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Abstract. Modern metal forming factories produce large amounts of data, such as process
forces and product geometries. These data contain indirect information about fluctuations in
the manufacturing process, such as changes in temperature, material properties and lubrication
conditions. In this work, Bayesian inference is used to obtain a probabilistic estimate of the
process state based on force measurements in mass production metal forming. The procedure
requires statistical assumptions about process state variations, which are often not known as it
is usually not possible to directly measure the process state in-line. It is shown that unknown
statistical model parameters can be estimated simultaneously with the process state. This
leads to an improvement in the accuracy of the state estimate. The procedure is studied using
pseudo-data from a mass production sheet bending process, using a finite element model with
ten parameters. The material, friction and process parameters are estimated based on process
force measurements.

1. Introduction

Many sources of variability affect the repeatability of industrial metal forming processes [1-5].
This may be caused by, for instance, variations in material properties, lubrication properties
or tool wear. In this work, these properties are considered to be the process state. Modern
factories are being increasingly equipped with real-time data acquisition systems [6, 7]. It is the
question how these data streams may be used to estimate the process state. It is often difficult
to measure the relevant state variables directly, but an estimate of these state variables may be
obtained based on indirect measurements such as process forces.

A state estimation procedure requires accurate models that describe the relations between
process state (e.g., material properties) and indirect measurements (e.g., process forces). In
metal forming, these models are usually based on Finite Element (FE) simulations. Although
increasingly detailed models are being developed in metal forming research, there is still model
uncertainty, either originating from deliberate simplification or ignorance of the actual physics.
Therefore, it is proposed to perform state estimation with probabilistic methods, in order to
account for uncertainties in modelling. Statistics of process variations can then be used to guide
the state estimation procedure.

In this work, we propose to use recursive Bayesian inference [8] to estimate the state (i.e.
material, friction and tool properties) of a mass production sheet bending process. The state
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estimation procedure is studied using pseudo-data obtained from a sheet bending model. Particle
filtering (a numerical integration scheme for recursive Bayesian estimation) is used to track the
process state. Bayesian methods are used in a wide range of application areas, but are relatively
new to metal forming research. Statistical parameters are important components of the process
state evolution models, but are very often not well known. Therefore, it is shown that these
parameters can be estimated simultaneously with the process state.

The Bayesian state estimation procedure is explained in Section 2. The mass production
sheet bending process and modelling thereof are discussed in Section 3, followed by the results
in Section 4 and the conclusion and perspectives in Section 5.

2. Bayesian state estimation

The purpose of the state estimation procedure is to track process properties that change over
time in metal forming mass production, such as material properties, lubrication properties or
tool wear. An estimate of the process state can be used for process monitoring, predictive
maintenance or real-time control. Bayesian inference is used to obtain a probabilistic estimate
of the process state. In this section, the governing equations for Bayesian state estimation are
given, and it is explained how these equations can be solved with particle filtering [8].

It is assumed that the change of state in metal forming mass production is discrete in time.
Each product is a sampling point in time, and the state changes from product to product. Two
different models are required for the Bayesian state estimation procedure: a process model and
a measurement model. The process model describes how the state of the process is expected to
change over time. The process is assumed to be a Markov process, meaning that the probability
of the process state of the k-th product x;, is only dependent on the previous state xj_q:

xp = f (Xp—1,Vi—1) (1)

where v is a stochastic variable. In metal forming, there is little knowledge about the evolution
of process state during mass production. It is known that variations among different batches
of material are larger than variations within a single batch of material [2]. Sheet thickness
and uneven lubrication may be regarded as short-term variations and material properties may
be regarded as long-term variations [3]. Recent studies have shown that product-to-product
variations in metal forming can have a significant effect on final product properties [6, 7].
Furthermore, mean values and standard deviations of material properties have been quantified
in several studies [4, 5]. As the amount of literature about variability in metal forming is
limited, we propose a simple model for the evolution of process state, where each state variable
is autocorrelated as:

= (=P )W+ + Vi, 2)
L~ N0, (1= (p)?)(07)?) (3)

where N represents a normal distribution, with 7, ¢/ and p’ being the mean value, standard
deviation and correlation parameter of the j-th state variable respectively. All statistical
parameters are gathered in the set 8, = {u, o, p}. The value of p/ can be 0 < p/ < 1, with
a larger value indicating stronger autocorrelation, i.e. slower changes in process state. Little
information can be found in literature in order to estimate values for 5. Hence, these parameters
can be assumed to be unknown, and estimated simultaneously with the process state [9, 10].
The second model that is used in the state estimation procedure is the measurement
model. As it is often difficult to measure the process state directly, we seek to exploit indirect
measurements that carry information about the process state, such as force measurements [7].
The relation between process measurement and process state is given by the measurement model:

J
Xk
J
Vi
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Zp = h(Xk707Wk) (4)

where z is a measurement, 6 is a set of constant parameters and w is a stochastic variable. The
parameters @ may be for example tool compliance or tool alignment parameters. Whether a
parameter is assumed to be constant or to be part of the state is a matter of assumption, and
may change from one application to the other. If the values of the parameters 8 are unknown,
these can be estimated together with the process state [10].

