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Abstract

This paper describes the use of sequence
labeling methods in predicting the seman-
tic labels of extracted text regions of het-
erogeneous electronic documents, by uti-
lizing features related to each semantic la-
bel. In this study, we construct a novel
dataset consisting of real world documents
from multiple domains. We test the per-
formance of the methods on the dataset
and offer a novel investigation into the in-
fluence of textual features on performance
across multiple domains. The results of
the experiments show that the neural net-
work method slightly outperforms the Con-
ditional Random Field method with limited
training data available. Regarding general-
izability, our experiments show that the in-
clusion of textual features aids performance
improvements.

1 Introduction

On a daily basis, legal departments of corporations
produce many electronic documents for documenta-
tion of cases, investigative reporting, internal com-
munication etc. Whenever these corporations are
involved in litigation or investigations as part of
regulatory requests, the need arises to collect and
review these documents and share their contents
with third parties. As document data sets increase,
the corporations turn to e-discovery technology to
facilitate the process of collecting, reviewing and
sharing. E-discovery technology helps to automati-
cally analyze the documents by using text mining
and other text-related analytics to discover rele-
vant information. However, these text mining tech-
niques for automatic document analysis only work

Figure 1: Example of a segmented document and
its corresponding labels

optimally when the roles of different text sections
in a document are known. For example, by recog-
nizing tables, headers and footers, we can apply
different extraction and analysis techniques than
on normal paragraphs, and expect better results.

For safety reasons however, electronic docu-
ments in the legal domain are mostly transformed
into images (e.g. jpg, tiff) so the corporation or
firm can have control of what they share with other
parties. Electronic documents usually contain hid-
den information (information that can’t be seen
when the document is viewed) and these pieces of
information could contain hidden details they don’t
want to disclose to the receiving party. On the other
hand, transforming the documents to images cre-
ates another problem as it makes it more difficult
to automatically identify the specific role of the
document areas. Hence, to provide automatic tools
to determine the function of textual regions derived
from document images, we need to do document
image understanding.

The primary goal in document image understand-
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ing is to (1) identify regions of interest in a docu-
ment image (page segmentation) and (2) recognize
the role of each region (semantic structure label-
ing). Many related studies treat these two tasks as
separate sequential tasks. However, they are also
often handled as one unified task. In this work, we
specifically address the second step in the under-
standing of document images: the task of semantic
structure labeling. The goal of this task is to label a
sequence of physically segmented regions in a doc-
ument image with semantic labels such as header,
paragraph, footer, caption, etc. (see Figure 1). We
treat the task as a sequence labeling problem, which
involves assigning a categorical label to each mem-
ber of a sequence of observations i.e. a sequence
of document segments in our scenario. Though the
work of document image understanding covers vari-
ous types of document images, our work focuses on
electronic and digital-born documents composed
primarily of single-column layouts. Typical exam-
ples of such electronic documents which can be
converted to images are PDF, Word, Powerpoint,
E-mails, etc.

Even though extracting the semantic information
from a document is a task that is easily done by a
human, it is still an open and challenging problem
for computers due to the inherent complexity of
documents (Rangoni et al., 2012), especially when
the set of documents in focus are diverse in layout
and format. Similar works on semantic labeling
such as (Tao et al., 2013) and (Shetty et al., 2007)
are usually very specific to a document format or
a set of related document types and problematic
when we try to generalize to other document types.
There is still a need for robust methods, capable of
dealing with a broad spectrum of layouts found in
digital-born documents (Clausner et al., 2011).

Our work addresses this gap in research by com-
paring sequential labeling methods for the seman-
tic labeling task, and considering heterogeneous
document images. Homogenous formats and lack
of fine-grained semantic labels relevant for real
world documents, are some limitations of previ-
ous document image datasets. To address these
issues, we annotated a new dataset containing doc-
uments from an infamous legal case - the Enron
Corporation scandal investigation. We also com-
pare the performance of the following sequence
labeling methods on the annotated dataset: (i) A
feature-based Conditional Random Field (CRF) (ii)
A recurrent neural network with a Bidirectional

Long Short-Term Memory (LSTM) architecture.
Our methods perform fine-grained recognition

on text regions and include identification of tables.
Furthermore, we check the influence of textual re-
lated features on the generalizability of our meth-
ods to a different domain. Luong et al. (2010)
and Yang et al. (2017) prove that the performance
of methods improves when text information in a
region is considered for semantic labeling. We ex-
tend this by checking its influence across a different
document domain.

