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Abstract

Background: Better outcome prediction could assist in reliable quantification and classification of traumatic brain
injury (TBI) severity to support clinical decision-making. We developed a multifactorial model combining quantitative
electroencephalography (qEEG) measurements and clinically relevant parameters as proof of concept for outcome
prediction of patients with moderate to severe TBI.

Methods: Continuous EEG measurements were performed during the first 7 days of ICU admission. Patient outcome at
12months was dichotomized based on the Extended Glasgow Outcome Score (GOSE) as poor (GOSE 1–2) or good
(GOSE 3–8). Twenty-three qEEG features were extracted. Prediction models were created using a Random Forest
classifier based on qEEG features, age, and mean arterial blood pressure (MAP) at 24, 48, 72, and 96 h after TBI and
combinations of two time intervals. After optimization of the models, we added parameters from the International
Mission for Prognosis And Clinical Trial Design (IMPACT) predictor, existing of clinical, CT, and laboratory parameters at
admission. Furthermore, we compared our best models to the online IMPACT predictor.

Results: Fifty-seven patients with moderate to severe TBI were included and divided into a training set (n = 38) and a
validation set (n = 19). Our best model included eight qEEG parameters and MAP at 72 and 96 h after TBI, age, and nine
other IMPACT parameters. This model had high predictive ability for poor outcome on both the training set using
leave-one-out (area under the receiver operating characteristic curve (AUC) = 0.94, specificity 100%, sensitivity 75%) and
validation set (AUC = 0.81, specificity 75%, sensitivity 100%). The IMPACT predictor independently predicted both
groups with an AUC of 0.74 (specificity 81%, sensitivity 65%) and 0.84 (sensitivity 88%, specificity 73%), respectively.

Conclusions: Our study shows the potential of multifactorial Random Forest models using qEEG parameters to predict
outcome in patients with moderate to severe TBI.
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Background
There is an ongoing need for continuous, bedside-
available, preferably non-invasive tools for reliable predic-
tion of neurological outcome in traumatic brain injury
(TBI) patients. A prediction model for patient outcome
after TBI might provide realistic information to caregivers
to inform relatives about expectations. Besides, better

outcome prediction could assist in reliable quantification
and classification of TBI severity to support clinical
decision-making [1].
Currently, the International Mission for Prognosis

And Clinical Trial Design (IMPACT) predictor is the
best available predictor for neurological outcome after
TBI. This online predictor is based on a large multicen-
ter database including both randomized controlled trials
and observational studies in TBI [2]. Linear regression
models were created on clinical admission parameters to
predict mortality (Glasgow Outcome Scale 1) and un-
favorable outcome (Glasgow Outcome Scale 1–3) at 6
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months after injury [3]. The model is based on age,
motor score, pupillary reaction, CT characteristics, signs
of hypoxia, hypotension, glucose, and hemoglobin at ad-
mission. However, this prediction model, based on pa-
rameters at admission, does not take into account
evolvement of secondary injury in TBI patients nor ef-
fects from treatment [4].
Electroencephalography (EEG) is a non-invasive

bedside-available measure of cortical activity and is par-
ticularly useful in sedated or comatose patients [5–7].
Continuous EEG (cEEG) is often part of the multimodal
monitoring in TBI patients at the ICU, where it is
mainly used for the detection of (non-convulsive or elec-
trographic) seizures [8, 9].
Several attempts have been made to relate EEG features

to functional outcome of TBI patients. Worse outcome
was associated with lower (regional) EEG power [9], slow-
ing of the EEG [10–13], decrease in alpha power [9–11,
14, 15], lower EEG (alpha) variability [9, 16, 17], and in-
creased coherence [18]. However, most studies used single
EEG features and were limited to mild TBI in the subacute
phase (days, weeks, or even months) after the moment of
injury [19]. A combination of multiple EEG features might
be even more relevant for outcome prediction in TBI pa-
tients, considering the heterogeneity of the primary injury,
additional organ dysfunctions, and evolvement of second-
ary injury in these patients. Furthermore, computer algo-
rithms can assist in EEG interpretation [6, 20, 21], which
decreases the labor intensity and subjectivity.
As proof of concept, we report on a cEEG monitoring

tool using multiple quantitative EEG (qEEG) features
combined with IMPACT predictors for neurologic out-
come prediction in patients with moderate to severe
TBI.

Materials and methods
Study population
Between 2013 and 2018, two prospective cohort stud-
ies were performed in the Medisch Spectrum Twente
in which cEEG was recorded in patients with moder-
ate to severe TBI. Inclusion criteria were patients of
18 years and older with moderate to severe TBI (Glas-
gow Coma Scale ≤ 12 at the trauma location or emer-
gency department) admitted to the ICU with a(n)
(expected) stay of more than 24 h. Exclusion criteria
were trauma following or combined with severe circu-
latory failure (cardiac arrest/cerebral hemorrhage),
earlier TBI or CVA without full recovery, progressive
brain illness (tumor, neurodegenerative disease), or
limited life expectancy (< 6 months) prior to TBI.
Since the EEG is part of our routine care, the institu-
tional review board waived the need for written in-
formed consent. Verbal consent was asked for
outcome assessment in the first cohort from 2013 to

2016. For a larger clinical study, from 2017, written
informed consent was obtained from the legal repre-
sentative for the EEG measurements and (if possible)
from the patient during follow-up.