The stochastic variable w accounts for measurement uncertainty. Usually, measurement
uncertainty is mostly related to sensor accuracy. However, model uncertainty is typically larger
than sensor inaccuracy in the case of metal forming. For example, process forces can be measured
accurately, but the uncertainty in the models that relate forces with process state is much larger
than the sensor inaccuracy itself. In metal forming, there is little knowledge about model
uncertainty. In this work, a simple first guess of model uncertainty is obtained by sampling the
process model h (x, @) using the prior statistics for x and 6, and then determining the covariance
of the result space data. It is then assumed that the covariance of the measurement uncertainty
w is equal to a fraction of the covariance of this result space data.

The state of the process can be tracked using the process evolution model (Eq. (1)) and
the measurement model (Eq. (4)). An important question is whether the used measurement
provides sufficient information to be able to track the state of the process. If the measurement
is insensitive to the state of the process, it is not possible to obtain an accurate state estimate.
Furthermore, the model must be sufficiently accurate and fast to be applicable for real-time
state estimation. In recent decades, metal forming models have become increasingly detailed
and refined, in order to improve predictive accuracy. Therefore, model solution times remain
high, despite the continuous improvement in computer speed [11]. In order to benefit from the
accuracy of these models without compromising too much on accuracy, an interpolation model
can be constructed based on a large number of offline computations, using Proper Orthogonal
Decomposition (POD, also known as Principal Component Analysis) for reduction of the result
space [12]. In this work, an interpolation model of a sheet bending process is built using these
techniques (Section 3.1). The model is used to study the state estimation procedure.

The Bayesian estimation procedure is recursive, meaning that the estimate for a new
product is determined based on the estimate from the previous product and based on the
new measurement z;. The state estimate for the previous product is p(xg—_1|Zr—1), with
Zi_1 = {zi}fz_ll being the set of measurements from all previous products. The probability
of the current state x; given all past measurements Zg_1 can be determined by integrating:

Pt Zi1) = / Pkl 1) (1 |Zior s (5)

where p(xg|xi_1) is determined using the process evolution model, Eq. (1). This estimate of
the state can be conditioned on the new measurement z; using:

p(xk|Zk) o< p(zk|xr) p(xk|Z-1) (6)

where p(zg|xy) is determined using the measurement model, Eq. (4). The above equation is
based on Bayes theorem. In order to estimate the process state during production, Egs. (5)
and (6) have to be solved after each new measurement. In this work, this is done with particle
filtering, a numerical integration method for non-linear recursive Bayesian estimation, where the
probabilities are approximated using Monte Carlo sampling:

N
P(Xk|Zk) ~ Y wid(xp — x},) (7)
i=1
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The Monte Carlo estimate has a set of N particles with corresponding states x}'c and weights
wy,. The strength of particle filtering is that the positions of the particles in the state space are
concentrated in the region of higher probability.

Many types of particle filtering algorithms have been developed. In this work, a standard
filter is used, the Sampling Importance Resampling (SIR) filter [13]. The algorithm is given
in Algorithm 1. It consists of four steps. First, a set of particles is drawn in the importance
sampling step, using the process evolution model. Then the weights are updated using the
measurement model, and normalized such that Efi 1 w}; = 1. Finally, a resampling step is used
to redistribute the particles to the region of higher probability, eliminating the particles with
negligible probability.

