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ARTICLE INFO ABSTRACT

Edited by Marie Weiss The scarcity of water and the growing global food demand has fevered the debate on how to increase agricultural

production without further depleting water resources. Crop water productivity (CWP) is a performance indicator

Keywords:

Cr(}),:water productivity to monitor and evaluate water use efficiency in agriculture. Often in remote sensing datasets of CWP and its
Crop yield components, i.e. crop yield or above ground biomass production (AGBP) and evapotranspiration (ET,), the end-
Evapotranspiration users and developers are different actors. The accuracy of the datasets should therefore be clear to both users and
?en_wte sensing developers. We assess the accuracy of remotely sensed CWP against the accuracy of estimated in-situ CWP. First,
n-situ

the accuracy of CWP based on in-situ methods, which are assumed to be the user's benchmark for CWP accuracy,
is reviewed. Then, the accuracy of current remote sensing products is described to determine if the accuracy
benchmark, as set by in-situ methods, can be met with current algorithms. The percentage error of CWP from in-
situ methods ranges from 7% to 67%, depending on method and scale. The error of CWP from remote sensing
ranges from 7% to 22%, based on the highest reported performing remote sensing products. However, when
considering the entire breadth of reported crop yield and ET, accuracy, the achievable errors propagate to CWP
ranges of 74% to 108%. Although the remote sensing CWP appears comparable to the accuracy of in-situ

methods in many cases, users should determine whether it is suitable for their specific application of CWP.

1. Introduction

Over the past decades, the use of crop water productivity (CWP) as
an agricultural performance indicator has increased. This indicator is
specified in the United Nations (UN) Sustainable Development Goals
(SDGs), which stipulate that agricultural productivity should be dou-
bled by 2030 (SGD2.3) and that water use efficiency must substantially
increase (SDG6.4) (UN, 2016).

CWP, as an indicator, is a measurable property that allows users to
monitor and evaluate agricultural water productivity. CWP provides a
way to benchmark and define goals, objectives or gaps for management
and decision making (Hellegers et al., 2009). It can also be used to
analyse and evaluate the impacts of alternative management strategies
(Kijne, 2003), as it is influenced by on-farm management (Geerts and
Raes, 2009).

Remote sensing can currently be used to measure agricultural per-
formance at high spatial and temporal resolutions. The application of
remote sensing in estimating agricultural performance indicators is

* Corresponding author.

increasing as it offers a cost effective reproducible method for mea-
surement that can cover larger physical areas as compared to in-situ
methods, such as field water balances or ground measurements (Sadras
et al., 2015).

Remote sensing allows monitoring of various aspects of agricultural
production. Open access satellite imagery now provides near real-time
data at varying spatial and temporal resolutions including: 10 m
with < 10-day return period (Sentinel 2), 30 m with 16-day return
period (Landsat), 100 m with daily return period (Proba-v), and 250 m
with a 1 to 2-day return period (MODIS, Sentinel 3). Higher resolutions
are available for paid products including: Planet (3-5 m), GeoEye (1 m),
and Pleiades-1A (2m). These data sources provide a spatially and
temporally extensive option to estimate agriculture indices over large
areas and time periods, even at a global scale. For instance, the UN
Food and Agricultural Organization (FAO) is currently releasing the
Water Productivity Open-access portal (WaPOR) database, providing
open access to remote sensing CWP for Africa and the Middle East. This
database includes actual evapotranspiration (ET,), above ground
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biomass production (AGBP) and gross biomass water productivity
(GBWP) at spatial scales varying from 100 m to 250 m, depending on
location, at a 10-day temporal resolution (FAO, 2019).

The accuracy requirements of remote sensing products have been
specified for certain applications. The Global Climate Observing System
(GCOS) has defined observation requirements for essential climate
variables (ECVs) (WMO, 2011), which includes AGBP. The Copernicus
Global Land Service defined three accuracy levels for dry matter pro-
ductivity (DMP): threshold, target and optimal absolute accuracy at 10,
7 and 5tha”!year™!, respectively (Swinnen et al., 2015). As these
accuracy requirements are defined for their intended use — GCOS for
climate modelling and GL for land surface monitoring (Su et al., 2018;
Zeng et al., 2015) — they are not necessarily relevant to agriculture.
However, they are currently the only existing standards.

Accuracy standards for remotely-sensed datasets have not been
specifically established for applications in agriculture. Given the in-
creasing research and application of remote sensing in agriculture and
the introduction of open-access datasets, such as the WaPOR database,
it is essential to define these end-user requirements. These accuracy
standards set the quality standards of the datasets for the producers and
allow users to verify if a dataset meets their needs. Thus, the accuracy
of the remote sensing dataset should be high enough that the indicators
derived from them can serve their intended purpose: to improve the
agricultural system.

This review first benchmarks the accuracy of CWP based on in-situ
methods. In-situ methods are those that have been used in agricultural
performance assessment in the field. Second, the reported accuracy and
potential of remote sensing-based CWP are critically reviewed. From
this, the current reported accuracy of CWP remote sensing variables is
discussed to identify if they can meet the standards of in-situ methods.

2. Definitions of crop water productivity and its components
2.1. Crop water productivity

Irrigation performance indicators came to prominence in the 1980s
as a tool to monitor and evaluate the efficiency of irrigation systems
(Abernethy, 1990; Bos and Nugteren, 1990; Seckler et al., 1988). Water
use efficiency (WUE) is a commonly used indicator in irrigation per-
formance. WUE is defined as the relation between a unit of crop yield
and a unit of water applied or diverted. This indicator is primarily
geared towards irrigation engineers (Van Dam et al., 2006). This defi-
nition focuses on the efficiency of engineering infrastructure and de-
sign, but it does not consider the productivity potential of the applied
water. This definition was extended to water productivity (WP) or CWP,
which is dynamic and dependent on the user. The CWP indicator spe-
cifically focuses on the crop yield per unit of water consumed by the
crop (Zwart and Bastiaanssen, 2004):

Crop yield (kg ha™')

EOS
10 x Zi:SOS

CWP (kg m™3) =

ET, (mm) @

The crop yield is defined as the seasonal crop yield and the ET, is
taken as the accumulated crop ET,, from start of season (SOS) to end of
season (EOS). The conversion factor, 10 !, converts ET, from mm to
m®ha~!. By using ET, it considers all the water used by the crop, in-
cluding rainfall and groundwater inputs to the agricultural cropping
system, rather than just irrigation water. Therefore, CWP as an in-
dicator is equally valid for irrigated and rainfed systems (Bossio et al.,
2008).

Based on the CWP definition (1), CWP is estimated on a seasonal
basis, and therefore the accuracy requirements are relevant to the crop
growing season. CWP has also been applied to assess variation within a
field (Hellegers et al., 2009), among fields (Jiang et al., 2015; Zwart and
Leclert, 2010) and blocks within an irrigation scheme (Ahmed et al.,
2010; Conrad et al., 2013; Zwart and Leclert, 2010), and among
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schemes (Awulachew and Ayana, 2011). Therefore, the spatial resolu-
tion that is required for CWP is dependent on the scale of the perfor-
mance assessment. CWP has also been used as an indicator to assess
trends over time (El-Marsafawy et al., 2018; Wang et al., 2018). Gen-
erally, CWP is applied in a relative manner, rather than an absolute
manner. That is, the CWP is compared to other users or the same user
over time, rather than applied as an absolute value.

2.2. Crop yield

Early work in the 1980s on understanding crop yield variability
noted the usefulness of vegetation indices (VI) for vegetation char-
acterisation (Tucker and Sellers, 1986). Typically, a linear regression is
assumed between spectral vegetation indices and crop yield, as esti-
mated through in-situ methods. Some authors have claimed that up to
80% of in-field crop yield variability can be explained by VI (Shanahan
et al., 2001; Tucker et al., 1980; Wiegand and Richardson, 1990). Al-
though these empirical approaches show good agreement for many
crops in a local setting (e.g. wheat), they are unique to the crop and
location and therefore lack the physical basis to extend to other crops or
locations (Lobell, 2013).

