zero. Therefore we obtain the
following necessary conditions

D} (h(uo,do, 2)) = 0 (5.4)

which are the derivatives with respect to the independent coordinates u that
take the dependency of d into account. This dependency is readily available
from recursive application of the implicit function theorem, as done through the
procedure described in [33]. Now we have arrived at a set of conditions that
are pose independent and do not require an explicit solution to the loop-closure
equations . We furthermore conjecture that with enough (but finite
number) of these partial derivatives, these necessary conditions become also a
sufficient set of conditions.

Moreover, it will be shown that the inertial parameter vector Z is linear in
these Taylor coefficients , such that they, with the help of a regression
matrix X, can be written in the form of

Xk(’u,o, do)Z =0 (55)
and solved using methods from linear algebra (Section 5.4))
Z € ker (Xy) (5.6)

Leading to a complete description of all dynamically balanced mass distribu-
tions. Subsequently, we systematically partition and interpret the resulting
design space in order to retain some insight in design dependency and feasib-

ility of the solution (Section 5.5). At last we illustrate the method on known
and new examples (Section 5.6|).

Serial and parallel kinematics in screw theory

Screw theory is used throughout this work as it gives a concise representation
of the higher-order derivatives of kinematics and dynamics. This screw theory
framework draws on the fact that the motion of a body may be interpreted as a
combination of an angular velocity w around an axis in space, passing through
point 7, and a linear velocity along that axis, termed the pitch A¢

il e
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This combination of linear v and angular velocity w, is termed twist ¢. The
linear velocity v is the velocity of the particles of the body that instantaneously
pass through the origin of the reference frame. Two special cases exist: 1) a
pure rotation, i.e. the angular velocity is orthogonal to the linear velocity,
resulting in a zero pitch (A = 0), and 2) a pure translation, when the angular
velocity is zero and the pitch is infinite (A = 00).

The twist of a link in a serial mechanism is linearly dependent on the joint
velocities g of the joints lower in the chain. The twist basis vector s; associated
to each joint j is termed unit twists or instantaneous screw axis (ISA). The joints
in a single chain are numbered from 1 to ng4, from the base to the end-effector.
Together these ISAs form the serial chain Jacobian J; of body i

. . n 0

ti=Jig=[s1 - s 0]q, s = L’S » n} + s [n} (5.8)
These ISA are pure geometric quantities that solely dependent on the joint
location 7, orientation of the joint, encoded by unit vector n, and the pitch of
the joint As. In this case we treat the three single DOF lower pairs: revolute
(R) i.e. As =0, helical (H), or prismatic (P) i.e. As = 0o. For the prismatic
joint n = 0 whereas the joint direction is given by the unit vector Asn = neo.
The higher DOF pairs are treated as instantaneously identical to s set of serially
connected single DOF pairs.

For parallel mechanisms, the body twists may by found by regarding each
loop as a connection of multiple serial chains. A single loop for example is
opened by cutting an arbitrary body, resulting into two serial chains of which
the last ‘virtual’ bodies have the same twists. These loop-closure conditions
constrain the twists the bodies, as encoded by matrix K, such that the set of
joint coordinates q is no longer independent. By selecting a suitable (nonsingu-
lar) set of ng input coordinates u, this system can be solved and all dependent
joint coordinates determined

Dgy(lc) g = KJq =0, q € ker(K.J), qg=Cu (5.9)

The mechanisms Jacobian J' = [J; ---J,,,] is the collection of all ny, body
Jacobians. The ny, x ng C-matrix denotes the first-order solution to the loop-
closure equations.

To express finite motion, a reference frame 1); is associated to each body 7. A
transformation matrix H;, consisting of a rotation matrix R; and a translation
vector 0;, express a point a from a body-fixed frame into the inertial frame of
reference a® = H;a'. In this convention the a’ vector consist of four values; 3
Cartesian coordinates and a 1. The superscripts denote the frames of expression
of the point. These transformation matrices relate again to the ISAs in chain
by product of matrix exponentials, leading to the general forward kinematics
of serial chains [20]

: R o
H; = Hexp(qj [Sj ><})7 H = {0 1] , (5.10)

j=1
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in which exp(g; [Sj X]) denotes the matrix exponential of the 4x4 semi-skew

symmetric matrix of the ISA in the initial configuration (g = 0),
nx rs X 1+ AT

[sx] = [ o ] 0 } (5.11)

and [nx] the 3x3 skew symmetric matrix of n.
A local ISA s! is expressed in the inertial frame of reference by the adjoint
transformation matrix Ad (H )

(5.12)

s) = Ad(H,)s!, Ad(H):{ % 0}

[ox]R R

The time derivative of the transformation matrix relates to the body twist
through the matrix form of the adjoint twist transformation, here termed ad-
joint twist matrix ad(¢;)

da

o (Ad(HL)) =ad(t)Ad (), ad(t) = H“’X] 0 ] (5.13)

Higher-order derivatives of kinematics

For parallel mechanisms a closed-form solution to the kinematic loop-closure
equations does not exist in general. Yet, a higher-order approximation of the
motion is available by treating the closed loop as a connection of several serial
chains. For such a connection the higher-order derivatives of the loop-closure
equations are found and solved yielding a Taylor approximation of finite motion
[28]. In that approach, the higher-order partial derivatives of the body twists are
found from the adjoint twist matrices corresponding to the ISA that are lower in
the serial chain equivalent [79]. Since each ISA is constant when expressed in a
local body-fixed frame, all these derivatives follow from a repetitive application
of |[Eq. 5.13|to [Eq. 5.12| such that

Dg(si) = ﬁad(sj)ajsi (5.14)

In here the higher-order partial derivatives with respect to the elements of
q are denoted by DZ(A) = 9%/9q}" - ... 9gam (A). Vector o = (a1, ..., )
comprises the order of the derivatives corresponding to g, running from the base
to the end-effector. Hence we assume an ordered sequence, i.e. «; corresponds
to the joint ¢;. The k = a1 +. ..+ an = || is the total order. The joints higher
in the chain have no contribution to the motion of the lower joints, such that
this derivative (Eq. 5.14) is set to zero when i.e. a; # 0 for j > 4. By this, all
the higher-order partial derivatives of the body Jacobians Dg(J;) are available.

This procedure is used for the solution of the higher-order closed-loop con-
straints [28] by recasting it into the matrix derivative framework of Vetter for
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bookkeeping [I12]. In this notation the collection of all first-order partial de-

rivatives of matrix A =[a1 --- amn] are sorted according tcEI
D,(A) = [Dq(al) Dq(am)} , (5.15)
Dgy(a:) = [0/0q1(a:) -+ 0/0q,(ai)] (5.16)

With this, the derivatives of the loop-closure solution D, (C) are found through
application of the chain rule and product rule (Appendix |A)) to [Eq. 5.9 The
collection of second-order loop-closure constraints read

D,(KJ) (CoC) + KJD,(C) =0 (5.17)

In here A®B denotes the Kronecker product of two matrices (Appendix [A).
From this equation D, (C) is solved. A recursive application leads to the k-th

order constraints

123

DL (KJC) =) [Di(KJ) -+ KJ|Cr=0, (5.18)
@07 = (€T - D] (5.19)

from which D% (C) may be solved through the algorithm presented in [28]. The
Kronecker power is denoted by a ®k superscript. The exact composition of the
C collection matrix is found through repetitive application of the chain and
product rules, but is omitted due to space limitation.

Rigid body dynamics

The rigid body dynamics of spatially moving objects and linkages is concisely
written with the use of screw theory [IT], [90]. This section briefly introduces
of rigid body dynamics in screw theory, followed by the presentation of the
multipole-rod representation, used in the interpretation of the dynamically bal-
anced solution later on.

Momentum wrench and mass matrix

The momentum of a body is the product of the body’s spatial mass matrix M
and the twist ¢ associated to it. The momentum is a co-screw or a wrench-like
entity and therefore termed momentum wrench hereafter

h— [ﬂ — Mt (5.20)

The mass matrix of a body is formed by the integral over all mass-weighted
particles r of the body

w1 L ] e

Is mCX] mls

1Please note the two distinct uses of the differentiation operator. When the superscript is a
vector Dg‘ it denotes a sequence of partial derivatives, but when the superscript is a scalar

DZ it is a collection of partial derivatives of order k (Chapter A)).
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This gives rise to the classical description with a mass m, a center of mass ¢
and inertia matrix E with respect to the inertial frame of reference. The iner-
tia matrix E contains 3 moments and 3 products of inertia, respectively on its
diagonal e(-'i— =[e1 ez es] and its off diagonal e;r =[ea es eg]. Due to the
frame invariance of kinetic energy K =1/ 2t" Mt, the mass matrix transforms
with an adjoint transformation matrix on the right and its transposed on the
left. Any mass matrix can be diagonalized by expressing it in a body-fixed ref-
erence frame that is located at the center of mass and aligned with the principal
axis of the body. The corresponding transformation matrix is Ad (Hp). This
gives rise to three principal MOIs g1, g2, and g3

M = Ad(Hp)deiag(gl, g2, g3, m,m, m)Ad(Hp)71 (5.22)

In this body-fixed frame, the mass matrix is constant, i.e. m and g; = 0, due
to the rigid body assumption. Since the mass matrix is formed by a collection
of positive mass particles, the mass matrix itself is symmetric positive definite,
leading to 7 inequality conditions on the mass and the principal MOIs

m >0, gi >0, 9i +9; > gk (5.23)

Momentum wrench basis

Similar to the twist basis, we define a mechanism’s momentum basis that spans
all possible momentum wrenches at a given pose. The basis vectors, termed
the instantaneous momentum wrenches (IMW) and denoted with hi, are the
momentum wrenches generated by unit actuation of each joint. The total mo-
mentum wrench of a serial mechanism is therefore given by

b
h=> Mit;=MJg=[h1 - h.,]d, hi=) M;s;=0 (5.24)
j=i
Inhere M = [M; --- M,] denotes the collection of all mass matrices in the

chain. For dynamic balance all the IMWs should be zero for arbitrary motion.
For parallel linkages the momentum wrench basis is computed by applying the
first order loop-closure solution C' to the serial chain equivalent

h=MJCu=0 (5.25)

Multipole-rod interpretation of the mass matrix

In the current dynamic balancing procedure we will use the fact that the balan-
cing conditions are linear in the elements of the mass matrix such that they can
be solved through a set of linear operations. For the interpretation of the res-
ulting design space the conventional mass matrix parameterisation conssisting
of masses m, COMs ¢ and principal MOlIs g is not suitable since it is not linear
in the elements of the mass matrix. Therefore we will use a slight adaptation
of the multipole concept of Ros et al. [88], termed the multipole-rod represent-
ation (Fig. 5.1). This interpretation relies on the fact that a mass matrix can
be decomposed into three primitive elements; 1) a single point mass the at 7,
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Figure 5.1: Three representations of the inertial parameters of a body. (a) The
conventional representation with a mass m, a center of mass ¢ and an inertia matrix
G around c. (b) The multipole representation [88] with parameters that are linear in
the mass matrix; a monopole m at 7, a dipole ¢ in the direction a, and a quadripole n
in the direction of b. One monopole, three dipoles and six quadripoles are sufficient to
describe arbitrary bodies. (c¢) The multipole-rod representation reduces the number
of graphical elements by interpreting the quadripole as an infinitely long, slender rod,
termed ‘pure-inertia rod’ and depicting it a striped bar. The monopole is termed
‘point mass’, whereas the dipole is treated as a ‘displacement’ of the point mass with
negative pure-inertia rod in the same direction.

denoted with a subscript m, 2) a displacement of the point mass in the direc-
tion of a unit vector a combined with a pure-inertia rod of opposite magnitude,
denoted with a subscript d, and 3) a pure-inertia rod in the direction of a unit
vector b, denoted with a subscript 1. These pure-inertia rods are interpreted
as infinitely long slender rods in the direction of the unit vector. Since these
rods are infinitely slender, their mass is zero whereas only the rotational velo-
city component in a perpendicular direction generates angular momentum. A
rotation around their longitudinal axis generates no angular momentum. The
sole difference with the method of [88] is the graphical representation to reduces
the larger number of point masses (poles), which might otherwise congest the
figures.

Now, any mass matrix can be represented by choice of 10 of these primitive
elements, one point mass, three displacements, and six pure-inertia rods, as
long as the spanning vectors a; and b; are unique

M =mMy,(r)+ Y 6:Ms(ai,r)+ > 17:M,(b) (5.26)
1=1---3 1=1---6

The zeroth, first, and second moment of mass of these elements are given by

2

Mm = 1, (me)m =7, E., = —[rx] ,
ms =0, (me)s=a, BEs=1/2[r—ax]’-1/2[r+ax]?, (5.27)
my =0, (me), =0, E, = —[bx]2

For the planar case, this representation requires one point mass, two displace-
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ments and one pure-inertia rod, of which the elements reduce to

M = 1, (me)m =, em = ||,
ms = 0, (me)s = a, es =2a'r, (5.28)
m, =0, (me)y, =0, en=1

For feasibility of each body, they must consist of at least one positive point
mass, and three non-coplanar positive pure-inertia rods (Eq. 5.23)), since two
pure-inertia rods represent an infinitely flat object. A negative pure-inertia rod
requires at least 3 arbitrarily oriented positive pure-inertia rods (or two positive
coplanar pure-inertia rods) of sufficient magnitude to represent a feasible body.
A closed-form feasibility description of an arbitrary collection of these elements
can be found through eigendecomposition of the resulting mass matrix, but lies
outside the scope of this chapter.

