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ASPECTS OF TWO-SIDED SURFACE WAVINESS IN AN 
EHL LINE CONTACT 
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University of Twente, Enschede, The  Netherlands 

Applying a multigrid solver to the transient Reynolds equation, this paper investigates the influence of 
two-sided waviness on pressure and film thickness in a medium loaded EHL line contact. The contact 
properties are studied for one set of operating conditions varying the ratio of the surface velocities, as 
well as the amplitude and wavelength of the waviness. The characteristic quantities used to  describe the 
transient problem are straightforward extensions of the ones describing the stationary problem such as 
Hmin, Ha,, and P,,,. Where possible physical explanations of the observed relations are presented. 

1 Introduction 

The research in the field of numerical Elasto Hy- 
drodynamic Lubrication (EHL) is gradually mov- 
ing away from the 'classical' idealized smooth 
surface problem and facing the complex reality 
in which engineering surfaces are non-smooth on 
the scale of thickness of the lubricating oil film. 
Presently we are puzzled by a problem that must 
have sounded familiar to a tribologist in the early 
decades of this century: How to understand, uti- 
lize and optimize the separating oil film in highly 
loaded contacts. Whereas the previous problem 
focussed on the so-called macro contact, the cur- 
rent one deals with the micro contact, the influ- 
ence of surface roughness. The goal is to predict 
and optimize the operation of highly loaded con- 
tacts working with film thicknesses smaller than 
the undeformed surface roughness amplitude. 

A number of investigations have addressed the 
steady state roughness problem [5, 6, 7, 9, 10, 121 
and [13], however in general the roughness moves 
through the contact, thereby creating a transient 
problem. The time dependent problem was  ad- 
dressed in [ l ,  2 ,  3, 14, 171. In [ l l ]  the transient 
analysis was  used to  explain an experimentally 
observed sensitivity t o  the overrolling direction of 
the location of the failure site with respect to the 
original indentation. I n  [ 191 a transient analysis 
of the influence of one-sided waviness on the film 

thickness was described. Several unexpected fea- 
tures were found, related to the velocity a t  which 
pressure and film thickness perturbations travel 
through the contact zone. It was  shown that the 
pressure perturbations travel with the speed of 
the wavy surface (212 in that  case), whereas the 
film thickness disturbances move with the aver- 
age surface speed (u1 + u2) /2 .  These predicted 
features have recently been observed experimen- 
tally [8]. As was shown in the theoretical paper 
[19] the solution of the general non-smooth sur- 
face contact problem requires a transient solution 
of the EHL equations. In that paper as well as in 
the present one the authors have selected Multi- 
grid solvers, since they meet the two requirements 
necessary to tackle this particular problem; they 
are fast and robust. Furthermore, and perhaps 
the most important argument is, that  these tech- 
niques can straightforwardly be extended to more 
complete (and thus more complex) models of re- 
ality as for instance the point contact problem. 
This extension of the algorithm to point contact 
problems causes the computational complexity t o  
increase only moderately. As a consequence the 
increase in computing time is not a large obstacle 
in view of the present increase in computer ca- 
pacity. The main reasoii for addressing the line 
contact problem in this work is not so much the 
gain in computing time as the additional simplic- 
ity of the line contact problem when compared 



206 

with the full non-smooth point contact problem. 
In this paper the waviness extends to both 

surfaces, which introduces two additional de- 
grees of freedom to the problem compared to the 
case studied in [ 1 9 ] .  The complete problem is 
described by the contact condition parameters 
(MI L or W, U ,  G), the ratio of the surface veloci- 
ties and for sinusoidal waviness the dimensionless 
amplitude and wavelength of both surfaces, and 
the initial phase difference. To reduce the number 
of parameters to  some extent, the waviness wave- 
length on the upper and lower surface is assumed 
identical. By calculating either average values or 
extreme values over time, i.e. averageslextremes 
over all phase differences, the initial phase differ- 
ence of the waviness becomes irrelevant. 
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Notation 

amplitude 
dimensionless amplitude, A = A R / b 2  
halfwidth of Hertzian contact, 
b = J(BwR)/(xE') 
modulus of elasticity 
reduced modulus of elasticity, 
'LIE' = (1 - V f ) / E 1  + (1 - v:)/E~ 

xd 
~. 

