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Abstract. Interictal Epileptiform Discharge (IED) detection in EEG signals is
widely used in the diagnosis of epilepsy. Visual analysis of EEGs by experts
remains the gold standard, outperforming current computer algorithms. Deep
learning methods can be an automated way to perform this task. We trained a
VGG network using 2-s EEG epochs from patients with focal and generalized
epilepsy (39 and 40 patients, respectively, 1977 epochs total) and 53 normal
controls (110770 epochs). Five-fold cross-validation was performed on the
training set. Model performance was assessed on an independent set (734 IEDs
from 20 patients with focal and generalized epilepsy and 23040 normal epochs
from 14 controls). Network visualization techniques (filter visualization and
occlusion) were applied. The VGG yielded an Area Under the ROC Curve
(AUC) of 0.96 (95% Confidence Interval (CI) = 0.95 − 0.97). At 99% speci-
ficity, the sensitivity was 79% and only one sample was misclassified per two
minutes of analyzed EEG. Filter visualization showed that filters from higher
level layers display patches of activity indicative of IED detection. Occlusion
showed that the model correctly identified IED shapes. We show that deep
neural networks can reliably identify IEDs, which may lead to a fundamental
shift in clinical EEG analysis.

1 Introduction

Epilepsy is the fourth most prevalent neurological disorder in the world. It is a brain
disease that entails a predisposition to generate seizures, encompassing a plethora of
syndromes and clinical phenomenology, some similar to other diseases [1–3]. Distin-
guishing a non-epileptic paroxysmal event from a seizure is clinically difficult, and the
rate of misdiagnosis for epilepsy is reported to be up to 30% [4, 5]. This may result in
an increased risk of recurrent seizures due to lack of adequate treatment or prescription
of potentially harmful medication to patients with other disorders [6, 7].

While ictal EEGs (i.e. EEG signals recorded during seizures) can almost
unequivocally distinguish an epileptic seizure from a non-epileptic one, the availability
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of these signals is low given that seizures occur at unknown times. In many patients,
the interictal EEG (i.e. the EEG signal when no seizure is occurring) shows Interictal
Epileptiform Discharges (IEDs): transient patterns that indicate an increased likelihood
of seizures [1, 8, 9]. Assessment of their presence is done by visual analysis, which has
been the gold standard in the clinic for almost over a century [10]. Yet, the learning
curve is long, review times are significant, visual assessment is subjective and inter and
intra-individual variability ranges from 5 to 25% [11, 12]. Despite these limitations,
visual assessment of the EEG still outperforms current computer algorithms in
detecting IEDs. These automated approaches are mostly based on ‘hand-made’ features
that aim to mimic the characteristics used by experts in visual analysis [13–17], but
they have ultimately failed to substitute the traditional approach to this task.

Deep learning methods learn from experience, creating a hierarchical representation
based on raw data. Features are automatically extracted by successive layers, making
artificial neural networks unbiased regarding the features used in visual analysis
[17–19]. While deep neural networks are not easily interpretable, which has been
pointed out as one of the drawbacks of deep learning methods [20], network probing
and visualization techniques have been developed to provide some insight into the
inner workings of the behavior of these models, making them more understandable
and, thus, empirically reliable [21–23].

We explore whether deep neural networks can detect IEDs in EEG signals,
automating EEG analysis for this task. In turn, this would render it more objective,
eliminating variability and reducing the time and resources spent on this task. We also
aim to provide some understanding regarding how the models reach their conclusions
based on the filters and the provided inputs.