5.3 Higher-order derivatives of the momentum
equations and the dynamic balance conditions

The previously presented higher-order analysis of the kinematics is extended
to rigid body dynamics in this section. We aim is to find and solve the neces-
sary and sufficient dynamic balance conditions of arbitrary mechanisms without
invoking the finite, closed-form solution to the loop-closure equations. For dy-
namic balancing purposes this study is confined to the change of rigid body
momentum. Other effects such as gravity, elasticity, or external forces are
not taken into account. The dynamic balance conditions are obtained from
the partial derivatives of the mass matrices and momentum equations of serial
mechanisms, which are extended thereafter to parallel mechanisms by including
the higher-order derivatives of the loop-closure solution. It should be noted that
although serial mechanisms cannot be dynamically balanced without additional
counter-mechanisms, their description are important for dynamic balance since
parallel mechanisms can be regarded as connected serial chains.

Derivatives of the mass matrix in a serial chain

The mass matrix of a body ¢ in a serial chain depends on the pose of the
joints that are lower in the kinematic chain according to[Eq. 5.10]and [Eq. 5.22}
Therefore, the partial derivative with respect to a joint j, lower in a serial chain
(j <), is found by applying [Eq. 5.13|to [Eq. 5.22|

9
9q.

J

(M—L) = —ad(Sj)TMi — Miad(sj) (5.29)

Here we have used the fact that the mass matrix is constant in the body-fixed
frame. For all partial derivatives with respect to joints higher in the chain
(j > 4) this derivative is zero.

A second partial derivative is either with respect to a joint higher (57 <1 < 1)
or joint lower (I < j < i) in the chain. In the first case (j <1 < i) the partial
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derivative becomes

0 0

aiql@iq] (M) = ad(sl)T (ad(Sj)TMi + Miad(s]-))

(5.30)
+ (ad(Sj)Tqu + Miad(Sj)) ad(sl)

Here the Jacobi identity 8/0¢,(ad(s;)) = ad(ad(si)s;) = ad(s;)ad(s;) —
ad(sj)ad(sl) is used. For the second case (I < j < i) only the derivative
of the mass matrix has to be taken into account as a higher joint does not
influence a lower ISA (9/dq,(ad(s;)) = 0). This results in a similar equation
as with the sole difference that the indices j and [ are swapped. This
also follows from the symmetry of partial derivatives. This nested structure,
i.e. the pre- and postmultiplication of adjoint twist matrices, is preserved for
the higher orders, leading to a recursive formula for all partial derivatives of
the mass matrix

%(DZ‘(Mi)) = —ad(s;) ' Dg(M;) — Dg(M;)ad(s;) (5.31)
in here j is the lowest joint to which a partial derivative is taken, i.e. a; =0
for all I < j. In case ay # 0 for any [ > i, this equation is set to zero. These
derivatives may be summed to form the partial derivatives of the aggregated

mass matrices (Eq. 5.24)).

Derivatives of the momentum wrench in a serial chain

Now that the derivatives of the mass matrix up to arbitrary order are available,
we consider the partial derivatives of the momentum wrench with the aim of ob-
taining all higher-order dynamic balance conditions. Consider the momentum
wrench generated by the j-th body due to actuation of joint ¢, which is lower in
the chain. Two types of non-zero partial derivatives appear. Either joint [ —
with respect to which the derivative is taken — is below the joint i, or between
the joint ¢ and the j-th body. In the first case (I < i < j), the partial derivative
of both the mass matrix and the ISA have to be taken into account, partially
canceling out

0 0 0

-

afql(MjSi) :Oiql (Mj)si+Mj87ql(8i)Zfad(Sl> Mjsi (532)
In the second case (i < | < j), the partial derivative of the ISA vanishes
0/0q;(s;) = 0. Therefore, the partial derivative of the momentum wrench
becomes

1o} 0 T

% (Mjsi) = % (MJ) 8; = f(ad(sl) M]‘ =+ Mjad(sl))si (533)

I 1

The higher-order partial derivatives are found similarly by making a split
between the partial derivatives related to joints lower than the momentum
generating ISA, and the ones related to the joints between the ISA and the
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body. Therefore. a second multi-index defined by 8; = a; for all ¢ < 1 < j and
Bi=0foralll <iandl > j. The partial derivatives of the momentum wrench
are found from [Eq. 5.31] according to

DS (M;s;) = H (—ad(sl)—r)al D2(M;) s (5.34)

=1

Again this equation is set to zero if a; # 0 for any [ > j. These partial
derivatives may be summed to obtain the derivatives of the total momentum
of the mechanism. Notice that in this equation the momentum derivatives are
formulated as a sequence of matrix operations, which are linear in the mass
matrix.

Derivatives of the dynamic balance conditions of a serial chain

The dynamic balance conditions dictate that the momentum wrench of a mech-
anism is zero for all motion. Therefore also all higher-order derivatives of the
momentum wrench must be zero. We conjecture that with a large enough num-
ber of derivatives kma, these are not only the necessary but also the sufficient
dynamic balance conditions for nonsingular mechanisms. In fact, here it will
be shown that for serial mechanisms only derivatives up to the second order
are needed (kmax < 2). When these are satisfied, all the higher-order dynamic
balance conditions satisfied, and the mechanism is dynamically balanced for
finite motion.

For zeroth-order dynamic balance, 6 conditions are placed on each
aggregated mass matrix

. N — v E; [micix]
hi—;MjSi—Misizo, M, = k] s (5.35)

The aggregated mass matrix M; is sum of the mass matrices belonging to bodies
higher in the chain than s;. Consider now the following momentum derivatives
of ilj and le, involving any triplet s;, s;, and s; of non-infinite pitch ISA, which
are arranged in ascending order (I < j <79)

Biqi (ilj) = 8iql (Ml) s; =0, % (ﬁz) = 8iql (1\7[1) s1=0 (5.36)
%% (il]) = _ad(SZ)T% (ﬁj) - 8iql (Mz) ad(si)s; =0 (5.37)

Notice that these dynamic balancing conditions place constraints on the same
aggregated mass matrix M; since q; is the highest joint of the partial deriv-
atives and 9/9¢;(M;) = 0 for j < i. As the first-order balancing conditions
(Eq. 5.36) ensures that 8/dq;(h;) = 0, the second-order dynamic balance con-
ditions (Eqg. 5.37) reduce to

0

9. (M) ad(s))s; =0 (5.38)
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A recursive application shows that this extends to the higher orders, such that
all balance conditions are in the form of

% (Mz) I_i[ (ad(sl)T)al s; =0 (5.39)

[

Moreover, the zeroth-order balance conditions (Eq. 5.35)) satisfies all higher-
order force balancing conditions since 0/d¢;(M;) is a function of the linear
momentum and the mass is assumed to be constant

0 R 0 .

87q. (mzcz) =pPi = 0, % (ml) =0 (5.40)
Therefore, only the following first- and second-order moment balance conditions
remain:

a%(E")”jEO’ a%(Ei)"ZEO» %(E) [rix]n; =0 (5.41)

In the general case, when n; }f n;, this imposes 9 independent constraints
on the derivative of the inertia matrix, requiring 0/ 6qi(E~i) = 0, thus directly
satisfying all higher-order partial derivatives . This shows that de-
rivatives of a higher order than kmax = 2 impose no new dynamic balance
conditions for serial linkages.

When, in the special case, all non-infinite pitch ISA lower in the chain are
aligned, i.e. m; || n; for all j < i, the moment balance conditions
vanish or become equivalent. Then, only three higher-order constraints are im-
posed on the aggregated inertia matrix E;. Prismatic joints (infinite pitch ISA)
lower in the chain impose no higher-order moment balance conditions as their
angular velocities n; are zero.

To summarize, for serial linkages the zero-order force and moment balance
condition (Eq. 5.35)) and the first- and second-order moment balance conditions
(Eq. 5.41)) are necessary and sufficient, leading to a kmax = 2.

Derivatives of the dynamic balance conditions of parallel
mechanisms

The dynamic balance conditions of parallel mechanisms dictate a zero mo-
mentum wrench (Eq. 5.25) for all independent velocities ©. Therefore the
zeroth-order balancing conditions read

MJjC =0 (5.42)

Also all higher-order partial derivatives with respect to w should be zero for
dynamic balance. These conditions are found by repetitive application of the
chain rule, the product rule and derivatives of the Kronecker product, similar
to The first-order dynamic balancing conditions become

D,(MJC) =Dy(MJ) (C®C) + MJD,(C) =0, (5.43)
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This generalizes to higher-orders by a repetitive application of the chain and
product rules

DE(MJC) = [DE(MJ) - MJ] Gy =0 (5.44)

It should be noted that these higher-order dynamic balance conditions are linear
in the mass matrices and can be obtained through a series of matrix multiplic-
ations and linear operations.

We conjecture that after sufficient number of derivatives (kmax) these are not
only the necessary but also the sufficient conditions for the dynamic balance of
parallel mechanisms in a general, nonsingular poses. The proof of this is not
given here, yet, this assertion is supported by the fact that kinematic relations
and momentum conditions are described by trigonometric analytic functions
that are smooth in nonsingular robot configurations.

5.4 Dynamic balance solution using the
parameter-linear form

Now, to solve these higher-order dynamic balance conditions for arbitrary mech-
anisms, they will be recast in the parameter-linear form [58, [24]. This enables
null space procedures to extract all dynamically balanced mass distributions.

Parameter-linear form

Since the zeroth m, first me and second moment of mass E are linear in the
momentum equation, the following parameter-linear form holds

h = Mt = [t+]z, z = [m me' el ez] (5.45)

in which the z-vector is formed by the inertial parameters of the body. The
twist dependent ‘regression’ matrix given by

. W5 We 0
[t*] _ 2 [Lv;j} dla%)(w) [‘*Z)*] , [w*] _ %4 0 we|. (5.46)
w4 Wws
Notice that the ordering of the inertial parameter slightly differs from [24]. In
this notation the point mass, displacement and pure-inertia rod elements of
the multipole-rod representation are respectively denoted by zm (7),
zs(r,m), and z,(n). The parameter-linear form of the momentum basis of a
serial mechanisms is directly computed from [Eq. 5.24]

ill [81*] e [Sl*} zZ1
h=vec(MJ)=|:|=] : : L =Wz (5.47)

h, 0 cee [sn*] Zn

in here h and Z denote the concatenation of all IWM and all inertial parameters
in the chain, respectively.
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To obtain the parameter-linear form of parallel linkages, the vectorization of
matrix products (Appendix |Al) is applied to [Eq. 5.42
h =vec(MJC) = (C'@I;)Wz =Xz (5.48)

Higher-order dynamic balance conditions in the
parameter-linear form

The parameter-linear form also applies to higher-order derivatives of the balance
conditions as they are formed through a sequence of matrix operations, which
are linear the inertial parameters. The higher-order serial chain regression
matrices W, can be found accordingly, i.e. by the application of to
[Eq. 5.31 and [Eq. 5.34)), resulting in the following condition

vec (D’;(ﬁ)) =Wrz=0 (5.49)

For parallel linkages the parameter-linear form is found by applying the matrix

vectorization to [Eq. 5.44] such that
vec (Dg(ﬁ)) =(C @) Wiz = Xp2=0 (5.50)

in which W] = [WlT WJ] and Ig is a 6 X 6 identity matrix. Now
we have arrived at the parameter-linear form of the higher-order derivatives of
the momentum equations of serial and parallel linkages. It should be observed
that all these steps solely rely on matrix operations suitable for algorithmic
treatment.

Dynamic balance solution

Dynamic balance requires inertial parameters z that are on the intersection of
the null spaces of all the X; matrices

z €ker X, z cker( X)), z=Ny (5.51)

in which X',jmax = [XlT e X,jmax] is the collection of all regression matrices
up to order kmax. The columns of the IN matrix form a basis that span this null
space and therewith describe the full design space of the dynamically balanced
inertial parameters. This IN matrix is termed the basis of the design space
and may be found through numeric or symbolic null space algorithms such as
Gauss-Jordan elimination or singular value decomposition. The corresponding
design parameters are y. With this the complete set of dynamically balanced
inertial parameters of any given nonsingular linkages may be found.

5.5 Partitioning and interpretation of the design space
of dynamically balanced inertial parameters

The application of conventional null space algorithms to the dynamic balance
problem (Eq. 5.51) may result in a design space description that is strongly
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mixed in the inertial parameters, compromising structure and design intuition.
To aid the designer, a partitioning of the design space with respect to the
joint topology is presented alongside a multipole-rod representation
of these partitions. It will be shown that 6 types of inertia transfer matrices
completely describe the design space of serial linkages. These inertia transfer
matrices contain all inertial parameters that can be transferred between two
hinged bodies, i.e. subtracted from one body and added to the other, without
changing the momentum of the linkage. This partitioning will lead to a general
description of the design space of serial mechanisms that, more importantly,
also covers a large part of the design space of parallel mechanisms.

Partitioning the design space of serial linkages

The dynamic balancing conditions of serial linkages (Eq. 5.35|and [Eq. 5.41)) are
formulated in terms of aggregated mass matrices M;. Before presenting the
general solution it may already be observed this solution will therefore also be
in terms these aggregated mass matrices. From these aggregated solutions each
individual mass matrix can be found accordingly

M; = M; — M, zi = Niyi — Nij1yit1 (5.52)

Therefore, the complete design space basis IN of a serial chain (Eq. 5.51)) may
be partitioned as a band diagonal matrix

N: —N, 07T w
zZ1 .
F) N> —N3 . zj
= . (5.53)
Zn— ’
. . Nooi —No| |yn—
L 0 .. N, | Yn

in here the submatrix IN; describe all inertial parameters that can be exchanged
between the two bodies hinged at joint ¢ without changing the dynamic behavior
of the chain. These IN; matrices are therefore termed inertia transfer matrices.
The second next subsection shows that there exist 6 types of inertia transfer
matrices depending on the type of joint and alignment with the joint axes lower
in the chain.

