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Abstract

The evaluation of integral transforms with oscillatory kernels is a common task
in acoustic radiation problems. Integral transforms are generally computationally
expensive. Depending on the properties of the kernel in the transform various
methods exist to obtain a much faster evaluation. The aim of the present research
is to investigate if the algorithm “Multilevel Multi-Integration” developed by
Brandt [1], and successfully used in contact mechanics and multi-body
interaction problems can also be used for acoustic problems. First the version of
the algorithm is described aimed at the case of oscillatory kernels. Next, by
means of a model problem, it is shown that at the expense of a small and
controllable error that is independent of the wavenumber the algorithm facilitates
fast and efficient computation even for high frequencies. Even though the model
problem considered is only one dimensional and thereby really very simple the
results obtained are encouraging for further research.

1 Introduction

Numerical methods such as the Boundary Element Method have shown to be a
powerful tool to evaluate and predict behaviour in real engineering problems.
However, for medium and high frequencies acoustic problems can be difficult to
deal with accurately and efficiently (small computing times). In a numerical
simulation the domain is discretized with discrete elements and for high
frequencies the number of elements that must be used in the evaluation to obtain
the required accuracy results is large which then leads to enormous computing
times because of the quadratic dependence of computing time on the number of
elements inherent in the integral formulations.
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Several methods have been developed for the fast(er) evaluation of integral
transforms, i.e. Fast Fourier Techniques (FFT), Fast Multipole (FM) expansion,
and Multilevel Multi-Integration (MLMI), and have been applied to the integral
transforms appearing in different fields in science. Each algorithm except for
FFT uses some properties (form or otherwise) of the kernel to reduce the
computing time at the expense of some error. FFT and FM have already been
applied in acoustics; see [2, 3]. However, MLMI, successfully used in contact
mechanics, and many-body long-range interactions [4] has not been applied in
acoustics yet. The basic idea of MLMI is to use a set of auxiliary coarser grids in
such a way that in each part of the domain the contribution to the summation is
computed representing the kernel on a grid so coarse that the resulting error
remains within a prescribed bound. The algorithm exploits the smoothness
properties of the kernel. An oscillatory kernel is obviously not smooth but in that
case the algorithm is modified and the problem is rewritten into a combination of
problems with asymptotically smooth kernels, see Brandt [1]. The aim of the
present research is to investigate if the methodology proposed in [1] leads to an
efficient fast evaluation algorithm for integral transforms in acoustics. In this
paper the first steps are reported.

2 Theory

In acoustic radiation problems integral transforms of the following form appear:

P = [GENVO) d,  xeQc R, (1)
Q

where v(y) is a known function, p(x) is the target function and G(x,y) is the
kernel function which is the Green’s functions. For two dimensional (2D) and
three dimensional (3D) it is given by:
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see [51, where H® is the zero-order Hankel function of the second kind [6].
This Green’s function (the kernel) represents the free-field pressure in point x
due to acoustic point source y. Here it is singular when at |x - yl =0 between field

and it is frequency dependent by the wavenumber £. This type of integral in most
cases cannot be evaluated analytically and a numerical approach is needed. For
simplicity assume eqn (1) is discretized on the entire domain Q with meshsize A
and n=0O(k). In that case the discrete problem becomes to evaluate a multi-
summation or discrete integral transform of the type:

P = Gy IV (), &)
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where each evaluation of p(x;) costs O(n) operations and the complete evaluation
in all points of the domain costs around of O(n’) operations. In many real
problems a large number of points » may be essential for accuracy and as a
consequence the amount of work needed to evaluate the integral transform may
be huge. The aim Multigrid algorithms is to remove such computational
bottlenecks and in this case thus to reduce the complexity of this multi-
integration in order to avoid excessive computing times at the expense of a
minimal and controllable loss of accuracy.