Our main contributions are summarized as fol-
lows:

• We compare two sequential labeling meth-
ods to address document semantic structure
labeling. Unlike previous works, we consider
heterogeneous document formats and identify
both fine-grained semantic-based classes and
tables.

• We offer a novel investigation into the influ-
ence of text-related features on the perfor-
mance of our methods across a different docu-
ment domain.

• We provide an evaluation dataset for the task
of semantic labeling on digital-born docu-
ments.1

In section 3, we present our evaluation dataset.
We then provide a detailed description of our sys-
tem architecture in section 4. Section 5 is a break-
down of the sequence labeling methods performed
for the task. We show the results of our experi-
ments in section 6 and conclude on our work in
section 7.

2 Related Work

Previous works on document image understanding
(Chen and Blostein, 2007; Marinai, 2008; Kamola
et al., 2015) divide the task into two parts: a phys-
ical decomposition or segmentation of document
images into regions (page segmentation) and a log-
ical/semantic understanding of these regions (se-
mantic structure labeling). Though the focus of
our work is on semantic labeling, we also present
a high-level discussion on existing page segmenta-
tion techniques.

1The dataset will be made available upon request.
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2.1 Page Segmentation

Page segmentation techniques involve identifying
segments enclosing homogeneous content regions,
such as text, table, figure or graphic in a docu-
ment page or image. These techniques fall into
three categories: bottom-up, top-down and hybrid
approaches. Bottom-up approaches (Kise et al.,
1998; Adnan and Ricky, 2011) begin by group-
ing pixels of interest and merging them into larger
blocks or connected components, which are then
clustered into words, lines or blocks of text. How-
ever, such approaches are expensive from a compu-
tational point of view. Top-down approaches (An-
tonacopoulos, 1998; Gatos et al., 1999) recursively
segment large regions in a document into smaller
sub regions. Both approaches however, are lim-
ited by their inability to successfully segment com-
plex and irregular document layouts. Hybrid meth-
ods, such as proposed in Pavlidis and Zhou (1992)
combine both top-down and bottom-up techniques.
With recent advances in deep neural networks, neu-
ral based models have become state-of-the-art for
segmentation. Siegel et al. (2018) utilized a neural
network to extract figures and captions from sci-
entic documents. Yang et al. (2017) proposed a
unified convolutional model to classify pixels in
a document based on their visual appearance and
underlying text content.

2.2 Semantic Structure Labeling

Our work focuses on the second aspect of doc-
ument image understanding. Semantic labeling
couples semantic meaning to a physical region or
zone of a document after it has been segmented.
Two types of approaches have been considered in
the literature to handle this task: the model-driven
approach and the data-driven approach (Mao et al.,
2003). Early work in semantic structure labeling fo-
cused on the model driven approach. Models made
up of rules, or trees, or grammars contained all
the information that was used to transform a physi-
cal structure into a logical or semantic one. Rule
based systems (Kim et al., 2000), though fast and
human-understandable proved to be poorly flexible
and unable to handle irregular cases and varying
layouts.

Recent studies have considered the data-driven
approach using supervised learning methods as an
alternative to avoid the inflexibility and rigidity
of manually built rule systems and mechanisms.
These data-driven approaches make use of raw

physical data to analyze the document and no
knowledge or predefined rules are given. Vari-
ous document image datasets have been created
for this purpose including images in the document
space of electronic documents, scanned documents,
magazines, newspapers etc. (Todoran et al., 2005;
Antonacopoulos et al., 2009) but they are usually
confined to a single domain or class. Chen et al.
(2007) define a document space as the set of doc-
uments that a classifier is expected to handle. The
labeled training and test samples are all drawn from
this document space. Our dataset includes hetero-
geneous formats of electronic documents such as
Microsoft Office files, PDF and email files which
cover multiple domains like business letters, ar-
ticles, memos, forms, reports, invoices etc. that
significantly vary in layout and content.