dimensionless materials parameter, G = cr E' 
film thickness 
average film thickness, 

1 + b  

inverse film thickness, 

minimum film thickness 
dimensionless film thickness, H = h R / b 2  
dimensionless average film thickness, 

maximum over time of H a v e  

minimum over time of H a , ,  
average over time of H a , ,  
dimensionless inverse fil rn thickness , 

average over time of Hinu  
dimensionless minimum film thickness, 
Hmin = hmin R / b 2  
maximum over time of Hmin 
minimum over time of Hmin 
integration constant 
dimensionless material parameter (Moes), 

haue = 5 J - b  h ( x )  d x  

hinu = (= Jxzab h - ' ( ~ )  d x ) - '  1 

Haue = h a v e R / b 2  

Hinu = hinv R / b 2  

L = ~ ( 2 ~ ) 0 . * 5  

M = w(2u)-0.5 

dimensionless load parameter (Moes), 

number of discretisation points 
pressure 
maximum Hertzian pressure, 

dimensionless pressure, P = p / p h  

maximum dimensionless pressure 
maximum over time of P,,,,, 
minimum over time of Pmax 

reduced radius of curvature, 
1/R = 1/R1+ 1/Rz 
dimensionless deviations from the smooth 
profile 
time 
dimensionless time, T = ( t u , ) / ( 2 b )  
velocity of lower surface 
velocity of upper surface 
sum velocity, u, = u1 + 212 

dimensionless speed parameter, 

coordinate 
location of surface feature 
location of surface feature a t  t = 0 
dimensionless coordinate, 
X = x / b ,  X' = x ' / b  
dimensionless location of surface feature, 
xd = x d / b  
dimensionless location of surface feature 
a t  T = 0, X ,  = x , / b  

Ph = (2w)/(?rb) 

u = qous/(2E'R) 

X , ,  xb dimensionless inlet, outlet boundary 

W 

W 

W 

W 

z 
cr 
Q 
- 

AT 
A X  
6 

x 

77 

domain, X a  = x a / b l  xb = x b / b  
external load per unit width 
dimensionless load parameter, 
W = w/(E'R) 
wavelength of surface feature 
dimensionless wavelength of surface 
feature, W = w / b  
viscosity index (Roelands equation) 
pressure viscosity index 
dimensionless parameter, (Y = 
dimensionless time increment 
dimensionless space increment 
coefficient in Reynolds equation, 

dimensionless speed parameter, 

viscosity 

f = ( P H 3 ) / ( i 5 W  

= ( 6 v o u s R 2 ) / ( b 3 p h )  
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L 
a 

70 viscosity a t  ambient pressure 
77 
P density 
po density a t  ambient pressure 
P 

dimensionless viscosity, 77 = q /qo  

dimensionless density, p = p/po 

11.08 

44.0 

2 Theory 

For completeness this section first presents the 
equations to be solved. Subsequently, the physi- 
cal parameters describing the contact conditions 
are given in Table 1 ,  together with different sets 
of dimensionless parameters. Table 2 lists the 
numerical parameters used in the calculations. 
The theory behind the Multigrid solvers is not 
repeated here and can be found in for instance 
[12, 16, 181, and in the references of these works. 

2.1 Equations 

The one-dimensional transient Reynolds equation 
is written in a dimensionless form: 

The boundary conditions are P ( X , , T )  = 
P ( X b , T )  = 0 ,  V T  where X, and Xb denote the 
boundaries of the domain. Furthermore, the cav- 
itation condition P ( X , T )  2 0,  V X , T  must be 
satisfied throughout the domain. c and A are de- 
fined according to: 

6 ~ 0 ~ 3  R2 A =  
p H 3  

t = -  
ljx b3ph 

The density p is assumed to depend on the pres- 
sure according to the Dowson and Higginson re- 
lation [4] and the Roelands viscosity pressure re- 
lation [15] is used. The  film thickness equation 
is made dimensionless using the same parame- 
ters and accounting for a moving surface feature 
reads: 

H ( X , T )  = H o ( T )  - R l ( X , T )  - R2(X ,T)  
X 2  x b  

+- - -! / P ( X ’ ,  T )  In IX - X’( dX’ (2) 

where 7 2 1  ( X ,  T )  denotes the undeformed geome- 
try of the waviness on the lower body a t  dimen- 

2 x. 

sionless time T and R 2 ( X ,  T )  describes the wavi- 
ness on the upper body. H o ( T )  is an integration 
constant. 