3 Fast evaluation

In this section the algorithm for the fast evaluation eqn (3) is described. For
simplicity assume a one-dimensional case. First the case of a “smooth kernel” is
described which illustrates the basic principle. Next, the modifications for an
“asymptotically smooth” kernel will be explained as well as the changes needed
for the case of an oscillatory kernel. First some details of notation. A MLMI
algorithm uses a set of auxiliary coarser grids to evaluate the multi-summation
eqn (3). Each grid is coarser than the previous one usually by a factor 2. For
simplicity in the description given here only two grids will be assumed. A fine
grid with mesh size # on which the transform is to be evaluated and a coarse grid
with mesh size H=2h. The case of multiple grids simply follows from the two
grid case by recursion. Also for simplicity one may assume the grids to be
uniform at first. Small case letters will indicate variables and running index on
the grid h. Capital letters will be used for variables and running index on the

coarser grid H. So V? =vi(y ;) stands for the value of v in gridpoint j on the fine

grid 4, which has location y; = y, + j 4. In the same way V;' =V#(¥,) is the
value of a coarse grid representation of v at a coarse grid point J with location
YF =Y,+JH. Y} and y! are the same for the fine and coarse grids. In the
same way the notation will apply to the points of a fine and a coarse grid of the
evaluation grid (x! and X7 ) in which the integral transform is needed.

3.1 Smooth kernel
If G(x,y) is smooth on the scale H as a function of y then its value at any point

y; can be obtained from interpolation of the value at points ¥; of a coarse grid,
with mesh size H.

G(x, )= 2 0,G(x,Y,)+0(s), @)
J

where @, are interpolation weights and & is the interpolation error,
&=(H)" I@ & )l. Here ]G_ & )I is the maximum of a pth derivative of G . The
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summation over J in eqn (4) usually extends over only p points around of the
point y;, so it is a local summation. Substitution of eqn (4) in eqn (3) gives:

P =) 0,G(x, Y,V +0(). Q)
j J

Changing the order of summation yields:

P'(x)=D.G(x.Y) Y w,uvi+O0(6) = Y. G(x, Y,)VS +0(e), (6)
J j J

where
' EZa)ﬂVj’- . (7
J

By definition the summation over j (for each J) in eqn (6) is also a local
summation over O(2p). As it represents the transpose of interpolation eqn (7) is
referred to an “anterpolation”. The change of summation going from eqn (5) to
eqn (6) is the first crucial step in the algorithm. Its effect is that a “fine grid”
summation over the index j is replaced by a “coarse grid” summation over the

index J. Summarizing, if G(x,y) is smooth as a function of y the computation of
p(x;) by summation over all y; at the expense of an O(g) error can be replaced by
a coarse grid summation eqn (6) over all ¥, with the “collected charges” V¥

defined by anterpolation of the charge v/ to coarse grid according to eqn (7). It

is important to note that although the anterpolation appears to be the transfer of a
function from a fine grid to a coarse grid with the risk of loosing high frequency
information, it is not! No assumptions are made regarding the fine grid function
v. It may be highly oscillatory. The only assumption made in the algorithm is
regarding the smoothness of the kernel. The anterpolation arises as a resuit of the
change of the order of summation going from eqn (5) to eqn (6).

Next assume G (x,y) is also smooth as a function of x. In that case for any x

up to gerror G(x,y) can be interpolated from its values on a coarse grid X; with
mesh size H.

G(x%y) =Y ,G(X,y)+0®F). (3)
I

For a p order interpolation the error is defined by & = (yH)” '5 * )l , often

p = p can be used. Again the summation over / is a local summation involving
only p terms. This is the second crucial step in the algorithm. The second step
in fact implies that it is not necessary to compute the transform in all points of
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the fine grid. Admitting a certain error that can be controlled by the interpolation
it is sufficient to only compute the summations in “coarse grid” points, and then
obtain its value in all points of a finer grid by means of interpolation of a
sufficiently high order.

The result of both steps now is that up to O(g} error the computation of
p(x;) in all evaluation grid points x; involving a summation over all integration

grid points y; can be replaced by:

e Anterpolation eqn (7): Vi = Za) avi.
J
e  Coarse grid summation: P#(X,)= ZE(X,, Y,)Vv#. ®)
J
¢ Interpolation: pi(x)= Za),.,PH X,). (10)
I

If the kernel is sufficiently smooth the coarsening step from grid y; to ¥; and
x; to X; can be such that the evaluation of the coarse grid summation requires
O(n) work. As the anterpolation and interpolation also require at most O(n)
work, the total work needed to obtain the direct transform has been reduced from
O("’) to O(n) work at the expense of an error O(g). This error can be made small
by the choice of the order of interpolation. Generally p = O(log(l/ £)) is needed
[7]. However, in practice it is only needed to ensure that the additional error
introduced by the fast evaluation is small compared to the discretization error
that is made anyway.