Outcome assessment
Patient outcome assessment at 12 months after admis-
sion was performed by telephone calls by one of two in-
vestigators. The primary outcome measure was the
extended Glasgow Outcome Scale (GOSE) approxi-
mately after 1 year after TBI dichotomized as poor out-
come (GOSE 1–2) or good outcome (GOSE 3–8).

Clinical parameters
Age, gender, time of TBI, and Injury Severity Score were
noted at admission. From the electronic patient records,
the following data during the first 7 days of inclusion
were retrospectively collected: administration of propo-
fol, fentanyl, midazolam, and mean arterial blood pres-
sure (MAP). Age is a powerful prognostic factor in
recovery after TBI [2] and hypotension is associated with
poor outcome and increased mortality after TBI [2, 22,
23]. The features age and MAP are available in all pa-
tients at any time.

IMPACT prediction and parameters
For each patient, the prediction by the IMPACT classi-
fier was calculated online [24]. IMPACT parameters are
age, motor score, pupil response, CT characteristics
(Marshall CT classification [25], epidural hematoma,
traumatic subarachnoid hematoma), secondary insults
(hypotension and hypoxia), and laboratory parameters
(glucose and hemoglobin) at admission, which we re-
trieved retrospectively from the medical records.

EEG recordings
Continuous EEG recordings were started as soon as pos-
sible after admission to the ICU and continued until
7 days, unless a patient regained consciousness or ICU
treatment was ended. Nineteen electrodes (either silver/
silver chloride cup or subdermal wire) were placed ac-
cording to the 10–20 International System. A Neurocenter
EEG system with Refa amplifiers (TMSi, Netherlands) was
used, recording at a sample frequency of 256 Hz.

EEG features
At 24, 48, 72, and 96 h after TBI, 60min of EEG data was
preprocessed using a zero-phase sixth-order Butterworth
bandpass filter of 0.5–30Hz. A custom-made computer
algorithm was used to detect artifacts and remove the
concerning channels within 10-s windows in the common
average reference. Artifacts included empty channels and
channels with large peaks or noise (amplitude ≥ 150 or ≤
− 150 μV and variance ≥ 1400 or ≤ 1 μV2). After
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preprocessing, all qEEG features were calculated for each
10-min window in the longitudinal bipolar montage.

Absolute power per band
The absolute power of the frequency bands was calcu-
lated by integration of the power spectral density (PSD)
within each frequency band: delta (0.5–4 Hz), theta (4–8
Hz), alpha (8–13 Hz), and beta (13–20 Hz). Hereby, we
estimated the PSD of each channel using Welch’s
method, with an overlap of 50%, and averaged the PSD
over the 60 epochs within the 10-min windows.

Total power
The sum of all power bands (0.5–20 Hz) resulted in the
total power.

Relative power per band
The relative power of each frequency band was defined
as the ratio between the power within that frequency
band and the total power.

ADR
The alpha/delta ratio (ADR) was calculated as the power
ratio from the alpha (8–13 Hz) and delta (0.5–4 Hz) fre-
quency bands.

SEF90
The spectral edge frequency 90% (SEF90) is the fre-
quency at which 90% of the power lies below in the
higher frequencies.

Variability per frequency band
Variability in the power of each frequency band was
computed by the ratio of the median absolute deviation
(MAD) to the median power in each frequency band [9],
resulting in a value between 0 (no variability) and 1
(high variability).

Brain symmetry index
The pairwise derived brain symmetry index (BSI) was
used to calculate the symmetry of power between each
pair of electrodes from the left and right hemisphere
[26], expressed in a value between 0 (symmetric) and 1
(highly asymmetric). BSI was calculated over the fre-
quency ranges 0.5–20 Hz (total power) and 0.5–4 Hz
(delta power).

Center of gravity
The center of gravity (COG) quantifies the distribution
of power over the head and represents the topographical
place at which the maximal power within a certain fre-
quency band. The COG was calculated for the left-right
(x-) and anterior-posterior (y-) direction, expressed as
values from − 1 to 1 [27].

Mean amplitude
The mean amplitude was defined as the standard devi-
ation of the signal.

Coherence
Coherence was defined as the mean of all magnitude-
squared coherences between all possible combinations of
channels using a Hanning window of 4 s and an overlap of
2 s, resulting in a value between 0 (no synchronization)
and 1 (full synchronization).

Shannon entropy
The Shannon entropy was calculated as defined by Shan-
non [28]. Higher entropy indicates a more complex and
less predictable system [29, 30].

Regularity
Regularity is a measure for the continuity of the EEG
pattern based on the variance of the amplitude of the
signal. Regularity is normalized between 0 and 1, where
a higher value indicates a signal with more regular amp-
litude [6].
EEG preprocessing and feature calculation were per-

formed using MATLAB R2018a (The MathWorks, Inc.,
Natick, MA).

