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A B S T R A C T

We calibrate the lateral mode AFM (LFM) by determining the position-sensitive photodetector (PSPD) signal
dependency on the lateral tip displacement, which is analogous to the constant-compliance region in normal-
force calibration. By stick-slip on stiff, amorphous surfaces (silica or glass), the lateral tip displacement is de-
termined accurately using the feedback loop control of AFM system. The sufficiently high contact stiffness be-
tween the Si AFM tip and stiff, amorphous surfaces substantially reduces the error of PSPD signal dependency on
the lateral tip displacement. No damage or modification of the AFM probe is involved and only a clean silicon or
glass wafer is needed.

1. Introduction

Precise measurement of nanoscale friction forces is important, for
both fundamental understanding and many practical applica-
tions [1–7]. The effect of friction forces has been extensively studied in
the last decades, especially in relation to lubrication [8,9], micro
(nano)-electro-mechanical systems (MEMS&NEMS) [10], nano-tri-
bology [7,11–14] and earthquakes [15,16]. Since the 1960s, various
instruments including the surface force apparatus (SFA), the atomic
force microscope (AFM), and the quartz microbalance have been ap-
plied to study friction at the micro- to the nanoscale [15,17]. Lateral
force mode AFM (LFM), measuring the ultra-small lateral forces (nN to
μN) between the AFM tip and the sample surface, is the most popular
method in this field [15,18,19]. Especially, it has become increasingly
popular to understand earthquakes at nanoscale contacts. As it has been
shown by Li et al. using LFM, the formation of interfacial chemical
bonds is qualitatively responsible for frictional ageing in macroscopic
rock friction experiments [16]. A problem with LFM, as opposed to
AFM normal force measurements, is that LFM is not readily calibrated.
That hampers the measurement of accurate absolute values for the
lateral forces [20]. For not too large lateral tip displacements Δxt, the
lateral force Fx exerted by the tip on the sample surface, due to a twist
of the cantilever, is proportional to Δxt [21]:

= −F K xΔ .x x t (1)

The twist of the cantilever also leads to a change of the lateral signal
of the PSPD. For not too large Δxt, the signal is linear in the tip dis-
placement:

=I σ xΔ Δ ,x x t (2)

where σx is the sensitivity coefficient. The displaced positions of the
sample and the tip are indicated by the dashed contours as shown in
Fig. 1. In the sketch, Δxt< Δxs, which implies that some slip of the tip
over the sample has occurred. The slip distance is −x xΔ Δt s. In this
drawing, as with the experiments described in this Letter, the sample is
laterally displaced with respect to the neutral tip position by a piezo
scanner on which the sample is mounted. Obviously, a setup, in which a
piezo scanner connected to its base laterally displaces the cantilever
with respect to a stationary sample, is equivalent.

So, to get the force from a certain tip displacement, one needs to
know the spring constant Kx. As for the normal forces, the “thermal-
noise method” seems a convenient way to determine the spring con-
stant [22]. This method obtains the spring constant from the thermal
fluctuations of the tip displacement of a free-standing probe. For a
harmonic potential, =U K xΔ /2,x x t

2 consistent with Eq. (1), the mean
square of the fluctuating tip displacements at thermal equilibrium is
given by

=x k T KΔ / ,t B x
2 (3)

where T is the temperature, and kB is Boltzmann’s constant. The
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harmonic oscillator spring constant Kx is determined by both the stiff-
ness of the cantilever and the tip. Thus, this expression also applies
when the tip stiffness is comparable to the cantilever stiffness and both
springs work in the linear region [23]. So, when we know xΔ t

2 from a
measurement of the tip-position fluctuations, we also know the sought
for spring constant, Kx. As recognized by Hutter et al., xΔ t

2 is best de-
termined as the integral of the resonance peak in the power spectrum
density [24].

