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Rolling With Confidence: Managing the
Complexity of DNSSEC Operations

Moritz Miiller ~, Taejoong Chung

Abstract—The domain name system (DNS) is the naming
system on the Internet. With the DNS security extensions
(DNSSECs) operators can protect the authenticity of their
domain using public key cryptography. DNSSEC, however, can be
difficult to configure and maintain: operators need to replace keys
to upgrade their algorithm, react to security breaches or follow
key management policies. These tasks are not trivial. If operators
do not time changes to their keys right, caching resolvers may not
have access to the correct keys, potentially rendering DNS zones
unavailable for minutes or hours. While best current practices
give abstract guidelines on how to introduce and withdraw keys,
information on how to monitor and control actual rollovers in
a live environment is lacking. More specifically, it is challenging
for operators to know when to introduce or withdraw keys based
on the state of the network. Our main contribution is to help
operators answer this question and to address this barrier for
deploying DNSSEC. We develop a method with which operators
can monitor the replacement of DNSSEC Kkeys, called a rollover.
Thereby, they can make confident decisions during the rollover
and make sure their zone stays available at all times. We vali-
date the method with an algorithm rollover of the Swedish TLD
.se and provide an open source tool with which operators can
monitor their rollover themselves.

Index Terms—DNS, DNSSEC, automation, key rollover, key
management, monitoring.

I. INTRODUCTION

HE DOMAIN Name System (DNS) is the hierarchical,

distributed naming system of the Internet. The original
design of the DNS does not include mechanisms to guaran-
tee the authenticity and integrity of information stored in the
DNS. The DNS Security Extensions (DNSSEC) address this
shortcoming but also introduce a previously unknown level of
complexity [1].

DNSSEC is a public key infrastructure that builds on top of
DNS. Operators of domains, such as example.com, sign
information stored in their zone with their private key. A
resolver that looks up the information of example.com can
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validate the signature with the public key and returns an error
if this validation fails.

Operators continuously need to keep DNSSEC-signed
domains up to date. The most common task is the regular
refresh of signatures (which have a limited validity). Less fre-
quent, but more complex tasks include changing keys due to
a security breach, upgrading to a new key algorithm, or fol-
lowing a key-management policy [2]. These procedures, called
key rollovers, include adding and withdrawing keys and signa-
tures across multiple stages, and are a “fact of life when using
DNSSEC” [3]. Even the main key of the root zone of the DNS
is in the process of being replaced over 2018 and early 2019
— for the first time since the deployment of DNSSEC [4].

If a rollover goes wrong, it can gravely impact the reachabil-
ity of a domain and its children. Resolvers may fail validation
and render the domain unreachable for hours. This has even
happened to large zones, such as the Dutch country code top-
level domain (ccTLD) .nl [5]. It not only affected the TLD
itself but also the over 5 million domains that were registered
under .n/ at that time. This demonstrates how complicated and
critical rollovers are, and might be one of the reasons for the
low adoption of DNSSEC [6].

Timing issues during the rollover are one of the major
reasons for failures. DNS resolvers cache records to reduce
response times. This makes it hard for operators to know which
information is held by resolvers and when it is safe to add
or withdraw keys. Best common practices give guidelines at
which stage to introduce and withdraw keys and signatures
but do not give strong recommendations and leave it entirely
up to the operators to make the right decisions at the right
wall clock time. Thus, operators that perform a rollover want
to know: (i) when is it safe to add new keys and signatures
and withdraw old ones? and (ii) is my zone secure at all times
during a rollover?

Our contributions in this article are threefold: (i) We pro-
pose a new measurement technique with which operators can
answer both questions above so they can roll their keys with
confidence. They know when it is safe to add and withdraw
the keys and can monitor every stage of the rollover from
the perspective of their clients. Thereby, we mitigate one of
the biggest dangers during rollovers, in turn reducing one of
the barriers to deploying DNSSEC, and thus increasing the
overall security of the DNS. Further, (ii) we carry out compre-
hensive measurements of the most complex type of rollover: a
live algorithm rollover on a production zone, specifically the
.se ccTLD. These measurements were performed upon request
of, and in collaboration with the .se ccTLD operator IIS [7].
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The .se ccTLD has a high DNSSEC penetration, with over
half of all domains being signed [8], including domains for
banks, government and other services. Equally, DNSSEC val-
idation is common in Sweden, with over 70% of users using
validating DNS resolvers [9]. Consequently, a failure during
the rollover would have disastrous consequences for Swedish
society. To the best of our knowledge, this is the first time that
an algorithm rollover was monitored from start to finish. These
measurements provide insight into behavior of resolvers and
authoritative name servers and allow operators to plan their
rollovers accordingly. The measurement results are publicly
available.! Last, (iii) we develop and publish an open source
tool with which operators can easily monitor their rollover
themselves.? The registry of the Brazilian ccTLD .br used this
tool to monitor their algorithm rollover in August 2018 [10],
following our method.

The remainder of the article is organized as follows:
Section II introduces the DNS, DNSSEC and key rollovers.
Next, Section III describes in detail what can go wrong
during a rollover and why. Then, we propose our method
in Section IV and validate each stage of the method with the
algorithm rollover of .se in Section V. Related work is dis-
cussed in Section VI. Finally, we summarise our conclusions
in Section VII.

II. BACKGROUND

In this section, we cover the basic principles of DNS and
DNSSEC. These are needed to understand why DNSSEC
rollovers are risky and how our method addresses these risks.

A. DNS

The DNS uses resource records (RR) to map domain names,
such as example. com, to values. For example, an A record
maps a domain name to an [Pv4 address, an NS record maps
a domain name to the authoritative name server for a domain
and a TXT record contains some string, e.g., instructions for
receiving authenticated mail [11]. These records are stored in
a zone file. A zone file contains one Start of Authority (SO2)
RR defining the parameters of the domain and contains a serial
number to identify the version of the zone. Operators typically
publish their zone at two or more authoritative name servers.
Clients that, for example, want to know the IPv4 address of
example.com use recursive resolvers to look up the cor-
responding A record. Recursive resolvers query one of the
authoritative name servers of example.com to retrieve the
record and return it to the client.