It should be noted that a similar concept is used in the context of parameter
identification to describe the set of unidentifiable inertial parameters [88] [115].
Inertial parameters are said to be unidentifiable if they do not contribute to
the kinetic energy of the mechanism. The serial design space, as found here,
constitutes of these unidentifiable inertial parameters as zero momentum also
implies zero kinetic energy. This also shows that the inertial parameters in this
serial design space do not affect the required motor effort of the mechanism.

Partitioning the design space of parallel linkages

We have already seen that parallel linkages can be converted into serial chains
by opening the loop. Therefore, the dynamic balance conditions, and hence the
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solutions, for serial mechanisms are also valid for parallel mechanisms. Yet, this
is not necessarily the complete design space, since the loop-closure equations
allow for dynamically balanced mass distributions, which lie outside the design
space of serial mechanisms since rank (X) < rank (W) The design space of
parallel mechanisms can therefore be partitioned in a part dealing with the
equivalent serial chains INg and a remainder Np associated to the loop closure,
termed parallel design space basis

N =[Ns Np], Ns=[Nr -+ Ny (5.54)

The serial equivalent design space basis INg is found by cutting the loops of a
parallel mechanism such that a set of N chains are found. The serial design
space basis IN; associated to chain I has the band-diagonal form of
The complete serial design space is the union of the serial design spaces of the
chains into which the mechanism is decomposed. The serial design spaces of
the individual chains are not necessarily disjoint, e.g. two design spaces bases
N and Ny of a single loop may cover the same design freedom. This means
that the rank of the serial design space is equal to, or smaller than, the sum of
the rank of the individual serial design spaces. Furthermore it should be noted
that the serial design space is invariant to where a loop is opened, although the
basis might be different.

A meaningful parallel design space basis is found by introducing of a suitable
test matrix T, whose inertial parameters are not in the span of the serial design
space. The null space basis (XT)* of the resulting higher-order momentum
wrenches X T yields an interpretable design space basis Np

Np =T(XT)* (5.55)

Interpretation, the concept of inertia transfer

In it is shown that dynamic balance impose two conditions on the
aggregated mass matrices of serial linkages: Firstly, each aggregated mass mat-
rix J\;L should be chosen such that its IMW vanishes (Mlsz = 0). Secondly,
each aggregated inertia matrix should either generate no changing angular mo-
mentum (9/dq;(E;)n; = 0) — in case all lower ISA of non-infinite pitch are
parallel (n; || ni, for all j < i) — or be constant (9/dg;(E;) = 0) — in case
one or more the lower ISA are not parallel (n; }f n;, for any j < ¢). From
the first condition three cases arise; zero, finite or infinite pitch ISA, while for
the second condition two cases exist; either the axes are parallel or skew. This
gives rise to 6 types of solution for the aggregated mass matrices of 1-DOF
lower kinematic pairs, and, consequently, 6 types of inertia transfer spaces IN;.
For higher-DOF joints and joints in planar linkages a similar representation
exist as shown thereafter.

Six inertia transfer matrices

Here, the multipole-rod representation of these 6 inertia transfer matrices are

given (Fig. 5.2). The dimensions of these inertia transfer matrices are in
[Table 5.11
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(a) Revolute, parallel, N | (b) Helical, parallell, N¢ | (c) Prismatic, parallel, No

(d) Revolute, skew, Ny y (e) Helical, skew, Ny (f) Prismatic, skew, N,

Figure 5.2: The interpretation of the 6 sets of inertial parameters that can be ex-
changed between the two (grey) links attached to joint ¢ without changing the dynamic
behavior of the chain as a whole. These six cases arise from the three types of 1-DOF
lower pairs, and parallelism with all preceding revolute and helical joints. The align-
ment of the preceding prismatic joints have no influence. It should be noted that for
clarity sake the effect of the displacement on the MOIs is not shown, as it can be
compensated by, or absorbed in n;. Since the pure-inertia rods have no application
point, they are displayed at an arbitrary location.

l.a. In case the inertia transfer matrix belongs to a zero pitch ISA that is
parallel to all preceding zero and finite pitch ISA, there are 5 inertial
parameter that can be exchanged between the two bodies hinged by the
joint. These are: 1) a point mass on the joint axis zm, 2) a displacement
of this point zs in the direction of the joint axis n, 3) a pure-inertia rod
m in the direction of the joint axis n and 4,5) two perpendicular pairs
of pure-inertia rods, which are all four perpendicular to n. These pure-
inertia rods are of pair-wise opposite magnitudes 72, and 73.

The reason for these freedoms is that the actuation of a joint with a
point mass m anywhere on its axis does not induce any linear or angular
momentum nor change the IWM of lower joints . This yields
the design freedoms z,, and zs. The five pure-inertia rods allow for
a modification of the inertia tensor. Since the pure-inertia rod n; is
in the direction of the joint axis it generates no angular momentum.
The first of pure-inertia rod pairs 72 is in the direction of bz, which is
perpendicular to n. The angular momentum induced by b2 is canceled
by an equal and negative pure-inertia rod in a direction perpendicular
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1.b.

Nz

2.b.

3.b.
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to both n and by (Fig. 5.2)). This also holds for a second pair 73 with
corresponding bs. The inertia transfer matrix is therefore parameterized
according to

No,i(8) = [zm(rs) zs(n,7s) zy(n)

(5.56)

z(b2) — z5(n x b2)  2y(bs) — zy(n x bs)]
In case the lower joint axes are not parallel, the zero pitch joint inertia
transfer matrix loses the two pure-inertia rod pairs, since a rotation
of these perpendicular pairs cause a change of the aggregated inertia
matrix. This results in the following inertia transfer matrix

Noy = [2m(rs)  z5(n,7s)  2zy(n)] (5.57)

. For finite pitch and parallel joint axes, the point mass will generate a

linear momentum through its pitching motion. The mass should there-
fore equate to zero. The displacement is massless and therefore induce
no linear momentum. The remainder of the inertia transfer matrix is

equal to

=[zs(n, ) zp(n)  zy(b2) — zy(n x b2)  2zy(bs) — zy(n X b3)]
(5.58)

For the finite pitch, non-parallel case the displacement and both per-
pendicular pairs cause a change in IWM and are therefore omitted

Nty = zy(n) (5.59)

. The size of the inertia transfer matrix is 7 for a prismatic joint whose

axis is parallel to all preceding zero and finite ISAs. The matrix is
characterized by a displacement in the direction of the joint axis and a
free second mass moment E giving rise to 6 pure-inertia rods

Noo, = [25(Roc, o) 2y(b1) -+ 2y (bs)] (5.60)

When the preceding zero-pitch or finite-pitch joint axis are non-parallel
to the prismatic joint axis Mo, they will cause changing n. and a
changing displacement direction. To maintain a constant IWM of the
lower joints, this displacement is therefore omitted, leaving solely the
second mass moment free to choose

Ny = [z4(b1) -+ 2y(bo)] (5.61)

Multi-DOF joints

This approach also holds for multi-DOF joints that can locally be modeled as a
serial connection of 1-DOF joints, e.g., cylindrical, planar, universal or spherical

joints.

These multi-DOF joints can transmit inertial parameters, which are



5.5. Partitioning and interpretation of the design space 95

Table 5.1: The size of the 6 inertial transfer matrices. Each joint ¢ in a serial chain
extends the design space depending on the type of joint; revolute (R), helical (H), or
prismatic (P) and the alignment with all non-prismatic joints j < i lower in the chain;
a) aligned or b) not aligned. *With a prismatic joint, the prismatic joint direction
applies n; = N oo

type A a(n;|nig) b (n;}n)

1 R 0 5
2 H finite 4
P* %9 7 6

given by the intersection of the inertia transfer matrices corresponding to the
lower kinematic pair analog. For example, a cylindrical joint can be modeled
as prismatic and a revolute joint in series such that its inertia transfer matrix
becomes the intersection of Ny and INoo, which is the inertia transfer associated
to a helical joint N¢. Depending on the alignment of the lower joints, either
type a or b is to be selected. A planar joint is serial connection of two prismatic
joints such that its inertia transfer is No,. Universal and spherical joints locally
behave as a serial connection of multiple non-parallel, intersecting revolute
joints. The associated inertia transfer is therefore a point mass (zm(7)) on
the intersection point r of these axes.

Joints in planar linkages

In the planar case only zero and infinite pitch ISA exist. Therefore, three
types of inertia transfer matrices appear, 1) the ISA is revolute and therefore
automatically parallel to all other revolute joints, 2) the ISA and all lower ISA
are prismatic joints or 3) the ISA is prismatic but at least one of the lower
joints is a revolute joint

No = zm(rs), N = [zs(nee)  24], Ny = 2y (5.62)

In the first case, the point mass should be on the revolute joint and the MOI
around that point should be zero. In the second case, the body solely translates,
therefore the mass should be zero and the first and second moments of mass
are free, as parameterized by a displacement and a pure-inertia rod. In the
third case, when the ISA under inspection is prismatic and one or more lower
joints are revolute, this displacement will causes a changing MOI associated to
the rotation of the lower joints. This the displacement should therefore be zero.

With this description of the inertia transfer matrices IN; of common joints,
the dynamically design space of any serial linkage is found. Also for parallel
linkages, the serial equivalent design space basis INs is completely determined,
generalizing [125] to spatial linkages. It should be noted that the serial linkages
cannot be dynamically balanced without addition of counter-mechanisms. This
can also be established from the inertia transfer matrices as none of them permit
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both a positive mass and positive MOIs. Therefore, a specific Np is required
to render a feasible dynamically balanced design space. The existence of this
additional design space is found on a case-by-case basis in the next section.

5.6 Case studies

The higher-order dynamic balance approach is illustrated here with case stud-
ies of a serial 6-DOF mechanism, a planar 4R four-bar linkage and a 3-RSR
mechanism. In all cases an interpretation of the parallel design space bases Np
will be given, if present.

Serial 6-DOF robot

Here we study here a 6-DOF robot to show how a serial design space basis
is found. We consider a HPRS-robot of which the first joint axis
is aligned with the third joint axis m; = ms3. The second, prismatic joint
has no particular alignment. The fourth, spherical joint is modeled as three
intersecting twists s4, S5, and s¢ with no intermediate bodies. Therefore this
linkages consists of four bodies in total. The zeroth-order regression matrix
with the associated design space basis become

[81*] S1% {81* S1%
Sok So* So %k N1 —N2 0
S3% S3% N> —N3
Wo= %84*% V= N; —Ny
[35*] Ny
[s6%]
(5.63)

This zeroth-order regression matrix has rank (Wp) = 23. Through applica-
tion of the algorithm presented in it is found that the regression
matrix terminates at kmax = 1 with rank (kaax) = 24 leaving n, X 10 —
rank (Wh,,..) = 16 design parameters free. That is because only the derivative
0/0qs(Mi81) = 8/dqs(Msz)s: place additional dynamic balancing conditions.
All other derivatives are covered by the zeroth- or first-order condition. There-
fore the relevant rows of the first-order regression matrix are

Wi =—1[0 J[ad(s2)s1%] + ad(s2) " [s1%] -+ [ad(s2)s1%] + ad(s2) " [s1%]]
(5.64)

It should be noted that the first 10 columns are zero, due to 9/9g(M1) = 0.
Since s is not aligned with s1, the actuation of g2 will cause a displacement
of the COM leading to a change of the aggregated mass matrix felt by s;. For
the rest, the prismatic joint does not affect the momentum generated by the
joint higher in the chain. As the other joints are either aligned or spherical, no
additional constraints are placed. The corresponding inertia transfer matrices
are therefore

N1 = Nf7”(31)7 N2 = NOO7H«(SQ), N3 = N()’”(Sg), N4 = zm('r'4) (565)
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Figure 5.3: The 16 dynamically balanced design parameters of the HPRS 6-DOF
serial chain. Each of the four joints permits a transfer of inertial parameters IN;.

The first joint is a helical joint fixed to the base such that it inertia transfer
matrix has rank (Nf,”) =4 . The second joint is a prismatic joint
whose axis is not aligned with joint 1 such that it transmits rank (NOO,H) =6
design freedoms . In fact, if only the zeroth-order balancing condi-
tion would be taken into account N2 would gain an additional ‘displacement’
such that it would be N, . The revolute joint, joint 3, is aligned and stays
aligned with the preceding finite pitch ISA (joint 1) such that it has an inertia
transfer matrix of rank (No,|) =5 . The spherical joint is seen as the
intersection of three perpendicular revolute joints such that it solely transmits
a point mass at the intersection point r4. This leads to a total design freedom
of rank (IN) = 16. This corresponds with the order of the regression matrix
Wi,...., which is found through the algorithm.

Planar four-bar

The planar 4R four-bar linkage is a classical example in the dynamic balance
literature. Although widely studied for decades [14], a solution that does not
rely on additional counter-mechanisms was only found in the year 2000 by Ri-
card and Gosselin [86]. Thereafter, this mechanism has been used as dynamic
balancing module to obtain 3-DOF and 6-DOF dynamically balanced mech-
anisms [I120]. Here, this linkage is studied to show that the current method
replicates the results from literature.

The linkage consist of four revolute joints at 01 up to 04. The first and last
joints are attached to the base (Fig. 5.4)). The moving links have lengths 1, 2,
and /3 and the base length is l4. We analyze this linkage by cutting the third
link between joint 3 and 4. Two kinematic branches I and II are obtained,
consisting of joint 1, 2 and 3 and joint 4, respectively. Therefore, the serial
equivalent design space basis becomes
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ms, C3, gs

mz, C2, g2 ms, c3, g3
7 b

mz, C2, g2

mi,Ci1, g1 mi, C1, g1

(2) (b) (c)

Figure 5.4: @The kinematic definition of the planar four-bar linkage, with the two
dynamically balanced types @ the kite and the antiparallelogram.