2 Methods

2.1 EEG Data and Pre-processing

EEG data from 217 patients between 4 and 72 years of age was used. The recordings
were made with twenty-one silver/silver chloride cup electrodes placed on the scalp
according to the international 10–20 system. All EEGs were obtained as part of routine
care, and anonymized before further analysis. The patients were randomly selected
from the digital database of the Medisch Spectrum Twente, in the Netherlands. This
dataset included interictal EEGs from patients with focal (50 patients) and generalized
(49 patients) epilepsy, containing interictal epileptiform discharges. EEGs with non-
epileptiform abnormalities (“abnormal”, 51 patients) and normal EEGs (67 patients)
were also included. This was done based on the diagnosis from the electroen-
cephalographers (e.g. searching for “focal epilepsy” or “normal EEG” in the conclusion
of the report). The complete clinical report and the EEG recording itself were reviewed
by experts (MvP and MTC). EEGs with epileptiform discharges were annotated by the
experts so that IEDs could be easily identified. Epochs in which there was uncertainty
regarding the occurrence of an IED were not labeled, ensuring that all the annotations
corresponded to the unequivocal presence of an epileptiform discharge.
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We filtered the EEG data in the 0.5–35 Hz range to reduce artefacts and down-
sampled it to 125 Hz to reduce input size (and consequently computational com-
plexity). Subsequently, the signals were re-referenced to a longitudinal bipolar
montage. Each recording was split into 2 s non-overlapping epochs, yielding a
18 � 250 (channels � time) matrix for each epoch. The pre-processing routine was
implemented in Matlab R2019a (The MathWorks, Inc., Natick, MA).

The data was randomized and split into a training/validation set containing 80% of
the recordings and a test set comprised of the remaining 20%. All epochs from a patient
were used either for training or testing. We applied five-fold cross validation on the
training/validation set, further partitioning it in each iteration.

We created three different datasets using this method. The positive class was the
same across datasets, being comprised of IEDs of focal and generalized epilepsy
patients. The negative class of the first set included normal epochs from the EEGs of
epilepsy patients, as well as normal EEGs (Set A). The second one was comprised only
of normal EEGs (Set B), while the third included EEGs with non-epileptiform
abnormalities and normal EEGs (Set C). Table 2 in the Appendix provides more details
concerning the created datasets.

2.2 Deep Learning Models

A VGG C convolutional neural network (CNN) [24] was implemented in Python 2.7
using Keras 2, Theano and a CUDA-enabled NVIDIA GPU (GTX-1080), running on
CentOS 7. Stochastic optimization was performed using an Adam optimizer [25] with a
learning rate of 2 * 10−5, b1 = 0.91, b2 = 0.999, and e = 10−8. A sparse categorical
cross entropy function was employed to estimate the loss. A batch size of 64 and
weights of 100:1 were used (100 corresponding to the positive class).

2.3 Performance Evaluation

Receiver Operating Characteristic (ROC) curves were calculated for each of the cross-
validation iterations using 101 discretizations. This was then averaged, yielding an
average ROC curve for each set. The area under the curve (AUC) was calculated.
Confidence Intervals (CIs) at 95% were calculated for the ROCs and AUCs. The
sensitivity, specificity, false positive and true positive rate were assessed at a threshold
where the values of sensitivity and specificity were as similar as possible (achieved by
calculating the minimum of the difference) and at 99% specificity. Confidence Intervals
at 95% (CIs) were calculated for these parameters. For each EEG on the test set, the
sensitivity and specificity were assessed at a classification threshold of 0.5. These
routines were implemented in Matlab R2019a (The MathWorks, Inc., Natick, MA).

2.4 Visualization Techniques

Filter visualization was applied by calculating and normalizing the gradients of the
input with regard to the loss for each filter of each convolutional layer. Then, starting
with a synthetically generated gray image with random noise with the same dimensions
as the EEG epochs, gradient ascent was performed for 10 thousand iterations with a
step size of 0.1.
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Occlusion consisted in applying a grid to each sample and, in each iteration, setting
the contents of a patch to zero, leaving the remaining sample untouched. The proba-
bility resulting from the network’s prediction was stored in the center of the occluded
patch so that it could be compared to the prediction without occlusion. After going
through the whole image, the difference between the value in each grid patch center and
the original prediction of the network was calculated. The patches with higher differ-
ences were plotted with warmer colors. The dimensions of the grid varied between 10
and 50 for the time axis and between 1 and 6 for the channel axis.