The underlying principle of many remote sensing-based estimates of
biomass production, which is also used in agriculture, is that the re-
lationship between the absorbed light and the carbon assimilation in
most plants is relatively constant (Monteith, 1977, 1972). This ratio,
termed light use efficiency (LUE), is used to convert remote sensing-
based estimation of light absorption to gross primary productivity
(GPP) (Zhang et al., 2015):

GPP (gC m~% day™)
= ¢ LUEax (§C MI™Y) ), PAR (MJ m™2 day™) X fAPAR (=) (2)

where € is a scalar to account for various stress factors, LUE is the Light
Use Efficiency, PAR is the Photosynthetically Active Radiation, and
fAPAR is the fraction of Absorbed Photosynthetically Active Radiation
and GPP is the total amount of CO, that is fixed by the plant in pho-
tosynthesis. The maximum LUE (LUE,,,x) is commonly scaled to ac-
count for deficiencies due to environmental stress. These are varied
between models and often include at least one of the following: soil
moisture stress, vapour pressure deficit or heat stress (Bloom et al.,
1985). While crop models, such as Aquacrop (Raes, 2017), and carbon
assimilation models, such as SCOPE (Van der Tol et al., 2009), often
incorporate a nitrogen stress factor, it not frequently incorporated into
remote sensing approaches.

The PAR is taken as the spectral range of solar radiation that is
available to the plant for photosynthesis (Asrar et al., 1992). The fAPAR
has been identified as a suitable integrated indicator of the status of the
plant canopy (Gobron et al., 2000). There are a number of available
satellite based fAPAR products currently available at the global scale.
The currently available products include the MODIS Terra FAPAR
(operational) (Myneni et al., 2002), the COPERNICUS 1-km (GEOV2)
fAPAR product (operational) (Verger et al., 2017) and the Quality As-
surance for Essential Climate Variables (QA4ECV) FAPAR product
(1982-2016) (Pinty et al., 2006) among others. The products vary in
retrieval methods, fAPAR definitions and satellite platforms.

The net primary productivity (NPP) is defined as the net amount of
primary production after carbon lost to autotrophic respiration (AR) is
considered:

NPP (gC m2 day™!) = GPP (gC m~2day™") — AR (gC m~2day™")  (3)

The distinction between the GPP, NPP, DMP, AGBP and yield are
shown in Fig. 1. The LUE,,,x and AR are often specified for vegetation
type in global models. For example, MODIS (Running et al., 2004; Zhao
et al., 2005) and Copernicus (Swinnen and Van Hoolst, 2018) GPP, NPP
and DMP global products use look-up tables containing LUE.x for
different vegetation types, including cropland. In agricultural
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Fig. 1. Distinction between GPP, NPP, DMP, AGBP and crop yield products,
where each box compares the plant parts associated with each product.

applications, the LUE,,,, is not solely defined for cropland, but for
specific crop type.

In agricultural applications the NPP is then converted to DMP (3),
typically through static conversion factors, before being converted to
crop yield (4):

1
DMP (kg ha ') = ——NPP (gC m™2
ke ) 0.045 ® ) 4
where 0.045 is the conversion factor from organic carbon to dry organic
biomass. The crop yield is then derived using the harvest index (HI),
above ground fraction (f) and the moisture content (0) of the harvest-
able product (Prince et al., 2001):

EOS
Crop yield (kg m~2) = feHI(—) Z DMP (kg ha™")/(1 — 6)
508 %)

The HI definition varies from crop to crop. For example, for cereals
it is defined as the ratio of grain yield to total seasonal AGBP (Donald,
1962), and for potato it is defined as the ratio of tuber to total seasonal
below and AGBP. HI and 6 are not well defined through remote sensing
for a diverse variety of crops and are often taken as standard values, as
Bastiaanssen and Steduto (2017) did for a global Earth observation
study of CWP. Remote sensing uses crop specific (and sometimes lo-
cation specific) constants of LUE,,x, HI and 6 (Zwart et al., 2010).

2.3. Evapotranspiration

ET, is the process of water transferring from land to the atmosphere
and is comprised of evaporation from the Earth's surface and tran-
spiration from plants. These processes are typically estimated together
due to the difficulty in partitioning them. Remote sensing-based ET,
estimates first appeared in the 1970s (Li et al., 2009). Since then, a
number of approaches have been developed including surface energy
balance approaches such as Surface Energy Balance System (SEBS) (Su,
2002), Surface Energy Balance Algorithm for Land (SEBAL)
(Bastiaanssen et al., 1998), Surface Energy Balance Index (SEBI)
(Menenti and Choudhury, 1993), Simplified Surface Energy Balance
Index (S-SEBI) (Roerink et al., 2000), Enhancing the Simplified Surface
Energy Balance (SSEB) (Senay et al., 2007), Operational Simplified
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Surface Energy Balance (SSEBop) (Senay et al., 2013), Mapping Eva-
poTranspiration at high Resolution with Internalized Calibration (ME-
TRIC) (Allen et al., 2007), Atmosphere-Land Exchange Inversion model
(ALEXI) and disaggregated ALEXI (DisALEXI) (Anderson et al., 2011),
Penman-Monteith based models (PM-models) (Mu et al., 2007), and
simplified empirical regression methods, such as VI-based methods
(Glenn et al., 2011). Although there is no consensus on the best algo-
rithm or approach, the surface energy balance and PM-models are more
frequently used for large scales as they offer generalised approaches
and reduce the need of calibration and parametrization. The surface
energy balance estimates the latent energy as the residual of the surface
energy balance:

RnWmH)=LE+H+G (6)

where, LE (Wm™2) is the latent heat flux, R, is the net radiation, H
(Wm™?) is the sensible heat flux and G (Wm™?) is the ground heat
flux. The LE is converted to ET, by LE/A, where A is the latent heat of
vaporization. Several surface energy balance algorithms exist that vary
in complexity and data requirements. Two prominent types of surface
energy balance approaches are the single-source (e.g. SEBS and SEBAL)
and two-source models (ALEXI and DisALEXI).The WaPOR database
(FAO, 2018) calculates ET, based on the ETLook model (Pelgrum et al.,
2012) and is defined as:

LE = A(Rn — G) + py X Cp(€gqr — €)/1q
A+y (1 + r‘i) @

where A = d(eg,)/dT (kPa°C™!) is the slope of the curve relating sa-
turated water vapour pressure to air temperature (T°C). p;, (kg m™3) is
the density of air, Cp (MJkg™'°C™!) is the specific heat of air,
(esat — €a) (kPa) is the vapour pressure deficit, r, (s m~ 1) is the aero-
dynamic resistance, r(s m™1) is the surface resistance or canopy re-
sistance when using the PM-model to estimate canopy or crop ET,, and
y (kPa°C™1) is the psychometric constant. This approach further par-
titions ET, to evaporation and transpiration using modified versions of
Penman-Monteith, which differentiate the net available radiation and
resistance formulas based on the fractions of vegetation and bare soil.
The accuracy of this approach is highly dependent on the accurate es-
timation of the canopy resistance (or the inverse — canopy conductance)
(Raupach, 1998).

2.4. Accuracy metrics

Accuracy refers to the closeness of a measurement, observation, or
estimate to a true value. The accuracy of the in-situ and remote sensing
estimate of CWP can be expressed through a number of metrics. The
percentage (or relative) error allows for standardisation as the accuracy
becomes comparable, even if values are significantly different in size.
The relative error is defined as:

labsolute errorl

Relative Error (%) = ———— — X 100
accepted value (8)

The absolute error is defined as:

absolute error = experimental value — accepted value 9

The accepted value is user defined. Often, the field or in-situ mea-
surement or estimate is taken as the accepted value and the remote
sensing value is considered the experimental value. When in-situ
methods are validating other in-situ methods, the method considered
most accurate is typically considered the accepted value. Otherwise, for
field measurements with no comparison to other methods, the error is
taken as the variation in repeated measurements. Where possible, the
relative error is taken directly from the literature. If the relative error is
not reported, but the absolute error or deviation and the mean errors
are stated, the relative error is calculated using s.Eqs (8)-(9). If the
metrics of relative errors are not reported in the literature in a way
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which allows calculating the relative error, the errors are taken directly
from the literature in the form of the root mean square error (RMSE) or
the coefficient of determination (R?).

In terms common to error propagation, the absolute error is defined
as:

absolute error = Ax (10)

This is equivalent to absolute uncertainty, which is typically ex-
pressed as x * Ax. For CWP, the error can be determined through
simple error propagation in the multiplication of uncertainties (BIPM
et al., 2008; Taylor, 1997):

X
R=5 an
[ sv\2 7/ suv\2
8R ~ |R|-\/(5l) + (‘ly)
X Y (12)

where, in this case, R represents the CWP, SR represents the uncertainty
of CWP, |R| represents the absolute value of the mean, and SR/ |R|
represents the relative uncertainty or percent error. Similarly, X in this
case represents the crop yield and Y represents the ET,.