At all times the force balance condition is im- 
posed, i.e. the integral over the pressure must 
balance the externally applied contact load. This 
condition determines the value of the integration 
constant H o ( T )  in equation (2).  Expressed in the 
dimensionless variables the force balance equation 
reads: 

T 
P ( X , T )  d X  - - 2 = 0 V T  (4) 

Dimension 
2.26 10 
2.2 10- 
0.68 
40 10- 

Dimensionless parameters 
M I 100 

I I 

x I 3.7 1 0 - 4  I 
4.92 10- 
1.22 10- 
4.97 10 

Hmin I 1.316 I 
H”,,, I 1.484 lo-’ I 

I Hint) I 2.674 1 1 
I 

Table 1: Different parameters and their values for 
the present loading condition. 

2.2 Conditions 

The parameters used to  describe the contact con- 
ditions in the calculations are given in Table 1 ,  to- 
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gether with some dimensionless parameters. The 
numerical parameters used in the calculation are 
given in Table 2 .  These contact conditions are 
identical to the ones used in [19]. In that paper 
characteristics of the Reynolds equation are ex- 
tensively described, especially the dominance of 
the shear flow over the pressure flow in the con- 
tact region. As a consequence the pressure per- 
turbations become detached from the film thick- 
ness variations. For an extensive theoretical and 
numerical description of this effect the reader is 
referred to  [19]. 

I Parameter I Value 

0.005 
2.841 10- 
1409 

Table 2: Different parameters in the numerical 
sol u tion. 

2.3 Time dependence 

Because we are dealing with a time dependent 
problem, the familiar stationary contact quanti- 
ties like H,,,, Ha,, and P,,, now need another 
index to  determine their relation with time. The 
superscript ..+ denotes the maximum value over 
time, the superscript ..- denotes the minumum 
value over time, and the superscript .. denotes 
the average value over time. These minima, max- 
ima and averages are taken over the time inter- 
val when the values have become periodic, from 
T = 4.0 onwards in case of figure 1.  This t o  
exclude the initial period when the waviness is 
entering the contact area. The most interesting 
quantities are probably H i i , ,  denoting the min- 
imum value of the minimum film thickness over 
time, Ha,,, the average value of the average film 
thickness over time and PAa, the maximum value 
of the maximum pressure over time. 

- 

- 

2.4 Numerical accuracy 

In order to  obtain a reasonable numerical accu- 
racy for the extreme values like HGi, a fine mesh 
had to  be combined with a small time increment. 

The reader is reminded that H G i n  is the mini- 
mum value over time of the minimum film thick- 
ness H,,,,,. The numerical accuracy in this quan- 
tity is better than 10% over the entire parame- 
ter range presented. The average film thicknesses 
Ha,, and Hi,, converge much more rapidly. Gen- 
erally, the numerical error in these quantities is 
less than 2%. In order to eliminate the start-up 
effects and to obtain results from a fully periodic 
solution, the number of time steps was  chosen 
inversely proportional to the velocity of the slow- 
est surface. Thus 4000 timesteps were used for 
u2/u ,  = 0.1 and ug/u ,  = 0.9, 2000 timesteps 
were used for u2/u ,  = 0.2 and u2/u ,  = 0.8, 
1500 timesteps were used for u2/u ,  = 0.3 and 
u2/u ,  = 0.7 and 1000 timesteps were used for 
u2/u ,  = 0.4 and u2/u ,  = 0.6. 