Multifactorial model
We trained a Random Forest classifier, which is a super-
vised machine learning method that combines multiple
individual classification trees using bootstrapped samples
to randomly select features at each node to determine a
split. Predictions result from the percentage of vote of
the different classification trees [31]. Because the predic-
tion accuracy of a model increases by using a larger sam-
ple size [32], we used an extended number of
observations: for each patient, EEG features from the six
10-min windows at 24, 48, 72, and 96 h after TBI were
included. If there was no available data for patients at
these intervals, available data from the previous and fol-
lowing hour (and subsequently, the second last or next
hour) were used.
Modeling was performed using the Random Forest

package in the R Library (randomForest, R 3.5.1)
based on Breiman’s Random Forests for Classification
[31]. The optimal number of trees was found by ob-
serving the out-of-bag error and was set at 100 and
the number of maximum nodes was set at 20. As a
first step, we trained a Random Forest classifier com-
bining all EEG features, age, and MAP for the predic-
tion of outcome at 24, 48, 72, and 96 h after TBI.
Likewise, models were computed on all (six) possible
combinations of two intervals. Second, the 10 most
important features were selected and used to create
new models. Third, new models were created in
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which the individual parameters from the IMPACT
model were added to the models with 10 parameters.
The performance in the training set was evaluated

using “leave-one-patient-out.” Poor outcome was defined
as positive classification. The area under the ROC curve
(AUC) with 50% confidence intervals was used for
model comparison. The model with the highest AUC
without IMPACT parameters (1) and including IM-
PACT parameters (2) was used for validation on an ex-
ternal dataset not used for training, and for comparison
with the IMPACT predictor (3). Finally, these three
models were also trained and evaluated to predict poor
outcome defined as GOSE 1–4.

Results
Fifty-seven patients were included. Patients were divided
into a training set (38 patients included between 2013
and 2016) and a validation set (19 patients included be-
tween 2017 and 2018). A flow diagram for the inclusion
and exclusion of eligible patients is shown in Fig. 1.
Table 1 shows the baseline characteristics. Patients

with good neurological outcome were significantly
younger in both training set (p = 0.037) and validation
set (p = 0.016). Injury Severity Score and duration of
EEG monitoring did not differ between the groups in
both sets.
Fifteen out of the 38 patients in the training set

died during their hospital admission (GOSE 1), and
15 had a good neurological outcome at 1 year with a
GOSE between 3 and 6. The remaining eight patients
were lost to follow-up, because they could not be
contacted by telephone. Patient outcome was there-
fore estimated based on their medical data records.

Two of them were in a vegetative state at discharge
and assigned to the poor outcome group (GOSE 1–
2), and the other six to the good outcome group
(GOSE 3–8). In the validation set, none of the pa-
tients was lost to follow-up; 11 out of 19 patients had
a good neurological outcome, and the other eight pa-
tients had a poor outcome.

Model selection and performance in the training set
Our initial models based on all qEEG features, age,
and MAP had an AUC of 0.79–0.83. Models in which
we selected only the 10 best features had an average
AUC of 0.86 on the single time intervals, 0.88 on
subsequent combined intervals (24 and 48, 48 and 72,
and 72 and 96), and 0.82 on the 1-day-in-between
combined intervals (24 and 72, 48 and 96). From
these models with fewer features, the best model was
the one with features from both 72 and 96 (72 and
96) h after TBI with an AUC of 0.88. Adding IM-
PACT parameters to the features of our best model
resulted in an increase in AUC to 0.94 (specificity
100%, sensitivity 75%) on the training set. This model
was subsequently used for validation and compared to
the IMPACT predictor independently.

Performance in the validation set
Our best model classified poor outcome in the validation
set with an AUC of 0.75 without IMPACT parameters
and an AUC of 0.81 including IMPACT parameters with
a specificity of 83% vs. 75% and a sensitivity of 0.88 vs.
100%, respectively (Fig. 2).

Fig. 1 Flow diagram for inclusion and exclusion of eligible patients. Exclusion criteria were trauma following or combined with severe circulatory
failure (cardiac arrest/cerebral hemorrhage), earlier TBI or CVA without full recovery, progressive brain illness (tumor, neurodegenerative disease),
or limited life expectancy (< 6 months) prior to TBI. Besides, patients were not included because of practical reasons, for example, if the research
team was not aware of the admission of a patient
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Performance of the IMPACT predictor
The IMPACT predictor independently predicted with an
AUC of 0.74 (sensitivity 65%, specificity 81%) on our training
set and an AUC of 0.84 (sensitivity 88%, specificity 73%) on
the validation set. However, the sensitivity and specificity at
the optimal threshold were lower compared to those of our
best model including both EEG and IMPACT parameters
(Table 2).
Model performances of the best models with and with-

out IMPACT parameters and the performance of the
IMPACT predictor are shown in Table 2. This table also
shows performances of these models when using an ad-
justed GOSE dichotomy of 1–4 vs. 5–8.

Feature contributions
The best models used 19 features (8 qEEG, MAP,
and age, and 9 other IMPACT parameters at admis-
sion), of which each contribution is shown in Fig. 3
ranking from high to low relevance. Mean amplitude
of the EEG, age, and MAP were important features in
all models. In the model at 72 + 96 h after TBI, the
most relevant features originated from 72 h, while the
mean amplitude at 96 h also contributed strongly to
the model’s predictability. From the IMPACT parame-
ters, the glucose level at admission strongly contrib-
uted to the predictive ability of the models. Second,
motor score and hemoglobin level at admission were
features with moderate relevance. The least relevant
were pupillary reactivity, hypotension, hypoxia, and
the presence of epidural hematoma or traumatic sub-
dural hemorrhage at the CT scan. The latter also
scored lower than the EEG features.