3.2 Asymptotical smooth kernel

In many practical cases the kernel is not smooth everywhere, e.g. it has a
singularity at x=y. In that case locally in a region |i - jl < mh the error in the
interpolation result will not be small, and the fast evaluation result must be

connected for this error. This can be done quite straightforwardly. It involves
computations of correction terms of the form:

5= DGy -Gy NV, an

[i—j|Smh

where G is the interpolated kernel value. For details the reader is referred to
Brandt and Lubrecht [4]. For a logarithmic kernel (1/7 type singularity) it has
been shown that m = O(p)=0O(log(l/¢)) is sufficient to ensure that the
evaluation error is small compared to the discretization error. The total amount
of work carried out to obtain the discrete transform is the O(n log(n)) [8].
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3.3 Oscillatory kernel algorithm (1d)

Finally consider the task of the evaluation of a discrete transform eqn (3), in
which the kernel is an implicit oscillatory function defined as G, (klx— y[) (as

can be the Hankel function), where & is the wavenumber. To apply the fast
evaluation algorithm explained now it is necessary to obtain a formulation in
which the oscillatory term is explicit. This can be achieved by rewriting the
problem. First define:

(_?(x,-,yj) =G, (k’xi -y; l)eik(x‘_yf) . (12)

Now the integral transform of the eqn (3) can be represented by the multi-
summation (The i preceding & will always denote -1, unrelated to i appearing
elsewhere):

P (5) = 'Y G, (xiy,) XD D by (13)
J

where the multiplication of G, (x;,y ;) by e*® D and e *7¥ is introduced to

keep the same meaning of the original equation, but with the advantage that now
we have inside the summation asymptotically smooth functions

(G, [k(x; - y)l ") and G, [k(y = %)] e *%7) in the positive an negative
direction respectively from the listener point of view) multiplied with an

exponential (*®™” and e ™) on positive and negative direction
respectively). At this point, we have achieved a form to which the MLMI
algorithm for the asymptotically smooth kernel can be applied. Eqn (13) is
rewritten as:

—ikx;

P () =e pl(x)+e™ p’(x;), (14)

where pf (x;) and pf' (x;) are the sub-transforms of eqn (13), each representing
the summation in one direction which take the form:

pix) =G,y )™ Vi(y,), ph(x) =D .G(x,y,) e ™V (y)). (15)

Jzi j<i
Here the functions v!(y;)and v"(y;) are:
VI =V, VI = eV (). (16)

And the kernel for the sub-transform given by:
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(_;(xiayj)’ yZX, yzxa

> y<x,

G, (x,y>={ . G (ny)= {0’ 17

G(x,y), y<x.

Then, we can rewrite eqn (15) in the form,

Pl =2 Gy I VI, PL)=2,G (y)) Vi) (18)

Now if G(x,y) is asymptotically smooth, so are also G,(x,y) and G_(x,y).

Hence eqn (18) can now be evaluated by using (twice) the algorithm of the
sections (2.1) and (2.2) above. Summarizing, for the one-dimensional problem
the algorithm for the fast evaluation of the discrete integral transform with
oscillatory kernel is simply twice the application of the algorithm for the smooth
or asymptotically smooth kernel. So, to evaluate eqn (13) means first to calculate
eqn (16), then evaluate eqn (18) by the algorithm of sections (2.1) and (2.2), and
finally compute eqn (14). The total amount of work is then at most twice as large
as for the singular smooth kernel, so it is still O(n log(n)). Note that the main
step to obtain a fast evaluation algorithm for the oscillatory kernel problem is to
incorporate the oscillatory factors into v and p. For the one-dimensional problem
this is achieved easily by separately treating the (only) two directions x —y >0
and x — y < 0. Note that in the more general two-dimensional case the approach

is more complex. In that case several directions have to be identified.