The DNS is designed to encourage caching at resolvers.
After a resolver receives the response to a query it stores the
record for some time in its cache [12]. If the resolver receives
another request for the cached record it returns the record
directly, without querying the authoritative name servers again,
thus improving performance. DNS records contain a time-to-
live (TTL) value specifying how long a record may be cached
before it should be discarded. After the record is discarded,

1 https://www.simpleweb.org/wiki/index.php/Traces
2https:// github.com/SIDN/rollover-mon.
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Fig. 1. DNSSEC chain of trust, starting from the root.

the resolver has to query the name servers again to retrieve
the record. Caching is one of the major reasons why rollovers
have to be carried out carefully and we explain why in more
detail in Section III.

B. DNSSEC

With DNSSEC, operators of domains can sign the content
of their zone using public key cryptography. Resolvers can
validate the signatures and verify whether the content, fetched
from the name servers, is correct.

When deploying DNSSEC, operators usually introduce two
keys (DNSKEY5s) in their zone (see Fig. 1): the Zone Signing
Key (ZSK) that is used to sign RRs (such as A or NS records)
and a Key Signing Key (KSK) that only signs the ZSK [3].
The signatures over RRs (RRSIG) are published together with
the accompanying RRs in the zone and share the same TTL.

1) Establishing the Trust Chain: Validating resolvers, by
default, do not trust the keys of example . com, but only trust
the keys of the root zone (configured as a “trust anchor” [13]).
The operator of the parent domain, .com in Fig. 1, signs a
hash of the KSK of example.com and publishes it in a DS
(delegation signer) record in its own zone. The DS references
the KSK of example.com and indicates that the domain is
signed. Because the DS of the KSK of . com is published and
signed by the root zone as well, a “chain of trust” between
example.com and the root is established.

In order to validate records, resolvers need access to every
record along the chain of trust of example.com. Once a
resolver has fetched the records from the servers it tries to val-
idate the signature. If the signatures are valid then the resolver
considers the zone “secure”. It caches the records and the
validation state until the TTL of the record has expired.

2) Validation Failures: The trust chain can break for many
reasons. For example, if the DS record at the parent does not
match the KSK of the child, if a signature has expired, or if
a resolver does not have the correct key to validate a signa-
ture. The latter case can occur when a resolver has the wrong
DNSKEY in its cache or if the key is not available at the
authoritative name servers.

C. Key Rollovers

Operators that deploy DNSSEC need to roll their keys. A
rollover might be necessary in case of a security breach, in case
operators want to upgrade to a new algorithm or because they
follow a key management policy [2]. In general, rollovers fall
into three categories and vary in complexity: ZSK rollovers,
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Fig. 2. Stages of an algorithm rollover (as in RFC 6781 [3]), the expected records in each stage in the zone of the parent and of the child, and accompanying
measurements to monitor the rollover. Records in bold mark their first appearance.

KSK rollovers and rollovers in which the signature algorithms
are changed — so-called algorithm rollovers. Depending on
the category, operators need to follow different procedures
described in detail in RFC 6781 [3]. In all cases, the goal
is to keep the chain of trust between the zone, for which the
keys are rolled, and the root zone intact.

If operators want to roll their ZSK, only the key itself
and the related signatures are replaced, but the KSK stays
unchanged. Operators can either have the new ZSK already
published in their zone before the start of the rollover (pre-
publish key rollover) or sign their zone with the old and the
new key at the same time during the rollover (so called double-
signature key rollover) [3]. In contrast, during a KSK rollover
operators need to change the KSK, the signatures and ask the
parent to update the DS (single-type rollover). Here, the ZSK
stays unchanged. In case of an algorithm rollover the cryp-
tographic algorithm of both the KSK and ZSK is changed.
Therefore, both keys need to be replaced. Because the KSK
is replaced, the DS at the parent needs to be updated as well.

Any key rollover is carried out in multiple stages in which
new signatures and keys are added or withdrawn. Between
each stage, the operator needs to leave enough time such that
resolvers can receive the new records. If not done correctly,
caching resolvers might not be able to validate signatures.
Fig. 2 shows the stages of an algorithm rollover over time
and we describe the stages in more detail in Section IV.

ZSK rollovers are the simplest form of a rollover. Operators
do not have to involve a third-party and thus have full con-
trol over when to add and withdraw the necessary records.
KSK and algorithm rollovers usually require that the DS at

the parent is updated and therefore make it more difficult for
operators to define the right timing. We explain this and other
issue in more detail in Section III and discuss which factors
have an influence on the timing of the stages.

A special kind of rollover has occured in October 2018,
where the KSK of the root zone was replaced [14]. Because
this key acts as a trust anchor (the anchor symbol in Fig. 1),
it is also configured directly at validating resolvers. Thus,
even though the rollover at the root shares stages of rollovers
described in this paper, rolling the root KSK is even more
challenging and requires additional measurements which are
out of scope of this paper.

III. ROLLOVER FAILURE MODES

Key rollovers are an essential part of operating a signed
zone, but also make operating a zone more complicated and
risky. If a rollover is not carried out correctly, resolvers can
fail validation, thus rendering the zone unavailable. We first
explain why the right timing is crucial for a successful rollover
and provide a concrete example. Then, we discuss why some
resolvers require additional stages during algorithm rollovers.

A. Timing of Rollovers

The factor that has the biggest impact on the success of
a rollover is correct timing. At any point in time during the
rollover, resolvers need to have access to the keys and signa-
tures that are necessary to validate the records in their cache.
If not, the resolver cannot validate these signatures.
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For example, if an operator withdraws the old key too soon
from its authoritative name servers, resolvers that still have
old signatures but no key in their cache will fail to validate
them. This makes them consider the operator’s zone “bogus”.

Therefore, rollovers are carried out in multiple stages; Fig. 2
shows a time-line for each stage of an algorithm rollover. The
goal of each stage is to make sure that resolvers have enough
time to pick up the new signatures and keys before the old
ones are removed. Thereby, resolvers always have access to the
records that they need to validate the signatures in their cache.
For example, assume that in Stage IV in Fig. 2 the operator of
the parent zone replaces the DS even though resolvers have not
yet picked up the new key from Stage III. Then, these resolvers
could not establish a chain of trust between the parent and the
child and would fail to validate any signature of the latter.

The correct timing is influenced by two factors: (i) the
time it takes before a new version of a zone becomes avail-
able at every authoritative name server (publication delay)
and (ii) the time it takes that resolvers pick up the changed
records (propagation delay).