Discussion
We developed a multifactorial model as proof of concept
for using a machine learning algorithm including qEEG
features and clinically relevant parameters for the prog-
nostication in moderate to severe TBI. Our best models
comprised qEEG features and MAP at 72 and 96 h after
TBI, combined with clinical (IMPACT) parameters at
hospital admission. Our model has an AUC of 0.94 on
the training set and 0.81 on the validation set. In both
training and validation sets, the sensitivity and specificity
of our best model were slightly higher than those of the
IMPACT predictor alone, while the AUC of the ROC
was similar.
Although several attempts have been made over the

last decades to relate individual EEG parameters to pa-
tient outcome after TBI [9–11, 13–16, 19, 33–37], no
models based on multiple qEEG parameters predicting
patient outcome in the acute phase after moderate to se-
vere TBI were reported.
Quantitative EEG features highly contributed to the

predictive ability of the model, especially the mean amp-
litude of the EEG. Although mean amplitude (or total
power) of the EEG has been associated with depth of
coma [38] and with neurologic outcome in patients after
cardiac arrest [6], it has rarely been described in relation
to patient outcome after TBI [9]. Spectral edge fre-
quency of 90% and relative alpha power at 72 h were the
second and third most relevant qEEG features. This is in
line with a recent study from Tolonen et al., who
showed that median alpha power was most related to
patient outcome after TBI [9].
Age and MAP at 72 h were relevant prognostic fea-

tures as well, which is in line with earlier literature

Table 1 Patient characteristics for both training and validation sets

Descriptive Training set Validation set

GOSE 1–2 (n = 17) GOSE 3–8 (n = 21) p value GOSE 1–2 (n = 8) GOSE 3–8 (n = 11) p value

Gender (m/f (%)) 15/2 (88.2) 14/7 (66.7) – 6/2 (75.0) 9/2 (81.8) –

Age in years (median (IQR)) 58.0 (44.8–70.0) 36.0 (20.0–57.3) p = 0.037* 60.7 (56.3–70.3) 43.8 (33.3–55.2) p = 0.016*

Injury Severity Score (median (IQR)) 22.0 (17.5–35.8) 29.0 (26.0–40.2) p = 0.146 27.0 (16.0–35.5) 22.0 (16.5–29.0) p = 0.450

ICU stay in days since trauma (median (IQR)) 7.0 (5.0–10.0) 13.0 (9.5–15.2) p = 0.014* 14.7 (11.3–31.9) 22.6 (6.3–30.6) p = 0.904

EEG start in hours after trauma (median (IQR)) 15.0 (8.0–19.0) 17.0 (8.0–25.2) p = 0.586 16.8 (9.8–21.9) 4.5 (3.3–7.5) p = 0.033*

EEG recording time in hours (median (IQR)) 137.0 (95.8–162.8) 144.0 (98.8–168.0) p = 0.744 163.3 (138.1–166.1) 128.2 (73.0–157.8) p = 0.062

ICP (yes/no (%)) 12/5 (70.6) 7/14 (33.3) – 5/3 (62.5) 2/9 (18.2) –

Decompressive craniectomy (yes/no (%)) 6/11 (35.3) 1/20 (4.8) – 2/6 (25.0) 2/9 (18.2) –

Medication administration (yes/no (%))

Propofol 15/2 (88.2) 19/2 (90.5) – 8/0 (100) 11/0 (100) –

Midazolam 10/7 (58.8) 8/13 (38.1) – 7/1 (87.5) 6/5 (54.5) –

Fentanyl 15/2 (88.2) 21/0 (100) – 8/0 (100) 11/0 (100) –

Noradrenaline 15/2 (88.2) 19/2 (90.5) – 8/0 (100) 11/0 (100) –

GOSE Extended Glasgow Outcome Scale, IQR interquartile range, ICU intensive care unit, EEG electroencephalography, ICP intracranial pressure
*Significant at two-sided Mann-Whitney U test with p < 0.05
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stating that age is a powerful prognostic factor in recov-
ery after TBI [2]. Prediction was most optimal with fea-
tures from recordings at 72 and 96 h after TBI. This
time interval coincides with being at risk for secondary
damage, and this period might therefore have strong

impact on the prognosis of TBI patients [39]. Although
the model at 72 + 96 h was selected as the best model for
this proof of concept, this was however not statistically
substantiated and all models performed well at the dif-
ferent (individual) time intervals in the training set

Table 2 Model performances of the best model based on electroencephalography features, mean arterial pressure and age, the
best model including IMPACT features at admission and the IMPACT predictor independently, predicting poor outcome both as
Extended Glasgow Outcome Scale (GOSE) 1–2 and GOSE 1–4. For both the internal validation within the training set and the
validation set, the number of patients (N), area under the receiver operating characteristic curve (AUC) values with 50% confidence
interval, and sensitivity and specificity at an optimal threshold are shown