3 Results

Figure 1 shows the ROC curves yielded by the VGG model when distinguishing IEDs
from normal EEG epochs (Set B). The AUC values were 0.99 (CI = 0.99 − 1.00) on
the training set and 0.96 (CI = 0.95 − 0.97) on the test set. Figure 4 in the Appendix
shows the analogous results for Sets A and C. When epochs containing non-
epileptiform abnormalities were introduced in the dataset (Set C), the AUC value
yielded by the VGG on the test set was 0.90 (CI = 0.89 − 0.90).

When IEDs were detected against the normal class (Set B), the intersection between
sensitivity and specificity occurred at 98% for the training set and 93% on the test set. The
true positive rates per hour were 91.03 (CI = 80.35–100.22) and 47.72 (CI = 45.60 −
49.84), respectively, with corresponding false positive rates of 22.30 (CI = 6.32− 38.28)
and 122.41 (CI = 27.63 − 217.20) (see Table 1). Increasing the specificity threshold to
99%, true positive detections became 88.71 (CI = 78.40 − 99.02) on the training set and
40.27 (CI = 38.43 − 42.12) on the test set. The false positive rates were 16.50 (CI =
4.95 − 28.06) and 32.31 (CI = 15.15 − 49.46) per hour, respectively. Table 1 also
presents the equivalent values obtained when non-epileptiform abnormalities were
included in the negative class (Set C).

Table 3 shows the results of the VGG using a threshold of 0.5 for the classification of
each EEG on the test set of Set B (in which the network aims to distinguish IEDs from
normal EEGs). Four out of the 14 patients with a normal EEG had the full EEG classified
with 100% specificity (no false positive detections). The average specificity was 98.64%.

Fig. 1. ROC curves for the VGG model on the training set (left) and test set (right) of Set B. The
95% Confidence Interval (CI) of the ROC curve is shown as a shaded area. The AUC value and
the corresponding CI are also presented.
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In the focal and generalized classes (total of 20 patients on the test set), 12 patients
had the full EEG classified with 100% sensitivity (all IEDs were detected). The average
sensitivity and specificity values were 93.28% and 91.11%.

Considering the same analysis for Set C (which additionally included EEGs with
non-epileptiform abnormalities), presented in Table 4, 4 out of the 14 patients on the
test set had the full EEG classified with 100% specificity, with an average specificity of
98.47% in this class. The EEGs with non-epileptiform abnormalities (14 patients on the
test set) were classified with an average specificity of 97.19%, with 100% specificity
being reached for one patient. The focal and generalized IEDs (20 patients) were
classified with an average sensitivity and specificity of 78.66% and 88.04%, respec-
tively, with the IEDs of one of the patients not being detected (0% sensitivity) and the
IEDs of 5 patients being detected with 100% sensitivity.

Figure 2 shows examples of the results obtained with filter visualization, which
illustrate the native shape of the filters (before convolution and gradient descent). These
figures can be understood as images with the same dimensions as the 2 s, 18-channel
EEG epochs used as input, since those dimensions were also applied to the synthetic
input used in the algorithm. Filters in lower level layers show more consistent patterns
over time, while higher level layers contain filters with activity patches and low
response on the remaining epoch. In the two panels of the bottom row of Fig. 2, it is
possible to see that some of these patches are vertical (i.e. across channels), suggesting
the detection of generalized IEDs. It is also possible to see some smaller patches,
around one or two channels (e.g. upper right corner of the last filter shown in Fig. 2),
suggesting the detection of focal discharges.

Figure 3 illustrates the results of occlusion with an example of each classification
outcome for the set where IEDs are detected against the normal class (Set B). The scale
shows the difference between the probability for each epoch and the value obtained
with an occluded patch. Larger differences are plotted in warmer colors, showing that
removing the patch centered in that area led to a significant change in classification,
indicating that that area is important to the networks decision process. Figures 5 and 6

Table 1. True positive and false positive rates per hour on the training and test sets of Set B and
Set C. The values were assessed at a threshold where the sensitivity and specificity are equal and
at a specificity of 99%. The 95% Confidence Intervals (CIs) of these rates are also presented.