Ni -N, 0 0
Ns=[N; Ni], Nj=|0 N -Ns;|, Niy=| 0 (5.66)
0 0 N -N,

Since all joints are revolute joints, the inertial transfer matrices consist of
a point mass at the joint location , ie. N; = No = zpn(r;). This
shows that the inertial parameter of link three, at which the cut has been made,
will lie on the span of N3 and IN4. The loop opening can also be performed
at another link resulting in another basis for the same null space. Therefore,
rank (Ng) = 4.

Through application of the higher-order derivatives algorithm, the X -matrix
is obtained. Inspection of the rank X-matrix reveals that in the general case,
this matrix has a maximum rank of rank (kaax) = 8 and requires kmax = 3
derivatives to reach this limit. Since there are 12 inertial parameters, this
linkage has a design freedom rank (IN) = 4. This shows that with the loop-
opening method the complete design space of the general four-bar linkage has
been found. This serial equivalent design space has no feasible solutions, since
the addition of a positive point mass to one link requires a negative point mass
on the connecting link. A feasible link with a positive MOI requires at least
two positive point masses, which is not supported by this general solution.

Fortunately, there exist two special kinematic conditions in which the dimen-
sion of the design space increases and the linkage permits feasible dynamically
balanced solutions [86, [75]. These are the anti-parallelogram (I1 = I3, l2 = l4)
and the kite-type four-bar linkage (1 = l2, I3 = l4), as shown in In
both cases, the base link has to be wider than two equal moving links. Here
we study only the anti-parallelogram case, for which the rank of the X matrix
drops to rank (X) =7, and the design space is extended with a basis

Np =[z) -z z] (5.67)
This may be interpreted as three pure-inertia rods in which the inertia connec-
ted to the coupler is opposite to the other two [34]. This solution arises since
the links of the mechanism follow a linear relation on the angular velocities
w1 — w2 + w3 = 0 [I7]. The solution is parameterized by y1 up to ys. The
first four parameters deal with the serial equivalent Ng, while the ys is variable
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associated to Np. The resulting body masses and local MOIs become

mi = Yi — Yi+1, gi =13 (1 - £> yi + (1) ys (5.68)
m;
From the mass positivity condition (Eq. 5.23)) it follows that the design para-
meters should be selected decreasingly through the chain

Y1> Y2 > Y3 > Ya (5.69)

The positivity of the MOI places upper and lower bounds on the choice of ys

Ys > l% (1 — ﬂ) Y, Ys < l% (1 - 2) Y2, Ys > l% ( - £> ys (5.70)
mi ma ms3

A similar result emerges for the kite-type four-bar linkage, with the sole dif-
ference that equal length crank and coupler have a positive moment inertia
whereas the rocker has a negative pure-inertia rod. With this example we have
shown that dynamic balancing results from literature could be replicated using
the proposed higher-order dynamic balancing method. Furthermore we have
shown an example in which the serial, loop opening solution aids in interpreting
the whole dynamic balance solution and the feasibility conditions. The special
kinematic cases, as found by Moore and Gosselin [75], may also be derived from
rank reduction of X-matrix, but this lies outside the scope of this chapter.

3-RS R spatial parallel mechanism

To show that this procedure also holds for multi-DOF mechanisms we investig-
ate a symmetric 3-RSR mechanism [I6]. In this section we will show that the
design space of the 3-RSR does not contain feasible designs when considering
the whole of its workspace. Fortunately, it permits a dynamically balanced
solution for 2-DOF movements over one plane of symmetry and with some
additional constraints on three planes of symmetry.

Kinematic definition

The 3-RSR under investigation consist of three arms whose upper
and lower links are of equal length I, = I; . The platform and the base have
identical dimensions I, = l,. The first arm consist of two revolute joints 1
and 3, respectively hinged at the base at r; and at the platform at r3. Their
joint axes n1 and n3 are co-linear in the reference configuration. The spherical
joint, which connect link 1 and 2, is located at r2. Arms 2 and 3, consisting of
joints 4 - 9 and links 3 - 6 are similar yet rotated with ¢ and —¢ around the
vertical axis. The platform is link 7. The three base joints are chosen to be the
independent coordinates w1, u2, and us. Throughout motion the mechanism is
mirror symmetric with respect to a plane Ils passing through the three S-joints
[16] 121]. Due to this symmetry, the platform of this robot remains tangential
to a variable sized sphere whose south pole is fixed at the origin of the robot.
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Figure 5.5: The kinematic definition of the 3-RSR. During motion the end-effector
stays tangential to an expanding sphere touching the platform center and the base
center [16]. This mechanism further exhibits a mirror symmetry with respect to a
plane Il passing thorough the spherical joints located at r2, 5, and rg.

General dynamic balance solution

Similar to previous example, the serial equivalent design space is found by
cutting the three kinematic loops at the platform leaving three RSR chain,
respectively consisting of joints 1 - 3, 4 - 6 and 7 - 9. The corresponding design
space basis is

N1 —Ns 0
0 N> —Ns
Ny —Njs 0
Ng = 0 Ns —Ng , (5.71)
N; —Ng 0
0 Ng —Ny
o0 0o Ny 0O O Nys O 0 No|
with

N1 = Ny, (51), N2 =zm(r2), Nz = Npy(ss)
N4 = NO,H (84), N5 = zm(r5), Na = NO,H(SG) (572)
N7 = Ny, (s7), Ng=2zm(rs), No= Ngy(s9)

The base revolute joints have fixed axes while the platform joints have moving
axes, giving rise to their respective inertia transfer matrices. Since a spherical
joint (S) locally behaves as three perpendicular intersecting revolute joints, its
inertia transfer matrix IV; is a point mass at the joint location r;, for i = 2, 5 and
8. This yields a serial equivalent design space with a rank of 3x (5+1+3) = 27.
The X-matrix, which is found through the presented algorithm, terminates
at kmax = 2 and has a rank (kaax) = 43. With 7 moving links and 70
inertial parameters to determine, it is shown that the complete design space
is given by the serial equivalent design space (70 = 43 4 27) and no parallel
design space exists. Therefore, additional counter-mechanisms are required for
dynamic balance of the 3-RSR mechanisms.
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Figure 5.6: The 3-RSR mechanism exhibits a larger design space when moving over
planes of symmetry. For movement over the first plane, indicated by I1;, two additional
design spaces appear. The first design freedom is an addition of pure-inertia rods to
the first arm 71 and 72 a negative pure-inertia rod to the platform 77 1. The second
design freedom is an extra pure-inertia rods 73, 74 on the arm 2 and a negative pure-
inertia rod on the platform 772. Although not shown here, arm 3 has to be identical
to arm 2. Later the balance for the other planes IIy and I3 is solved.

Dynamic balance for 2-DOF motion on planes of symmetry

Fortunately, the mechanism can be dynamically balanced when only a part of
the workspace is considered. Here we will investigate the case when the platform
center rp, moves over a plane of mirror symmetry II;, normal to joint axis n;.
This occurs when the two other base joints move in unison us = us (Fig. 5.6)).
Furthermore we will show that this permits a symmetric mass distrubution over
the 3 arms and platform such that the mechanism is also dynamically balanced
when moving over the other 2 planes of symmetry, i.e Iz, when w1 = us and
IIs when u; = us.

When the mechanisms is constrained to the first plane II;, the rank of the
regression matrix drops by 8 to rank (X kmax) = 35, yielding a design space of
size 35. A part of this enlarged design space can be explained by the fact that
the S-joint of arm 1 now behaves as a revolute joint (r1 || n2 || ns) enlarging the
serial design space by 6. Now the first arm’s inertia transfer matrices (Eq. 5.72))
become

N2 = NO,|| (82) N3 = N07H(83) (573)

Furthermore, two additional parallel design freedoms appear, which are closely
associated to the kite-type planar four-bar linkage (Section 5.6). When the first
joint (u1) is actuated and the others (42 = u3 = 0) are fixed, the first arm and
the platform moves as a kite-type four-bar linkage due to the mirror symmetry
with respect to the plane IIs through the S-joints. Due to this symmetry for
all poses, the angular velocities of the bodies have a particular linear relation
w1 + w2 = wyr. The first parallel dynamic balance design freedom is therefore

Npi = [mz, (1) n2(z,) (a2) + 2, (ns x a2)) 0 nraz, (a7)]  (5.74)
with

m=2np=-n,=1 (5.75)
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For the second DOF wy = ug a second mirror symmetry is of importance;
the mirror symmetry with respect to the plane II; perpendicular to n; and
passing through the center of the base . This is encoded in an angular
velocity relation w1 + w2 + w7 = w3 + w4 + ws + we. Since arms 2 and 3 move
in mirror symmetry with this plane, the second design freedom is found to be

Ne,=[0 0 3z (as) na(z, (a1) + z, (R X as))

M52y (as)  16(2y (a6) + 2, (N9 X ag))  Ma22z, (ar)]
(5.76)

with
ng =24 =15 =216 = 1, 7,2 = —1/2cos(2¢) — 3/2 (5.77)

So arms 2 and 3 move in opposite directions with respect to this additional
symmetric plane IT; , canceling the angular momentum components
in this plane. In the perpendicular direction (m1) the angular momentum is
compensated by the negative pure-inertia rods of the platform.

Feasibility conditions

The resulting 35-dimensional solution space contains a range of feasible solu-
tions. These solutions compensate the negative pure-inertia rods (77,1 and 77.2)
of the moving platform by addition of positive point masses to the shoulder, i.e
the zm (r;) in the corresponding inertia transfer matrix IN;, for ¢ = 3, 6, and 9.
We will illustrate this on a mechanisms with a rotational symmetric base and
platform (¢ = 2/3w). For demonstration purposes we reduce the rather large
design space by choosing 1) all three arms to have an equal mass distribution
(ysa = Y35, Y16...24 = Y25...33), 2) the COMs to be inline with the arms, 3) an
axisymmetric platform, and 4) the principal axis to be aligned with the links.
This last simplification is ensured by choosing the first perpendicular pairs of
N1, N> and N3 to be aligned with the platform (b;2 = a7 for i = 1,2,3)
and of equal magnitude (y2 = yo9 = y14). This choice allows a modification
of the platforms MOIs without affecting the equality of the arms, since the
platform inertia is directly transferred to the base. For the second and third
arm these perpendicular pairs are set to be zero (y19 = y2s = 0). The second
perpendicular pairs is aligned with the connecting link b; 3 = a;. In this way
all pure-inertia rods are on three mutually perpendicular axes, facilitating the
selection of feasible MOlIs.

The remaining parameters may be chosen freely as long as the mass and
inertia feasibility conditions are satisfied . The mass of the links
become the sum of the point mass transfers

mi=m3=ms=1Yy1 —Ys, M2=1mM4="mM=7Ys— Y11, M7 =3y11 (5.78)

The principal MOIs follow from the summation of the pure-inertia rods. Here
the first principal axis is n1, the second is a1, and the third is a1 X n1. The
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Table 5.2: Geometric parameters of the simulated 3-RSR mechanisms

Name Symbol  Value Unit
Base width Iy 3.00 [m]
Platform width lp 3.00 [m]
Lower arm length h 1.00 [m]
Upper arm length lu 1.00 [m]
Arm angle 0] 3/27  [rad]

principal MOIs of the first link are

g1 =ysa + It (1 — 7:11 ) , 912=Y3s—Ys—Ys, G1,3 =911+ 912+ 2ys,
1
(5.79)

For the second link the principal axes are oriented similarly; in the directions
of ns, a2, and ns X az, respectively

2 Y6 1
g2,1 = Y34 + L ys (1 - TrT) , g2,2=17Ys — Y13+ §y34, 92,3 = g21 + 92,2 — Y34
2
(5.80)

The MOIs of the links of the other two arms are equal g1 = g3 = g5 and
g> = g4 = gs. The MOIs of the platform are formed by the parallel design
space basis y34, the added point masses at the shoulder i1, the inertia trans-
fer y13 over the connecting joints (i.e. in the direction of m; for ¢ = 3, 6,
and 9), and the modification of by inertia transfer over the first chain yi4.
The first principal MOI is around a7, the second around mn3 and in the third
out-of-plane direction ns x az

3 1
gr1 = §(l§y11 +y13) — SYs — Y1 (5.81)
3,92 9
gr2 = §(lpy11 + Y13 — ys) — 1Y (5.82)
g7,3 = g7,1 + g7,2 + 2Y14 (5.83)

Now the platform is chosen axisymmetric g7,1 = g7,2 by setting

Ys = Y14 — %y347 (5.84)

This axisymmetric solution extends the dynamically balance motion over the

two other planes of mirror symmetry Il and Ils, which are perpendicular to

the base joints m4 and n7, respectively. It should further be noted that the
resulting mechanism is force balanced for its complete workspace.

By invoking the feasibility conditions we obtain the following set

of feasibility conditions for the 3-RSR mechanism moving in a single plane
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Table 5.3: The design parameters of the dynamically balanced 3-RSR mechanism as
used in the numerical example.