Performance measures for
the prediction model

Best model, 72 + 96 h Best model, 72 + 96 h + IMPACT IMPACT predictor

Poor outcome GOSE 1–2 GOSE 1–4 GOSE 1–2 GOSE 1–4 GOSE 1–2 GOSE 1–4

Training set

N 30 25 29 25 38 30

AUC (50% CI) 0.88 (0.83–0.91) 0.66 (0.57–0.74) 0.94 (0.89–0.96) 0.61 (0.51–0.68) 0.74 (0.66–0.79) 0.67 (0.61–0.73)

Threshold 0.541 0.740 0.680 0.591 0.650 0.530

Sensitivity 0.92 (0.81–0.98) 0.71 (0.59–0.80) 0.75 (0.61–0.85) 0.76 (0.66–0.85) 0.65 (0.54–0.75) 0.63 (0.53–0.72)

Specificity 0.77 (0.66–0.85) 0.75 (0.57–0.88) 1.00 (0.92–1.00) 0.50 (0.33–0.67) 0.81 (0.72–0.88) 0.82 (0.67–0.91)

Validation set

N 14 14 14 14 19 19

AUC (50% CI) 0.75 (0.60–0.86) 0.73 (0.62–0.82) 0.81 (0.69–0.88) 0.76 (0.65–0.89) 0.84 (0.76–0.89) 0.87 (0.78–0.92)

Threshold 0.623 0.805 0.378 0.668 0.550 0.349

Sensitivity 0.83 (0.61–0.95) 0.78 (0.61–0.89) 1.00 (0.79–1.00) 0.89 (0.73–0.97) 0.88 (0.70–0.96) 1.00 (0.88–1.00)

Specificity 0.88 (0.70–0.96) 0.80 (0.55–0.94) 0.75 (0.57–0.88) 0.80 (0.55–0.94) 0.73 (0.58–0.84) 0.75 (0.57–0.88)

IMPACT International Mission for Prognosis And Clinical Trial Design, GOSE Extended Glasgow Outcome Scale, AUC area under the receiver operating characteristic
curve, CI confidence interval
Performences of the best model referred to throughout the manuscript is shown in italic

Fig. 2 Receiver operating characteristic (ROC) curves with 50% confidence interval of our best models with and without IMPACT features and the
online International Mission for Prognosis And Clinical Trial Design (IMPACT) predictions of poor outcome (Extended Glasgow Outcome Scale 1–
2) in the training set (38 patients) and validation set (19 patients). The red dots indicate the threshold at which the sensitivity and specificity are
best. The area under the curve (AUC) of the model with IMPACT features was higher than our best model without those and similar to the
impact predictor alone. The sensitivity and specificity of our best model with IMPACT parameters are slightly higher than those of the IMPACT
predictor alone in both the training and the validation sets
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(average AUC of 0.86). Therefore, models at other time
intervals could be of interest in future studies, too. In
addition, temporal evolution might have additional prog-
nostic value. At 72 and 96 h, the number of patients
dropped due to patients’ passing or awakening and being
transferred to the general ward. Patients with no imme-
diate risk of death and uncertainty about the awakening
remain, which is also the category for which caregivers
could use better decision support tools.
From the IMPACT parameters, glucose levels at admis-

sion contributed most to the model’s predictive ability.
Murray et al. already stated that prognostic models in TBI
should include laboratory data and especially glucose [2],
although they found a smaller effect of glucose compared
to other parameters in the IMPACT predictor [24]. Least
relevant for our models were pupillary reactivity,
hypotension, hypoxia, and the presence of epidural
hematoma (EDH) or traumatic subdural hemorrhage at the
CT scan. On the contrary, Steyerberg et al. found that most
prognostic information was contained by age, motor score,
and pupillary reaction and that CT information provided
additional information, although this information might be
not detailed enough for prognostic purposes [24]. Lee et al.
(2019) [40] recently showed that the absence of a posterior

dominant rhythm, absence of sleep stage N2 transients, and
predominant delta activity and discontinuous background
during the first 72 h were individually associated with poor
outcome at 3 months and increased the predictive ability of
the IMPACT predictor from 0.65 to 0.77. Since we focused
on quantitative analysis instead of visual EEG analysis, these
EEG characteristics were not incorporated in our proof of
concept study; however, they could be added in future pre-
diction modeling after TBI.
EEG measurements are more time consuming than

IMPACT prediction. Electrode application takes ap-
proximately 45 min, and visual analysis approximately
1–2 h per day. This can be substantially reduced by
computer algorithms supporting visual analysis [6] and
promising developments in electrode design [41–44]. If
the prognostic ability of a model based on EEG exceeds
that of the IMPACT predictor, the benefits may out-
weigh the extra efforts.
A strength of our study is the recording of 7-day high-

quality continuous EEG measurements in patients after
moderate to severe TBI. Another strength is that in con-
trast to the IMPACT predictor that only uses parameters
at admission, predictions based on longitudinal qEEG
parameters take into account the influence of treatment