When possible, the error associated with different methods to esti-
mate yield, ET,, and CWP, is categorised. The categories are expert
error, typical error and novice error, which is based on the categories
defined by Allen et al. (2011). The expert error refers to the maximum
error derived from the scientific literature, the typical error range is
cited as the range of error associated with larger studies where scientific
experts were not present in the data collection, and the novice error is
defined as the lowest reported accuracy for that approach.

3. In-situ methods accuracy for crop water productivity
assessment

CWP, in the form of Eq. (1), has seldom validated in irrigation
performance assessment. Therefore, focus is given to the errors asso-
ciated with the components of CWP in order to derive the CWP un-
certainty associated with the combination of field methods to estimate
yield and ET,. These methods have historically been accepted as stan-
dards in estimating crop yield and ET, and therefore will be considered
as benchmarks for the accuracy of remote sensing products.

3.1. Crop yield

Methods for estimating crop yield and biomass include physical
measurements, personal estimates and micrometeorological measure-
ments. Physical measurements comprise whole-plot harvest, crop-cut-
ting over sub plots (Verma et al., 1988), and sampling of harvest units
such as sacks, baskets and bundles. Personal estimates include expert
assessments and farmers' estimates, both predictive and recall, and
daily records. Micrometeorological measurements primarily include
eddy covariance (EC) and chamber techniques to measure carbon
fluxes. Crop-cuts and farmer estimates are the two most commonly used
methodologies by scientists and statisticians to estimate crop produc-
tion.

Commonly accepted in-situ methods for accuracy (where literature
is available) include: whole-plot harvest, crop-cutting, and both recall
and predictive farmer estimates. Crop-cutting, whole-plot harvest and
models estimate the biological yield as they do not take into account
post-harvest losses. Farmer estimates measure the economic yield,
therefore the post-harvest losses are typically accounted for (Fermont
and Benson, 2011). Micrometeorological measurements are less
common for estimating crop yield, as compared to other methods. They
measure GPP, NPP or net ecosystem exchange (NEE) rather than di-
rectly measuring crop yield (Moureaux et al., 2012).

The whole-plot harvest method to estimate crop yield is generally
undertaken in demonstration plots in on-farm trials (Norman et al.,
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1995). This method requires a clear delineation of the plot boundary
before harvest. The harvest is typically dried and weighed post-harvest.
When the plot requires multiple harvests, the drying and weighing is
done separately and added. This method is determined as the standard
to estimate crop yield and biomass (Casley and Kumar, 1988) and is
suggested to provide the highest accuracy. The error typically arises
from an error in crop area estimation, the irregular shape of fields, the
inclusion of areas not planted and/or not having proper supervision
(Murphy et al., 1991). This method is suggested to be almost bias free as
it avoids error from on-field variability (Sud et al., 2016). This method
is most suitable to fields that are < 0.5 ha, as crop-cutting and whole-
plot harvest take a similar time at this field size (Casley and Kumar,
1988).

The crop-cutting method to estimate biomass and crop yield uses
sampling on sub-plots. The production is taken as the sum of the sub-
plot production over the sum of the sub-plot areas. This method, de-
veloped in the 1940s in India (Mahalanobis and Sengupta, 1951;
Sukhatme, 1947), was recommended as the standard method to esti-
mate crop production in the 1950s (FAO, 1982). The sub-plot's size and
shape is known to greatly influence the bias of the plot, where de-
creasing sub-plot size corresponds to increasing bias, indicating a trade-
off between resources required and degree of accuracy.

The following examples of crop-cutting errors have been found in
the literature. FAO (1982) reported over-estimation for irrigated and
non-irrigated wheat yield ranging from 4.8%-11% for triangular plots
of 11 m? and 15.7-23.4% for triangular plots of 2.7 m*> when compared
to a whole-plot harvest estimate on a 44 m? plot. Fielding and Riley
(1997) found a difference in yield estimates of broccoli from small plots
to be 36-82% greater than large plots. Poate (1988) suggests that the
effect of bias is essentially eliminated for plot sizes > 40 m?, yet bias of
14% with 60m? triangular sub-plots has been found in other studies
(Casley and Kumar, 1988). FAO (1982) suggests that the sub-plot size
can be smaller for more densely plotted fields and up to 100 m? for
mixed cropping. Bias of 28% for sorghum and 17% for yam was found
in plot sizes of 50 m? and 100 m?. The bias was not reduced until plot
sizes increased to 200 m? (Poate and Casley, 1985). The bias reduced to
8-10% when re-analysed using a variant of the standardised method.
Other research has found overestimation of crop-cutting to be 37-86%
as compared to farmer estimates (Minot, 2008, as cited in Fermont and
Benson, 2011), > 20% as compared to other crop-cut methods (Casley
and Kumar, 1988) and 14-38% as compared to whole-plot harvest
(Verma et al., 1988).

The error of cross-cut is primarily a result of on-field variability,
which is commonly 40-60% (Casley and Kumar, 1988; Fielding and
Riley, 1997; Poate, 1988). Other contributing sources of error, with an
upward bias in parenthesis if known, include: calculation of plot area
(5%), focus effect (< 5%), border bias (< 5%) and edge effect (2-3%)
(Verma et al.,, 1988). Although each of these biases is small in-
dividually, they can accumulate to large upward biases (Diskin, 1999).
The highest biases are often attributed to fields that have small, irre-
gular shapes with uneven planting density and mixed cropping
(Murphy et al.,, 1991), where crop-cutting was poorly executed
(Rozelle, 1991). Undertaking crop-cutting under controlled conditions,
where enumerators follow the rules precisely, can significantly increase
reliability (Poate and Casley, 1985).

Farmer surveys are commonly accepted as reasonable estimates for
crop yield. Farmer estimates can be either recall or predictive. Recall
estimates are suggested to have higher accuracy, particularly when
farmers are surveyed close to post-harvest. However, recall periods
across literature range from weeks up to three to six seasons. Predictive
estimates are obtained on a plot by plot basis, based on either farmer or
expert experience (Sud et al., 2016). Studies in the 1980s comparing
crop-cutting to farmer estimates showed that the crop-cutting method
reported consistently higher crop yields than farmer estimates. A study
in Zimbabwe showed upward bias of 27-82% (Casley and Kumar,
1988) and a study in Ethiopia showed a 31-46% upward bias (Minot,
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2008, as cited in Fermont and Benson, 2011) as compared to farmer
recall. Studies in Asia showed a high fit (R? > 0.85) between crop-
cutting and farmer predictions (David, 1978; Singh, 2003), yet the bias
was as still as high as 25-37% (David, 1978). However, a study in
Sweden showed no bias of farmer recall as compared to crop-cutting
with a range of —4.9-9% at the country level, which may be a result of
expert crop-cutting.

A study across five countries in Africa (Verma et al., 1988) showed
that farmer estimates of production, both recall (taken either im-
mediately after harvest or within three weeks after harvest) and pre-
dictive (taken 2 and 4 weeks pre-harvest), were frequently less biased
than crop-cutting when compared to whole-plot harvest. The crop-
cutting method (25 m?) sub-plot showed an average upward bias of
34%, while pre-harvest and recall farmer estimates had an average
upward bias of 9% and 3% respectively. This suggests that farmer recall
estimates were the most accurate method of the three in estimating
production. There is evidence that in some countries, such as Malawi,
Philippines, and Nepal, farmers are not familiar with their cropped
area, which can lead to error in estimating crop yield per hectare
(Rozelle, 1991). On the other hand, farmers in China and Indonesia
were very familiar with their area. Therefore, supporting farmers in
their estimation area can improve the accuracy, while surveys should
be undertaken where the cropped area is well known (Poate and Casley,
1985). Further, to increase the reliability of farmer estimates, surveys
should be as close as possible from harvest date (Malik, 1993), and care
should be taken with conversion to standard units from local units
(Diskin, 1999). It is suggested that farmer estimates may be just as
accurate, if not more accurate, as crop-cutting methods, at least for
estimating total production (Murphy et al., 1991; Poate, 1988; Verma
et al., 1988).

Yield can also be estimated in field by in-situ measurements of
carbon fluxes. GPP and NPP are first estimated and then can be con-
verted to yield estimates through crop and location specific conversion
factors, as per s.Egs. (3)-(5). The two predominant methods to estimate
carbon fluxes are EC and chamber methods. The EC method con-
tinuously measures spatially averaged carbon fluxes for an area of a few
hectares (Baldocchi, 2003), while the chamber method measures only
the change in gas concentrations of the area covered by the chamber.
EC and chamber methods have been widely compared to each other
(Dugas and Bland, 1989; Kutzbach et al., 2007) in a number of eco-
systems. Chamber methods vary and are also well compared to each
other (Pumpanen et al., 2003; Rochette and Hutchinson, 2005). How-
ever, scarce research reports on the accuracy of these methods in
agricultural land classes. Further, no studies were found that compared
EC to methods that estimate crop yield, i.e. whole-plot harvest, crop-cut
or farmer estimates. The limited available research specific to cross-
comparison of these methods in cropped areas or grassland is included
here. It should be noted that the reported accuracies here relate to
carbon fluxes and do not consider errors introduced converting these
measurements to crop yield.