Subspace Range Value

Arm 1 Ny N, Yi...5 2.00 0.00 -2.10 -0.05 -0.30
Nz  ys..10 040 0.00 -2.30 -0.05 0.00
Ns  yi1..15 020 0.00 -2.40 -0.05 0.00

Arm 2 Nt Ni wyis.20 2.00 000 020 0.00 -0.30
N5 Y21 0.40
Ng y22..24 0.20 0.00 -0.10

Arm 3 N][[ N7 Y25...29 2.00 0.00 0.20 0.00 -0.30
Ny Y30 0.40
Ng Y31...33 0.20 0.00 -0.10

Parallel NP Y34...35 1.00 1.00

II;. It should be noted that several shadowing inequality conditions have been

. removed
0 < y11 <ys <y, y13 < ys < ¥s, ys < 0, y1a < 0, (5.85)

22 YU ) 0 < ysu + ys + By (1 - 2) : (5.86)
ma2 mi
2 2 3
0 <lpyir +yi3 +y1a — Y34 (5.87)

It should be noted that similar feasibility conditions, yet more complex, can
be obtained for the full 35-dimensional design. Furthermore, the satisfaction
of the feasibility conditions does guarantee a practical implementation of the
resulting balance solution. The solution for example may require very slender
links, or centers of mass at a long distance from the joint, which are hard to
realize in practice.

Numerical study

Based on these findings a geometry and design parameters y are selected for
simulation and . The corresponding mass distribution is found
in[Table 5.4} In here the COM location of the arms are defined as ¢; = r; —c;a;.
Whereas ¢; denote the distance to the connecting joint . The COM
of platform is at the center of the platform c7 = rp.

Simulations of this mechanism in a multi-body software package confirm the
dynamically balanced mass distribution by showing shaking forces and moments
are effectively zero for movement over the three symmetric planes.
The remaining shaking force and moments are attributed to round off errors.
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Figure 5.7: A side view (of II;) of the dynamically balanced 3-RSR as used in the
simulation.

5.7 Discussion

The proposed method relies on the conjecture that the total momentum wrench
remains constant for arbitrary motion if all higher-order partial derivatives of
the momentum wrench are zero. Mathematically speaking this holds for all
functions except for the flat functions. Such functions have one or more points
in which all derivatives are zero but the function itself is not zero. In such ‘flat’
poses, in which the mechanisms motion governed by flat functions, this method
will result in the necessary but not sufficient conditions for dynamic balance.
These singular poses are therefore excluded.

In this chapter it is proven that for serial linkages two derivatives (kmax =
2) are required to ensure the termination of the X-matrix, i.e. yielding the
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Figure 5.8: A simulation of the 3-RSR mechanism for a trajectory (a, b) over the
three symmetric planes IT; confirm dynamic balance as the resulting shaking forces (c)
and shaking moments (d). The remaining shaking forces and moments are attributed
to round-off errors in the simulations.
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Table 5.4: The resulting masses, COM locations and MOIs of the 3-RSR as used in

simulation

Name  Symbol 1 2 3 4 5 6 7 Unit
Mass m; 1.60 020 1.60 0.20 1.60 0.20 0.60 kg
COM i 0.25 1.00 0.25 1.00 0.25 1.00 0.00 m
MOI 1 gi,1 0.40 0.20 0.40 020 040 020 0.30 kgm?
MOI 2 9i,2 0.50 0.60 0.50 0.60 050 060 030 kgm?
MOI 3 9i,3 0.50 0.60 0.50 0.60 0.50 0.60 0.50 kgm?

nessecary and sufficient conditions for dynamic balance. For parallel linkages
such an upper-bound on the number of derivatives is not found. It currently
relies on a case-by-case inspection of the X-matrix, as done in the examples.
Although a constant rank of the X-matrix for higher orders it is a strong
indicator, verification of the balancing solution is still formally required, for
example by numerical simulations. Different mechanisms, but also different
geometries have different kmax values. For example, for the general planar
four-bar kmax = 3 while for the (anti-)parallelogram geometry kmax = 2.

By selection of a submatrix of the X-matrix, a larger design space will
appear and exact dynamic balance is relaxed in favor of other requirements.
For example, force balance only may be obtained by selecting only the relevant
rows. Alternatively, approximate balancing may obtained by satisfying only
derivatives up to a certain order, yielding dynamic balance in a neighborhood
of the reference pose. Paths balance may be obtained by regarding paths or
planes through the reference pose, as shown by the 3-RSR example. This
method therefore generalizes the result of [33].

The feasibility conditions dictate whether or not a desired mass
distribution can be constructed. To check the feasibility an eigenvalue problem
is to be solved. The nonlinear nature of the eigenvalue problem prevents a
closed-form treatment for arbitrary linkages. Currently this study is done on
an individual basis. Yet, for simple linkages the partitioning and multipole-
rod representation allowed for an interpretation and feasibility study without
eigenvalues decomposition. Furthermore, even though some of the mechanisms
studied here have no feasible design space, the complete characterization of
the design space is expected to assist in the selection of the most favorable
application dependent solution, i.e. with minimal motor torque and/or minimal
number of counter-mechanisms.

5.8 Conclusion

This chapter presented a higher-order dynamic balancing method that yields
and solves the necessary and sufficient dynamic balance conditions for arbitrary,
serial or parallel, planar or spatial linkages in nonsingular, non-flat configura-
tions. This method relies on a recursive algorithm to obtain the higher-order
derivatives of rigid body dynamics up to an arbitrary order. In the parameter-
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linear form these higher-order derivatives furnish the dynamic balance condi-
tions that arise from a rank deficiency of the converged regression matrix. This
enables generic null space procedures to yield all sets of dynamically balanced
inertial parameters, i.e. the complete dynamically balanced design space of
a given mechanism. It was shown that for serial linkages derivatives up to
the second order yield the necessary and sufficient balance conditions. For
such linkages the even higher-order partial derivatives will pose no new dy-
namic balance conditions. For parallel mechanisms such an upper bound was
found per case. Partitioning and interpretation of the design space of serial
linkages was presented based on the concept of inertia transfer. Six inertia
transfer matrices where found that, depending on the alignment of the joints
and the types of joints in the chain, allow for an exchange of inertial parameters
without affecting the momentum generated by the mechanism as a whole. For
general parallel mechanisms this serial equivalent design space fully describe
the dynamically balanced design space, resulting in non-feasible designs due
to negative masses or MOIs. Fortunately, in special kinematic cases a larger
design space are found. Also, a larger design space is found when only a part of
the workspace is to be dynamically balanced. For the 3-RSR mechanism, for
instance, three dynamically balanced planes of symmetric 2-DOF motion were
obtained without resorting to counter-mechanisms.

With this method a systematic, closed-form dynamic balance algorithm is
presented that provides a uniform framework to study mechanisms that require
no or a minimal number of counter-mechanisms, paving the way for the dynamic
balance of high-speed robots.






CHAPTER

A pure-inertia method for the
dynamic balance of symmetric

planar mechanisms|

In this chapter, we present a novel method for the dynamic balance of
planar mechanisms, by transforming a mechanism into a dynamically
equivalent form where all links have zero mass but non-zero moment
of inertia. The dynamic balance of such pure-inertia systems is shown
to be governed by mirror symmetry that cancels out the system’s total
angular momentum. Our method not only covers well-known dynamic-
ally balanced 1-DOF mechanisms, such as the slider-crank and four-bar
linkages, but also leads to the discovery of a novel dynamically balanced
2-DOF planar mechanism.

6.1 Introduction

For robots and machines operating at high speeds, dynamic balance is desired to
eliminate varying reaction forces and moments (also termed shaking forces and
moments), which are known to be a major source of wear, noise and accuracy
degradation [86]. The necessary and sufficient condition for dynamic balancing
is that both the linear and angular momenta of the mechanism are constant.
A mechanism is force balanced when only the linear momentum is constant,
which in practice comes down to having a fixed center of mass of the system.

The previous chapters present methods and algorithms to find the dynamic balance
solutions for a given mechanism. Furthermore, confirms that the choice of
kinematics largely determine whether a mechanism can be dynamically balanced without
additional counter-mechanisms. However, this method do not indicate which mechanisms
are favourable for dynamic balance and should be tested by these method. Rendering the
search for dynamic balance a trial-and-error process. This chapter therefore aims to shed
some light on the essential kinematic conditions that permit dynamic balance (Objective
2) by investigating a class of mirror symmetric parallel mechanisms.

This chapter is a reprint from: J. J. de Jong, Y. Wu, M. Carricato, J. L. Herder, A

pure-inertia method for dynamic balancing of symmetric planar mechanisms. In: Advances
in Robot Kinematics (2018), vol. 5. pp.1-8.
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In principle, dynamic balance can be found by symbolically solving the kin-
ematic and balancing equations for unknown kinematic and inertial parameters.
A solution is in general not guaranteed, or otherwise very difficult to find, due
to high algebraic complexity [86] [75]. Alternatively, one may construct dynam-
ically balanced mechanisms from primitive functional modules which, either
are dynamically balanced [120] or have the dynamic balance conditions that
are easy to obtain symbolically [19] 106, [I07]. The dynamic balance equa-
tions can be simplified by reducing the number of parameters through dynamic
equivalence [31]. Two mechanisms with equal kinematics, but different mass
distributions, are said to be dynamically equivalent or equimomental [89] if
their linear and angular momenta are equal when undergoing a common ar-
bitrary motion. Consequently, the two mechanisms will always have the same
shaking forces and moments even though their masses, COMs, and moments of
inertia are different.

A fruitful source of dynamically balanced mechanisms is the class of linkages,
such as the pantograph [107], the slider-crank [19], and the four-bar [86], whose
geometric structures exhibit a mirror symmetry about a plane moving with
half magnitude (hence also half velocity) of that of the end-effector for full-
cycle motion. Recently, the second and third author of this chapter made an
addendum to this class of mechanisms by systematically investigating plane and
line symmetry of a class of parallel mechanisms known as symmetric subspace
motion generators [66] 121].

The main contribution of this chapter is twofold. Firstly, we propose a
dynamic balance method via dynamic equivalence to massless systems with
only moments of inertia. This approach, called pure-inertia method (PIM),
provides a unified understanding of several existing dynamically balanced mech-
anisms that were previously synthesized by solving complex algebraic equations.
Secondly, the PIM is applied to a novel 2-DOF planar symmetric mechanism
proposed in [I2I]. Numerical simulation confirms that the mechanism is dy-
namically balanced.

6.2 Pure-inertia method

The pure-inertia method relies on the dynamic equivalence of all links in a
mechanism to a zero mass with non-zero moment of inertia. A pure inertia
may be interpreted as dynamically equivalent to an infinitely large and thin
ring.

The principle of dynamic equivalence is illustrated in A range of
dynamically equivalent links can by found via point mass redistribution [31].
The initial inertial parameters comprise mass mo,, COM c¢,, and moment of
inertia go (Fig. 6.1al), whereas for the dynamic equivalent set we have: my,
cg, and gf . If we start with a link hinged at o, we may transfer
a point mass of arbitrary value a — located at the hinge — from the link to
the base and vice versa, without changing the link’s momentum and shaking
forces and moments. In the same manner, the link may exchange a point mass
with any body 4 hinged to it by a revolute joint at a location denoted by o;.
This is a valid dynamic equivalent operation, since the linear velocities of both
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Figure 6.1: Dynamic equivalence via point mass redistribution. (a) a simple pen-
dulum; (b) a dynamic equivalent of (a) by adding or subtracting a point mass at the
hinge; (¢) a pendulum with COM located at the hinge; (d) a dynamic equivalent of
(c) with a pure moment of inertia.

connecting bodies are equal at a revolute joint, therefore an exchange of a
point mass does not affect the mechanism’s momentum. We have the following
equations:

n n
mg = mo + Zai, Mg = MoCo + Zaioi,
i=1 i=1
N (6.1)
gt = go —miller — co* + Y aiflo; — e

=1

To ensure dynamic equivalence, the point mas added to body ¢ should be sub-
tracted from body j, which we refer to as mass continuity. If both m¢ = 0 and
meer =0, e, if mo = — 31" | a; and moco = — Y, @;0;, the dynamics of the
body is completely determined by a pure moment of inertia . This
pure moment of inertia — or for brevity; pure inertia — shall be denoted with
a prime: ¢g’. When this holds for all bodies in the mechanism, the mechanism
is said to be a pure-inertia mechanism.

A pure-inertia body is not physically feasible, but it can be transformed back
into a feasible one by applying the reverse process of point mass recomposition
[31], i.e., by adding point masses at the revolute joints. For the purpose of this
chapter, we shall consider bodies connected with at most two revolute joints,
and therefore all vectors in can be treated as scalars. We treat here
the recomposition of a pure-inertia body, e.g. mo = 0, Moco = 0, and go = ¢'.
By assuming that one of the joints is located at the origin and the other at
a distance [, the following relations hold for the mass, COM and moment of
inertia:

ajaz

12 2 6.2
ai + az (6.2)

mg = a1 + az, mecs = azl, gf:g/_|.
The links generated from dynamically equivalent pure-inertia bodies, remain
physically feasible if the equivalent mass m; and moment of inertia gr satisfy
the following positivity constraints:
qJ araz

0& — 0 5 >——7~— 6.3
me > a1 > —az, gr > 27 T ar + an (63)




112 Chapter 6. PIM and symmetric mechanisms

(a) (b) (c)

Figure 6.2: Dynamic balance conditions for a slider-crank mechanism. @ The
kinematic and inertial parameters. @ The conventional dynamic balance conditions
for a symmetric slider-crank. The symmetry line is represented by the green dash-
dotted line. The pure-inertia equivalent of the dynamically balanced slider-crank

which implies that a pure inertia, denoted g¢’, is allowed to have a negative
value. The limits on a; and a2 are carried over to adjacent bodies due to mass
continuity. See [3I] for more details about the mass redistribution method. It
should be noted that a pure-inertia mechanism has a fixed COM with respect
to the base and is therefore necessarily force balanced. However, the reverse
does not hold in general.