Fig. 3 Feature contribution of the best models at 72 + 96 h after traumatic brain injury. Mean amplitude of the electroencephalography (std), age,
and mean arterial blood pressure (MAP) were important features. Glucose level at admission strongly contributed to the predictive ability of the
models. Pupillary reactivity (pupils), hypotension, hypoxia, and the presence of epidural hematoma or traumatic subdural hemorrhage at the CT
scan (CT-EDH and CT-tSAH respectively) were the least relevant features. The bars indicate the contribution of the features in the prediction of
good or poor outcome
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and heterogeneous pathology evolvement in TBI patients
[4]. The fact that our best model has similar predictive
power as the IMPACT data set independently is an en-
couraging result for a model that is trained on only 30
patients from a by nature heterogeneous group of TBI
patients. A Random Forest classifier was chosen because
of its ability to prevent overfitting and the model was
trained using leave-one-patient-out, which also lowers
overfitting. A limitation of Random Forest models for
multifactorial data is that it excludes observations with
missing data. For this reason, other possible relevant
clinical parameters, which were not available in all pa-
tients, such as intracranial pressure, were not considered
in modeling.
A limitation of our study is that primary outcome, the

GOSE, does not take non-neurological cause of death
(in case of polytrauma patients) into account and that
patient survival depends on clinical decision-making. In
addition, preferably, the poor outcome group would be
defined as death to severe disability (GOSE 1–4) and
good outcome as moderate disability to good recovery
(GOSE 5–8). Due to a low number of patients with a
GOSE of 5–8 and incomplete follow-up in 8 patients of
the training set, we primarily choose to define poor out-
come as GOSE 1–2. Model performances were indeed
lower when predicting poor outcome defined as GOSE
1–4. A disadvantage of including the MAP as a param-
eter for prediction is that it could be artificially con-
trolled because of treatment to optimize hemodynamics
or cerebral perfusion pressure. Although MAP was in-
cluded in the prediction model, its contribution was
relatively low (not in the top 5 most relevant factors). As
EEG features also depend on the MAP and CPP, this
may explain its low additional value for outcome predic-
tion. QEEG features were not corrected for the potential
influences of decompressive craniectomy or epileptic ac-
tivity. Although this might have increased the mean
amplitude of the EEG, lower mean amplitude is a strong
predictor for poor outcome.
Another limitation of the study is that the training and

validation sets originate from different cohorts in time.
However, we do not expect this to be a confounder, be-
cause there were no changes in treatment over this
period and the ratio of poor outcome was relatively simi-
lar. The size of the training set and validation set are
below the ideal size for a prognostic model, its validation
and comparison to the IMPACT predictor alone. How-
ever, in this proof of concept study, we showed the po-
tential of Random Forest models for this purpose.
Models should be further developed using larger data-

sets and use GOSE 1–4 and 5–8 to distinguish between
poor and good neurologic outcome respectively. For fu-
ture research, higher generalizability could be obtained
by including more data from multiple time periods and

medical centers [9] and by optimizing model parameters
(i.e., amount of trees and nodes).
We showed that qEEG parameters provide useful in-

formation in prediction of outcome after moderate to se-
vere TBI during the first days after trauma. Ultimately,
using data from multiple modalities that monitor brain
function might lead to better decision support tools in
moderate to severe TBI patients at the ICU.

Conclusion
Multifactorial Random Forest models using qEEG fea-
tures, clinical data, and radiological findings have poten-
tial to predict neurological outcome in patients with
moderate to severe TBI.

Abbreviations
ADR: Alpha/delta ratio; AUC: Area under the receiver operating characteristic
curve; BSI: Brain symmetry index; cEEG: Continuous electroencephalography;
CI: Confidence interval; COG: Center of gravity; CT: Computed tomography;
EEG: Electroencephalography; GCS: Glasgow Coma Scale; GOSE: Extended
Glasgow Outcome Score; ICU: Intensive care unit; IMPACT: International
Mission for Prognosis And Clinical Trial Design; ISS: Injury Severity Score;
MAD: Median absolute deviation; MAP: Mean arterial blood pressure;
PSD: Power spectral density; qEEG: Quantitative electroencephalography;
SEF90: Spectral edge frequency 90%; TBI: Traumatic brain injury

Acknowledgements
Not applicable

Authors’ contributions
MH contributed to the design and conception of the work, data acquisition,
and analysis and interpretation of the data and drafted the manuscript. MP
contributed to the design and conception of the work and data analysis and
interpretation and revised the manuscript. HH contributed to the design and
conception of the work and data acquisition and revised the manuscript. CM
contributed to the design and conception of the work and the data acquisition.
AB contributed to the design and conception of the work and revised the
manuscript. MT contributed to the design and conception of the work, data
acquisition, and data analysis and interpretation and revised the manuscript. All
authors read and approved the final manuscript.

Funding
Not applicable

Availability of data and materials
The datasets used and/or analyzed during the current study are available
from the corresponding author on reasonable request.

Ethics approval and consent to participate
The institutional review board of the Medisch Spectum Twente waived the
need for ethical approval and informed consent.

Consent for publication
Not applicable

Competing interests
MP is the co-founder of Clinical Science Systems, a supplier of EEG systems
for Medisch Spectrum Twente. Clinical Science Systems offered no funding
and was not involved in the design, execution, analysis, interpretation, or
publication of the study. The remaining authors declare that they do not
have competing interests.