1) Publication Delay: When operators publish a new record
in their zone, it takes time until it is distributed to every
authoritative name server. Usually, the zone is updated at one
central point and then distributed to the name servers. This
creates a period in which the name servers are not in sync
and do not serve the same content. Depending on how opera-
tors distribute the changes, this publication delay might vary
from seconds (incremental zone transfers), to minutes (full
zone transfers) or even hours (zone transfer upon expired
refresh timer). Only after the publication delay has expired
and the name servers are in sync again, operators can be cer-
tain that every incoming query from resolvers receives the
new record.

2) Propagation Delay: Resolvers do not query for the new
record before their local copy has expired in the cache. Until
then, resolvers still serve the old record to their clients. This
delay is typically referred to as the propagation delay.

Records in a zone can have different TTLs. The record with
the highest configured TTL defines the propagation delay dur-
ing the rollover. Only after this TTL has expired, operators
can assume that none of their records are cached anymore.
Resolvers that strictly follow RFC 1035 [12] should not have
a propagation delay longer than the original TTL of the record.
In practice, operators use TTLs that vary from a few minutes,
to hours or even days, depending on the use case and resource
record. For example, the most common TTL for A records
of 2nd level .se domains is 1 hour (41% of the domains),
followed by 5 minutes (13%) and 1 day (12%) [15].

Fig. 3 visualizes a general example of publication and prop-
agation delay. @ At 10, the operator changes the A record and
updates the zone at name server A. @ 49 seconds later, at 49,
the resolver queries name server B, which is in not in sync
yet, for the A record and stores it in its cache. @ Right after, at
t50, name server B also receives the new version of the record.
The servers are in sync and the publication delay of the new
record has passed. @ Another 299 seconds later, the TTL of
the A record in the cache of the resolver has also expired and
thus, the propagation delay for the resolver has also passed.
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It will fetch the new A record of example.com after it has
received a new query for this record.

This example shows, that the maximum time it takes for
recursive resolvers to drop an old A record after its initial
introduction at name server A at t0 is roughly 350 seconds.
Summarizing: operators must assume that changes to a zone
only become visible to every recursive resolver after their
publication delay and their propagation delay have expired.

3) Impact When Disregarding Timing: These delays play
a significant role when rolling keys; operators need to ensure
that any combination of cached records will still validate at
all times. This is especially the case when signatures and keys
are obtained independent from another.

For example, some resolvers do not query authoritative
name servers directly, but instead rely on an upstream resolver
to handle their queries. Fig. 4 describes such a situation.
Here, an upstream resolver (R1) has cached the A record of
example.com signed with the old key DNSKEY_1. At the
same moment, the operator of example.com rolls its keys.

@ Then, a forwarding, validating resolver (R2) queries R1
for the A record. @ R2 receives the A record together with
its signature and wants to validate it. ® Because R2 has not
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TABLE I

ROLLOVER TYPES AND NECESSARY MEASUREMENTS.

MARKS WHICH STAGES NEED TO BE MONITORED

Monitor  Trust Chain new RRSIG new DNSKEY new DS DNSKEY removal RRSIG removal
with Measurement msm_I msm_II msm_IIT msm_IV msm_V msm_VI
Pre-Publish X X
ZSK Double-Signature X X X
KSK Single-Type X X

Algorithm

cached DNSKEY_1, the old ZSK of example. com, it queries
R1 again. @ R1 does not have DNSKEY_1 cached either and
it therefore has to query the name server (AT). The operator of
AT is in the middle of a key rollover and has already deleted
the old ZSK from its zone. ® Thus, R1 only receives the new
key, DNSKEY_2, from AT and forwards it to the validating
resolver R2. ® R2 cannot validate the old signature with the
new key and returns an error to the querying client.

This is only one scenario in which validation failures
can occur during a rollover, because an operator does not
wait before the publication delay and propagation delay have
expired. Only after both have expired, the operator can be
confident that no old signatures are still cached and can safely
remove the old key. While this may seem like a far-fetched
corner case, we have performed measurements that show that
this situation can actually occur in practice in Section V-Bl1.

B. Downgrade Attack

Operators that carry out an algorithm rollover not only have
to take propagation and publication delays into account but
also face the challenge of resolvers implementing RFCs dif-
ferently. This is the case with some older versions of resolvers
that follow a strict interpretation of RFC 4035, which states
that “there MUST be an RRSIG for each RRset using at
least one DNSKEY of each algorithm in the [...] DNSKEY
RRset” [16]. If not, these resolvers suspect an algorithm down-
grade attack and consider the record bogus. In a downgrade
attack, an attacker attempts to force a validator to accept sig-
natures made with a weaker algorithm, e.g., for which the
attacker is capable of forging signatures.

As a consequence, these resolvers expect that every record
has a signature for every algorithm used for the DNSKEYSs in
the zone [17]. RFC 6781 recommends adding the new signa-
tures before adding the keys which results in two additional
stages (II and VI in Fig. 2) when carrying out the algorithm
rollover [3]. Thereby, resolvers have the signatures of both
keys in their cache already when the new key is added to the
zone. If an algorithm rollover skips these additional stages, it
is referred to as a liberal algorithm rollover.

IV. MONITORING METHOD

The previous section shows that it is crucial for operators to
respect the timing of rollovers. If not, resolvers can fail to vali-
date records. The timing is influenced by the propagation delay
and publication delay. We have shown that it is not straight-
forward to respect these delays and that caching resolvers can
threaten the availability of a zone. In this section we propose a
novel measurement method, with which operators can prevent
these issues. Operators who follow our measurement method

i [ Resolver |

.
©)

i VPs-indirect iiVPs-direct:

®

Fig. 5. Vantage points used in the method. VPs-direct receives responses
directly from authoritative name servers, VPs-indirect may receive responses
from a resolver’s cache.

can determine with confidence when it is safe to withdraw old
keys and signatures, and can monitor the trust chain from the
point of view of their clients.

The method consists of three measurement types that
accompany each stage of the rollover. At each stage, oper-
ators want to know (i) when is it safe to add new keys and
signatures and withdraw old ones? and (ii) is my zone secure
from the perspective of resolvers?

Our first two measurement types monitor the propagation
delay and publication delay (see Section V-B1). Thereby, oper-
ators know when a stage of a rollover has successfully finished
and when they can proceed to the next one. The third mea-
surement type acts as a “canary in the coal mine”; it monitors
the trust chain and signals if the rolled zone becomes bogus at
any stage of the rollover. We develop our method to monitor
the most complicated rollover type: the conservative algorithm
rollover. Still, the measurement can be applied to other types
of rollovers as well, which will be discussed in the following
sections. Table I describes which measurements each type of
rollover requires.