Set Spec Sens TP/hour FP/hour

Train
B 98%a 98% 91.03 (80.35–100.22) 22.30 (6.32–38.28)

99% 97% 88.71 (78.40–99.02) 16.50 (4.95–28.06)
C 85%a 85% 41.69 (33.75–49.62) 247.32 (116.88–377.76)

99% 26% 12.60 (3.68-21.52) 23.14 (6.12–40.17)
Test

B 93%a 93% 47.72 (45.60–49.84) 122.41 (27.63–217.20)
99% 79% 40.27 (38.43–42.12) 32.31 (15.15–49.46)

C 79%a 79% 49.30 (40.99–57.60) 348.60 (111.15–586.06)
99% 37% 23.16 (15.10–31.22) 17.09 (1.65–32.53)

asensitivity=specificity
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in the Appendix show analogous examples for the set including the full EEG of
epilepsy patients (Set A) and for the set containing non-epileptiform abnormalities (Set
C). The detection of IED patterns in true positive cases is visible in true positive panels
of Figs. 3, 5 and 6.

Comparing Fig. 6 with Figs. 3 and 5, it is possible to see that the true negative
pattern corresponds to an abnormality and not to a normal EEG epoch. The false
positive panel of Fig. 5 showcases an IED.

4 Discussion

We show that IEDs can be successfully identified by a VGG model. The best results
were obtained when normal EEG epochs constituted the negative class (Set B). On the
test set, the intersection of the values of sensitivity and specificity was at 93% and an
AUC of 0.96 (CI = 0.95 − 0.97) was obtained.

Our results are up to par with the current literature regarding computer assisted IED
detection, surpassing many of the described approaches. Scheuer et al. [26] applied
three algorithms based on explicit feature extraction (Persyst 11, 12 and 13), obtaining
sensitivities of 18%, 19% and 44%, respectively, worse than our intersection of sen-
sitivity and specificity at 93%. Persyst 13, which yielded the highest sensitivity,
detected 1.65 false positive samples per minute, which is lower than our 2.04 false
positive rate per minute. However, the sensitivity threshold at which this value was
calculated was vastly different. The dataset used by the authors, which consisted of
records of 35 patients and 5 controls, with a total duration of 253 h, also differed
greatly from ours.

Fig. 2. Examples of results of filter visualization applied to the VGG model. The first row shows
filters of lower level layers and the second row shows filters of higher level layers. These have the
same dimensions as the 2 s, 18-channel EEG epochs used as input. They show the native shape
of each represented filter, before any forward pass of the network.
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Using template matching, Lodder et al. [15] achieved 90% mean sensitivity and
2.36 false detections per minute, worse than our 2.04 false detections per minute at a
sensitivity of 93%. The dataset used in Lodder et al.’s work included 20–30 min
recordings from 23 epilepsy patients. With data from only 3 patients, Nonclercq et al.
[16] were able to get a similar sensitivity value with template matching and k-means,
again, not surpassing our results. Pang et al. [27] compared three different ANN-based
methods ([13, 17, 28, 29]) using the same dataset consisting of 8 channel EEG signals
from 7 epilepsy patients and 6 normal controls. This study revealed that Webber et al.’s
algorithm [17], based on using mimetic features as input for a simple ANN, led to the
best performance. It yielded 86.61% sensitivity and 86.32% selectivity, which is still
inferior to the VGG’s intersection of sensitivity and specificity at 93%.

Thomas et al. [30] used a CNN as a feature extractor, followed by an SVM as a
classifier, which led to a mean AUC of 0.935 across 4 cross-validation folds, lower
than the 0.96 (CI = 0.95 − 0.97) obtained on the test set by the VGG. Thomas et al.’s
model was trained on 30 min recordings of 63 controls and 93 epilepsy patients. Using
a 5 layer CNN as an end-to-end classifier, Johansen et al. [31] obtained an AUC of
0.947, slightly lower than the 0.96 (CI = 0.95 − 0.97) yielded by the VGG. Johansen
et al. trained their network on 30 min EEG recordings from 5 epilepsy patients.