However, the problem is that we cannot directly measure Δxt va-
lues. Rather, we measure the signal of the position-sensitive photo-
detector (PSPD) (see Fig. 1) = −I I IΔ x x x,0 where Ix is the PSPD lateral-
signal readout, and Ix,0 its mean value when no external forces, e.g. due
to interactions with a sample, work on the tip.

With AFM normal-force measurements, the sensitivity coefficient is
obtained from the so-called “constant-compliance” or “contact” region
of a measured dependency of the PSPD signal vs. piezo-displace-
ment [20,25]. In this region, the tip displacement follows exactly that of
the piezo scanner on which the sample is mounted, and the sensitivity
coefficient is simply the slope of the signal vs. piezo-displacement
curve. For lateral-force experiments, it has thus far not been possible to
accurately measure something analogous to the constant-compliance
dependency in normal-force experiments [26]. To obtain a similar
constant-compliance dependency in lateral force measurement, the tip
needs to stick perfectly to the sample, and the PSPD signal ΔIx, when the
sample mounted on the scanner has a displacement of Δxs, needs to be
determined.

Salmeron group determined the lateral sensitivity coefficient σx,
based on the stick-slip behavior when AFM tip slides on a muscovite
mica surface [26]. Δxs can be well obtained since the lattice parameter
of mica surface is known. In principle, σx is derived as the slope of the
stick-slip signal, since the tip sticks to the surface at “stick” region. They
have proved that this method leads to a big error in the results, as the
contact stiffness is lower compared to the cantilever stiffness [26].
Because of a very low shear modulus and the layered structure of mica,

sufficient contact stiffness cannot be achieved by simply increasing the
normal load force [9]. Generally, the contact stiffness can be increased
by materials having larger shear modulus, e.g. Si. However, the stick-
slip behavior on Si with a native silica layer is chaotic, Δxt cannot be
determined in the same way as that on crystallized mica surface. Sal-
meron group reported the LFM calibration based on the measured
correlation between the lateral signal and normal load forces [27]. For
that, the AFM probe slides across a surface with a defined slope.
However, this “wedge” method requires a surface with well-defined
atomic scale slope. A number of publications have addressed the issue
of LFM calibration. Bogdanovic et al. measured the torsional spring
constant of a tipless cantilever by pushing it against a sharp upwards
pointing tip. If the tip contacts the corner of the cantilever, the torsional
spring constant can be obtained [28]. The accuracy is high but the
method can only be used for tipless cantilevers and additional in-
formation about tip height is desired. Cannara et al. determined the
sensitivity, by gluing a colloidal sphere to the probe and pushing the
sphere against a wall to get the ΔIx vs. Δx curve [29]. Feiler et al.
twisted the cantilever by attaching a mass at one side using a glass
fibre [30]. These direct ways are accurate but they require modification
or damaging of the probe [31]. Furthermore, in order to obtain the
proportionality constant between the force and the actual tip dis-
placement (as in Eq. (1)), additional tip-height data is needed [27,32].
The lateral spring constant can also be calculated from the dimensions
of the cantilever [33,34]. However, the accuracy is low due to in-
accuracies of these dimensions. Sader made significant and widely used
contributions by analyzing the cantilever resonance frequency shift in
vacuum and air, only cantilever’s plan view dimensions are
needed [35,36].

Herein, we present a simple method to calibrate lateral-force AFM.
A Si wafer with high shear modulus is used to ensure the high contact
stiffness and negligibly small contact deformation of a substrate. The
accurate control of tip displacement is achieved with the closed-loop X-
Y control of the AFM instrument [37,38], and it works on typical
commercial AFM instruments. The method yields directly the pro-
portionality constant between the lateral tip displacement and the lat-
eral force as Eq. (1) predicts, without the need for further geometrical
calculations of the tip, which would introduce additional errors. No
modifications of the probes are required.