In the next sections, we describe which vantage points are
necessary to monitor the rollover. Then, we describe each stage
of the method in more detail. Finally, we describe how oper-
ators can use our method to define when it is safe to move
to the next stage of the rollover. We validate the method with
the rollover at the Swedish ccTLD . se in Section V.

A. Selecting Vantage Points

For measuring the rollover during each stage we require
two types of vantage points: (i) VPs to measure the deploy-
ment of the necessary records at the authoritative name servers
directly (VPs-direct) and (ii) VPs to monitor the propagation of
records in resolver’s caches and to verify these resolvers val-
idate signatures successfully (VPs-indirect) (see Fig. 5). With
VPs-direct, operators make sure that the new RRset is avail-
able at every name server. This is a precondition for resolvers
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to pick up the new RRset and only when all resolvers have
picked up the new RRset it is safe to move to the next stage.

To cover different resolver setups and implementations, and
to get a realistic view of the clients, we prefer a wide range of
VPs that are located in as many different networks and employ
as many different recursive resolvers as possible. Thereby, we
have a higher chance to discover failures earlier and also cover
corner cases, such as strict resolvers (see Section III-B).

Direct VPs must be able to send queries directly to author-
itative name servers. The responses must not originate from a
cache but must be answered directly from these authoritative
name servers. Only then are we able to monitor the current
state of the zone at the different servers in real time. In con-
trast, indirect VPs reflect the “state” of the recursive resolvers.
Thus, they must be able to send queries to recursive resolvers
that answer their query from cache or query the name servers
for them.

VPs that validate the correct publication and propagation
of the keys and signatures rely on both VPs-indirect and
VPs-direct. VPs-direct query the servers directly and moni-
tor the publication delay. VPs-indirect measure which records
a resolver has cached and thereby monitor the propagation
delay.

VPs that monitor the trust chain reflect the view of end users
and we therefore rely on VPs-indirect. They should cover a
broad range of resolvers and networks, such that we can also
cover corner cases. Also, it is preferable to select indirect VPs
that are behind validating recursive resolvers because they are
most likely to be affected by failures during a rollover. The
more recursive resolvers we cover, the more our measurements
reflect the experience of most clients on the Internet.

In contrast, we only need one VP of VPs-direct for each
authoritative name server of the child and the parent. The
exception is the situation in which multiple servers are located
behind one address. This is the case when a using a load bal-
ancer or a name server is replicated to multiple sites using
anycast [18]. Then, a VP can receive different responses,
depending on which server its query reaches. For our mea-
surements, operators can deploy their own VPs, but can also
use existing public measurement platforms. In Section V-A,
we discuss two of these platforms, RIPE Atlas and Luminati,
that when combined provide over 45,000 VPs [19].

B. The Rollover Stages

After selecting vantage points we schedule the measure-
ments. They run in parallel to the stages of the rollover and
depending on the stage, we monitor either the introduction
or withdrawal of a signature (RRSIG), key (DNSKEY) or DS
record. The conservative algorithm rollover consists of 6 stages
(see Fig. 2). We briefly describe each of them and refer the
reader to RFC 6781 [3] for the details:

I: initial Start of the rollover. Every key in the
zone has the same algorithm.

Added new signatures made with
the new key and algorithm, but not
the new key. This is necessary to

II: new RRSIGs
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prevent errors with strict resolvers (see
Section III-B).

After the new signatures are published
at the name servers and have propa-
gated to the resolvers, the new key can
be added.

After the new key has propagated to
resolvers, the old DS can be replaced
by the new one at the parent.

The new DS has propagated to
resolvers, they should now be able to
establish a trust chain with the new
key. The old key can be removed.

VI: remove RRSIGs After the old DNSKEY has been

dropped from the caches and only the
new key is cached, strict resolvers are
satisfied as well. The old RRSIGs
can be removed, which concludes the
rollover.

In the bottom part of Fig. 2 we show the necessary measure-
ments that accompany each stage. At each stage a different
record is added or withdrawn, and because we measure the
publication delay and propagation delay independent of each
other, we have to schedule new measurements for each stage.
The measurements to monitor the trust chain are independent
from the changed records and can therefore be scheduled once
and can run throughout the rollover.

III: new DNSKEY

IV: new DS

V: remove DNSKEY

C. Define the Right Timing

We now discuss the two measurements that help operators to
decide whether a stage has finished successfully and when it is
safe to move on with the next stage of the rollover. The actual
algorithm rollover starts in Stage II, when the new signatures
are added to the zone and is thus the first stage we monitor.
The rollover ends after Stage VI, when the old signatures are
removed and also concludes the last measurements.

1) Monitor the Publication Delay: In each stage we moni-
tor the publication delay by measuring the introduction of the
new RRs and the withdrawal of the old ones. We query the
servers directly with VPs-direct (msm_II_pub — msm_IV_pub
in Fig. 2) and start the measurement a few minutes before the
zone is updated at the first name server. This creates a base-
line and allows us to detect when the zone has changed at
each name server. The publication delay has passed as soon
as every VP receives the expected record set from the name
servers. From then on queries towards any name server are
responded with the new record set. Fig. 2 shows the expected
record sets of the child and the parent (SOA_O — SOA_1 of
the parent and SOA_0 — SOA_4 of the child).

Because this should only take a couple of minutes we query
the name servers from each VP as frequently as possible.
We stop the measurement after every VP-direct receives the
expected records from the name servers.

2) Monitor the Propagation Delay: We employ VPs-
indirect in order to monitor the time it takes until the new
state of the zone propagates to resolvers (msm_II_prop —
msm_IV_prop in Fig. 2). A few minutes before the zone of the
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child or parent changes, we configure VPs-indirect to query for
the record that is supposed to be added or withdrawn next. This
creates a baseline. We continue querying for the record from
each VP periodically. The periodicity depends on the TTL of
the changed record. The shorter the TTL the faster resolvers
drop the old record from their cache and the more frequently
the operators should monitor this transition. As a minimum,
each VP should query for the new record (i) before the new
record set is introduced, (ii) before the TTL has expired and
(iii) after the TTL expires. This ensures the whole transition
can be monitored.