EC measurements of carbon fluxes were compared to automatic
chamber techniques in cotton and wheat fields (Wang et al., 2013a).
The difference in NEE between the two systems was —9-7%. Riederer
et al. (2014) compared EC and chamber measurements in a grassland
site. The results were comparable (R*> = 0.78); however, they suggested
EC is preferable as it is more sensitive to atmospheric conditions.
Steduto et al. (2002) compared the carbon flux from closed-system
canopy-chamber chamber measurements to the pattern of flux mea-
surements by Bowen ratio energy balance (see Section 3.2) for su-
garbeet and marjoram crops. The overall maximum deviation was ap-
proximately 6-8%. Dugas et al. (1997) found that the canopy chamber
method underestimated carbon uptake as compared to the leaf chamber
and micrometeorological methods in grasslands, which was similar to
comparisons reported in other environments. It is noted that the leaf
chamber method has the least precision due to scale, while the micro-
meteorological methods are prone to error due to error in input data.
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Fig. 2. Relative error associated with in-situ methods of crop yield estimation.
All methods provide estimates for at field scale for cropping season.

The reported agreement in measurements between the two methods in
non-agricultural lands varies significantly, from 8 to 26% (Dore et al.,
2003) and up to > 60% (Fox et al., 2008). Other studies have used EC
(Buysse et al., 2017; Miyata et al., 2000; Suyker and Verma, 2010;
Zanotelli et al., 2013) or chamber measurements (Langensiepen et al.,
2012; Maljanen et al., 2001; Wagner and Reicosky, 1992) at field level
in a cropped area but have not compared the measurements to other in-
situ carbon measurement methods. EC faces spatial representation is-
sues. The EC footprint defines the field of representation of the mea-
sured flux, which is influenced by wind speed and direction. Therefore,
ideally EC stations should be placed on flat, homogenous terrain. Au-
thors attempt to deal with the footprint issue through footprint mod-
elling (Schmid, 2002); however, in remote sensing comparisons, many
authors simply compare point-to-pixel, and the footprint is neglected
(Turner et al., 2005).

The errors associated with crop yield per hectare estimated from
these methods, as derived from the literature discussed here, are sum-
marised in Fig. 2. Where known, the accuracy is divided into novice
error, typical error and expert error. The expert error ranges are defined
as the highest cited accuracy, associated with a carefully planned and
executed approach (Poate and Casley, 1985; Verma et al., 1988). The
typical error is cited as the range of error associated with larger studies
where enumerators are not present for the entire data collection period
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(David, 1978), and the novice error is defined as the lowest reported
accuracy for that approach (Casley and Kumar, 1988; Fermont and
Benson, 2011). This applies even to farmer estimates, where the error
can be reduced by an expert supporting farmers in their estimate of the
cropped area. In Fig. 2, the y-axis is the suggested relative error range,
as defined in Eq. (8) and the x-axis are the in-situ methods. The expert
error is shown with the most saturated colour, and the novice error is
shown with the least saturation. This division acknowledges that the
error is minimised when an expert in the field carries out the estimate of
that in-situ approach. This was only applied where known; if unknown,
only the typical error is displayed. This is based on the approach taken
by Allen et al. (2011) in defining the accuracy of methods to estimate
ET,.

Our literature review reveals that the whole-plot harvest has the
highest accuracy and is typically used as the reference for estimating
the error of other in-situ methods, with a relative error typically < 5%.
The crop-cutting method shows to have the next highest accuracy, if
carried out by an expert. However, if the enumerator is not carefully
guided, this method shows the lowest accuracy with a cited relative
error of up to 82%. The recall farmer estimates did not reach accuracies
as high as the crop-cut when undertaken by an expert. However, the
typical error was less. Due to the limited available literature, the pre-
dictive farmer estimates only show a typical range. Compared to the
expert and typical ranges of the other in-situ methods, predictive farmer
estimates have the highest associated error. EC and chamber method
estimates are not included in Fig. 2, as currently there is insufficient
evidence to pertain to the accuracy or uncertainty of deriving crop yield
from these methods.

Other methods to estimate crop yield and biomass include daily
recording, crop cards, purchase records from the agro-industry, and
crop models (Fermont and Benson, 2011). The accuracy of these esti-
mates, with the exception of models, is not well reported. Crop models
are useful tools in estimating crop yield and biomass under various
conditions. The complexity of crop models varies extensively with dif-
ferent specific applications (Boote et al., 1996; Jin et al., 2018). Al-
though they are useful in prediction and scenario analysis, the accuracy
of these methods will not be included here as they are not considered
standards in reporting or measuring of biomass or crop yield. Further,
the calibration and validation of crop models are typically carried out
using crop-cutting and farmer estimates.

3.2. Evapotranspiration

Several in-situ measurement systems exist to determine ET,. These
measurement systems can be categorised in hydrological methods (such
as soil water balance and lysimeters), micro-meteorological methods
(such as EC, Bowen ratio energy balance (BREB), and the scintillometer
method), and plant physiology methods (such as sap flow) (Rana and
Katerji, 2000). These methods, and their accuracies, have been com-
prehensively discussed by Allen et al. (2011) and are summarised in
Fig. 3. Thus, only accuracies reported in crop and grass systems pub-
lished after 2011 are included. Due to the limited data availability on
in-situ measurement uncertainty in agricultural lands, uncertainty ob-
served in grasslands is also included as grasslands are similar to crops in
height and in their low sensitivity to night time fluxes (Wohlfahrt et al.,
2012). However, it must be acknowledged that they are typically more
spatially heterogeneous as compared to croplands, and often have a
larger aerodynamic roughness due to plant density (Moureaux et al.,
2012). It should be noted that the ET, error reported post-2011 is
considered expert error, as the literature cited here was undertaken by
scientists.

Lysimitry has the lowest expert, typical and novice error. In line
with previously reported accuracy, several authors have more recently
asserted the accuracy of the lysimeter is within 5-25%. Gebler et al.
(2015) looked at the variation between six lysimeters in a grass site in
close proximity (within 50 m of each other) with similar soil properties
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Fig. 3. Relative error associated with in-situ methods of ET, estimation used for
irrigation performance, adapted from Allen et al. (2011).

and reported a resulting relative error of 8%. The variation was mainly
attributed to non-homogenous harvest management. Evett et al. (2012)
compared lysimeter measurements to the soil water balance in an ir-
rigated cotton field and found a relative error range of 5-18%. Wind
speed has the largest effect on lysimeter accuracy as it affects scale
performance (Howell et al., 1995). Increasing the measurement fre-
quency can help reduce wind speed effects (Dugas and Bland, 1989).
Using this approach in an irrigated almond orchard, Lorite et al. (2012)
found that up to 97% of the observed variability from a one-tree
weighing lysimeter was caused by wind speed. Lysimitry, along with
sap flow measurements, have the least spatial coverage. This means the
selection of a suitable field or plot, in which the lysimeter can appro-
priately represent the vegetation and soil dynamics, is essential to re-
tain the expert level accuracy. This is combined with the need to ensure
the equipment is properly installed and calibrated. Lysimitry is often
used for the validation of other in-situ ET, methods as it is generally
accepted to be the most accurate method to estimate ET,.

The soil water balance was compared to EC in rainfed wheat fields
by Imukova et al. (2016) with Gaussian error propagation law to de-
termine the uncertainty. The resulting uncertainty ranged from *
0.3-0.5mmday ' with resulting error ranging from 24 to 48%
(Imukova et al., 2016). The accuracies of EC were highly dependent on
the energy balance closure method. The method for energy balance
closure and the related accuracy has been investigated by number of
authors. Both Sanchez et al. (2016) and Hirschi et al. (2017) found that
forced energy balance closure using the Bowen ratio approach was the
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most successful when compared to the residual (of the energy balance)
approach and the direct measurement approach. The Bowen ratio ap-
proach ensures scalar similarity in closing the energy balance, while the
residual attributes the proportion of the closure to either the latent heat
flux, the sensible heat flux, or both. The Bowen ratio approach found
differences of 3-7% at seasonal scale in a drip irrigated vineyard
(Hirschi et al., 2017) and 23% at daily scale (Sanchez et al., 2016) in a
short grassland as compared to lysimeters. The residual approach had
errors of 1-13% at seasonal scale (Hirschi et al., 2017) and 29% at daily
scale (Sanchez et al., 2016). Mauder et al. (2018) evaluated energy
balance closure methods in two grassland sites. They found that the
Bowen ratio approach had better comparability with the lysimeter, but
a higher bias, as than the residual approach. Similar results were ob-
served by Gebler et al. (2015) who reported relative errors of 3.8% and
8% for annual and monthly scales respectively, as compared to a lysi-
meter, using the Bowen ratio approach to closure.