- - 

3 General results 

In figures 1 ,  2 and 3, three different ways of pre- 
senting the solutions are shown. Each has its 
own advantages and disadvantages, and each one 
sheds light on a particular detail of the results. 
The conditions were w = 0.256, A = 0.25 p m ,  
u2/us = 0.25 (thus U I / U ,  = 0.75 and u1/u2 = 
3.0), X d , J  = Xd,2 = -2.0 a t  T = 0.0. Figure 1 
shows the pressure ( P )  and film thickness ( H )  a t  
a location ( X  = 0) as a function of the dimension- 
less time ( T ) .  At T = 0 the waviness on both sur- 
faces is outside the contact and both pressure and 
film thickness have their smooth surface values. 
From T = 221,/(2u1) = 1.33 onwards the wavi- 
ness of the lower (faster) body reaches X = 0.0 
and the pressure variations become sinusoidal. 
From T = 2u3/ (2u2)  = 4.0 onwards the upper 
body waviness reaches this location and the pres- 
sure becomes harmonic. Because the film thick- 
ness variations generated by the waviness of the 
upper and lower body travel a t  an average surface 
velocity ( u , / 2 )  within the high pressure region 
(1x1 < 1.0) the two variations in the film thick- 
ness reach X = 0.0 a t  T = u s / ( 2 u 2 )  + 1.0 = 3.0 
and T = u , / ( 2 u l )  + 1.0 = 1.66 respectively. As a 
consequence the pressure and film thickness vari- 
ations shown in figure 1 become harmonic a t  dif- 
ferent times (T = 4.0 and T = 3.0 respectively). 
For locations X > 0 this time difference is even 
greater. 
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Figure 1 Pressure and film thickness for X = 0 
as a function of T ,  u2/u, = 0.25 
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Figure 2a Pressure and film thickness for T = 
6.88 as a function of X,  u2/us = 0.25 
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Figure 2b Pressure and film thickness for T = 
6.94 as a function of X, U ~ / U ,  = 0.25 

-3 . . . . . . . . . , . . . . . . . . . , . . . . . . . . . , . . . . . . . . . , . . . . . . . . . z  -2 - I  0 1 o.. 

I - I  

1 0.30 

n o  0.20 T 

0.10 

-2 -3 -2 tpw - I  X 

Figure 2c Pressure and film thickness for T = 
7.00 as a function of X,  u2/us = 0.25 
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Figure 2d Pressure and film thickness for T = . 
7.06 as a function of X,  u2/u, = 0.25 
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22 
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X 

Figure 2e Pressure and film thickness for T = 
7.13 as a function of X, u2/u, = 0.25 
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A second way of visualizing the data  is shown 
in figures 2a-e which displays the pressure and 
film thickness profiles for a certain timestep 
(T = 6.88,6.94,7.00,7.06,7.13) as a function of 
X. From these figures i t  is clear that  the maxi- 
mum pressure fluctuations coincide with the min- 
imum film thickness variations, and vice versa. 
Because the lower body velocity is three times 
larger than the upper body velocity the lower 
body waviness has to  "jump over" the upper 
body waviness, thereby causing a major flatten- 
ing of the waviness and therefore requiring the 
large pressure fluctuations (figure 2c). The pres- 
sure fluctuations are minimal when the waviness 
of both surfaces is in phase (figure 2a and 2e). 
Clearly, this type of data  is better presented as a 
movie. 

The third way of presenting the pressure and 
film thickness variations is by considering thern 
as a function of time for a certain location on 
the bodies. This description is important when 
one is interested in the stresses and stress cycles 
a certain volume element inside the material ex- 
periences. Figure 3a displays film thickness and 
pressure on a waviness top located on the upper 
(slow) surface, figure 3b does the same for a wavi- 
ness top on the lower (fast) surface. Note that  
the time spent in the contact zone for the upper 
(slow) surface is three times as large as for the 
lower (fast) surface. 