2. Results and discussions

Fig. 2(a) shows two typical lateral-signal traces for the sliding of a Si
AFM tip with a very low scan speed over a small distance across a silica
surface. The normal load forces are 0 and -1 nN (a negative normal load
corresponds to a force pulling the tip from the surface; tip-surface
contact is maintained by adhesive interactions, the adhesive force be-
tween the tip and sample is about 2 nN, determined from the normal
force distance curve). The small (or even negative) normal loads ensure
that the tip is not damaged due to wear, as the contact stress is lower
than the yield stress of silica. This is further confirmed by the fact that
the signal shift after 512 scans is negligible, as shown in Fig.S2. After
averaging over 512 scans, stepwise motion of the piezo scanner is re-
viled as shown in Fig. 2(b). With the current settings, the change of
⟨Δxs⟩ from 0 to 6.1 nm in 5 s is achieved in 11 steps, as shown in the
blue and red lines in Fig. 2(b), numbered as 1–11. So, each ⟨Δxs⟩ step
has a magnitude of 0.555 nm, and the time interval between steps is
0.455 s (5 s for 11 steps). The magnitudes of the piezo-scanner steps and
the time intervals are controlled by the closed-loop settings of the AFM
instrument. The black step-like dashed line in Fig. 2(b) corresponds to
the ideal limit of no slip at the interface between AFM tip and silica
surface, so that the tip would move with the sample connected to the
piezo scanner ( =x xΔ Δt s). The ⟨Δxt⟩ axis on the right is constructed by
realizing that over the full 5 s the piezo displacement increases from 0
to 6.1 nm (on average), and by taking into account that for the no-slip
case =x xΔ Δt s. The difference 〈 〉 − 〈 〉x xΔ Δt s corresponds to the distance

Fig. 1. (Color online) Schematic drawing of the LFM system (not to scale). The
actual length, width and tip height of the probe are typically 100–400 µm,
30–60 µm, and 5–15 µm respectively. The distance to the position-sensitive
photodetector (PSPD) is much larger than that, whereas the lateral displace-
ment Δxs of a piezo scanner and the sample mounted on it is only 6 nm at
maximum in the experiments described in this article. As the sample travels
laterally by a distance Δxs, the tip displaces laterally by Δxt with respect to its
neutral position, as it is “dragged along” by the sample. Then the cantilever gets
twisted, leading to a lateral force by the tip upon the sample. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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that the tip has on average slipped over the sample surface. Moreover,
the average scan speed is derived from the slope of the long dashed line.

Accurate nanometer-scale displacement of the scanner is achieved
by the closed-loop X-Y control of the AFM instrument, based on an
independent capacitive position sensor [37,38], as used in most com-
mercial AFM systems. The feedback from the position sensor ensures
the controller to reach and maintain a position set-point during the
scanning. At very low scan speeds with closed-loop X-Y control, the
piezo scanner in fact moves on average in a stepwise fashion, in which
after fixed time intervals the target position of the piezo scanner
changes to a new value, while the control loop tries to realize the target
position. The noise in Fig. 2(a) is due to noise of the sample position
owing to this control system. All the instrumental noises including
noises from the positioning control system, the environmental vibra-
tions, and voltage fluctuations do not influence the stick-slip experi-
ment, thus their average values over scans are considered to be fixed.
The scan rate here is much lower than the scan rate which is common
with small-scale scanning and imaging. For typical nanoscale mapping,
much higher scan speeds (e.g. 60 Hz for a 10 nm scan) are needed to get
a high linear position control [40].

We see in Fig. 2(a) that, apart from the fluctuations, the lateral
signal initially increases linearly, and levels off later on. For a -1 nN
normal load this leveling off becomes noticeable beyond about 2 s. For
a zero normal load, leveling off occurs later and is less pronounced. It is
appealing to infer that initially the lateral force Fx does not exceed the
static friction force, so that the signal corresponds to the tip displace-
ment Δxt following the sample displacement, which equals Δxs. This
would mean that this part of the trace is analogous to the constant-
compliance region in a normal-force analysis. Hence, in principle, the
sensitivity =σ I xΔ /Δx x t can be obtained from the initial slope of these
traces, taking into account that the Δxs increases from 0 to 6.1 nm over
5 s. However, due to the fluctuations, which are of the same order of
magnitude as the trend-like change of ΔIx, the relative error would be
substantial. Not using the control loop reduces the fluctuation, but leads
to an unacceptable uncertainty in the lateral position.