No literature since 2011 was identified that reports on the accuracy
of the BREB method to estimate ET,. The accuracy of the BREB method
is highly dependent on the accuracy of net radiation and ground heat
flux measurements. Additionally, the errors in temperature and vapour
pressure gradients can have a significant impact on ET, estimations
(Cellier and Olioso, 1993). Irmak et al. (2014) looked at studies that
compared the BREB method on multiple sites, including in agricultural
sites, to other ET, measurement methods. Results varied considerably.
On an annual scale in a lentil field, BREB overestimated ET, by 10-43%
as compared to lysimeter ET, (Prueger et al., 1997). On a daily scale,
Todd et al. (2000) noted differences between BREB and lysimeter to be
5-15% during the day and 25-45% at night in an irrigated alfalfa field.
When BREB was compared to EC without forced energy balance clo-
sure, EC was reported within 67-77% of BREB ET, estimates. These
discrepancies suggest that estimates of the scalar turbulent fluxes of H
and LE are underestimated and/or that R, is overestimated (Wilson
et al., 2002).

Moorhead et al. (2017) reported surface layer scintillometer errors
of 14% for a daily scale and 31% for an hourly scale as compared to
lysimeter in irrigated sorghum fields. The error reported for large
aperture scintillometers was higher at 52% (Moorhead, 2015). Yee
et al. (2015) compared the latent and sensible heat fluxes of two large
aperture scintillometers and two microwave scintillometers to EC esti-
mates in a grassland site. The root mean deviations of latent heat fluxes
between the scintillometers and EC ranged between 40.7 and
164.3Wm™ 2, equivalent to 1.4-5.8mmday '. When the scintill-
ometers were compared to each other, the latent energy flux root mean
square deviations (RMSD) ranged between 18.5 and 88.8W m~2
equivalent to an ET, RMSD of 0.65-3.1 mm day 1 Beyrich et al. (2012)
compared five side-by-side scintillometer systems and reported relative
deviations of 5% within the sensible heat fluxes. However, the relative
variation of the latent energy fluxes or ET, were not reported. The
footprint consisted of > 90% agricultural fields.

Sap flow ET, measurement uncertainty in cotton was estimated to
be 0.03-0.5mmh~?, based on repeated measurements (Uddin et al.,
2013). In maize fields, pre-calibration sap-flow transpiration measure-
ments over-estimated transpiration rates by 30-40%, which was re-
duced by half after calibration (Wang et al., 2017b). The difficulty in
using sap-flow measurements as a stand-alone method to estimate ET,
is that it actually measures transpiration, not ET,. Further, the mea-
surements are at plant scale and errors typically occur at upscaling to
the canopy, rather than the measurements themselves (Zhang et al.,
2014). Therefore, representative soil evaporation measures are required
in parallel for a valid comparison against ET, measurements.

It is also worth noting that the crop coefficient (Kc) is a widely
accepted method to estimate ET, from reference evapotranspiration
(ET,) in agricultural applications (Allen et al., 2011, 1998; Doorenbos
and Pruitt, 1977), such as for estimating crop water demand. The Kc
method considers the evapotranspiration under standard conditions as
the ET, multiplied by a Kc. To obtain ET, a soil water coefficient needs
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to be incorporated to account for water stress. A number of Kc values
have been defined based on crop, crop phenology (crop curve) and
climate. The dual crop coefficient is more complicated and splits the Kc
based on crop transpiration (basal crop coefficient, Kcb) and soil eva-
poration (Ke) (Allen et al., 1998, 1996). Despite the wide application of
the Kc to estimate ET, in research (Guerra et al., 2015), it is difficult to
determine the accuracy of this method. This is further complicated by
the range in Kc values, as defined by FAO (Allen et al., 1998). The Kc
values are empirically derived and not universal due to variations in a
number of factors including climate, cultivar, soil type and agronomic
practices. Anderson et al. (2017) found that the Kc and Kcb maximum
values for various crops, when derived from EC, were similar to pre-
vious studies; however, the Kcb seasonal trends were different to those
in literature. Howell et al. (2015) found that the accuracy of the ET,
estimated by Kc varied considerably between years as compared to
lysimeters. Liu and Luo (2010) found that the Kc approach showed
reasonable seasonal ET, with 10% relative error for winter wheat and
summer maize as compared to lysimitry. However, peak ET, was un-
derestimated and the mean relative error of ET, from the Kc approach
for developmental stages ranged between 6.1% (mid-season) to 18.5%
(end of season) for wheat and 5.4% (development) to 33.1% (initial-
stage) for maize. Similarly, Guodong et al. (2016) found the Kc ap-
proach was sufficient in estimating seasonal ET, of cherry trees, with
relative error of < 5% when compared to the soil water balance
method. However, the relative difference on a daily scale was 12.5 to
50%. These examples of the K¢ method show mixed accuracy and ty-
pically require local calibration for Kc.

The appropriate in-situ method to estimate ET, is highly dependent
on the resources available, the physical characteristics of where the
measurements are taken, and the required measurement scale. Each
method offers different advantages and disadvantages. Each method
also has a different scale of representation, from leaf to plant scale (sap
flow measurement), sample scale (lysimitry), plot scale (soil water
balance and sap flow measurements), field scale (Bowen ratio and EC),
and several hectares (scintillometers).

3.3. Crop water productivity

The current accuracy of the CWP from in-situ measures were de-
rived as a combination of in-situ measures for estimating both crop
yield and ET, through simple error propagation, using Egs. (11)-(12).
The relative error ranges were derived by applying the error propaga-
tion equation to the maximum (novice) and minimum (expert) error
associated with each crop yield and ET, in-situ measurement. These
derived errors, however, do not take into account spatial scale differ-
ences between the crop yield and ET, measurements. Fig. 4 shows the
CWP relative error for each combination of the previously described
crop yield and ET, in-situ techniques. The relative error is plotted on
the y-axis, the ET, methods are plotted on the x-axis, and the crop yield
methods are colour coded. The colour saturation is then used to dis-
tinguish if the in-situ methods are novice, typical or expert.

The relative error of the CWP field measurement, when estimates
are undertaken by an expert, ranges from < 5% (combination of lysi-
meter and whole-plot harvest) and up to 40% (combination of sap flow
measurement and whole-plot harvest). For the crop-cutting method, the
relative error ranges between 6 and 11% when combined with lysi-
meter, between 10 and 18% when combined with scintillometers, and
can reach up to 41% when combined with sap flow measurements by
experts. The relative error ranges for crop-cutting are comparable with
the farmer estimates (recall). The typical errors are higher and range
between 11 and 42% for the combination of lysimeter and farmer es-
timates (recall) to > 60% for the sap flow measurements and farmer
estimates (predictive). The error ranges highlight the importance of the
in-situ measurements being undertaken with due diligence; otherwise,
the typical errors frequently exceed 40%, irrelevant of the method,
while novice errors frequently exceed 50-60%.
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Fig. 4. Relative error associated with CWP derived from in-situ methods of estimating ET, and crop yield. When numbers are located at the top of y-axis, they

indicate value of relative error (when it goes) beyond 100%.

In terms of setting conventional standards for the acceptable accu-
racy of CWP, the error for an expert should be used as the target.
Excluding sap flow measurements (the least accurate ET, method), the
target relative error is therefore in the range of 2% (lysimitry combined
with whole-plot harvest) up to 18%. The acceptable error, however,
may be taken as the typical error. The typical error ranges from 11%
and up to 60%. This upper bound is too high to be suitable, particularly
when CWP is being applied to estimate absolute values and not just
spatial variability.