Most existing supervised learning methods for
semantic labeling use CRF and deep neural net-
work approaches. Tao et al. (2013) built a CRF
model as a graph structure to label fragments in a
document. Shetty et al. (2007) used CRFs utiliz-
ing contextual information to automatically label
extracted segments from a document. Yang et al.
(2017) and Stahl et al. (2018) used visual cues and
deep learning methods to analyze documents. In
this study, we treat the semantic structure label-
ing task as a sequential labeling problem where a
document image is modeled as a sequence of re-
gions. The motivation for this is to model spatial
dependencies and possible transitions between the
different regions. Shetty et al. (2007) model spatial
inter-dependencies between sequential segments
in documents. Luong et al. (2010) also treat their
semantic labeling task as an instance of the sequen-
tial labeling problem. CRFs and recurrent neural
networks are popular sequential learning methods
for this type of modeling. We offer a comparison
of these state-of-the-art methods for semantic la-
beling across heterogeneous document formats in
this study.

Luong et al. (2010) report in their work that
adding textual information to a CRF model for
semantic labeling improves its performance. We
build on this work by also checking the influence
of textual information on the performance of our
methods across different document domains.

3 Datasets

This section describes the construction of our eval-
uation dataset for the task of semantic labeling
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Dataset SemLab PRIMA

Document images 400 478

Document space
Office docs,
PDF & Email

Magazine

Label categories 13 9

Table 1: Overview of the datasets used in this study.

which we call SemLab (SemLab coined from Se-
mantic Labeling). The documents we used were
gathered from the Enron Corpus.This corpus is a
large database of approximately 600,000 emails
generated by 158 employees of the Enron Corpora-
tion and acquired by the Federal Energy Regulatory
Commission, a United States federal agency, dur-
ing its investigation after the company’s collapse.

To compare the performance of the sequence
labeling methods across different domains, we
used the PRIMA dataset of Antonacopoulos et
al. (2009). Table 1 contains an overview of both
datasets.

3.1 Dataset Creation

We select documents for our dataset from the email
folder of the then CEO of Enron corporation. Of
all the employees in the corporation, he received
the most emails. The documents comprise of sent
and received email messages in the folder as well
as document attachments. For attached documents,
we consider four formats of documents: Word,
PDF, Excel and Powerpoint documents, and ig-
nore other file formats in the folder. This selection
of different document formats meets the variety
characteristic of an ideal dataset as described in An-
tonacopoulos et al. (2006) because several classes
of document pages are represented. In total, we se-
lect 100 email messages and 406 unique documents
from the CEO’s email folder. With each document
containing different pages, the full set we collected
from the email folder contained 2,447 document
pages.

After selection of the electronic documents, we
converted them to TIFF images since document
images are the focus of our work. The SemLab
evaluation dataset is a random selection of 400 doc-
uments from the 2,447 document images, contain-
ing a total of 2,869 regions and their ground truth
representation in CSV format (see section 3.3).

3.2 Document Semantic Labels

We attempt to identify 13 labels in a document:
paragraph, page header, caption, section heading,
footer, page number, table, list item, title, email
header, email body text, email signature and email
footer. Our choice of labels is specific to regions
in a document that contain text. Hence we didn’t
consider regions in a document that are devoid of
text e.g. figure, image, graphic etc.

3.3 Annotation Process

Apart from the document images part of our dataset,
we created the geometric hierarchical structure of
each image (in CSV format) as ground truth for
the dataset. We achieved this as follows: For each
region, the corresponding bounding box was given
in terms of its x and y coordinates on the document
image. Each region was also given a label from the
set of 13 labels we defined. The bounding box co-
ordinates were defined by page segmentation using
the Tesseract OCR engine2 while the labeling of
the regions was done manually. Tesseract OCR per-
forms an automatic full page segmentation of the
document image thereby producing the bounded
regions in the document. We allowed for manual
correction of the regions by the annotators in case
of a faulty or overlapping region. In total, 5 non-
domain experts took part in annotating the sample
of 400 document images independently. Each doc-
ument image was annotated by 3 annotators (fixed
number).

To make the manual annotation effort easier for
the annotators, we split the 400 documents into
40 groups i.e. 10 documents per group, so that
they had the liberty to annotate a minimum of
10 documents and a maximum of 400 documents.
We set up the process by providing the annotators
with a simple image editor tool to manually correct
the segmentation (by specifying imprecise region
boundaries using a variety of drawing modes such
as using rectangles or arbitrary polygons) and label
each region in a document image. We pre-loaded
the labels into a drop-down editor to improve anno-
tation efficiency. Hence, the annotator only needed
to select the labels from a drop-down. To ensure
that the annotators understood the annotation task,
we provided a user guide containing complete in-
structions on how to use the image editor tool and
carry out the labeling of the regions.