For the cases shown in Fig. 2, the virtually vertical steps of the
averaged signal ⟨ΔIx⟩ all have the same magnitude, indicating that
during the steps no slip occurs [41]. Hence, the change of the tip’s
average displacement upon a step, Δ⟨Δxt⟩, equals the change of the
average piezo-scanner displacement Δ⟨Δxs⟩ upon a step. In this way,
the accurate control of the tip’s average displacement is achieved on an
amorphous surface. We want to point out that this approach is different
from determining the lateral displacement from the stick-slip on sur-
faces with well-defined periodic structure [26].

During the time intervals between the steps we observe either a
virtually constant signal, or some decay of the signal. These decays are

negligible for the first intervals, but become more pronounced as the
signal and hence the lateral force increases. Furthermore, these decays
are more pronounced for the -1 nN normal load than for the zero
normal load. The decay is obviously due to slip of the tip over the
sample surface, upon which ⟨Δxt⟩ and hence ⟨ΔIx⟩ decreases. In fact,
these decay curves are averages over many stick-slip type events oc-
curring in the separate scans of which Fig. 2(b) shows the average ΔIx.
These traces contain force relaxation information on nano-frictional
behavior and will be published in details elsewhere. As reported by
Salmeron’s group, the calibration of Lateral Force fails when the contact
and cantilever stiffnesses are comparable. The deformation of the
substrate at contact leads to a big error of the lateral sensitivity [26].
This problem cannot be solved by simply increasing the normal load
force, due to the layered structure of mica. Egberts reported a similar
lateral calibration as function of normal load on potassium bromide
(KBr) surface, probably because the insufficient stiffness of the sub-
strate [42]. Herein, we demonstrated that this problem can be avoided
with using the amorphous stiff silica surface. Fig. 3 shows Δ⟨ΔIx⟩ of the
first step (the change of ⟨ΔIx⟩ corresponding to a single step of length)
versus the normal load force. Two probes with different stiffness are
used. The soft probe is a commercial LFM probe with the normal spring
constant of 0.2 N/m (determined by the thermal noise method). The

Fig. 2. (Color online) (a) The lateral
signal ΔIx as a function of time for
single scans with a range of 6.1 nm (see
Supporting Information 1). The scan
frequency was set at 0.1 Hz (10 s for
the trace and retrace), so the duration
of a single scan, during which Δxs
varies from 0 to 6.1 nm, is 5 s, and the
average scan speed is 1.22 nm/s. 512
points are gathered in a single scan.
The feedback loop controlling the tip-
sample distance was operated very
slowly, in order to avoid any influence
on the lateral signals (see Supporting
Information 2, Fig. S2.) [39]. (b)
Average data of 512 scans at the same
normal loads as in (a).
〈 〉 = ∑−

=I t N I tΔ ( ) Δ ( ) ,x i
N

x i
1

1 where t de-
notes time (0≤ t≤ 5 sec.), N is the total number of scans, =( 512), and i is the scan number. The right y axis shows the tip displacement Δxt according to Eq. (2) and σx
given below. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (Color online) Δ⟨ΔIx⟩ (the change of ⟨ΔIx⟩ corresponding to a single step
of length) versus normal load force data on silica surface using probes with
different stiffness. Load forces ranging from minimum, corresponding to the
jump-out force and maximum, corresponding to the maximum linear response
range of the PSPD (see Supporting Information 3) are used. − −F K σn n n