Dynamic balance

In the literature, force balance conditions are usually inspected prior to moment
balancing. In comparison, for a pure-inertia mechanism, force balance condi-
tions are automatically satisfied and therefore only the angular momentum,
denoted &, needs to be canceled out to achieve dynamic balance:

&= Zggwi =0 (6.4)
=1

It should be noted that the moments of inertia g; are pose independent. The
angular velocities w;, on the other hand, imposes conditions on the geometry
of the mechanism [86].

Dynamic balance of the slider-crank linkage using the PIM

We shall now illustrate the PIM by considering the dynamic balance of a slider-
crank linkage, as shown in According to [19], a slider-crank linkage can
be dynamically balanced under symmetric kinematic conditions {1 = l2, I3 = 0.
Furthermore the total COM is required to be located at the base revolute joint,
and links’ inertial parameters should satisfy:

ca =0, mic1 = —maly, g1 = gz —ma2 (% + 1) Ik (6.5)
1

It is apparent that the symmetry condition l1 = l2 constrain link 1 and 2
to move with equal and opposite angular velocities: w1 = —ws. In reference to
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(b)

Figure 6.3: (a) The dynamically balanced four-bar linkage. (b) A pure-inertia dy-
namic equivalent of the linkage shown in (a). The green dash-dotted line shows the
symmetric plane, bisecting the kite through joint g2 and ga.

[Eq-6-4 the dynamic balance condition for the slider-crank linkage reduces to:
9o =dh (6.6)

We shall now show that this newly derived balance condition is exactly
equivalent to the conditions given in [Eq. 6.5 Via the mass recomposition —

refer to — we have:

/ a21 2
m1 = aio — a1, Mic1 = —azili, g1 =g; — a2 (* + 1) 7
aio — a21 (6.7)

! !
m2 = a21, mac2 = 0, 92 = g1 = g2

We remark that the dynamics of the slider can be easily included in the
above process. Since it only translates and generates no angular momentum, it
is dynamically equivalent to a point mass which can be included in the dynamic
balance conditions via point mass recomposition, as in

Dynamic balance of the four-bar linkage using the PIM

Gosselin and Ricard [86] showed that two types of symmetric four-bar linkages
can be dynamically balanced. The first one is the kite type, shown in [Fig. 6.9}
It is symmetric about a plane passing through joint g2 and gs. The second
type, the anti-parallelogram, is symmetric about a plane which bisects the
angle formed by lines through body I1 and 3.

We shall focus on the first type here (the same procedure can be applied to
the anti-parallelogram). The kinematic symmetry conditions are: I; = l2, and
lo = I3, whereas the dynamic balance conditions are[I20]:

g1 = ge1 + mici(li —c1)

mace = mic1 + mali, g2 = ge1 + maca(li — c2) (6.8)

l
macz = f (cama + lims), g3 = —ge1 — macs(lz — c3)

in which g1 is a useful collection of inertial parameters introduced in [120].
The corresponding pure-inertia mechanism can be generated by considering
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Figure 6.4: The dynamically balanced 2-DOF planar symmetric mechanism (a vari-
ant of the Ma4-type symmetric mechanism proposed in [121]). The angle bisecting
pantograph-slide on the symmetry plane is shown in gray. When fixing one of the base
joints the mechanism acts as a symmetric four-bar mechanism (red).

the following mass redistribution:

a21 = a10 — M1, a3z2 = a21 — M2, aop3 = azz2 — M3
AN Y A //_l3 o (69)
miCy = MaCy = ml(Cl - ll) + aiols, maCz = l—mlcl
1
The link masses can then be canceled out by setting a9 = —mi/li(c1 — l1),

thus resulting in the following pure-inertia dynamic balance conditions:
91 = 9> = —95 = ga (6.10)

which offers a novel interpretation of g.1. It should be noted that these con-
ditions can also be derived from the relation between the angular velocities
w1 + w2 = ws. Based on these pure-inertia conditions, we can find a range of
dynamically equivalent mechanisms, as long as the selection of inertial para-
meters g%, aio, a21, asz, and ao3 respect the positivity constraint m; > 0 and
gi > 0.

6.3 Dynamic balance of a novel 2-DOF symmetric
mechanism using the PIM

A novel 2-DOF symmetric planar mechanism, capable of generating finite rota-
tions about any axis on its symmetric plane, was recently proposed in [I21]. A
variant is illustrated in It comprises two RRR chains acting in-parallel
on the end-effector and an angle-bisecting device (gray links in [Fig. 6.4) to en-
sure a symmetric motion. The angle-bisecting device consists of a pantograph,
attached via two revolute joints to two collinear slider joints on the symmetric
plane. The symmetric plane bisects both “elbow” angles of the two RRR chains
for full-cycle motion. Due to the half-angle property [122], the symmetric plane
also bisects the angle between the base and the end-effector.

We shall apply the PIM to dynamically balance this novel mechanism in two
steps. In the first step, the mass and moment of inertia of the angle-bisecting
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Figure 6.5: Simulation results of the novel 2-DOF manipulator. The figure shows
the input angles (a), shaking forces in z and y direction (b, and c respectively) and
the shaking moment (d). The shaking forces are the sum of reaction forces on the
base joints (joints 1 and 8). The shaking moment is the sum of motor torques and
the couple induced by base joint forces.

device are ignored (but assuming that the geometric constraint is still effective).
We set base joints (¢1 and ¢3) as the input variables. Because of the symmetry
conditions, the angular velocity w; ; of body ¢ with respect to the actuator
j ={1,3} can be written as:

w1,1 + w21 = w41 = Ws,1
(6.11)
wW3,3 + W4,3 = W2,3 = W5,3

Both relations are in fact equivalent to those of the kite-type four-bar linkage:
when one of the base joints is locked, the platform and its adjacent link move as
a single rigid link, thus similar to a kite-shaped four-bar linkage. Consequently,
dynamic balance conditions can be derived from as:

G=92=—-g1—g5, Gr=gi=—gr— gs (6.12)

In the second step, the entire mechanism is dynamically balanced. First, note
that links lg and 7 of the pantograph (the angle-bisecting device in
have the same angular velocity as that of links l> and [i, respectively. Their
moments of inertia can then be easily lumped together in the dynamic balance
conditions derived in the first step. Secondly, due to the half-angle property,
the angular velocity of the connecting link [, is exactly half the angular velocity
of the end-effector. Thus we have:

We = W2, wry = w1, wg = 0.5(.05 (613)
The dynamic balance conditions for the entire mechanism are then given by:
gi+9r=9s+gs,  9gs=9s,  g5+0.5g95=—g5—gi (6.14)

A simulation of the dynamically balanced 2-DOF mechanism was performed
to validate the PIM. The numerical values chosen for the lengths, COM, masses
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and moments of inertia can be found in- The simulation results,
as shown in confirm that the sum of the shaking forces and moments
are zero for arbitrary motion.

6.4 Conclusion

All dynamically balanced mechanisms discussed in this chapter share the same
property of kinematic symmetry and dynamical equivalence to pure-inertia
mechanisms. The pure-inertia method provides a simplified approach for achiev-
ing dynamic balance for two reasons: (i) Force balance conditions are automat-
ically satisfied; (ii) in the planar case, moments of inertia are pose invariant
and can be treated as scalars, reducing the dynamic balance conditions to lin-
ear kinematic relations between angular velocities. These relations, in the class
of mechanisms shown here, are linear due to kinematic symmetry conditions.
Based on this new understanding, a new dynamically balanced 2-DOF mech-
anism was presented.
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Table 6.1: Geometric parameters for the 2-DOF symmetric mechanism as used in
the simulation.

Name Symbol Value Unit
Base length lo 4.0 m
Arm length l1, la, I3, lg 1.0 m
Platform length ls 4.0 m
Pantograph length le, U7 0.75 m
Pantograph offset le1,1l71 0.25 m

Table 6.2: Pure moments of inertia.

Name Symbol Value Unit
Left arm PI g1, gh 1.000 kg m?
Right arm PI g5, ga 1.010 kg m?
Platform PI g5 -2.025 kg m?

Pantograph PI ¢4, ¢%, g5 10.00 x 1072 kg m?

Table 6.3: Point mass redistribution.

Name Symbol Value Unit
Left base joint aio 1.93 kg
Left elbow joint as1 -0.570 kg
Right base joint aso -1.18 kg
Right elbow joint a43 -0.490 kg
Platform joints as2, as4 -0.260 kg
Pantograph-arm joints ae1, arz, ag1  -10.0 X 1073 kg
Internal pantograph joints a76 -3.00 x 1073 kg

Table 6.4: Inertial parameters as used in the simulation of the dynamically balanced
2-DOF mechanism.

Name Mass kg COM m MOI kg m?
Left lower arm my 1.3 c1 -0.43 g1 0.17
Left upper arm ma 0.30 c2 -0.89 g2 0.50
Right lower arm ms 0.69 c3 -0.71 g3 0.17
Right upper arm ma 0.23 cq -1.1 ga 0.46
Platform ms 0.52 cs 2.0 gs 55%1073

Lower pantograph arm me 7.0x1073 Co -0.32 Jge 7.6x1073
Upper pantograph arm mr 13x1073 cr -0.17 g7 11x1073
Symmetric bisector ms 10x1073 cs 0.00 gs 10x1073






CHAPTER

Discussion

This thesis aims to strengthen the mathematical basis for dynamic balance
and provide three new methods to find new dynamically balanced mechanisms.
The first two methods where aimed at solving the dynamic balance conditions
in a uniform manner, whereas the third method attempts to shed light the
kinematics that are required for effective balance solutions. Looking back on
this work the question arises; to what extent have the objectives been fulfilled?
And, further zooming out, what implications does this research have for the
dynamic balancing field and beyond?

7.1 Reflection on the results

Holistic analysis method

Objective 1: To develop a holistic analysis method that provides all dynamically
balanced mass distributions for any planar or spatial parallel linkage with single
or multi-DOF.

and [5| present two dynamic balancing methods aimed at fulfilling
Objective 1. The instantaneous dynamic balance method yielded
and solved the necessary zeroth-order conditions for dynamic balance in a geo-
metric manner. This approach is uniform for all linkages and yields a single,
instantaneously dynamically balanced pose in which the linkage is exactly dy-
namically balanced. That means that in this pose the accelerations robot will
not induce shaking forces and moments. Close to this pose the balance quality
is high, whereas further away it worsens. How severe this quality drop depends
strongly on each case. The combination with path balance gives this pose more
significance as it is found to be the intersection of multiple dynamically bal-
anced paths. For this ‘path balance’, additional conditions are to be satisfied,
which are found on a case-by-case basis. The Fuga I, for example, satisfies
two force balance conditions in addition to the instantaneous dynamic balance
conditions. This resulted in a mechanism which is dynamically balanced over
two paths, intersecting in the middle of the workspace.

The higher-order dynamic balance method extends this ap-
proach to arbitrary order and thereby to the conditions that are necessary and

119
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(we conjecture) sufficient for the dynamic balance of nonsingular linkages. By
addition of the first-, second- and higher-order derivatives of the total mo-
mentum wrench, more conditions are found and solved, until exact dynamic
balance extends over the whole workspace of the mechanism. It should be
noted that also path balance, force balance, or partial balance, can be found by
selection of subset of these conditions. For example, a 3-RSR linkage is found
that is dynamically balanced for 2-DOF movement on three symmetric planes.

Both methods rely on the intrinsically spatial screw theory and treat force
and moment balance simultaneously. The provided interpretation of the solu-
tion space is different for the two methods: employs a conventional
parameterization using masses and principal moments of inertia. This facil-
itates the feasibility study to ensure positive masses and moments of inertia.
uses a different parameterization, based on the multipole represent-
ation [52] originating from the prior art on parameter identification. Although
this parameterization is linear in the linear and angular momenta, it is non-
linear in the feasibility conditions, precluding a closed-form feasibility check
for arbitrary mechanisms. Therefore, the feasibility check is carried out on an
individual basis as demonstrated in the case studies.

The higher-order dynamic balance method showed two distinct design spaces
of dynamically balanced inertial parameters for parallel mechanisms. The first
design space is associated with the serial chains into which a parallel mechan-
ism can be decomposed. This may therefore be seen as the extension of the
‘mass/inertia flow concept’ [125] to the general spatial case. The second design
space appears only in specific kinematic conditions, such as when the links’
linear or angular velocities are subject to a linear relation [43] [I7]. Since serial
linkages always require bodies with negative or zero masses or moments of iner-
tia for dynamic balance, this second, parallel design space is essential to enable
feasible designs that do not require counter-rotating devices.

Essential kinematic conditions

Objective 2: To understand the underlying principles needed to achieve dynamic
balance through mass distribution design.

From — the higher-order dynamic balance approach — two types
of essential kinematic conditions arise. Firstly, the linear and angular velocit-
ies should have a special relation whereby a parallel design space opens up.
Secondly, this additional design space should be such that, in combination with
the serial design space, it allows for feasible masses and moments of inertia of
all bodies. Currently, it is not known how these rather abstract conditions can
be turned into concrete mechanisms. Therefore, this method functions more as
a check of whether a mechanism can be dynamically balanced, and if so, under
what conditions.