4 Test example

As a one dimensional test problem is taken the evaluation of:
1
p@) = [HP(kx-y])sin(ly) dy , (19)
-1

where the Hankel function of the order zero and second kind appears as the
kernel. The problem can be interpreted as the computation of the pressure at the
surface of a harmonically oscillating infinitely wide strip that is on both sides
held in a baffle. The problem was discretized on a uniform grid and
approximated by:

pGe) =3 Bl - y,|) 0 e sinky ), (20)
J

due to the appearance of the Hankel function there is no way to analytically
compute the kernel influence factors G (x,y) . This was done numerically using
a double-adaptive algorithm developed by Oliver [9].
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Table 1. Real part error of multi-integration eqn (21) evaluated by direct
summation and MLMI algorithm (medium frequencies £#=50).

1 k= K=I-1 k=1-2 k=1-3 k=1-4 k=I-5 k=I-6
3 1.04E-01 1.04E-01 1.04E-01*

4 1.04E-01 1.04E-01 1.04E-01 1.04E-01

5 1.50E-02 1.50E-02 1.50E-02 1.50E-02* 1.50E-02

6 | 5.78E-03 5.78E-03 5.78E-03 5.78E-03 5.78E-03 5.78E-03

7 | 2.07E-03 2.07E-03 2.07E-03 2.07E-03 2.07E-03* 2.07E-03 2.07E-03
8 | 7.82E-04 7.82E-04 7.82E-04 7.82E-04 7.82E-04 7.82E-04 7.82E-04
9 | 3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04* 3.17E-04
10 | 1.38E-04 1.38E-04 1.38E-04 1.38E-04 1.38E-04 1.38E-04 1.38E-04
11 | 6.33E-05 6.33E-05 6.33E-05 6.33E-05 6.33E-05 6.33E-05 6.33E-05*

Table 2. Imaginary part error multi-integration eqn (21) evaluated by direct
summation and MLMI algorithm (medium frequencies 4=50).

=l k=I-1 k=12 k=1-3 K=1-4 k=I-5 k=1-6
9.94E-02 9.94E-02 9.94E-02*
1.02E-01 1.02E-01 1.02E-01 1.02E-01

1.40E-02 1.40E-02 1.40E-02 1.40E-02* 1.40E-02
4.40E-03 4.40E-03 4.40E-03 4.40E-03 4.40E-03 4.40E-03
. 1.62E-03 1.62E-03 1.62E-03 1.62E-03* 1.62E-03 1.62E-03
7.52E-04 7.52E-04 7.52E-04 7.52E-04 7.52E-04 7.52E-04 7.52E-04
4.73E-04 4.73E-04 4.73E-04 4.73E-04 4.73E-04 4.73E-04* 4.73E-04
3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04
2.33E-04 2.33E-04 2.33E-04 2.33E-04 2.33E-04 2.33E-04 2.33E-04*

o R =NV I £
—
e
N
o
=
o

In the Tables 1 and 2 are given the error obtained by direct summation and
versus MLMI with different set of coarse grids. The results were obtained for the
value of wave number £=50. The results for a high frequency £ is 300 are shown
in the Tables 3 and 4. The MLMI algorithm was used with a sixth order
interpolation and anterpolation. In each table the first column represents the
target grid identified by the level 1. The second column identified with k=1
contains the discretization error, or the error in the direct summation result on
this target grid. The third column contains the error when the MLMI algorithm is
used with one coarse grid, with H=24, i.e. if the target grid is level ] then actual
summation is carried out on level k=1-1. The next column the error in the result
when two coarser grids are used so in that case the actual summation is carried
out on a grid with H=4h (k=1-2). The number of points for each grid is
determined by 2"">+1, employing a coarsest auxiliary grid with 2**+1 points. So
each row represents a given target error in the k=1 column and the error in the
MLMI result as a function of the gridievel k on which the actual summation is
carried out in the other columns. At each row, the results marked with an asterisk
(*) indicate the case when the actual summation gridlevel k contains (/) points
if n is the number of nodes on the target grdilevel 1. So coarsening from the
target grid down to this coarse grid implies that the total work of the algorithm is
reaches the minimum of O(#n log(n)) operations. From the tables it becomes clear
that with the fast evaluation algorithm one can easily coarsen all the way to a
grid with J» points at the expense at an error that is at most comparable to the

discretization error.
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Table 3. Real part error of multi-integration eqn (21) evaluated by direct
summation and MLMI algorithm (medium frequencies £=300).