10 

Figure 3a Pressure and film thickness for a wavi- 
ness top on the upper surface as a function of T ,  
u2 f us = 0.25 

Figure 3b Pressure and film thickness for a wavi- 
ness top on the lower surface as a function of T ,  
u2/u, = 0.25 
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Figure 4a Minimum film thickness H i i , ,  as a 
function of u2/us ,  A1 = A2 = A in p m ,  W1 = 
W2 = 0.25 
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Figure 4b Average film thickness H,,, as a func- 
tion of u2/us,  A1 = A2 = A in pm, W1 = W2 = 
0.25 



4 Influence of u 2 / u s  for equal 
waviness amplitude 

0.010 

From figure 1 it can be observed that the film 
thickness a t  X = 0.0 increases over its smooth 
value when the waviness enters the contact. This 
section explores how the different parameters like 
minimum film thickness, average film thickness 
and maximum pressure behave as a function of 
the surface speeds. Figures 4a and b show the 
influence of the parameter u;,/u, on the minimum 
film thickness and on the average film thickness 
for the case that the waviness on both surfaces has 
the same amplitude. The  definitions of H i i n  and 
Ha,, are given in section 2.3. Only the first half 
of the graphs is shown since they are symmetric 
around u;,/u, = 0.5. The points u2/u, = 0.0 and 
0.5 are omitted since they do not represent an 
average over all phase differences of the waviness. 

From these figures it can be observed that the 
minimum film thickness decreases with amplitude 
below the smooth surface value. The average 
film thickness increases with increasing amplitude 
over the smooth surface value. From these two 
figures i t  can also be concluded that  the influence 
of the surface velocity difference on the minimum 
and average film thickness is small. Also the max- 
imum pressure was  found to be insensitive to the 
velocity difference. 

- 
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Figure 5a Minimum film thickness HGin as a 
function of u2/us and Az, AI = 0.25 p m ,  W1 = 
W;, = 0.25 
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Figure 6a Minimum film thickness H i i n  as a 
function of u2/us and A2, A1 = 0.25 p m ,  W1 = 
W2 = 0.50 
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- 
Figure 6b Average film thickness Ha,, as a func- 
tion ofu;,/us and A z ,  A1 = 0.25 pm, W1 = W;, = 
0.50 
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5 Influence of 24/21,, for dif- 
ferent waviness amplitude 

In this section the waviness amplitude of the lower 
surface is kept contant A1 = 0.25, while the am- 
plitude of the upper body waviness is varied from 
A2 = 0.0 to A2 = 0.25. Now the symmetry 
around uz /u ,  = 0.5 is broken of course, and the 
entire range from u2/u, = 0.1 to u2/us = 0.9 is 
displayed. The points u ~ / u ,  = 0.0,0.5 and 1.0 
are again omitted since they do not represent an 
average over all phase differences. 

From figure 5a i t  can be observed that the 
minimum film thickness decreases with increas- 
ing amplitude A2 and with increasing values of 
u2/u, as was found in the previous section. For 
large values of u2/u, and A2 i t  increases slightly 
again, in order to become symmetric for the case 
of A2 = 0.25. From figure 5b i t  can be ob- 
served that the average film thickness increases 
with increasing amplitude A2 and decreases with 
increasing values of U ~ / U , .  For large values of 
u ~ / u ,  and A2 i t  increases slightly again, becom- 
ing symmetric around uz/u, = 0.5 for the case 
that A1 = A2 = 0.25. The maximum pressure 
PA,,, was found to  be virtually independent of 
the value of u ~ / u , ,  as was observed in the previ- 
ous section. 

In figure 6 the wavelength was  doubled com- 
pared to  figure 5. The  influence of this doubling 
on the minimum film thickness is small, com- 
pare figures 5a and 6a. The maximum pressure 
is halved for a given amplitude, as is predicted 
by the dry contact theory. The increase of the 
average film thickness over its smooth value and 
its dependency on u ~ / u ,  and A2 are considerably 
reduced as can be observed by comparing the fig- 
ures 5b and 6b. Roughly speaking, the increase in 
average film thickness is halved by doubling the 
wavelength of the waviness. 

6 Influence of amplitude 

This section analyses in detail the influence of the 
amplitude on the maximum pressure, the mini- 
mum and the average film thickness as observed 
in the previous section. From a dry contact anal- 
ysis the maximum pressure can be expected to 
increase linearly with the waviness amplitude, a 

0.6r . . . .  I . . . .  I . . . .  I . . . .  . . . .  J 
0.00 0.05 0.10 0.15 0.20 0.25 

A 

Figure 7a Relative change in pressure PAa, and 
film thickness Hi,,,, Hinv and Haveas a function 
of the amplitude A1 = A2 = A in pm, W1 = 