As soon as the zone is updated at the first name server we
expect to see more and more resolvers dropping the old records
from their cache, querying for the new record and returning
the new record to our VPs. The propagation of the new zone
state is successful when every VP receives the new state of
the zone from their recursive resolvers. This should take at
least the TTL of the added or removed record. Then, we can
stop the measurements with VPs-indirect and the operator can
safely move to the next stage of the rollover.

D. Monitor the Trust Chain

Operators want to make sure that their zone stays secure
during each stage of the rollover. Therefore, we monitor the
chain of trust. This measurement acts as a “canary in the coal
mine” and relies on VPs-indirect. The goal is to measure if
resolvers can still resolve and validate signed records of the
rolled domain or its delegated domains. Resolvers that were
able to resolve and validate the records before but suddenly
stop validating or even stop resolving during the rollover are
a strong signal that something went wrong.

We start this measurement in Stage I of the rollover to
establish the baseline state of our VPs. Resolvers can either
be successfully validating the signatures of the rolled zone
(secure), not validating but successfully resolving (insecure),
or not resolving at all (bogus). A deviation from this baseline
at any point in time during the rollover signals a failure as
described in Section III.

We establish the baseline with the help of two additional
RRs (e.g., two arbitrary TXT records that contain a random
string). We can include the RRs either directly in the mon-
itored zone or in the zone of one of its children. The first
RR has a valid RRSIG and every resolver that operates cor-
rectly should be able to resolve the record. Table III shows the
two records, one with a valid, one with a bogus signature.3
The second RR has an RRSIG which is bogus, and therefore
validating resolvers should not validate the signature success-
fully. Not-validating resolvers should resolve the bogus record
without any issues. We query both RRs from each VP-indirect
(msm_I_secure and msm_I_bogus in Fig. 2).

By combining the outcome of the measurements of the
secure and bogus records we can determine whether a resolver
is (i) a secure resolver and validates the records correctly,
(ii) an insecure resolver, or (iii) a resolver that fails to val-
idate the correct signature. Secure resolvers resolve the secure

3The operator should create the signatures with an algorithm that is widely
supported by validating resolvers.
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TABLE 11
THE COMBINATION OF THE RESPONSE CODES OF MSM_I_SECURE
AND MSM_I_BOGUS INDICATES IF THE TRUST CHAIN
OF THE ROLLED DOMAIN IS INTACT

DNS response code State
msm_I_secure  msm_I_bogus
NOERROR NOERROR insecure
NOERROR SERVFAIL secure
SERVFAIL other bogus

record correctly (response code NOERROR) and return with
the response code SERVFAIL when querying for the bogus
record. Insecure resolvers return for both records the response
code NOERROR. Failing resolvers return at least an error for
the secure record but might fail resolving the bogus record as
well (see Table II).

We start the measurements in Stage I and stop them when
the rollover concludes. Each VP should query for the test
records once per TTL to detect failures as fast as possible.
Resolvers that change their state, or an increase in bogus
resolvers are a strong signal for rollover issues. Operators
can debug these issues with msm_II_pub — msm_IV_pub
and msm_II_prop — msm_IV_prop. Thereby they will know
whether their servers serve the expected records or if resolvers
miss necessary records for validation.

V. ROLLOVER VALIDATION AND APPLICATION

In this section we validate our measurement method. We
replicate failure modes described in Section III and measure
how likely these failures are to occur at resolvers in the wild.
Then, we apply our method to the algorithm rollover of the
Swedish ccTLD . se. Table IV provides an overview of the
measurements analyzed in this section.

A. Selecting Vantage Points (VPs)

To monitor the DNS, and the algorithm rollover in par-
ticular, we need the right measurement platform. For our
measurements we rely on the vantage points of RIPE Atlas
and Luminati. For replicating the failure modes we only rely
on VPs of RIPE Atlas. Both platforms have been used for
multiple DNS related measurements in the past, for instance
in [20], [21]. In this section we discuss the costs and benefits
of these platforms.

1) RIPE Atlas: A RIPE Atlas probe is a device that actively
measures Internet connectivity. Volunteers around the world
install RIPE Atlas probes in their networks. A probe can
send and receive DNS packets and is able to act as a VP for
direct and indirect measurements (see Fig. 5). It either sends
queries through its pre-configured resolvers or sends queries
directly to authoritative name servers. If multiple resolvers are
configured, then probes send queries to all of them.

The Regional Internet Registry RIPE regulates the usage
of its measurement platform with the help of credits [19].
Users can earn credits, e.g., by hosting their own VP or by
sponsoring RIPE. Further, by default RIPE limits the number
of measurement results a user can create and the number of
simultaneous VPs that can be used at any time. Upon individ-
ual request, RIPE may relax these limits but even with them
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TABLE III
EXAMPLE OF TEST RECORDS TO VALIDATE THE TRUST CHAIN. MSM_I_SECURE AND MSM_I_BOGUS QUERY THE RESPECTIVE RECORDS

Domain Name TTL class  type value

secure.example.com 600 IN TXT some string

secure.example.com 600 IN RRSIG RRSIG TXT 8 3 600 (tFzgUjagl[...]ABEbA=) <—Valid Signature

bogus.example.com 600 IN TXT some string

bogus.example.com 600 IN RRSIG RRSIG TXT 8 3 600 (123456) <— Bogus Signature
TABLE IV

MEASUREMENTS TO EVALUATE FAILURE SCENARIOS (SECTION V-B)
AND STAGE IV OF THE .se ROLLOVER (SECTION V-C)

Measurement VP Start and End Date Responses
Timing Issues Atlas 2018-01-18 19,501
Downgrade Attack  Atlas 2018-01-12 19,648
Publication Delay Atlas 2017-12-14 —22 22,059,735
Propagation Delay  Atlas 2017-12-14 —22 2,978,366
Trust Chain Atlas 2017-12-14 —22 16,861,137
Trust Chain Luminati ~ 2017-11-29 —12-20 1,696,262

in place, RIPE Atlas is still a useful platform to monitor a
rollover.

Instead of using every available VP, operators can only use
probes that reflect their client base. For example, the RIPE
Atlas API allows users to select probes located only in a cer-
tain country or in a certain network. To limit the use of credits,
operators can, for example, start monitoring the trust chain
(msm_I_secure, msm_I_bogus) just before the next stage of a
rollover and stop it when a stage has finished successful.