We measured the Inter-Annotator Reliability

2github.com/tesseract-ocr/tesseract accessed 2019-06-09
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Figure 2: Implementation architecture, showing training and testing phases including the input and output
for the sequence learning models

(IAR) of agreement using the Fleiss’ Kappa mea-
sure (Fleiss, 1971). It has been shown to be more
suitable to measure IAR when more than 2 anno-
tators are involved, compared to other measures
such as Cohen Kappa.3 The Fleiss’ Kappa value
measured for our annotation task was 0.52. This
value indicates moderate agreement between the
annotators, going by the table given in (Landis
and Koch, 1977) for interpreting Fleiss’ Kappa
values. After annotation, the main author of this
paper reviewed the annotations and resolved the dis-
agreements between the three annotators for each
document image. Disagreements were resolved by
majority voting and in instances where each anno-
tator had unique annotations, the author revisited
the annotated samples and made the most logical
choice of label to form the gold-standard set.

4 System Architecture

Figure 2 summarizes the architecture of our seman-
tic labeling system. During the training process, we
run all input document images through the Tesser-
act OCR software to obtain raw text data as well
as geometric layout information. The feature ex-
tractor utilizes both the layout information and raw
text, when available, to produce features which go
through the sequence labeling trainer together with
corresponding manually labeled data, to produce
the learned models. The trainer learns to assign
a semantic label to the segmented regions R of a
document image D. Most of the document images
contain single-column layouts, hence we order the

3Fleiss’ Kappa works for any number of annotators giving
categorical ratings, to a fixed number of items

segmented regions as a sequence, from the top of
the document page to the bottom. Each region Ri

∈ R is bounded by a bounding box Bi ∈ B that
includes coherent text content and each bounding
box is a set of pixels between its top left corner
and bottom right corner coordinates. None of the
bounding boxes overlap the other.

During testing, we want to assign a label Li ∈W
: i = {1,...,n} to each region Ri. Given a sequence
of regions x = (x1, x2,..., xn) in a document image,
the task is to determine a corresponding sequence
of labels y = (y1, y2,..., yn) for x. This can be
seen as an instance of a sequence labeling problem,
which attempts to assign labels to a sequence of
observations. We take into account the contextual
information for each of the regions in the sequence
i.e. the labels of preceding or following regions are
taken into account for label classification.

5 Methods

In this section, we present the sequence labeling
methods for semantic labeling of document images
and the evaluation procedure.

5.1 Linear-Chain CRF (LC-CRF)

CRFs are probabilistic models used to segment and
label sequential data. They are reported to be very
effective for semantic structure detection (Peng and
McCallum, 2004; Luong et al., 2010). An inherent
merit of the CRF model to perform this task is its
ability to combine two classifiers: a local classi-
fier which assigns a label to the region based on
local features and a contextual classifier to model
contextual correlations between adjacent regions.
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Feature set Description

Without OCR

Block coordinates The location of the region bounding box
within the document image (x and y co-
ordinates)

Height Normalized height of block
Width Normalized width of block
Area Normalized area of block
Aspect ratio Width/height of block
Vertical position Vertical position of region in the image

(top, middle, bottom)

With OCR

Digit Binary feature indicating if the text in
the region consists of digits or contains
digits

Capital letters Binary feature indicating if if the text in
the region is all in capital case or contains
capital letters

Nr of tokens The number of tokens in a region block
Nr of lines Binned number of lines in a region block

(small, medium, large bins)
List item pattern Binary feature indicating if text contains

bullet items
Caption pattern contains caption keywords (table, source,

fig., figure)
Email keywords Keywords found in different parts of an

email
Has multi-white
space (table feature)

Binary feature indicating if bounded re-
gion contains multiple white spaces be-
tween tokens.

% of white space (ta-
ble feature)

The sum of white space lengths divided
by the line length

Avg white space
length (table fea-
ture)

The mean length of the white spaces
within a line.

Table 2: Features used by the CRF methods.

Linear-chain CRFs are one well known type of
CRFs which are similar to Hidden Markov Models
but are reported to perform better (Peng and Mc-
Callum, 2004). They have one chain of connected
labels. As CRF is a feature-based method, we im-
plement two models with different feature sets in
our work (see Table 2). We use the scikit-learn
Python package, sklearn-crfsuite for implementa-
tion of our CRF models.