Author details
1Clinical Neurophysiology Group, University of Twente, Drienerlolaan 5, 7522
NB Enschede, the Netherlands. 2Department of Neurology and Clinical
Neurophysiology (C2), Medisch Spectrum Twente, Koningsplein 1, 7512 KZ

Haveman et al. Critical Care          (2019) 23:401 Page 8 of 9



Enschede, the Netherlands. 3Intensive Care Center, Medisch Spectrum
Twente, Koningsplein 1, 7512 KZ Enschede, the Netherlands.

Received: 12 July 2019 Accepted: 21 October 2019

References
1. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli A, et al.

Traumatic brain injury: integrated approaches to improve prevention,
clinical care, and research. Lancet Neurol. 2017;16:987–1048.

2. Murray GD, Butcher I, McHugh GS, Lu J, Mushkudiani NA, Maas AIR, et al.
Multivariable prognostic analysis in traumatic brain injury: results from the
IMPACT study. J Neurotrauma. 2007;24:329–37.

3. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al.
Predicting outcome after traumatic brain injury: development and
international validation of prognostic scores based on admission
characteristics. PLoS Med. 2008;5:e165.

4. Ghajar J. Traumatic brain injury. Lancet. 2000;356:923–9.
5. Young GB. The EEG in coma. J Clin Neurophysiol. 2000;17:473–85.
6. Tjepkema-Cloostermans MC, van Meulen FB, Meinsma G, van Putten MJAM.

A Cerebral Recovery Index (CRI) for early prognosis in patients after cardiac
arrest. Crit Care. 2013;17:1.

7. Ruijter BJ, van Putten MJAM, van den Bergh WM, Tromp SC, Hofmeijer
J. Propofol does not affect the reliability of early EEG for outcome
prediction of comatose patients after cardiac arrest. Clin Neurophysiol.
2019;130:1263–70.

8. Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M.
Recommendations on the use of EEG monitoring in critically ill patients:
consensus statement from the neurointensive care section of the ESICM.
Intensive Care Med. 2013;39:1337–51.

9. Tolonen A, Särkelä MOK, Takala RSK, Katila A, Frantzén J, Posti JP, et al.
Quantitative EEG parameters for prediction of outcome in severe traumatic
brain injury: development study. Clin EEG Neurosci. 2018;49:248–57.

10. Jasper HH, Kershman J, Elvidge A. Electroencephalographic studies of injury
to the head. Arch Neurol Psychiatr. 1940;44:328–50.

11. Williams D. The electro-encephalogram in acute head injuries. J Neurol
Psychiatry. 1941;4:107–30.

12. Moulton RJ, Marmarou A, Ronen J, Ward JD, Choi S, Lutz HA, et al. Spectral
analysis of the EEG in craniocerebral trauma. Can J Neurol Sci. 1988;15:82–6.

13. Nuwer MR, Hovda DA, Schrader LM, Vespa PM. Routine and quantitative
EEG in mild traumatic brain injury. Clin Neurophysiol. 2005;116:2001–25.

14. Thatcher RW, Walker RA, Gerson I, Geisler FH. EEG discriminant analyses of
mild head trauma. Electroencephalogr Clin Neurophysiol. 1989;73:94–106.

15. Kane NM, Moss TH, Curry SH, Butler SR. Quantitative
electroencephalographic evaluation of non-fatal and fatal traumatic coma.
Electroencephalogr Clin Neurophysiol. 1998;106:244–50.

16. Vespa PM, Boscardin WJ, Hovda DA, McArthur DL, Nuwer MR, Martin NA,
et al. Early and persistent impaired percent alpha variability on continuous
electroencephalography monitoring as predictive of poor outcome after
traumatic brain injury. J Neurosurg. 2002;97:84–92.

17. Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC, Bergsneider M,
et al. Impaired percent alpha variability on continuous
electroencephalography is associated with thalamic injury and predicts
poor long-term outcome after human traumatic brain injury. J
Neurotrauma. 2007;24:579–90.

18. Thatcher RW, Walker RA, Gerson I, Geisler FH. EEG discriminant analyses of
mild head trauma. Electroencephalogr Clin Neurophysiol. 1989;73:94–106.

19. Haneef Z, Levin HS, Frost JD, Mizrahi EM. Electroencephalography and
quantitative electroencephalography in mild traumatic brain injury. J
Neurotrauma. 2013;30:653–6.

20. Stewart CP, Otsubo H, Ochi A, Sharma R, Hutchison JS, Hahn CD.
Seizure identification in the ICU using quantitative EEG displays.
Neurology. 2010;75:1501–8.

21. Foreman B, Claassen J. Quantitative EEG for the detection of brain ischemia.
Crit Care. 2012;16:1–9.

22. Haddad SH, Arabi YM. Critical care management of severe traumatic brain
injury in adults. Scand J Trauma Resusc Emerg Med. 2012;20:12.

23. Walia S, Sutcliffe AJ. The relationship between blood glucose, mean arterial
pressure and outcome after severe head injury: an observational study. Inj
Int J Care Inj. 2002;33:339–44.

24. Steyerberg EW, Mushkudiani N, Perel P, Butcher I, Lu J, McHugh GS, et al.
Predicting outcome after traumatic brain injury: development and
international validation of prognostic scores based on admission
characteristics [internet]. PLoS Med. 2008; Available from: http://www.tbi-
impact.org/?p=impact/calc. Accessed 11 Aug 2018.