- - 

W2 = 0.25, u ~ / u ,  = 0.3 

A 

Figure 7b Detail of figure 7a 

lo'- 0 
t 

0.0100 

0.w10 o"l d 

0.WoI 0.001 2 0.010 0.100 1 .OOo 

A 

Figure 8 Relative pressure increase in the inlet 
region as a function of the amplitude A1 = A2 = 
A in p m ,  W I  = W2 = 0.25, u2/u,  = 0.3,  bottom 
to top for X = -2.0, -1.5,-1.2,-1.1,-1.0. 
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trend that is observed from figure 7a and is anal- 
ysed in detail in [7]. The minimum film thick- 
ness decreases roughly linear with the amplitude, 
a trend that is easily accepted. However, the av- 
erage film thickness as well as the inverse film 
thickness seem to increase quadratically with the 
amplitude. This can be more clearly observed 
from figure 7b, which displays a detail of figure 7a. 
This trend, which was  also observed in [19], needs 
further explanation. 

The classical explanation of the smooth av- 
erage film thickness and the nearly parallel film 
thickness in the contact area assumes that the 
pressure in the inlet reaches a certain value where 
the oil viscosity becomes so large that pressure- 
induced flow is nearly absent. From this (zero- 
pressure-flow) point onwards, all oil is trans- 
ported through the contact. 

This explanation can be extended to wavy 
contacts. Consider a point in the inlet where the 
pressure is such that the viscosity becomes suf- 
ficiently high to eliminate virtually all pressure 
induced flow. Now assume that in the neighbour- 
hood of this point the pressure fluctuations de- 
pend linearly on the waviness amplitude, as hap- 
pens in the contact region (see figure 7a). The lo- 
cation of this zero pressure-flow point then moves 
outwards in a first approximation proportionally 
with the height of the pressure fluctuations which 
are themselves proportional to  the waviness am- 
plitude. The gap height at this point increases 
roughly proportional with the square of this dis- 
tance, since the cylinder can be accurately ap- 
proximated by a parabola as the influence of de- 
formation can be neglected. As a result the gap 
height at  this point, and therefore the amount of 
oil transported through the contact, and thus the 
average film thickness in the contact area will in- 
crease with the square of the waviness amplitude. 
Figure 8 shows the relative increase of the max- 
imum pressure in  the inlet at  various locations 
as a function of the amplitude. From this figure 
it can be concluded that the pressure increase in 
the inlet is indeed proportional to the waviness 
amplitude, as is the case in the Hertzian contact 
zone. Concluding this section it can be stated 
that the average film thickness increases quadrat- 
ically with the waviness amplitude because the 
location of the zero-pressure-flow point moves lin- 

early towards the inlet as a function of the wavi- 
ness amplitude. 

7 Discussion and conclusion 

In this paper the influence of two-sided wavi- 
ness on pressure and film thickness was investi- 
gated. The influence of the non-Newtonian fluid 
behaviour as well as thermal effects has been 
omitted. The authors are aware of the impor- 
tance of these effects especially a t  large velocity 
differences. However, in order to  be able to  cor- 
rectly interpret the results it was considered ben- 
eficial to study one effect a t  a time. 

- The observed dependence of Pzax, H i j n  and 
Ha,, on d1, AS, WL, W2 and u2/u, can be sum- 
marized as folows. The parameters with the addi- 
tional subscript ”s” refer to the parameter values 
for the smooth solution. 
0 The maximum pressure attained in the oil film 
is close to the dry contact pressure, is virtually 
independent of the ratio of the surface velocities 
and increases linearly with the ratio of amplitude 
and wavelength: 

The minimum film thickness H i i n  attained 
in the oil film decreases linearly with increas- 
ing waviness amplitude and is independent of the 
wavelength W .  As a first approximation: 

0 The average film thickness Ha,, attained in the 
oil film increases quadratically with ratio of am- 
plitude and wavelength for small amplitudes. As 
a first approximation: 

Pmax t = P m m , s  + cl(d1/W1 + A2/W2). 

H - .  mrn = Hmin,s - cz(d1211 + - d2212).  

- 
Ha,, = Ha,,,, + C3(dlUl/WI + AzU2/W2)’. 
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