Tjepkema et al. [32] used a set of 50 patients and 50 controls to train a 19 layer, 2D
CNN. The results were validated on a set of 5 patients and 12 controls, leading to 0.94
AUC for the test set, with 0.6 false detections per minute at 98% specificity.

Fig. 3. Examples of the application of occlusion to the VGG model trained with set B (aiming to
distinguish IEDs from Normal EEG epochs). First row: true positive (left) and true negative
(right). Second row: false positive (left) and false negative (right). The scale shows the difference
between the probability assigned to the epoch and what is obtained when a patch is occluded, and
warmer colors are assigned to higher differences. Thus, areas plotted in warmer colors are more
important for classification.
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While these results were close to those of the VGG (AUC of 0.96 and 0.5 false
detections at 99% specificity), they are less reliable since the validation set is smaller.

Similarly to the approach described by Lodder et al. [33], by choosing a specificity
value, the expert can limit the epochs selected for manual review. Starting with a very
high threshold, only the epochs with the highest probability of containing an IED are
shown. This allows the expert to diagnose a patient based on a reduced number of
samples (limiting the time spent in the analysis). If these are not enough for accurate
diagnosis, lowering the threshold will lead to more samples being reviewed.

We also show that the VGG can distinguish IEDs from other types of abnormal-
ities. Abnormal EEGs were classified with an average specificity of 87.76% on the test
set of set C, where abnormal EEGs (signals containing non-epileptiform abnormalities)
were added to the negative class. Normal EEGs were classified with an average
specificity of 98.47%, which represents a difference of less than 1% when compared to
the average specificity of classification of normal EEGs on the test set of Set B. It is
also important to point out that this decrease in performance was not only caused by the
added complexity of the problem, but was also due to the increased class imbalance
between the positive (i.e. IEDs) and negative (normal or normal and abnormal EEGs)
classes, since the test set went from 8.8 h to 11.4 h and the training set increased from
24.3 h to 40.5 h, with the same number of positive samples.

The VGG model was able to detect IEDs when normal epochs from epileptic EEGs
were included in the negative class (Set A), albeit with a lower performance when
compared to set B (AUC of 0.91 against 0.96 on the test set of Set B, compare Figs. 1
and 4). While the increase in class imbalance contributed to this decrease in perfor-
mance, similarly to what happened with the abnormal EEGs, occlusion showed that
another cause for this was the mislabeling of some of the normal epochs. Figure 5 in
the Appendix shows an example of a ‘false positive’ detection which corresponded to
the occurrence of an IED. This happened since only epochs where there was no doubt
about the presence of an IED were labeled. Using the information provided by this
visualization technique, it was possible to account for human error and remove the
normal epochs, creating Set B and improving the model’s performance.

Furthermore, occlusion showed that the VGG was detecting IED shapes correctly
(refer to the true positive panels of Figs. 3, 5 and 6). This result is of the utmost
importance, since it proves that the network is able to classify the signal based on the
correct pattern and not on spurious features, making its results more understandable
and reliable.

Filter visualization provided further insight into the model’s architecture, showing
that filters of lower-level layers can be visually distinguished from those of higher-level
layers, which include patches resembling IED detectors for focal and generalized
discharges.

5 Conclusion

We show that it is possible to detect Interictal Epileptiform Discharges using a deep
artificial neural network. Training a deep learning model with a larger database would
contribute to an increase in model performance and robustness.
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Occlusion allowed human error to be accounted for when creating the datasets and
showed that IED shapes were the most important parts of the input for classification,
making the classification process more transparent and contributing to the reliability of
the model.

Computer assisted EEG analysis with deep learning can support clinical neuro-
physiologists in IED detection, reducing workload and potentially changing the way
EEG interpretation is currently carried out.

Appendix

Table 2. Description of the training and test sets of each dataset, including its duration, the
number of epochs and the number of epochs in the positive class (i.e. IEDs).