LC-CRF without OCR (LC-CRF1): In this
model, we exclude any features that can be ex-
tracted from the OCR output. That is, we consider
only geometric/physical layout features to predict
the label of a region in a document. The LC-CRF
classifier will learn regions based on their position
and location on the bounding box level of the doc-
ument image. For example, it is common for titles
to appear at the top of documents so the model may
learn this observation from the extracted features.

LC-CRF with OCR (LC-CRF2): By virtue of
the generality and flexibility of CRF model, it is
promising to achieve better performance by extend-
ing feature sets and exploring higher-level depen-
dencies (Shetty et al., 2007). Luon et al. (2010)
and Yang et al. (2017) report that by adding tex-
tual information to their models, there was an im-
provement in performance. We implement another
LC-CRF model extending the feature set by includ-
ing textual features from the OCR output. We also
consider features for detecting tables. We re-use a
subset of features for table detection in (Ghanmi
and Abdel, 2014).

5.2 Recurrent Neural Networks (RNNs)

RNNs are a class of nets that are used for sequence
learning. They can simultaneously take a sequence
of inputs and produce a sequence of outputs. We
transform the extracted feature sets of the CRF
models into a 3D tensor and use this as input to the
network. The shape of the 3D tensor is the number
of input samples, the number of sequence regions
per input sample and the number of features per
sequence region. Therefore a shape of (300, 20,
30) indicates an input tensor of 300 document page
samples, 20 regions per sample and 30 features for
each region.

We use a Bidirectional-LSTM architecture for
our network. Two neural models (RNN1 and
RNN2) are trained and evaluated as such imple-
mented for the CRF models, using feature sets with
and without OCR features. Hyper-parameters are
set in reference to the best performing configura-
tions in Reimers and Gurevych (2017) with minor
deviations. We use the adam algorithm for gradi-
ent descent optimization (Kingma and Ba, 2015).
We don’t include an embedding layer since we
deal with numerical inputs, and set the number
of recurrent units to 100 for all 3 hidden layers.
Kernel and recurrent (l2) regularizers are added to
our input layer. We introduce a batch normaliza-
tion layer before the input layer and before each
hidden layer to normalize the input values for our
network. Normalizing or scaling the input values
to a standard scale helps the network to learn the
optimal parameters for each input node quickly and
therefore, quickly find the minimum loss. Batch
normalization also helps to improve the conver-
gence properties of the network, has the effect of
accelerating the training process of the network,
and in some cases improves the performance of
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LC-CRF1 LC-CRF2 RNN1 RNN2

Overall Micro F1 0.736 0.851 0.775 0.855

table 0.667 0.897 0.708 0.877
paragraph 0.617 0.811 0.622 0.774
page number 0.946 0.966 0.913 0.936
list item 0.336 0.594 0.559 0.697
heading 0.564 0.706 0.584 0.619
page header 0.868 0.914 0.846 0.865
title 0.571 0.703 0.677 0.747
footer 0.781 0.860 0.855 0.868
caption 0.667 0.742 0.742 0.771
email header 0.907 0.972 0.944 0.991
email body text 0.944 0.972 0.962 0.989
email signature 0.935 0.987 0.969 0.982
email footer 0.969 0.974 0.979 1.000

Table 3: Comparative performances among LC-
CRF1, LC-CRF2, RNN1 and RNN2 models for
semantic labeling. Category-specific performance
given in F1. Results in bold mark the best system
for each category.

the model. The inclusion of batch normalization
layers in our network proves to be critical as it sig-
nificantly improves performance. We add dropout
regularization with a value of 0.1 to each hidden
layer and use a batch size of 32 to control how
often the weights of the network are updated. Fur-
thermore, if the training loss does not decrease for
3 epochs, the learning rate is reduced by a 0.8 fac-
tor. Training is stopped if the minimum change
in validation loss is less than 10-5 for 8 epochs or
when 100 epochs are reached. We use the keras
deep learning library running on top of tensorflow,
for implementation of our RNN models.

5.3 Evaluation

The aim of our evaluation is to compare how se-
quence labeling methods perform for the task of se-
mantic labeling of document regions and compare
how their performances change with an extended
feature set. We also evaluate the generalizability of
our methods to a different document domain. Over-
all results are evaluated using the micro-averaged
F1 measure, the average of the results of 3 runs is
reported per experiment. We split our dataset into
train/test sets with a 70/30 ratio. We also perform
3-fold cross validation on the train set to tune the
hyper-parameters of the model.