2) Luminati: Luminati [22] is a paid HTTP/S proxy service
that enables clients to route traffic via the Hola Unblocker
Network. Hola Unblocker allows users to route their traffic via
a large number of proxies. It is available on multiple platforms
such as Windows, Mac, and browser extensions and has been
installed by more than 149 million users around the world.
Luminati uses machines that installed the Hola Unblocker to
allow its customers to route their traffic via the machines.

To route HTTP/S traffic via the Luminati network, a client
first sends the request to one of the Luminati servers (called the
super proxy). Then, the super proxy looks up the destination
domain using Google Public DNS and forwards the HTTP/S
request to one of their Hola clients (called the exit node) if
the domain is valid.* An exit node makes a DNS request to
its name server, and then makes the HTTP/S request. Once
the response comes back from the destination, the exit node
forwards the response back to the super proxy, which forwards
it back to the client. Fig. 7 shows this process schematically.
For more details on using Luminati for network measurements,
we refer the reader to the study by Chung et al. [20].

3) Application: We use the VPs from RIPE Atlas to eval-
vate the failure modes and both platforms to monitor the
rollover of . se; we obtained more than 9,500 VPs from RIPE
Atlas and 36,000 VPs from Luminati. RIPE Atlas allows us
to send DNS queries directly to the name servers or via the
pre-configured recursive resolver, thus acting as VP-indirect
when relying on their resolvers and acting as VP-direct when
querying the name servers directly. Luminati, in contrast,

4Google’s DNS servers will return a SERVFAIL response to the super
proxy if DNSSEC validation fails.
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Fig. 6. Unique ASes of VPs during the .se Rollover. Share of validating
resolvers in brackets.

Google Public
DNS Server Exit Node’s

DNS Server

[ TN

@
DNS
Request

————————)

-
=m EXit Node

DNS Request

®

<

. [ i ] ......... > Q
Get http://foo.se \\D Exit Node e e
. o [
> — >
® 5 i
HTTP Response o <5>
+ Exit Node IP =
+ Unique Identifier (zID) BE= Eyit Node ':;T:sk
— » HuTTP ‘@’ ExitNode ||€—— =
............. ’ DNS ——— A
Target Server
http:/foo.se
Fig. 7. Timeline of a request in Luminati: the measurement client sends a

HTTP request to the super proxy @; the super proxy makes a DNS request to
the Google Public DNS server @; once the DNS request succeeds, it forwards
the HTTP request to one of the exit nodes ®; the exit node makes a DNS
request to its DNS resolver @, then requests the HTTP content ®. The HTTP
response is then returned to the super proxy ®, then to the client @.

only allows us to send HTTP requests via the exit nodes,
which makes these exit nodes send DNS queries via recur-
sive resolvers [20]. Hence, RIPE Atlas probes act as both the
VPs-direct and VPs-indirect, but Luminati only as the latter.

Probes of RIPE Atlas are very often located behind vali-
dating resolvers (see Fig. 6), which is useful to monitor the
chain of trust, but also are often not located in residential
networks [23]. The opposite is the case for clients of Luminati;
the large majority is located in residential networks but only
around 12% use validating resolvers [24]. As shown in Fig. 6,
these two platforms cover a very different set of networks, such
that by combining these two different approaches they allow
us to have a more comprehensive view on resolvers around
the world.

B. Evaluate Failure Modes

In this section, we demonstrate that the issues described
in Section III are not only theoretical. We show that opera-
tors should indeed monitor rollovers thoroughly, and algorithm
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rollovers especially, using our method. We use our own sec-
ond level test domain name (ourtestdomain.nl.) and the
VPs of RIPE Atlas to replicate different failure modes.

1) Timing Issues: Especially interlinked caches can lead
to validation failures during rollovers that are not carried out
correctly. We replicate the situation in Section III-A3, where
a forwarding resolver fails validation, with RIPE Atlas probes
and a domain under our control.

Our zone consists of one signed TXT test record with a
TTL of 24 hours and the accompanying key material, with a
TTL of 1 hour. Then, we query for the test record from each
RIPE Atlas probe, using its pre-configured resolvers. Thereby,
validating resolvers query for the test record, its signature and
the keys and store them in their cache. Then, we carry out a
ZSK rollover and remove the old key from the zone. An hour
later, the DNSKEY record should have expired from the cache,
but the test record should still be cached. Then we query for
the test record again.

Forwarding resolvers that do not have the TXT test record
cached (e.g., because they do not have a cache implemented)
now need to query their upstream resolvers again for the TXT
record and the key. The upstream resolvers should not have
the old DNSKEY record in their cache anymore but only the
TXT record and old signature. Therefore, they need to query
our name servers for the key again which now respond with
the new key. Forwarding resolvers cannot validate the old
signature with the new key and therefore fail validation.

Out of 10,155 VPs, at least 38 use a validating forwarding
resolver and return an error. This is just one of many sce-
narios where not respecting the publication and propagation
delay leads to failures and shows that respecting these delays
is crucial when carrying out a rollover

2) Downgrade Attack: A failure mode that applies to algo-
rithm rollovers, and thus, also to the rollover of .se are
resolvers that expect signatures with each of the algorithms in
the DNSKEY RRset of a zone. We use every available RIPE
Atlas probe to measure in the wild how many resolvers follow
this strict interpretation.

Out of 10,952 probe-resolver pairs, 6 fail for zones that
do not provide signatures for every available algorithm. Thus,
operators that do not follow the conservative interpretation
of RFC 4035 can expect a small number of resolvers to fail
validating their zone during the rollover.

C. The .se Use Case

After we have shown that it is indeed necessary to respect
the timing during rollovers we now apply our method on the
algorithm rollover of . se.

In December 2017, the Swedish ccTLD .se carried out their
first ever algorithm rollover, moving from the RSA/SHA-1 to
the RSA/SHA-256 signing algorithm. The .se ccTLD was
the first ccTLD to deploy DNSSEC [25] in 2005, well before
the root zone got signed in 2010. At the time of the rollover,
. se had more than 1.4 million registered domain names and
more than half of the them were signed with DNSSEC [8].
Furthermore, more than 70% of Swedish Internet users rely
on validating resolvers [9] to resolve these domains. If the
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algorithm rollover of .se would fail, the impact on Swedish
society would be devastating: the majority of clients that rely
on . se domains would likely not be able to reach . se domain
names for minutes or even hours.