Set Train Test
Duration (h) Epochs Positive epochs Duration (h) Epochs Positive epochs

A 62.6 112747 1977 13.2 23774 734
B 24.3 43867 2220 8.8 15886 452
C 40.5 72279 2015 11.4 20470 658

Fig. 4. ROC curves for the VGG model trained with Set A (first row) and Set C (second row).
The first column shows the results on the training set and the second column shows the results on
the test set. The 95% Confidence Interval (CI) of the ROC curve is shown as a shaded area.
The AUC value and the corresponding CI are also presented (right).
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Fig. 5. Examples of the application of occlusion to the VGG model trained with set A (aiming
to distinguish IEDs from Normal EEG epochs and normal epochs in epileptic EEGs). First row:
true positive (left) and true negative (right). Second row: false positive (left) and false negative
(right).

Fig. 6. Examples of the application of occlusion to the VGG model trained with set C (aiming to
distinguish IEDs from Normal EEG epochs and epochs from EEGs containing non-epileptiform
abnormalities). First row: true positive (left) and true negative (right). Second row: false positive
(left) and false negative (right).
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Table 3. Number of epochs (Epochs), number of IEDs (IEDs), Sensitivity (Sens) and
Specificity (Spec) in each recording on the test set of set B, classified by the VGG with weights
100:1, at a threshold of 0.5.

Epochs IEDs Sens (%) Spec (%)

Normal 603 0 – 100.00
538 0 – 98.88
673 0 – 100.00
748 0 – 95.45
643 0 – 99.84
598 0 – 97.49
753 0 – 99.73
2053 0 – 99.22
2067 0 – 97.53
2760 0 – 95.11
1521 0 – 99.67
598 0 – 97.99
1273 0 – 100.00
586 0 – 100.00

Focal 280 117 95.73 47.24
1154 39 69.23 94.05
1162 3 100.00 94.05
204 3 66.67 95.52
583 15 100.00 98.24
2903 65 81.54 95.28
665 3 100.00 99.40
614 1 100.00 97.72
663 10 100.00 80.86
613 10 100.00 90.38

Generalized 618 43 97.67 87.83
594 8 100.00 95.05
592 9 100.00 94.34
590 9 77.78 96.90
626 34 91.18 95.81
631 34 91.18 95.81
195 4 100.00 79.06
604 21 85.71 94.51
588 36 100.00 88.77
638 3 100.00 97.95
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Table 4. Number of epochs (Epochs), number of IEDs (IEDs), Sensitivity (Sens) and
Specificity (Spec), in each recording on the test set of set C, classified by the VGG with
weights 100:1, at a threshold of 0.5.

Epochs IEDs Sens (%) Spec (%)

Normal 793 0 – 99.50

533 0 – 98.31
563 0 – 99.11

673 0 – 100.00
603 0 – 98.84
663 0 – 99.25

663 0 – 100.00
593 0 – 100.00

2053 0 – 96.64
1895 0 – 98.63
1723 0 – 97.34

598 0 – 92.47
1273 0 – 100.00

610 0 – 98.52
Abnormal 623 0 – 91.49

658 0 – 100.00

533 0 – 97.75
393 0 – 87.79

668 0 – 97.01
429 0 – 94.33
477 0 – 99.16

637 0 – 99.37
512 0 – 96.09

633 0 – 97.00
981 0 – 91.03

Focal 577 39 69.23 93.49

523 95 36.84 94.86
611 5 80.00 98.18

883 11 63.64 94.61
534 67 91.04 86.08
606 3 100.00 98.01

639 53 0.00 99.83
550 43 46.51 91.72
581 23 86.96 70.61

612 6 66.67 99.34
Generalized 618 43 100.00 85.22

594 8 87.50 95.39
654 20 100.00 71.29
489 122 88.52 72.48

195 4 100.00 61.16
589 11 100.00 93.77

604 21 76.19 94.34
1121 34 94.12 89.33
614 12 91.67 97.67

510 89 94.38 73.40
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