1 k=1 k=I-1 k=1-2 k=1-3 K=1-4 k=I-5 k=1-6
7 | 3.81E-03 3.81E-03 3.81E-03 3.81E-03 3.81E-03* 3.81E-03 3.81E-03
8 | 2.03E-03 2.03E-03 2.03E-03 2.03E-03 2.03E-03 2.03E-03 2.03E-03
9 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03 1.31E-03* 1.31E-03
10 | 6.55E-04 6.55E-04 6.55E-04 6.55E-04 6.55E-04 6.55E-04 6.55E-04
11 | 3.16E-04 3.16E-04 3.16E-04 3.16E-04 3.16E-04 3.16E-04 3.16E-04*
12 [ 1.58E-04 1.58E-04 1.58E-04 1.58E-04 1.58E-04 1.58E-04 1.58E-04
13 | 8.08E-05 8.08E-05 8.08E-05 8.08E-05 8.08E-05 8.08E-05 8.08E-05

Table 4. Imaginary part error of multi-integration eqn (21) evaluated by direct
summation and MLMI algorithm (medium frequencies &=300).

1 k=1 k=I-1 k=1-2 k=1-3 k=1-4 k=1-5 k=1-6
7 6.79E-03 6.79E-03 6.79E-03 6.79E-03 6.79E-03* 6.79E-03 6.79E-03
8 | 2.16E-03 2.16E-03 2.16E-03 2.16E-03 2.16E-03 2.16E-03 2.16E-03
9 1.22E-03 1.22E-03 1.22E-03 1.22E-03 1.22E-03 1.22E-03* 1.22E-03
10 | 6.48E-04 6.48E-04 6.48E-04 6.48E-04 6.48E-04 6.48E-04 6.48E-04
11 | 3.65E-04 3.65E-04 3.65E-04 3.65E-04 3.65E-04 3.65E-04 3.65E-04*
12 | 2.16E-04 2.16E-04 2.16E-04 2.16E-04 2.16E-04 2.16E-04 2.16E-04
13 | 1.33E-04 1.33E-04 1.33E-04 1.33E-04 1.33E-04 1.33E-04 1.33E-04
2 5E+02
—<&— Direct Summation
2.0E402 —A—MM
T 1.5E+02
2
Y
£
35
& 1.0E+02 |
5.0E+01 -
—aA
0.0E+00

0.0E400 2.0E+03 4.0E+03 6.0E+03 B8.0E+03 1.0E+04 1.2E+04 1.4E+04 1.6E+04
Number of gridpoints

Figure 1. Computing time used for evaluate eqn (21) using Direct Summation
and MLMI algorithm.

Finally, the real gain now becomes clear from looking at the computing time
that is invested to obtain the result, see Figure 1. This figure shows the invested
cpu time for direct summation versus the fast evaluation using Multigrid
algorithm. Clearly the computing time for the MLMI algorithm is linear in the
number of nodes whereas for the direct summation it is quadratic in the number
of nodes, so, at negligible loss of accuracy large computing time reductions are

obtained.
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5 Conclusions

The Multilevel Algorithm for the fast evaluation of integral transforms with
implicit oscillatory kernels was successfully applied on a one-dimensional
problem in which the Hankel function appears as a kernel. It was shown that
applying the Multilevel Multi-Integration algorithm the required computing time
needed to evaluate the discrete transform could be reduced from O(n*) operations
for direct summation to O(n log n) operations leading to large computing time
reductions for large ». The gain in computing time is obtained at the expense of a
controllable error that was shown to be small compared to the error that is made
anyway because of solving a discrete problem rather than the continuous
problem. Naturally this one dimensional problem is still much too simple for
practical applications. However, the results are certainly encouraging and
stimulating for further development to the two dimensional case.
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