Algorithm 1 SIR filter

1: procedure PARTICLE FILTER({x} |, wi |}V, z)

2 fori=1...N do

3 Draw xj, ~ p(xﬂx}%l) > Importance sampling

4 Update wj, = p(xy|z) > Process measurement
N

b b=) i wp

6 fori=1...N do

7 wy, =wp, /[t > Normalize weights

8 RESAMPLE({xy, wiL,) > Resampling

9 return {x¢, wt}V,

3. Modelling

In this work, a mass production sheet forming process is used to study the state estimation
procedure. The demonstrator product is shown in Fig. la and the process tooling is shown
in Fig. 1b. We focus on bending of the flaps in the bottom of the cup. The flaps are bent
in two stages (Figs. 2a and 2b). After bending, a picture from one of the three flaps is taken
to determine the final angle (Fig. 1c). During the first bending stage, the bending force is
measured. A typical bending force curve is shown in Fig. 2c¢, with the lowest position of the
punch at 0 ms. The force is used to estimate the state of the process.

cuttin forgin '
%eep drawing 88 bending
(a) Demonstrator prod- (b) Demonstrator tooling (¢) Picture of flap from
uct inline camera

Figure 1: Demonstrator process [7]

3.1. Measurement model

A FE model of the process is built using MSC.Marc. The bending process is modelled in 2D,
with elastic tooling (5370 elements). The sheet is modelled with 3600 quadrilateral linear plane
strain elements. A Von Mises yield locus is used, with a tabulated hardening curve o (¢). Strain
rate dependency is modelled using the Cowper-Symonds equation [14]:
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Figure 2: Bending stages

o (e,d) = <1 + <§0>q> o0 (&) (8)

The parameters of the model are listed in Table 1. These parameters are related to material,
friction and tooling. The evaluation time of one simulation is approximately 10 minutes. A
total of 6953 simulations have been performed, in order to construct a fast metamodel of the
process. Proper Orthogonal Decomposition (POD) is used to determine the dominant modes of
the force curve. The weight factors for these modes have been interpolated with Radial Basis
Function (RBF) interpolation [12]. Following this procedure, a fast and accurate representation
of the FE model is built. The POD-RBF model has an evaluation time of approximately 10 ms.

Table 1: Model parameters

0;
unit min max HMmin  Mmax Omin Omax Pmin Pmax
yield stress MPa 275 336 294 318 3 6 07 0.95
strain rate param. log (éy) log (s_l) 1.5 25 1.8 22 0.02 005 07 095
strain rate param. ¢ - 04 10 06 08 0.02 0.05 0.7 0.95
x sheet thickness pm 295 305 298 302 0.5 1 0.5 09
friction coefficient tool-tool - 0.1 05 025 035 0.02 0.04 0.8 0.99
friction coefficient tool-flap - 0.01 03 01 0.2 0.02 0.03 0.8 0.99
punch end distance pm 310 410 340 380 5 10 0.7 0.99
horizontal alignment pm -5 20
0 vertical alignment pm 20 0
press stiffness kKNmm~—! 5 40

3.2. State evolution model

The state evolution is modelled following Eqgs. (2) and (3). The values for u, o and p are
not known and will be estimated simultaneously with the process state. The bounds for these
parameters are given in Table 1.

3.8. Simulation runs

A series of simulations using pseudo-data are used to study the performance of the state
estimation procedure. Five different datasets have been built, by sampling a random value
for the parameters @ and the statistical parameters 5 (Table 1), and generating a random state
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evolution {x;}:%° using Eq. (2). The POD-RBF model is used to generate the ‘real’ datasets

Z1000- Particle filtering with 500 particles is then used to infer the state x, constant parameters
0 and statistical parameters 85 based on these force measurements. In order to understand the
importance of the statistical assumptions, three different runs have been performed: one run
where the statistical parameters 85 are known by the particle filter, one run where the statistical
parameters 0, are unknown but are not being estimated, and one run where the statistical
parameters @5 are unknown and are being estimated simultaneously. Five repetitions of each
simulation are performed, as random sampling in the particle filter leads to slightly different
results for multiple simulations with exactly the same dataset and particle filter configuration.
Hence, a total of 3 runs x 5 datasets X 5 repetitions = 75 simulations have been performed.
The algorithm is implemented and the simulation runs are performed in MATLAB.

4. Results

For each simulation run, the estimation accuracy increases with increasing number of processed
products. Therefore, all results in this section are determined for the last 200 products of each
run, allowing sufficient time for the algorithm to converge towards a stable estimate. Typical
results for the state estimation procedure are shown in Fig. 3. These results are obtained in
a simulation run where the statistical parameters are estimated simultaneously with the state.
Most state variables can be estimated with good accuracy using the proposed procedure.