25. Marshall LF, Marshall SB, Klauber MR, van Berkum Clark M, Eisenberg HM,
Jane JA, et al. A new classification of head injury based on computerized
tomography. J Neurosurg. 1991;75:S1–66.

26. Sheorajpanday RVA, Nagels G, Weeren AJTM, van Putten MJAM, De Deyn
PP. Reproducibility and clinical relevance of quantitative EEG parameters in
cerebral ischemia: a basic approach. Clin Neurophysiol. 2009;120:845–55.

27. van Putten MJAM. The colorful brain: visualization of EEG background
patterns. J Clin Neurophysiol. 2008;25:63–8.

28. Shannon CE. A mathematical theory of communication. Bell Syst Tech J.
1948;27(379–423):623–56.

29. Kannathal N, Choo ML, Rajendra Acharya U, Sadasivan PK. Entropies for
detection of epilepsy in EEG. Comput Methods Prog Biomed. 2005;80:187–94.

30. Phung D, Tran D, Ma W, Nguyen P, Pham T. Using Shannon entropy as EEG
signal feature for fast person identification. Eur Symp Artif Neural Networks,
Comput Intell Mach Learn. 2014:413–8. http://www.i6doc.com/fr/livre/
?GCOI=28001100432440.

31. Breiman L. Random Forests. Mach Learn. 2001;45:5–32.
32. Kim SY. Effects of sample size on robustness and prediction accuracy of a

prognostic gene signature. BMC Bioinformatics. 2009;10:4–7.
33. Ianof JN, Anghinah R. Traumatic brain injury: an EEG point of view. Dement

Neuropsychol. 2017;11:3–5.
34. Rae-grant AD, Barbour PJ, Reed J. Development of a novel EEG rating scale

for head injury using dichotomous variables Triphasic waves.
Electroencephalogr Clin Neurophysiol. 1991;79(5):349–57.

35. Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Barroso y Martin JM,
Dominguez-Morales MR. Delta-alpha ratio correlates with level of recovery
after neurorehabilitation in patients with acquired brain injury. Clin
Neurophysiol. Int Fed Clin Neurophysiol; 2009;120:1039–1045.

36. Arciniegas DB. Clinical electrophysiologic assessments and mild traumatic
brain injury: state-of-the-science and implications for clinical practice. Int J
Psychophysiol. 2011;82:41–52.

37. Modarres MH, Kuzma NN, Kretzmer T, Pack AI, Lim MM. EEG slow waves in
traumatic brain injury: convergent findings in mouse and man. Neurobiol
Sleep Circadian Rhythm. 2017;2:59–70.

38. Wang B, Bai Q, Jiao X, Wang E, White PF. Effect of sedative and hypnotic
doses of propofol on the EEG activity of patients with or without a history
of seizure disorders. J Neurosurg Anesthesiol. 1997;9:335–40.

39. Godoy DA, Rubiano A, Rabinstein AA, Bullock R, Sahuquillo J. Moderate
traumatic brain injury: the grey zone of neurotrauma. Neurocrit Care. 2016;
25:306–19.

40. Lee H, Mizrahi MA, Hartings JA, Sharma S, Pahren L, Ngwenya LB, et al.
Continuous Electroencephalography After Moderate to Severe Traumatic
Brain Injury. Crit Care Med. NLM (Medline); 2019;47:574–82.

41. Young GB, Ives JR, Chapman MG, Mirsattari SM. A comparison of subdermal
wire electrodes with collodion-applied disk electrodes in long-term EEG
recordings in ICU. Clin Neurophysiol. 2006;117:1376–9.

42. Das RR, Lucey BP, Sherry AE, Ae H-YC, Espinosa PS, Amir AE, et al. The utility
of conductive plastic electrodes in prolonged ICU EEG monitoring.
Neurocrit Care. 2008;10:368–72.

43. O’Sullivan M, Temko A, Bocchino A, O’Mahony C, Boylan G, Popovici E. Analysis
of a low-cost EEG monitoring system and dry electrodes toward clinical use in
the neonatal ICU. Sensors (Basel). NLM (Medline). 2019;19:1–16.

44. Kamousi B, Grant AM, Bachelder B, Yi J, Hajinoroozi M, Woo R. Comparing
the quality of signals recorded with a rapid response EEG and conventional
clinical EEG systems. Clin Neurophysiol Pract. 2019;4:69–75.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Haveman et al. Critical Care          (2019) 23:401 Page 9 of 9

http://www.tbi-impact.org/?p=impact/calc
http://www.tbi-impact.org/?p=impact/calc
http://www.i6doc.com/fr/livre/?GCOI=28001100432440
http://www.i6doc.com/fr/livre/?GCOI=28001100432440

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Materials and methods
	Study population
	Outcome assessment
	Clinical parameters
	IMPACT prediction and parameters
	EEG recordings
	EEG features
	Absolute power per band
	Total power
	Relative power per band
	ADR
	SEF90
	Variability per frequency band
	Brain symmetry index
	Center of gravity
	Mean amplitude
	Coherence
	Shannon entropy
	Regularity

	Multifactorial model

	Results
	Model selection and performance in the training set
	Performance in the validation set
	Performance of the IMPACT predictor
	Feature contributions

	Discussion
	Conclusion
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