The first type of essential kinematic conditions may potentially be found for
a given mechanism by investigating the kinematic coupling matrix X. When its
rank drops, i.e. when the determinant of a sufficiently large submatrix vanishes,
an additional design space appears. The problem of deriving these conditions
lies in the fact that this coupling matrix X highly nonlinear is in the kinematic
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parameters. Here, the algebraic balancing methods of Moore et al. [74}, [75] [76]
form a potential approach. The second type of conditions, on the feasibility,
is potentially even harder to guarantee in closed form as it involves a set of
inequality conditions.

also revealed a similarity between the loop-closure constraints and
the mass matrix. Comparison of the loop-closure condition with the
dynamic balance condition shows that as long as the mass matrices
remain within the constrained space, the mechanism is dynamically balanced.
The consequence of this fact is not fully investigated but it may allow for an
inverse design approach: to find kinematic constraints that permit feasible mass
matrices.

takes another route to fulfill this objective. It shows that two
elementary dynamically balanced linkages from literature possess a specific re-
lation on the linear and angular velocities, i.e. mirror symmetry with respect to
a moving plane. Furthermore, it shows that the masses and moments of inertia
of these linkages can be represented with a single pure moment of inertia per
link. This enables a third dynamic balance method, termed the pure-inertia
method. This method is applied to a class of linkages termed symmetric sub-
space motion generators, leading to a novel 2-DOF dynamically balanced link-
age. It should, however, be noted that not all dynamically balanced linkages in
literature are purely symmetric and furthermore, that not all symmetric sub-
space motion generators can be dynamically balanced, as shown by the 3-RSR
in These symmetric linkages are nevertheless expected to provide a
promising source of linkages which may be dynamically balanced in the future.

In relation to the literature

Although it is impossible to relate the current work to the full width of the
literature on dynamic balance, several observations can be made. The first
point is a comparison of the algebraic dynamic balance methods [74] [75] [76]
with the methods in this thesis. These algebraic methods have proven successful
in obtaining the essential kinematic conditions for planar and spherical four-
bar linkages, of which the spherical variant turned out not to be ‘balanceable’.
With the methods in this thesis it is not yet possible to obtain these essential
kinematic conditions. The algebraic methods on the other hand did not produce
an intuitive description of design space and required a tailored treatment of
different single DOF linkages. As stated earlier, a natural next step would be
to combine the higher-order balancing method with these algebraic methods
to enable a systematic study of essential kinematic conditions of multi-DOF
linkages.

The linearly independent vector method [I5] and derived analysis methods
[10) [60, 124] provide a simple set of conditions for force balance, although being
too strict in special cases [43]. For the higher-order dynamic balance method,
generality, completeness and moment balance of spatial mechanism come at the
cost of mathematical transparency. Although a part of this complexity seem
to be inherent in the dynamics of spatial mechanisms with multiple DOF, the
multipole-rod representation of the inertial parameters and partitioning accord-
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ing the joint topology recovered some of the interpretation which is essential
from a designer’s point of view.

Lastly, several systemic synthesis methods have been presented in the past.
Among these, the method of principal vector linkages has resulted in a wide vari-
ety of force balanced planar linkages [107,[100] and several force balanced spatial
linkages [101), [102]. Systematic moment balance, on the other hand, seems to
require a different approach [96], as confirms. This thesis did not
present a full synthesis method but explores the prerequisites of such a method.
It shows that synthesis through stacking requires dynamically decoupled mod-
ules. That means that, beside dynamic balance, also a constant total moments
of inertia is required. It shows furthermore that synthesis through kinematically
tracing the dynamic balance conditions, as done in the force balance methods,
will either enforce more conditions then necessary, will require complex non-
holonomic tracing mechanisms or will work only for a specific class of linkages.
As a consequence, the [E] and [] were aimed at retrieving the nature
of the essential kinematic conditions which resulted in two symmetric dynamic-
ally balanced 2-DOF linkages. A systematic study of these essential kinematic
conditions is expected to pave the way for new systematic synthesis methods.

7.2 Future of dynamic balance

This thesis is confined to theoretical methods with the aim of finding new
dynamically balanced mechanisms that have low complexity, mass and inertia.
Yet there are more hurdles to be tackled before dynamic balance can fulfil its
promise and advance high-precision, high-speed robots to the factory floor.

Towards practice

A common assumption in the dynamic balance literature is that all robot links
are perfectly rigid, while the base frame is the sole source of vibrations. In
practice, however, the robot links are not rigid and will deflect, causing internal
vibrations and a loss of precision of the robot. Furthermore, the eigenfrequen-
cies associated with these vibrations limit the controller bandwidth and thereby
the performance of the robot. The addition of countermasses, as typically used
in dynamic balance, is likely to lower these eigenfrequencies, compromising the
performance of the system. Currently it is not clear how these conflicting effects
of dynamic balance are to be harmonized. The little existing literature on this
topic focuses on machines with fixed input speeds and is confined mainly to the
time domain [113] [123] [128], with notable exceptions of [71] [72]. Recently, we
published a preliminary frequency domain study of a 2-DOF planar manipu-
lator with non-rigid, realistic link stiffnesses [30]. Two opposing effects became
apparent: 1) a strong reduction of the shaking forces in the frequency domain
below the first eigenfrequency, and 2) a lowering of first parasitic eigenfrequence
and controller bandwidth due to the added mass. An optimal mass distribution
was found that allows for a reduction of the shaking forces in the low-frequency
region without compromising controller bandwidth. Further investigation of
this topic is crucial, so as to tailor dynamic balance to practical applications.
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Another assumption is that dynamically balanced mechanisms are also dy-
namically decoupled, and thus behave as a single rigid body while emitting
zero vibrations. shows that dynamic balance is a necessary but not
a sufficient condition for dynamic decoupling; also a constant total moment of
inertia of the mechanism is required. This means that it is in principle possible
to aggravate existing rotational base vibrations by specific motion of a dynam-
ically balanced mechanism. Yet, in practice, when the mechanism is fixed to a
sufficiently stiff base frame, these vibrations are expected to be of minor signi-
ficance when compared to the elimination of shaking moments due to dynamic
balance and the remaining internal vibrations.

Other practical effects such as a varying payload [103] [26] parameter uncer-
tainty [109], and backlash [I4] have also received limited attention in literature.
It is likely that this will result in some deviation from perfect balance, but
by how much, and under what conditions? A study of these practical aspects
may yield insight into the efficacy of, and novel design criteria for dynamically
balanced robots.

This thesis reaffirms that dynamic balance by design of the mass distribu-
tion requires a very specific choice of robot kinematics. More solutions are
expected by further study of dynamic balance, yet it is unlikely that after the
long history of research, a multitude of dynamically balanced robots will be
found that do not require some form of additional counter-structures. Some
specific applications which are in nature symmetric, such as gripping, might
profit from new synthesis techniques. For other non-symmetric applications,
such as pick-and-place, passive or active counter-acting mechanisms might be
indispensable [125] [T9] 108, [T05]. Nevertheless, a complete inventory of all dy-
namically balanced solutions, as supplied through the methods in this thesis,
potentially enables designs that have a minimal amount of counter-acting ele-
ments, leading to more practical designs.

In most practical applications, a reduction of the shaking forces and mo-
ments suffices. Optimal dynamic balance strategies try to combine the best of
both worlds by relaxing the exact dynamic balance conditions in a trade-off
for lower motor torques, lower bearing loads, higher controller bandwidth or
lower total mass. For this optimization to work, representative trajectories,
starting values, boundary conditions, solvers and weighting factors between the
objectives have to be chosen. Typically, also the kinematic structure and its
geometry are chosen prior to the optimization. These initial choices on the
kinematics directly limit the optimization potential, as certain kinematics are
more suitable for dynamic balance than others. The results and intuition from
exact dynamic balancing, such as treated in this thesis, may aid these choices
and form a starting point for the optimization procedure. The higher-order
approach as presented in can potentially be extended to include
optimality conditions. This would allow for a systematic weighting of poses,
velocities and accelerations, making it less dependent on the trajectory choice,
while retaining some intuition of the solution space.

A judicious weighting of shaking forces and shaking moments is indispens-
able for optimal dynamic balance. However, it is not directly clear how these
translational and rotational domains relate to each other and to the effect-



124 Chapter 7. Discussion

iveness of the robot. For a case study on a Delta-like robot, we proposed to
quantify dynamic balance based on the floor contact forces and end-effector
accuracy by taking the geometry and stiffness of the base frame of the robot
into account [27]. The results show that force balance only slightly improved
these measures. The reason was found to be that, depending on the trajectory
and frame-design, the shaking moments are the dominant source of vibrations.
Therefore, a combined treatment of the shaking forces and moments and phys-
ically meaningful weighting factors are essential for the effectiveness of optimal
dynamic balance.

Recommendation for further research

The recommendations for future research, as discussed so far, may be grouped
into two research branches. One branch leads towards a systemic, exact dy-
namic balance method through synthesis, while the other branch of research
guides dynamic balance towards practical implementation.

1. In this vision, a future synthesis method will grant robot designers with
the guidelines to design effective and low-cost balancing solutions. By consider-
ing dynamic balance at the beginning a range of suitable mechanisms might be
synthesized through an intuitive manipulation and recombination of elements,
such that the most promessing one can be selected for detailing. Alternatively,
such a synthesis method would a starting point for optimal balancing techniques
and further the other branch, the practical implementation. To derive such a
synthesis method more insight is needed into the essential kinematic conditions,
as identified previously. Currently it not known what types of spatial mech-
anisms exhibit a feasible design space. The higher-order balancing method as
presented in in this thesis might form a fruitful starting point. On the one
hand, algebraic methods can be applied to isolate the essential kinematic con-
ditions. On the other hand, a range of mechanisms can be quickly tested for
balancablity and therewith build a library such mechanisms. One lead for this,
as identified in this thesis, is mirror symmetry. The limited number of examples
in this thesis confirm that symmetry has balancing potential, but also that it is
not the only ingredient. Once the essential kinematic conditions become more
palpable it is likely that new synthesis procedures follow suit.

2. In order to move dynamic balance towards practice, it is essential to
identify the expected yield of dynamic balance in terms of end-effector preci-
sion and reduction of floor vibration. This requires the investigation the effects
that appear in implementation, such as robot rigidity, frame design, play, tol-
erances, payload etc. It is therefore desired to design several representative
demonstrators that no only show the reduction of shaking forces and moments,
but also the effect on end-effector precision and floor vibrations. This might
lead to new design heuristics and proofs of the effectiveness of dynamic balance
of robots. Optimal dynamic balance techniques such as presented in [36] 111],
provides an appropriate framework to weigh the design criteria and include
expected effects of implementation into the design process.
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7.3 Design through model inversion

Stepping away from dynamic balance, it can be seen that some of the meth-
ods in this thesis are applicable to other design problems. Modern day design
processes, such as controller design or mechanical design, typically follow a
design-model-evaluate-iterate paradigm. In this process an initial design is
modelled, simulated and evaluated using mathematical models, such as FEM.
If the design does not satisfy the design criteria, the design is changed and
the process is repeated. Typically this new design is based on experience and
heuristics. If the designer is lucky, the model provides some clues on how to
improve the design. Optimization software automates this process by intro-
ducing a feedback loop, thereby requiring a properly defined design criterion
and boundary conditions as well as a large number of evaluations. Another
approach, also used for dynamic balance, is the reversal of this design process
by inverting the model, or at least by making the model more transparent.
In this thesis, for example, the higher-order derivatives of the dynamic model
were used to extract necessary, sufficient and solvable conditions on the inertial
parameters of a mechanism. This model inversion can potentially be extended
to other related fields that have exact design criteria. For example, the design
of statically balanced mechanisms [46] or of approximate path mechanisms [12]
might benefit. By including elasticity [48] into the higher-order derivatives, this
method might be applied to the design of flexure mechanisms and the control
of robotic systems.







CHAPTER

Conclusion

This thesis presents two analysis methods to strengthen the mathematical basis
of dynamic balance and one method working towards dynamic balance through
synthesis. The first method unifies force and moment balance and provides
a uniform description and interpretation of spatial dynamics through screw
theory. The second method deals with the intrinsic algebraic complexity of
kinematic equations by using higher-order derivatives of dynamic balance con-
ditions. This yielded a complete description of dynamically balanced mass dis-
tributions for any given nonsingular linkage. Finding the kinematics that are
favourable for dynamic balance is the aim of the third method. This method
exploits and balances a specific class of kinematics, the planar symmetric sub-
space motion generators.

8.1 Instantaneous dynamic balance

In the first method, screw theory allowed for the the combined treatment of
force and moment balance. This spatial method provides a geometrical and
graphical interpretation of the dynamic balance conditions for arbitrary link-
ages without requiring the finite solution to the loop-closure equations. Fur-
thermore, it provides a range of mass distributions that are necessary but not
sufficient for the dynamic balance. These mass distributions result in pose that
is instantaneously dynamically balanced. When the mechanism is placed in
such a pose, the acceleration will yield no shaking forces or moments. Moving
away from this pose, the dynamic balance quality reduces. It is shown that,
in conjunction with path balance, these poses form an intersection of multiple
reactionless paths.

This resulted in a 2-DOF planar mechanism, the Fuga I, which is force bal-
anced over the complete workspace and moment balanced over two perpendic-
ularly intersecting lines. A demonstrator showed a shaking moments reduction
in the order of 95 % in comparison to a non-moment balanced trajectory. Force
balance showed an equal quality when comparing the bearing forces with the
shaking forces. The residual shaking forces and moments are attributed to
practical implementations such as measurement noise, design tolerances and
controller errors.

127
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8.2 Higher-order dynamic balance

The second method, extends dynamic balance over the workspace by satisfying
a sufficient number of higher-order derivatives of the momentum equations. It
is conjectured this method thereby provides the complete design space of dy-
namically balanced inertial parameters of any given nonsingular linkage. These
higher-order derivatives of the dynamic balance conditions were found by a
screw theory-based algorithmic treatment that consist solely of matrix opera-
tions. The inertial parameters of the links are linear in these conditions, such
that the complete dynamically balanced design space could be extracted by a
nullspace operation. To retain design intuition, a systematic partitioning of the
resulting design space was provided together with its multipole-rod interpreta-
tion. For serial mechanisms the dynamically balanced design space permits a
partitioning associated to each joint, i.e. each joint in the chain adds design
freedoms according to its type and its alignment with respect to previous joints
in the chain. Six types of design spaces completely determine all types of serial
linkages. For serial mechanisms this design space always includes zero or negat-
ive moments of inertia, necessitating counter-mechanisms for implementation.