Therefore, it is crucial for the operator of .se that the
rollover succeeds. We validate our method based on this event
and demonstrate how it supported the operators of . se during
their rollover. During the rollover, we provided the operators
of .se insights into their rollover in real-time by processing
the measurements and visualizing them on a dashboard.

In the remainder of this section we rely on the replacement
of the DS in Stage IV as a use case. It is one of the most
crucial stages in the rollover for two reasons. First, it involves
interaction with the parent, which is only partially under the
control of the operator. Second, whereas the previous stages
could only have a direct impact on resolvers that follow the
conservative approach (see Section III-B), this is the first stage
where a failure would affect every record in the zone and every
validating resolver.

1) Monitor the Publication Delay: Using VPs-indirect of
RIPE Atlas, we measure when every server of the root serves
the new DS (msm_IV_pub in Fig. 2).

The DS of . se is replaced at around 18:30 UTC. The first
probe observes the new DS at 18:30:25 at J-root and 32 sec-
onds later every root server has the new DS deployed on at
least one of their sites. After 5 more minutes, over 99% of the
probes receive the new DS (see Fig. 8). Note that some root
server letters need more time to distribute the new zone than
others: only after 10 minutes every probe receives the new DS.
From this point on, the operator can expect that every resolver
will receive the new DS from the root.

The root servers are heavily replicated using anycast. Root
servers with many sites, however, do not necessarily distribute
the new DS across their sites slower than root servers with
fewer sites. D-root with more than 120 sites have their sites
in sync almost as fast as C-root with only 10 sites. Note that,
because of external factors such as network congestion, the
publication delay can vary every time a new version of the
zone is distributed. A full study of the reasons for propagation
delays at root operators is outside the scope of this paper and
we suggest to study this phenomenon in future work.

2) Monitor the Propagation Delay: In contrast to the
publication delay, the propagation delay, measured with
msm_IV_prop in Fig. 2, is significantly longer. Most of the
resolvers of VPs-indirect (RIPE Atlas only) pick up the keys
within 1 day (see Fig. 9). This is expected since the TTL of the
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DS is 24 hours. A small share of resolvers (less than 1%) still
have the old DS in their cache 48 hours after its withdrawal
and only after 50 more hours the last VP has dropped the old
DS. This is likely caused by resolvers that ignore the TTL
or do not forward queries to one of the official root servers
(see Fig. 10) [26]. Operators should validate whether these
lagging resolvers send a significant share of queries to their
authoritative name servers. If so, they might want to try to
contact the operators of the resolver to fix this issue before
moving on to the next stage. If not, they can safely move on
to the next stage and neglect these lagging resolvers.

Based on these measurements, the operators of .se know
that they have to wait at least the publication delay of 10
minutes and the propagation delay of 48 hours before moving
on to Stage V. Then, they can withdraw the old DNSKEY from
their zone safely.

3) Monitor the Trust Chain: For the entire duration of the
rollover, we monitor the trust chain of .se from the per-
spective of a second-level .se domain (msm_I_secure and
msm_I_bogus in Fig. 2).

As described in Section II-B, a caching resolver can only
detect a failure in the trust chain if the record that caused the
failure has expired from cache. In . se, the TTL of the DS is
1 hour. As a consequence, we can detect failures for .se or
the root with one second-level domain only once per hour.

To address this shortcoming, we create five second-level test
domains with one validly signed and one bogus signed record
each. From each VP-indirect we query the records of every
domain once per hour. We schedule the measurements such
that each VP spreads its queries to the domains equally. Thus,
within an hour a VP sends 5 queries to a bogus record and
5 queries to a secure one. By combining the response codes
of the queries to the same domains, we can detect a failing
resolver of a VP at least every 12 minutes.
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Fig. 11. State of VPs that successfully validated signed . se domains before
and after the new DS was introduced.

We again monitor Stage IV, in which the DS is replaced at
the root. Because the TTL of the DS at the root is 24 hours we
would not see the impact of this failure immediately. Fig. 11
shows the VPs- indirect (RIPE Atlas and Luminati) that are
secure, insecure or bogus before and after the DS is replaced.
We do not observe an increase in bogus resolvers and the
number of secure resolvers also stays stable. This shows that
. se remains secure during the rollover and, very likely, also
end users do not experience issues. In fact, our measurements
show that .se is secure during every stage of the rollover.
This is the desired result for its operator and thus, the rollover
is carried out successfully.

4) Lessons Learned and Other Use Cases: In this use case,
we used all available RIPE Atlas and Luminati VPs. In order to
reduce cost and the impact of the measurements on network
resources, operators can select VPs that reflect their actual
client base. For example, by selecting VPs that are located
in the network of their local ISPs and VPs that make use
of large public DNS providers such as Google, operators can
likely cover most resolvers that their clients rely on [27]. In
order to cover corner cases, operators should still employ as
many VPs as possible. Only then, also forwarding resolvers
or resolvers behind load balancers are covered.

After applying our method to .se we also supported the
operators of the Brazilian ccTLD . br in applying our method
to their algorithm rollover [10]. In October 2018, they rolled
the keys from RSA-SHAI1 to the new elliptic curve algo-
rithm ECDSA-P256-SHA256 and decided to follow the liberal
approach for the rollover. Again, the operators relied on every
available VP of RIPE Atlas and Luminati. As with . se, their
rollover was carried out successfully and the measurements,
set up according to our method described in this paper, did
not show any significant failures [28]. This also demonstrates
that the number of resolvers that follow the strict approach for
the rollover (as described in Section V-B2) is not significant
enough to jeopardize a liberal rollover.

VI. RELATED WORK

Operators have multiple tools at hand that allow them to
debug errors in DNSSEC and automate rollovers and can rely
on rough guidelines on how to roll their keys. In comparison
to the method described in this paper, all of these tools, how-
ever, lack concrete recommendations about the correct timing
during the roll.
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A. Challenges of DNSSEC Rollovers

The particular risks of DNSSEC KSK rollovers have been
described in academic literature multiple times in the past. In
2007, Ariyapperuma and Mitchell note that DNSSEC rollovers
are a risk which has not been addressed at the operational level
and Yang et al. particularly describe how the effects of caching
can break the chain of trust [29], [30].