4. Accuracy of remote sensing-based approaches to assess crop
water productivity

The potential of remote sensing to study irrigation and agricultural
performances was first suggested in the late 1970s and early 1980s. The
first applications estimated ET, to quantify crop water stress (Idso et al.,
1977; Jackson et al., 1983), relative water supply (Menenti et al., 1992)
and water deficit index (Moran et al., 1994). Then, remotely sensed ET,
was used to assess the evaporative fraction (Bastiaanssen et al., 1998;
Su, 2002), spatial distribution represented through the coefficient of
variation (CV) of ET, (Bastiaanssen et al., 1998), CV of depleted frac-
tion (Roerink et al.,, 1997) and water use efficiency (Menenti et al.,
1989). Meanwhile, vegetation indices were being applied to assess the
performance of productivity indicators such as crop yield over applied
water (Thiruvengadachari and Sakthivadivel, 1997) and spatial dis-
tribution and variation of crop yield (Bastiaanssen et al., 1999). These
products, ET, and crop yield, were first combined to assess CWP in
1999 (Bastiaanssen et al., 1999). Several authors have used remote
sensing to estimate CWP since.

As there exists only one direct validation of remote sensing CWP,
the accuracy of ET, and crop yield as individual components of CWP,
estimated by remote sensing, is summarised here.

4.1. Crop yield

To assess the overall error in remote sensing derived crop yield
products, a comprehensive literature review was conducted and re-
ported errors in croplands by various authors were synthesised
(Table 1). This literature synthesis encompasses generalised ap-
proaches, with validation in croplands that do not include calibration.
Generalised approaches are those that do not require calibration or
parametrization. As such, it excludes regression models as these are
typically specific to location, climates or crop, along with complex as-
similation and forcing models.

Global and continental models for GPP and NPP were not originally
designed for applications in agricultural performance and monitoring.
However, more recently, these products have been tested or applied in
agricultural land use classes. Further, based on the same underlying
concept described in Eq. (1), the FAO has released a remotely sensed
dataset of NPP for Africa and the Middle East with the specific purpose
of monitoring and evaluating CWP (FAO, 2018). Therefore, validation
on remote sensing-based GPP, NPP, AGBP (or DMP) and crop yield
estimates were all considered, as long as they apply a generalised ap-
proach. Correction factors, relevant to crop and location, are often
applied to retrieve crop yield from NPP and GPP (s.Egs. (3)-(5)).
Though these corrections are simple, they can impose significant errors.
The implications of validating crop yield intermediates are discussed in
Section 4.1.

The main differences in the remote sensing models are the LUE
stress factors (or scalars) (Song et al., 2013) and the fAPAR function. A
few studies have compared variations in these algorithms with no de-
finitive conclusions on which is preferred for agricultural applications.
Yuan et al. (2015) compared the EC-LUE model (Yuan et al., 2010,
2007), MODIS-GPP -MOD17- algorithms (Running et al., 2004) and the
vegetation production model -VPM- (Xiao et al., 2004) to EC GPP es-
timates at 3 adjacent corn and soybean fields in the USA. The MODIS-
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Table 1 (continued)

Method of validation

Accuracy of study™”

Sensor (Spatial|temporal

resolution)

Main crops Variable

Year/s

Study size

Location

Author

Whole-plot harvest

RE (regional) = 20%

Landsat 5 TM | Landsat 7
ETM+ (30 m|16-day)

Crop yield

1993-1994 Maize, wheat,

Mexico - Yaqui

Valley

Lobell et al. (2003)

RE (field - wheat) = 4%

soybean

1999-2000
2000-2001

Regional statistics

R* = 0.47

NOAA-AVHRR images
(1.1 km|10-day)

AGBP/Crop
yield

1999-2000 Tea, coconut,

Sri-Lanka 1,752,100 ha

Samarasinghe (2003)

rice, rubber

1993-1994 Wheat
1999-2000
2000-2001

Farmer reported yield

R =0.78

Landsat 7 ETM+ (30 m|16-
day)

Crop yield

Mexico- Yaqui

Valley

Lobell et al. (2002)

RMSE = 0.37 ton ha~!

RE = 5.9%

With CASA model (no

calibration)

@ Abbreviations accuracy metrics used in this table: R? — coefficient of determination; r - correlation coefficient; RE — Relative Error (or percentage error); RMSE — root mean square error.

> GPP (gC m™?!) units are converted to ton ha~! using Eq. (2) to ease comparison between GPP and AGBP and yield errors.
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GPP typically underestimated GPP by —0.06 to —0.41 gC m™~2day "~ ’,
the EC-LUE had a positive bias of 0.16-0.37 gC m~?day*, and the
VPM had a positive bias of 1.02-1.70 gC m ™~ 2day ~*. Madugundu et al.
(2017) compared the GPP derived from VPMs, one based on the en-
hanced vegetation index (EVI), one based on the normalized difference
vegetation index (NDVI) and one based on the Land Surface Water
Index (LSWI), for irrigated maize to EC GPP. The temporal resolution
was 7-8days as the site covered two Landsat-8 satellite paths. The
mean average percentage error (MAPE) between the GPP from EC and
GPP from the EVI VPM was 6.2%. The MAPE between GPP from EC and
GPP from the NDVI VPM was 5.8%.

Yuan et al. (2016) compared GPP and yield estimated from EC-LUE
model against GPP and yield estimated from EC at 36 cropped sites. The
yield was derived by multiplying the EC-LUE GPP by the HI, the f and
the autotrophic respiration. The EC-LUE had good agreement with the
GPP at most sites with an overall R? of 0.9 and a RMSE and bias ranging
between 1.75 and 5gC m~*day~! at EC sites and 0.03-3.34gC
m~2day~" at yield sites. The sites showed no distinction in perfor-
mance between irrigated (16 sites) and rainfed (9 sites) sites. The yield
had a significantly poorer performance. The estimated crop yield ac-
counted for approximately 61% of the variation in crop yield over a
total of 26 site-years. The model underestimated yield between 61%
and 32% at several sites, while three sites overestimated crop yield by
34% to 55%. The difference in accuracies between crop yield and GPP
was primarily attributed to the uncertainty in the HI estimation
method.

Global models have not been designed specifically for croplands, yet
studies do not consistently find croplands to be performing better or
worse than forest, grassland or other sites. Sjostrom et al. (2013)
compared MODIS GPP to GPP at 12 EC sites, including one cropped site
in Africa. The correlation (r), RMSE and bias values for sites was 0.74,
2.13gCm™?day ! and 1.18 gC m~2day !, respectively. The r, RMSE
and bias at the cropped site for 2005 and 2006 was 0.71 and 0.8,
0.97 ¢Cm~ 2day ! and 0.73gC m~%day !, and —0.59 gCm~2day '
and —0.32gCm~2day !, respectively. As seen, the performance at the
cropped site was better than the average for all sites in Africa. Yan et al.
(2015) compared a generalised remote sensing derived GPP (TEC GPP
model) and the generalised MODIS GPP product to EC GPP at 18 sites,
including six cropped sites across the globe. The TEC GPP model dif-
ferentiated for C4 and C3 plants and introduced a water stress factor
dependent on remotely sensed precipitation products. The TEC GPP
model had an r, RMSE and bias of 0.86, 2.82gC m~?day ?, and
—0.16 gC m~2day !, respectively, across cropped sites. The MODIS
products had an r, RMSE and bias of 0.77, 3.38gC m~2day ™}, and
—0.76 gC m~>day ~ !, respectively, across cropped sites. TEC GPP and
the MODIS GPP performance was comparable at cropped and non-
cropped sites, with average r-values across all sites of 0.85 and 0.73,
respectively. The TEC GPP model did perform better than MODIS GPP
at water stressed sites. Both models performance also increased at an
annual time scale.

Turner et al. (2005) considered the MODIS NPP product to EC NPP
at six sites (1 cropped) in the USA. They found RMSE of 91 gC
m~2year ™! and 105 gC m ™~ ?year ! for soybean and corn respectively,
corresponding to over 2ton ha~!year™! of DMP. The cropped site
performed similar to the forested sites, but not as well as the grassland
sites. The RMSE was 8 gC m ~2year ™! and 34gC m ™~ 2year ™! for the
cropped sites and grassland site respectively. The EC GPP and NPP were
scaled to 5km X 5km grid using the Biome-B GC model. The error
appeared to be lower for longer timescales and larger extents.

In a global study that compared MOD17A2H GPP to the EC GPP at
18 sites across the globe (including 3 cropped sites), it was found that
croplands were not performing as well as forested sites (Wang et al.,
2017a). The R%, RMSE and bias at the cropped sites was 0.34, 94%, and
-10gC m~>day~?, respectively. The cropped sites, similar to the
grassland sites, had a significantly lower agreement to flux data as
compared to the forested sites. The main possible sources of error were
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identified as the fAPAR MODIS product, land cover classification, and
the LUE,ax. The GPP estimates were improved when the MODIS fAPAR
product was replaced with fAPAR derived from the Generation and
Applications of Global Products of Essential Land Variables (GLASS)
leaf area index (LAI) dataset (the R? for all sites increased to 0.79).