As parallel linkages may be regarded as a set of connected serial linkages,
the previously identified design space for serial linkages is valid also for parallel
linkages. In the case of general parallel linkages, this design space — associated
to the serial chains into which the parallel linkages can be decomposed — is the
complete design space. However, in specific kinematic cases, such as kinematic
mirror symmetry, an additional solution space opens up. This enlarged design
freedom reduces the number of (or even eliminating the need for) counter-
rotations required to implement dynamic balance. This enables designs that
are potentially more light-weight and economically viable. As an example, a
3-RSR mechanism was presented that is dynamically balanced over 2-DOF
motion on three planes of symmetry, indicating the possibilities of this method.

The basis for this higher-order dynamic balance method lies in the higher-
order derivatives of the kinematics of serial and parallel linkages, as presented in
There an algorithm was presented that, for the first time, yields de-
rivatives up to arbitrary order of different types of forward or inverse kinematic
mappings. This method relies on recursively applying the implicit function the-
orem to arrive at a local solution to the loop-closure constraint equations. It
enabled a Taylor-based motion approximation of arbitrary linkages, as shown
by the examples of a serial 6-DOF robot, a planar five-bar mechanisms and the
overconstrained Bennett linkage.

8.3 Symmetric and pure inertia mechanisms

These two dynamic balance methods give the, or a part of the, dynamic balance
solution for a given mechanism but not tell which mechanisms are favourable for
dynamic balance. The aim of the third dynamic balance method was to provide
such clues and find mechanisms that can be dynamically balanced by sole design
of the mass distribution. It was observed that several dynamically balanced
mechanisms from literature share kinematic mirror symmetry. In the case of
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the planar crank-slider linkage (3RP) and the planar four-bar linkage (4R)
the essential kinematic conditions — required for dynamic balance — result
in a linear relation between the angular velocity of the links. Therefore, these
linkages are dynamically balanced when the links are chosen to be dynamically
equivalent to pure moments of inertia. These insights on kinematic symmetry
and the pure moment of inertia equivalent led to the development of a novel
dynamically balanced 2-DOF planar manipulator.

8.4 Overarching conclusions

The three proposed dynamic balance methods provide the means and directions
in the search for new dynamically balanced mechanisms. On the one hand, this
thesis presents a method that computes the complete dynamically balanced
design space for arbitrary linkages, being planar or spatial, open or closed loop
linkages. This allows for a systematic check of whether a mechanism can be
dynamically balanced by design of the mass distribution, i.e. without the need
for counter-mechanisms. On the other hand, this thesis reaffirms that the kin-
ematic choices dictate whether a mechanism can be dynamically balanced. Up
to now it remains unknown what the exact nature of these essential kinematic
conditions are. Nevertheless, the intuition that kinematic symmetry provides
novel possibilities is strengthened by two novel dynamically balanced mech-
anisms that rely on symmetry. The combined use of the presented methods
unlocks a systematic investigation into the nature of the essential kinematic
conditions, which is of the utmost importance for the development of new dy-
namically balanced mechanisms.







APPENDIX

Multivariate matrix derivatives using
Kronecker product

The higher-order partial derivatives of matrices are managed in this thesis with
the use of the Kronecker product [I12]. In this appendix the Kronecker product
notation and some elementary properties are listed along with the application to
the bookkeeping of the higher-order partial derivatives. The differences between
the sequence (DE(A)) and the collection (DZ(A)) of higher-order partial deriv-
atives are highlighted.

A.1 Kronecker product

The Kronecker product is defined as the collection of the element-wise multi-
plication of all elements in the respective matrices. Consider the following set
of matrices: A € R"™™ B € RP*?

a11B almB
A® B = : ; (A1)
amiB ... anmB

The mixed-product property is used to recombine normal matrix products
and Kronecker products

(AB)® (CD)=(A®C)(B® D) (A.2)

A sequence of the Kronecker product is swapped with pre- and postmulti-
plication of permutation matrices

A®B=P,,BR AP, 4 (A.3)

These permutation matrices P, , are binary, orthogonal, square nm x nm
matrices consisting of m x n sub-matrices. These sub-matrices (Py7, € N™*")
have only one 1 on a specific location (Py7,(j,7) = 1)
Py ... Py
P, = : ; (A4)
P ... Py
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The vectorization of matrix products is written by means of the Kronecker
product

vec(ABC) = (C " @ A)vec(B) (A.5)

A.2 Collection of the higher-order partial derivatives

The collection of partial derivatives of a given vector a with respect to @ € R”
are organized according to

D.(a) = [% @ - o <a>] (A.6)

The higher partial derivatives of vectors follow the same ordering

D,(Dy(a)) = {D,{% (a)) Dw(a%r (a))} (A7)
in which the i-th element is
D, (a% (a)) = {a%a% (@) ... %% (a)} (A.8)

This is extended to the partial derivatives of a matrix A = [al am},
which are organized according

DE(A) = [Dw(al) T Dm(am)] 5 (Ag)
D(A) = Da(Dg(A)) = [Di(a1) -+ Di(am)] (A.10)
DE(A) = [Dh(@) - Dh(am)] (A1)

This may be extended in a similar manner to arbitrary order.

A.3 Sequences of higher-order partial derivatives

A sequence of higher-order partial derivatives is denoted with a vector in the
superscript DX (A) = 9% /(9z{* --- 9x%™). Consider for example the following
sequence of partial derivatives

b & & (A) =Dgz(A) with a=][1,3,0,0,2] (A.12)
Oz, Ox3 Oz e e ’

The a-vector is an ordered multi-index corresponding to . The total order of
this sequence is given by Y, a; = |a|. These sequences of higher-order partial
derivatives clearly form the elements (rows and submatrices) of the collection
of higher-order partial derivatives D%(A), i.e. DX(A) is formed by all sequences
of a for which |a| = k.
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A.4 Partial derivatives of the matrix-vector product

The partial derivatives of a matrix-vector product with b € R™ become

0 0
D,(Ab) = [—(%1 (Ab) ... oz, (Ab)] (A.13)
in which the i-th column is
1o} 1o} 1o}
oz, (Ab) = —ami (@) b1+ ...+ 78951- (@m) bm, (A.14)
1o} g

In order to comply with the ordering of [Eq. A.9] the multiplications have to be
arranged, such that

b1l
D,(Ab) = [Dy(a1) -+ Dg(am)] | : | =Da(A) (bR I) (A.16)
b I

in which I, is the r X r identity matrix.

A.5 Matrix derivative relations

This leads to following matrix derivatives entities:
Product rule of A(z) € R™*™, B(xz) € R™*? and & € R"

D,(AB) =D,(A) (B ®I.)+ AD,(B) (A.17)
Chain rule of A(b(c)) with nested variables b and ¢
D.(A(b(c))) = Dy(A) (I @ De(b)) (A.18)
Derivatives of the Kronecker product
Dy(A® B) = (D(A)® B)(Im @ P, ) + A® D4(B) (A.19)
Derivative of matrix inversion
D,(A™") = -A"'D,(A) (A" ®I,) (A.20)

A recursive application of these equations allow for the extension of these de-
rivatives up to arbitrary order.







Abbreviations

COM  Centre of mass

DOF  Degree of freedom

FK Forward kinematic model

IK Inverse kinematic model

IMW  Instantaneous momentum wrench
ISA Instantaneous screw axis

MOI  Second moment of inertia

Joint types

H
P
R
S

Helical joint
Prismatic joint
Revolute joint

Spherical joint

Mathematical notation

[0, ]
oRe

L_oN ]

Scalar

Vector

Matrix

Function

Cross product

Lie bracket

Kronecker product

Element wise product
Collection of vectors or matrices
Matrix aggregation

Normalized vector
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Nomenclature
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DE(e)
ad(e)
Ad(e)
diag(e)
ker (o)

vec(e)

Nomenclature

Vector appended with a one

First derivative with of e respect to time
Second derivative with of e respect to time
Transpose

Matrix inverse

Left pseudo inverse

Element wise quadratic

Kronecker product to the power n

Null space basis

Euclidean norm

Skew symmetric matrix

Regression matrix of the parameter-linear form

Partial derivative with respect to x

Mixed higher partial derivative with respect to & with corresponding
multi-index o to encode the order

Collection of higher partial derivatives with respect to @ of order k
Adjoint representation of a twist

Adjoint representation of a transformation matrix

Diagonal matrix form of a vector

Null space of e

Vectorization of a matrix

Latin symbols

a

d

gi

Gij

Point mass redistribution parameters
Distance

Error

Moment of inertia taken at the COM
Pure moment of inertia

Principal moment of inertia around the i-th principal axis, taken at the
COM

Moment of inertia or product of inertia taken at the COM
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kmax

km

lc

Q3 S S R =

3

Jik
t;

tij

Order of derivative

Maximum order of derivative
Solution to the loop-closure constraint equation (kinematic model)
Length

Loop closure constraint equation
Mass

Joint coordinate

Time

End-effector coordinate in x-direction
End-effector coordinate in y-direction
Auxiliary point or vector

Auxiliary point or vector

Centre of mass

Dependent coordinates

Vector collection of the moments of inertia and products of inertia
around the origin of the reference frame

Force

Principal moments of inertia vector

Momentum wrench

Unit momentum wrench generated body ¢ due to unit actuation of DOF
J

Unit vector and joint axis

Origin of reference frame or reference point

Linear momentum

Vector of joint coordinates

Auxiliary point or vector

Total set of coordinates (Chaper 4 only)

Instantaneous screw axis

Twist of frame 7 with respect to frame j expressed in frame k
Unit twist of frame i due to unit actuation of DOF j

Independent coordinates
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<

@ QW e T X N

S~ moQ

& RS

S

Nomenclature

Velocity of the origin of the reference frame (linear velocity)
Wrench

End-effector coordinates

Vector of design parameters of dynamically balanced designs
Parameter-linear form of the mass matrix

Kinetic energy

Power

Auxiliary matrix

Auxiliary matrix

Solution to the differential loop-closure constraints or loop-closure Jac-
obian

Moment of inertia inertia tensor taken at the origin of the reference
frame

Collection of higher-order derivatives of the loop-closure equation
Moment of inertia inertia tensor taken at the COM
Transformation matrix of expressing frame 4 in frame j

Identity matrix of size n

Jacobian

Differential loop-closure constraints

Collection of precursory higher-order derivatives of the solution to the
loop-closure equation

Mass matrix

Momentum basis in minimal coordinates

Null space basis of dynamically balanced inertial parameters
Null space basis vectors associated to the loop-closure

Null space basis of the equivalent serial chain

Inertia transfer matrix of a revolute joint which is not parallel to all
non-prismatic joints lower in the chain

Inertia transfer matrix of a revolute joint which is parallel to all non-
prismatic joints lower in the chain

Inertia transfer matrix of a helical joint which is not parallel to all
non-prismatic joints lower in the chain
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Noo,j

Ny

Ny

Q

w
X

Inertia transfer matrix of a prismatic joint which is parallel to all non-
prismatic joints lower in the chain

Inertia transfer matrix of a helical joint which is not parallel to all
non-prismatic joints lower in the chain

Inertia transfer matrix of a helical joint which is parallel to all non-
prismatic joints lower in the chain

Higher-order derivative of the solution to the loop-closure constraint
equation

Rotation matrix
Basis of the test space

Jacobian of the loop-closure constraint equation with respect to the
independent coordinates

Jacobian of the loop-closure constraint equation with respect to the
dependent coordinates

Regression matrix of the equivalent serial chain

Regression matrix of parallel mechanisms

Greek symbols

> 2 ™ 9

R & & > = 3

)

oY

Auxiliary variable
Auxiliary angle
Auxiliary angle
Displacement
Pure-inertia rod
Auxiliary angle

Pitch of a screw
Auxiliary angle
Reference frame
Ordered multi-index
Actuation torque/force
Angular momentum
Angular momentum due to a pure rotation around the COM
Moment

Angular velocity

Symmetric plane
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Dankwoord
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Een proefschrift is niet compleet zonder één quote, een beetje een misplaatste in dit geval.
2De ‘balansonzin’.
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Base vibrations are detrimental to the precision of high-speed robots. When a robot
accelerates it induces opposing reaction forces and moments on the supporting base
frame. The frame will deflect, vibrate and transmit these vibrations to the robot’s end-
effector, the floor and the equipment in the surroundings.

Dynamic balancing targets these disruptive vibrations by a specific design of the moving
links, such that the reaction forces and moments become constant. As a consequence,
the robot will induce no, or limited, vibrations in the base frame, improving the
performance of both the robot and the systems in the vicinity. Parallel mechanisms
are especially suited for dynamic balance, in comparison to their serial counterparts, as
they permit more simple, light-weight and economically viable solutions. However, their
kinematic and dynamic models are also more complex, which impedes a straightforward
solution. Moreover, current systematic approaches are either not applicable to spatial
mechanisms with multiple degrees of freedom or do not yield all possible solutions.

This thesis presents three screw theory based methods to systematically determine
the complete dynamic balance solution for arbitrary, nonsingular mechanisms with
lower kinematic pairs. Based on these methods three novel robot designs are presented,
demonstrating that the dynamic balance of spatially moving parallel robots is within
reach.
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