336 ) 2.5 1 ’*—‘ 305
yield Stra“,lrlja;;e A e s StTain rate MN\.\MNW sheet
stress W IIZ)(; Fioj param. q y thickness I

275 = 1.5 0.4 295

800 product nr. 1000 800 product nr. 1000 800 product nr. 1000 800 product nr. 1000
0.5 0.3 0.41 20

friction ’ friction punch .
N / . horizontal
coefficient ¥ A coefficient \ - end .
\ AR v alignment

tool-tool tool-flap A\ distance
0.1 0.01 0.31 —5

800 product nr. 1000 800 product nr. 1000 800 product nr. 1000 800 product nr. 1000
0 40 52 36.4
vertical press angle after angle after
alignment stiffness I ?rst bscc;)_nd W
pope bending ending
—20 5 50.4 35.5
800 product nr. 1000 800 product nr. 1000 800 product nr. 1000 800 product nr. 1000

Figure 3: Estimates for simulation from run with ‘estimated statistics’. Real values are shown
in black, and estimates in grey, with a band of £3 times the standard deviation of the estimate.

The normalized Root-Mean-Square Error (RMSE) between the estimated and the actual state
values is determined for all runs. These results are shown for all state variables and constant
parameters in Fig. 4. The run with known statistical parameters is the reference run. It gives
an indication of the observability of the state x based on force measurements. The RMSE
values are much lower than 1, indicating that a significant fraction of the variation of these state
variables can be estimated using force measurements. The estimation accuracy depends on the
state parameter, with the punch end distance being the easiest to estimate and the strain rate
parameter log (¢p) being the hardest to estimate. The estimate for the constant parameters 6 is
almost perfect for all runs.

The ‘unknown statistics’ run has been performed with a wrong assumption of the statistical
parameters 6. Fig. 4 shows that a wrong assumption may significantly reduce the estimation
accuracy. This effect can be reduced by adding the statistical parameters 85 as unknowns to
the estimation procedure (run ‘estimated statistics’). The accuracy of the angle estimate is
almost as good as for the runs with known statistics. The normalised RMSE for the statistical
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Figure 4: Average RMSE per state variable and parameter, averaged over all datasets. The
RMSE values per dataset (averaged over five repetitions) are indicated with diamonds. The
RMSE values are normalized by o (Table 1) for the state variables, by (max — min)/v/6 (the
expected value of the RMSE for a random estimator with uniform probability) for the constant
parameters, and by the standard deviation of the real angles for the angles. A RMSE larger
than 1 indicates that the prediction error is larger than the variation in the data (for the state
x and the angles) or that the estimator performs worse than a random estimator with uniform
PDF (for the constant parameters ).

parameter estimates is shown in Fig. 5. It can be seen that it is easier to estimate the mean
values p than the standard deviations o and correlation parameters p.

p o mmmp |
@ T T T T T
=
= ) A O A (e - - ) G I
: §
o)
N
TG %
=
: g ¢ § 9 $
S
20 1 1 1 1 1 1
yield strain rate strain rate sheet friction friction punch
stress parameter parameter thickness coefficient coefficient end
log (o) q tool-tool tool-flap distance

Figure 5: Average RMSE per statistical parameter, averaged over all datasets. The RMSE values
per dataset (averaged over five repetitions) are indicated with diamonds. The RMSE values are
normalized by (max — min)/v/6 (the expected value of the RMSE for a random estimator with
uniform probability). A RMSE larger than 1 indicates that the estimator performs worse than
a random estimator with uniform PDF.

5. Conclusion and perspectives

In this work, it is proposed to use Bayesian inference methods to track the variations of material,
friction and process properties in mass production metal forming. A series of simulation runs
using pseudo-data from a sheet bending model show that the procedure is promising, as several
state variables can be tracked using process force measurements. Furthermore, it is shown that
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unknown statistical parameters of the state evolution models can be estimated simultaneously
with the process state itself.

The results from this work are a first step in the development of these methods. Many further
steps have to be taken in order to reach a maturity level that enables industrial applicability
of the method. We highlight some key components of the procedure that require further
development. Firstly, the deviation between numerical model and reality must be characterized
in order to develop sufficiently accurate models for state estimation with real process data. The
development of hybrid models that combine physics-based models with real process data (i.e.
grey-box models) is promising in this perspective [15]. Secondly, the uncertainty of metal forming
models must be characterized to be used in probabilistic methods. Thirdly, better models for
state evolution have to be developed, and data has to be gathered in order to obtain better
statistics for these models. Lastly, customized particle filtering algorithms have to be developed
that are accurate, fast and robust for these specific type of applications. These aforementioned
developments are major steps yet to be taken. As the interest of the metal forming research
community into smart manufacturing is continuing to grow, it is expected that probabilistic
state estimation methods for metal forming mass production will continue to be developed in
coming years.
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