Similarly, a study in China found that without calibration of LUE .
the performance of MODIS GPP performed much worse in croplands
compared to other vegetation (Wang et al., 2013b). MOD17 was com-
pared to 10 EC sites, including four maize sites and an orchard. The
RMSE over the maize sites ranged between 59.7 and 89.4 gC m ™2 8-
day~'. The relative errors ranged between —69.2% to —78.4%. The
RMSE at the orchard site was 51.2gC m~2 8-day ! and the relative
error was —43.3%. The cropped sites were typically performing worse
than the non-cropped sites. The remote sensing product consistently
understated the EC GPP. However, after LUE,,,, was adjusted for, the
results improved considerably for all sites. The maize sites RMSE re-
duced to 14.6-17.8 gC m~ 2 8-day ! and the relative error reduced to
3.1-11.5% (Wang et al., 2013b).

Similar to NPP and GPP, significant differences in accuracy have
been observed in literature for crop yield and AGBP. Positive results
were found at the district level by Low et al. (2017), who reported R? of
0.71 and an average overestimation of approximately 10% when
compared to reported cotton, rice and wheat yields. Similar error was
reported for wheat grain at a regional scale ( + 6%) by Bastiaanssen
et al. (2003). However, when they considered a plot-to-plot comparison
of remote sensing crop yield to crop-cutting, there was almost no cor-
relation. Yilma (2017) reported total biomass errors of 8.7-14.7%
against crop-cuts of sugarcane using different methods to calculate the
vapour stress. When compared on a scheme level, the R* was 0.37 and
0.57 for all sugarcane varieties for a single variety of sugarcane re-
spectively.

Campos et al. (2018a) estimated crop yield from remote sensing
using LUE, WUE and normalized CWP, models. The results were com-
pared to irrigated soybean and irrigated maize yields estimated from
crop-cuts throughout the season until harvest. The LUE AGBP, as
compared to crop-cuts, had an R? of 0.98. The RMSE values for different
fields ranged between 1.39 and 2.18ton ha ™! for each field over the
growing season. WUE and CWP based approaches showed similar re-
sults for R%. The CWP model had the lowest RMSE values
(1.07-1.58 ton ha~'). The SD (accuracy) of the crop-cut measurements
was < 5%. Sibley et al. (2013) compared MODIS (LUE model) derived
crop yields to 134 irrigated and 94 rainfed maize fields in Nebraska and
to a Hybrid-Maize model, with Landsat and MODIS used for model
calibration. The APAR method was not as accurate as the Landsat crop-
model based regression in terms of R? but was comparable with the
Landsat calibrated crop-model. The RMSE was the highest for the APAR
method in both irrigated and rainfed areas 2-3.2 ton ha™?, while the
Landsat crop-model based regression had RMSE values of just over 2 ton
ha™'.

Lobell et al. (2003) estimated wheat, soybean and maize yields in
the Yaqui Valley, Mexico. The wheat yields were compared to whole-
plot harvest measurements of grain and biomass, which also gave the
HI. Intermediate data on APAR and moisture content were also taken in
field. The regional wheat yield estimates varied up to 20% while field-
based estimates indicated errors in regional wheat yields of < 4% for
both years of data. Lobell et al. (2002) compared remote sensing-based
(CASA model) wheat yield estimates to farmer reported yields and
found an R? of 0.78 and a RMSE of 0.37 ton ha™'.

Crop yield is sometimes compared to regional statistics or values
from literature. Zwart and Bastiaanssen (2007) compared remote sen-
sing-based estimates of crop yield and biomass to both the mean values
and the distribution of local statistics and farmer reported crop yields,
as the location of the fields where the measurements were derived were
not available. They found that the crop yield from remote sensing LUE
based approach was within 0.5ton ha™! to farmer reported wheat
yields in Mexico. Similarly, Bastiaanssen and Ali (2003) also compared
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remote sensing-based yield estimates of wheat, rice, cotton, and su-
garcane in the Indus Basin, Pakistan. The average values per crop and
per district were compared against regional statistics. The MAPE values
per crop were 22% for wheat, 23% for sugarcane, 29% for rice and up
to 42% for cotton. The RMSE for wheat, rice, cotton, and sugarcane
were 0.53 ton ha~!, 0.62ton ha~!, 0.55 ton ha~!, and 13.5 ton ha™?,
respectively. Potential sources of error included sensor resolution as
compared to plot size, land use patterns or rotations, and accuracy of
secondary reported data.

Similarly, Samarasinghe (2003) estimated yields of tea, rubber,
coconut and rice from remote sensing in Sri-Lanka and compared them
to district level statistics of crop yield. The R? values ranged from 0.25
for rubber and up to 0.52 for tea. The author concluded that the
monthly yield of tea, rubber and coconut could not be predicted from
monthly biomass production. However, the model predicted rice yields
better. The R*> was 0.47 and the RMSE was 0.43 ton ha~ . The model
was suggested to perform better for rice due to prior knowledge on crop
season. Reeves et al. (2005) found percentage errors of —4% to 5% at
the state level. However, the error substantially increased at county and
climate zones scales with R? values of 0.33-0.46 and 0.33-0.67, re-
spectively, for varying years. The authors attributed this to high intra-
and inter-annual variability in observed crop yield at county level.
Further issues identified were smaller spatial aggregation, aberrant
precipitation leading to a widely ranging wheat yield, difficulty relating
estimates of above ground GPP to wheat yield, and the presence of
other crops in pixels classified as wheat.

Yield and AGBP are often validated at different spatial and temporal
scales to GPP and NPP. GPP and NPP are typically validated at the
resolution of the image return period, while crop yield and AGBP are
validated at seasonal or annual scales. Further, GPP and NPP are often
validated using EC towers, typically a point-to-pixel comparison,
whereas crop yield data is compared to in-situ data at the field or plot
scale.

It difficult to assign an accuracy to the remote sensing of crop yield
as there is a vast difference in reported accuracy. Reported relative GPP
errors in croplands range from as little 5% after LUE,,,x adjustment
(Wang et al., 2013b) and up 70% and even 90% (Wang et al., 2017a).
This also highlights that a priori knowledge of the crop type has a
significant influence on the accuracy of the remote sensing data by
ensuring that LUE,,,,, values are accurately allocated. Reported errors of
remote sensing estimates of crop yield and GPP have a similar range,
from a few percent at a regional scale (Reeves et al., 2005), and as low
as 10% (Low et al., 2017) and up to 80% (Bastiaanssen and Ali, 2003) at
field scale.

Fig. 5 shows the relative error ranges of both remote sensing and in-
situ measurements reported in, or derived from literature. Distinction
between validation products, GPP or NPP and crop yield or AGBP, are
made. The remote sensing values are taken from Table 1. The in-situ
values are taken from Fig. 1. The figure is a stacked column chart. The
mean reported (or derived) relative error from each study, where
available, is included. The highest reported error range is < 5%, which
was reported by one study (Lobell et al., 2003). Five studies, one va-
lidating GPP and four validating yield, have reported errors in the range
of 5-10%. Three of these studies were validated at field scale (i.e. va-
lidated by EC, farmer reported yield or crop-cut) and two were vali-
dated at a regional scale against statistics. The GPP and crop yield do
not seem to be attributed with higher or lower errors, despite findings
by Yuan et al. (2016). This may be a result of higher prior knowledge of
local HI, f and 6. The highest reported accuracy has the same relative
error as the whole-plot harvest in-situ method. Five studies have a re-
ported accuracy with the same relative error (expert) as the crop-cut
and farmer recall methods. Seven studies report accuracies within the
typical accuracy for crop-cut or farmer recall. Only three studies do not
meet the typical or expert error of any in-situ method.