Chung et al. measure DNSSEC rollovers on second level
domains in .com, .net and .org over a period of
21 months [24]. During that time, only 30% of the signed
domains carried out a KSK rollover, which suggests that oper-
ators consider KSK rollovers too risky. Of the domains that
rolled their keys, 7% of them did not respect the propagation
delay of the keys, which may have caused validation errors.

Besides caching, an increased response size for DNSKEY
queries can also cause a risk during a rollover. This increase
may cause packets to be fragmented and possibly blocked on
their way to the resolvers. Van Rijswijk-Deij et al. analyze
how elliptic curve cryptography can address this risk [31].

B. Rollover Guidelines

Because of the added complexity of DNSSEC rollovers,
three informational guidelines have been published in the
IETF intended to help operators roll their keys correctly.
RFC 4641 [32] is now considered obsolete and is updated
by RFC 6781 [3]. RFC 6781 describes the different rollover
types in detail and explains each step an operator has to carry
out. The document, however, does not give concrete guide-
lines, when to proceed from one step of the rollover to another.
RFC 7583 [33] makes more concrete recommendations about
the timing of a rollover, but because the actual time it takes for
records to propagate across the DNS can differ from expected
behavior, just following these recommendations is likely not
sufficient to achieve a flawless rollover.

C. Debugging DNSSEC

Open source tools such as DNSViz and Zonemaster can
debug the configuration of a zone, including DNSSEC records
and the chain of trust [34], [35]. Operators can use these tools
to check the publication of records at their name servers. They
are not suitable for monitoring the propagation of records.
Also, these tools were not developed for continuous monitor-
ing and are thus not suited to monitoring a longer running
process such as a rollover. With our methodology on the
other hand we can measure the propagation and publication
continuously throughout the whole process.

The measurement platform of APNIC continuously mea-
sures the number of clients that rely on validating resolvers.
However, the platform is not public and does not focus on the
validity of individual domain names [9].

D. Automating Rollovers

In the early days of DNSSEC deployment operators had
to create, introduce and remove keys and signatures manu-
ally. This requires many manual steps and, like most manual
processes, is prone to errors. Today, tools exist to mostly auto-
mate rollovers and are implemented directly in the name server
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software, are exclusively developed to manage DNSSEC of a
zone, or support decision making during the roll.

For example, since version 9.7, BIND can automate the pro-
cess of creating new keys and adding them to the zone [36].
In case of a KSK or algorithm rollover, however, operators
need to withdraw old keys manually from the zone. Also, the
interaction with the parent needs to be done manually. With
our method, operators know when they can safely remove the
DS records from parent. The name server software Knot DNS
can also carry out rollovers automatically, including algorithm
rollovers [37]. If configured, Knot DNS will check automati-
cally at the parent whether the new key is updated and waits
an additional TTL before removing the old key. As shown
in Section V-C, waiting one TTL might be not long enough
for every resolver to drop the old keys and signature from
cache. Operators who follow our method will have more con-
fidence when it is safe to remove the old key and can manually
instruct Knot DNS to do so.

OpenDNSSEC automatically keeps track of DNSSEC keys
and handles DNSSEC signing [38]. It can also automate
rollovers to some extent. If operators pre-configure their pub-
lication and propagation delays, OpenDNSSEC can carry out
ZSK rollovers automatically. KSK and algorithm rollovers,
however, still require manual work. OpenDNSSEC uses fixed
timers and cannot detect when the DS record at the parent
is published and has propagated. Thus, operators still have to
monitor the publication and propagation themselves and com-
municate the state of the DS to OpenDNSSEC. Our method
allows operators to do so which lets them safely continue with
the rollover. Other commercial tools exist but they invariably
require some manual interaction of the operators as well [39].

An attempt to automate the interaction with the parent is
described in RFC 7344. This standard introduces CDS (Child
DS) and CDNSKEY (Child DNSKEY) records with which oper-
ators can signal to their parent zone that they want to add, roll,
or delete their DS [40]. DNS provider Cloudflare supports CDS
and CDNSKEY and also the TLDs .ch, .1i and .cz update
the DS if they detect a CDS or CDNSKEY record at one of
their child domains but overall, the adoption of this standard
is low [6], [41]-[43].

Still, none of the tools can say with confidence when the
keys and signatures have propagated to the resolvers and thus,
active monitoring is still necessary. Our method describes how
operators should actively monitor their rollovers and gives
them the confidence when the required records are public and
have propagated.

VII. CONCLUSION

In this article, we have demonstrated the complexity of
DNSSEC rollovers and how to address them, using our novel
measurement method. We have shown that issues with tim-
ing and legacy resolver software during the rollover are not
only theoretical and can have a severe impact on the availabil-
ity of a zone. Because failure is not an option for operators,
we contributed a measurement method to prevent failures from
happening. With the help of our method, operators know when
it is safe to proceed in each stage of a rollover. In addition to
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this, our method allows them to confirm that their clients can
validate their zone at any point in time during the rollover.

We demonstrated this by applying our method to the algo-
rithm rollover of the Swedish ccTLD . se and showed that the
rollover of . se was carried out without issues for clients. The
operators, however, reported small issues, especially during the
creation of their new keys. Because our approach provided
them with insight into their rollover they had the confidence
to continue the rollover regardless [7].

Our method provides the final link to fully automate
DNSSEC rollovers. As shown in Section VI, tools and pro-
tocols exist to automatically create and publish new keys and
signal to the parent that they should be updated. With our
method, operators now also know exactly when it is safe to
withdraw old keys and signatures. We publish our tool as
open source software, so any operator can set up the measure-
ments necessary to implement this method themselves, using
the vantage points of RIPE Atlas.> Our command-line tool,
implemented in Python, first schedules every measurement
described in this article for a zone defined by the operator
using the RIPE Atlas API. It then processes the measurement
results at a configurable interval. Finally, it gives as output
the current state of the publication and propagation of the
changed records. Operators can use the output to identify lag-
ging name server instances or resolvers and to decide when to
move to the next stage of the rollover. In the future, the output
of this tool can also be used as an input for software such as
OpenDNSSEC, Knot DNS or other DNSSEC signer software.
For example, these signer implementations could automati-
cally withdraw old keys, if the new key has propagated to
at least 99% of the vantage points. Thereby, we close the
last gap of fully automating rollovers, reduce their risks and
address one of the barriers when deploying DNSSEC. This
paves the way for more DNSSEC-signed zones in the future,
which would increase the security of the DNS overall.
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