1 1 is the
normalized normal load force, corresponding to the output of the PSPD [20].
The error is calculated from the data of each step. For the glass surface, Δ⟨ΔIx⟩
versus normal load force is shown in Supporting Information 6. (For inter-
pretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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stiff probe is a standard tapping mode probe with the normal spring
constant 4.7 N/m (determined by the thermal noise method). As shown
in Fig. 3, for the soft LFM probe, the step size Δ⟨ΔIx⟩ keeps constant
with the increase of the load force. This indicates the contact stiffness is
much larger than the spring constant of the probe and the contact de-
formation is negligible with respect to Δxs in the whole load force
range. For the stiff probe, the step size Δ⟨ΔIx⟩ increases sharply and
levels off with the increasing load force. In this case, the contact stiff-
ness at smaller normal load force is comparable to the stiffness of
cantilever and the contact deformation cannot be neglected. Irrele-
vantly the stiffness, the step-size becomes constant for large normal
load forces, indicating that using silica surface sufficient contact stiff-
ness between tip and sample is ensured. Thus, for the stiff cantilever
calibration, the change of ⟨ΔIx⟩ corresponding to a single step of length
versus normal load force data needs to be checked as shown in Fig. 3.
Following the increase of the normal load, the step size Δ⟨ΔIx⟩ firstly
increases sharply and we get the accurate lateral displacement sensi-
tivity when Δ⟨ΔIx⟩ levels off.

As 〈 〉 = 〈 〉x xΔ Δ Δ Δt s for the vertical steps of the averaged signal we
can readily calculate the sensitivity coefficient. First we determine the
change of ⟨ΔIx⟩ corresponding to a single step of length

〈 〉 =xΔ Δ 0.555s nm. By taking the average over all steps in the mea-
surement, we find that the signal change for a single step is

〈 〉 = ±IΔ Δ 0.051 0.002x nA. The error is calculated as the standard de-
viation over these 11 steps. So we calculate the lateral sensitivity
coefficient realizing that = 〈 〉 〈 〉 = ±σ I xΔ Δ /Δ Δ (0.051 0.002)x x s
nA/0.555 nm = ±0.092 0.004 A/m.

The “no-slip trace” in Fig. 2(b) (black short-dashed line) was con-
structed using this same Δ⟨ΔIx⟩ value of 0.051 nA per step. The dif-
ference between this constructed no-slip trace and an experimental
trace yields the distance that the tip has slipped over the surface
(averaged over all scan repeats): 〈 〉 − 〈 〉 = 〈 〉 − 〈 〉x x σ I I( Δ Δ )t s x x xexp noslip .

Knowing the lateral sensitivity, the lateral spring constant of the
probe, as defined by Eq. (1), can be readily determined, e.g. using the
thermal-noise method as mentioned above. For the present case, for the
free standing probe (not interacting with any sample), at room tem-
perature ( =T 299.0 K), xΔ t

2 is determined as ± −(3.2 0.1)·10 21 m2 (see
Supporting Information 4) [22]. With Eq. (3) we obtain

= = ±K k T x/Δ 1.29 0.04x B t
2 N/m, which does not depend on the

alignment. The error is calculated as ∂ ∂ε K σ/ ,σ x xx where εσx is the stan-
dard deviation of the sensitivity coefficient σx. Thus,

= = = ±F K σ I k T I σ I I/ ·Δ /Δ · Δ (14.2 0.6)Δ ,x x x x B x x x x
2 the error of the

coefficient Kx/σx is determined as k T I ε/ΔB x σ
2

x. Apparently, as shown in
Supporting Information 7, Kx only depends on the probe and tem-
perature, being insensitive to the experimental AFM system.

3. Conclusion

In conclusion, we have developed the simple method to calibrate
the LFM system by determining the PSPD signal dependency on the
lateral tip displacement, which is analogous to the constant-compliance
region in normal-force calibration. To suppress the error owing to low
contact stiffness, an amorphous surface (silica or glass) ensuring suffi-
ciently high contact stiffness between the Si AFM tip and sample is
used. The lateral tip displacement is determined by stick-slip on stiff,
amorphous surfaces using the feedback loop control of AFM system. In
our LFM calibration method, only a clean silicon or glass wafer is re-
quired, and it works on conventional commercial AFM.
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