6 Results

6.1 Semantic Labeling of SemLab Dataset

Table 3 shows an overview of the results of our
models comparison on the training dataset. The LC-

CRF model without OCR output (LC-CRF1) per-
forms fairly well, approaching an F1 score of 0.74.
It is clear however that including features from the
OCR output has a significant impact: the LC-CRF2
model with OCR increases micro-averaged F1 to
0.85. We observe that including features from the
OCR output also improves performance for the
RNN method, with the RNN2 model gaining a 0.8
increase compared to the RNN1 micro-averaged F1
score of 0.78. When contrasting the implemented
methods, we see that the RNN method performs
better than the LC-CRF method on both model
variations. RNN1 shows better F1 scores than the
LC-CRF1 on the majority of the categories and
the overall micro F1. The RNN2 model also out-
performs the LC-CRF2 on most of the categories
including the overall score. In addition, we make
the following observations.

We observe that list items, titles and headings
have the lowest scores for the best performing
model. These categories usually have very similar
features. For example, headings and list items are
often started with numbering. Titles and headings
also usually contain similar features such as having
all capital letters. We also observe that list items
have lower F1 scores without OCR features. The
classifier is able to only learn geometric and po-
sitional features of this category and misclassifies
a lot of its samples as paragraph since both have
similar locations on a document image and more
so, paragraph is the majority category. The email
related categories generally have high F1 scores ir-
respective of the local feature sets included. This is
because of the ability of sequence labeling methods
to take into account the neighborhood of items; for
example, an email body text is very likely to appear
after an email header and thus the classifier learns
this contextual knowledge.

6.2 Comparison across different document
domain

In many real life scenarios, the datasets available
to train models for the semantic labeling task are
mainly homogeneous document images with sim-
ilar or comparable layout and format. This raises
the question about how generalizable a model that
has been trained on a set or related set of document
images is, to different domains. We trained the
sequence labeling methods on our SemLab dataset
which contains documents from multiple domains
and tested each model on the records from the
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Testing Domain

Method SemLab PRIMA

LC-CRF1 0.861 0.696
LC-CRF2 0.923 0.743
RNN1 0.888 0.701
RNN2 0.890 0.747

Table 4: Review of the transfer learning experiment.
Each method is trained on the SemLab dataset and
tested on in-domain and cross-domain documents.
All scores are micro-averaged F1 scores.

PRIMA dataset which contains documents from
the magazine domain, not represented in our own
dataset. For fair comparison, we evaluated only
labels applicable to both datasets i.e. intersecting
labels (header, paragraph, section heading, caption,
page number, footer). For this reason we excluded
some features from the ‘With OCR’ feature set that
are directly related to the excluded labels.

Table 4 provides a summary of the performance
of each method on the different domains. The
results show that the methods have lower perfor-
mances when evaluated on unseen data of a differ-
ent domain than the training data. Both LC-CRF
and RNN methods perform better when OCR infor-
mation is included for the cross domain experiment.
This proves that the inclusion of textual features
also aids generalizability of methods across new
domains for semantic labeling. Furthermore, we
observe that both RNN methods are able to gen-
eralize better than the LC-CRF methods, though
with slight improvements. This could be explained
by the techniques specifically employed to reduce
overfitting and improve generalizability power in
the RNN such as the use of dropout, early stopping,
l2 regularization, among others.

7 Conclusion and Future Work

In this work we have presented a comparison be-
tween state-of-the-art sequential learning models
applied to the task of semantic labeling of doc-
ument regions. We constructed a novel evalu-
ation dataset to benchmark model performance
on. The experimental results reveal that both
methods are able to perform the task well using
only a small amount of training data; with the
RNN method slightly outperforming the LC-CRF
method. Also, including OCR information in the
feature set is promising to achieve better perfor-
mance as it reduces confusion between ambigu-
ous semantic classes. In addition, its inclusion

might positively affect generalization performance,
as shown by our transfer learning experiments on
the PRIMA domain.

Future work includes extending the document
dataset in terms of size and variety to cover more
document spaces, domains and classes. Models can
exploit these characteristics to better generalize to
new domains. By virtue of neural networks’ great
power to learn latent features, we believe more
(varying) data will also contribute to improving
the performance levels of our neural method. An
extension of the feature set used in this work could
also be beneficial in improving performance scores
for the implemented models.
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