Integration of remote sensing into crop models through data as-
similation methods is becoming more prevalent, including models such
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Fig. 5. Count of relative error ranges of remote sensing-based GPP, NPP, AGBP and yield reported in, or derived from, literature compared to in-situ relative errors.

as the Simple Algorithm for Yield estimated (SAFY) (Battude et al.,
2016) and Simulateur mulTIdisciplinaire pour les Cultures Standard
(STICS) (Brisson et al., 2003; Duchemin et al., 2008). The integration of
remote sensing and models have been well synthesised previously by
Delécolle et al. (1992) and more recently by Jin et al. (2018). Further
research is being undertaken to integrate remote sensing derived ca-
nopy state variables at larger scales (Jin et al., 2018; Kasampalis et al.,
2018). Another promising approach being developed is the generalised
regression based model. This model relates the seasonal VI peak to crop
yield. However, the regression currently utilises a crop specific slope
(e.g. wheat) and is only suitable at administrative unit or county scale
(Azzari et al., 2017; Becker-Reshef et al., 2010; Franch et al., 2015).

4.2. Error introduced to account for crop type

However, in remote sensing, the AGBP, GPP or NPP is more com-
monly available than crop yield. The accuracy of the AGBP should
therefore be high enough to meet the crop yield user requirements after
the HI, f and biomass moisture content () is applied. The HI varies with
the environment (Hay, 1995), cultivar (Ismail, 1993), breeding and
agronomic practices (Sinclair, 1998).

Uncertainty of HI has not been established. Ranges of HI vary sig-
nificantly for crop types and varieties (Hay, 1995). In an Australian
literature review large ranges in HI were reported for grain crops; for
example wheat, barley and maize HI were found to range between 0.08
and 0.56, 0.09-0.57 and 0.41-0.62 respectively (Unkovich et al., 2010).
In a global review of various crops Hay (1995) also reported large HI
ranges; for example rice, chickpea and potato HI was reported between
0.35 and 0.62, 0.28-0.36 and 0.47-0.62 respectively. Additionally,
variability in moisture content will introduce some error, and many
reported HI do not indicate the moisture content. Various models have
been developed to estimate HI, but most pertain to grain crops (Fereres
and Soriano, 2007; Kemanian et al., 2007; Sadras and Connor, 1991).
Moisture content can vary significantly with crops; for example, a ty-
pical moisture content of wheat, rice and potato yields are 11%
(Unkovich et al., 2010), 21% (Unkovich et al., 2010) and 79% (Rees
et al., 2012), respectively. It is most common to adapt the HI and the 6
to the local application, as applied by Zwart and Bastiaanssen (2007),
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Bastiaanssen and Ali (2003) and Singh et al. (2006). Alternatively, the
provider can compute CWP as a function of AGBP where local users
apply HI and 6 to estimate CWP as a function of crop yield. This will
minimise the error introduced from these factors, particularly between
cultivars. Yuan et al. (2016) showed significant reductions in accuracy
in estimated crop yield from remote sensing as compared to GPP when
using the EC-LUE method. They attributed the reduction in certainty to
HI. This again highlights the error these factors introduce. FAO (Raes
et al., 2018) includes values for the HI within the Aquacrop model, with
a set upper bound and empirical relations to stress factors such as
temperature and moisture deficit. This has not yet been applied in re-
mote sensing; however, it may provide insight for developments in
remotely sensed crop yield algorithms.

Additionally, several authors have identified the need to distinguish
LUE1ax based on crop type. Xin et al. (2015) identified a large variation
in GPP LUE for different crops, highlighting the importance of cor-
recting generalised datasets for factors including not only HI and
moisture content, but also maximum LUE. Bastiaanssen and Ali (2003)
compiled LUE,,, values from literature, which varied significantly
between crops, particularly between C3 and C4 crops. The importance
of distinguishing LUE,,,, between C3 and C4 crops was also highlighted
by the work of Yan et al. (2015) and Yuan et al. (2015). Other authors
have incorporated lookup tables for LUE,,.y, based on land cover type
and crop type, into their generalised approaches (Bastiaanssen and
Steduto, 2017; FAO, 2018).

Without integrated physical approaches to estimate HI, f, 6, and
LUE .y, accurate land classification is important to ensure that the
appropriate crop specific conversion factors or look-up tables for the
AGBP fraction, HI and LUE,,,, are used. This is particularly difficult in
areas with small plot sizes and mixed cropping patterns.

4.3. Evapotranspiration

The accuracy of ET, is better described and summarised in literature
than that of crop yield. Several methods have been developed over the
past decades to estimate ET, with the most common being the surface
energy balance approach. The WaPOR database estimates ET, based on
a remote sensing Penman-Monteith approach. Like in-situ ET, methods,
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significant work has been done in summarising the accuracy of ET,
through remote sensing. Therefore, the expected accuracies and un-
certainties from remote sensing ET, are only briefly described.

Karimi and Bastiaanssen (2015) compiled 33 research papers to
investigate the error associated with remote sensing-based ET, esti-
mation on an annual or seasonal scale. They demonstrated that the
absolute error of ET, varied from 1% to 20% and the MAPE was 5.4%
with a standard deviation of 5.0%. The MAPE increased slightly when
considering only the error of ET, estimates over cropped areas, with
60% of the studies achieving an error of <5%. However, these errors
were often associated with algorithms that have been both developed
and tested where local parametrisation and calibration were possible.
This is consistent with more recent studies, such as Yilma (2017), who
reported a mean difference between SEBAL estimated ET, and lysimeter
ET, of 9.3 and 15.4% for onion and potato fields respectively. The range
of errors was reported to be 1.3-23.4%.

Kalma et al. (2008) assessed 30 published literature, with 20 cov-
ering cropped areas, on various methods to estimate ET, from remote
sensing. The time-steps in the review ranged from instantaneous
(during overpass) to 16-day averages, while the spatial resolution
ranged from 30m to 1km. A typical error of 15-30% was reported
when compared to in-situ measurements. Similarly, Verstraeten et al.
(2008), Glenn et al. (2007) and Jiang et al. (2004) found typical errors
of 20-30% for various methods with similar ranges in time-steps. The
authors did not identify a link between accuracy and spatial resolution.
However, Kalma et al. (2008) noted that temporal resolution and
scaling did have a large impact on uncertainty. This is due to the strong
bias of surface temperature values on minimal cloud cover days when
scaling from daily to weekly or monthly values, and the influence of
nocturnal transpiration when scaling from instantaneous, 30 min or
hourly estimates to daily estimates. Glenn et al. (2010) reported that
the heterogeneity in a pixel attributes to lower accuracy. Lower spatial
resolution should therefore reduce accuracy due to the higher the
chance for heterogeneity within a pixel.

Validation has been undertaken on current operational global ET,
models MOD16 (Mu et al., 2007, 2011) and EUMETSAT Satellite Ap-
plication Facility on Land Surface Analysis (LSA-SAF MSG ET) (Trigo
et al., 2011). MOD16 (1 km, daily resolution) is based on the PM model
and LSA-SAF MET (3 km at the nominal position at 0° longitude, 30-
min) ET is based on a simplified soil-vegetation-atmosphere transfer
scheme (SVAT). MOD16 and a further improved version, which in-
cluded the addition of soil heat flux, simplification of the vegetation
cover fraction, and improved estimated of stomatal conductance and
boundary layer resistance, were compared to 46 EC sites in the USA (7
being cropped sites). The improved version had a mean daily bias of
0.31 mmday ™~ ! and had values within 10-30% of the tower values (Mu
et al., 2011). The difference in the total annual ET, at cropped sites
between EC and MOD16 was 11.8%. The mean average error of the
improved algorithm at cropped sites ranged from 0.16 to
0.48 mm day ~! or 9-30% with a mode error of 0.3 mm day ' or 20%.
The MOD16 errors in croplands ranged from 36 to 53%. The improved
version saw the larger improvements in cropped and grass sites as
compared to forest sites. The authors found MOD16 underestimated ET,
in croplands.

The performance of global models, on the 8-day time step, is con-
sistent with accuracy reported from literature (as discussed above).
More recently, Hu et al. (2015) compared both MOD16 (1 km, 8-daily)
and LSA-SAF MET ET to 15 EC sites (2 cropped sites) in Europe. LSA-
SAF MET ET performed better in terms of r, RMSE and bias in all sites,
including cropped sites. Specifically in the 2 cropped sites, the LSA-SAF
MET ET had R? of 0.93 and 0.92, RMSE of 0.52mmday ! for both
sites, and bias of —0.10 and 0.27 mm day ~'. MOD16 had R* of 0.90
and 0.91, RMSE of 0.72 and 0.47 mmday ', and bias of —0.39 and
0.26 mm day ~ !, respectively. The high agreement is in spite of the site
heterogeneity, as the pixel extends beyond the cropped site for both
MOD16 and LSA-SAF MET and includes mixed cropping patterns and

13

Remote Sensing of Environment 234 (2019) 111413

urban area at both sites. LSA-SAF MET ET set quality criteria as
error < 25% when ET, is>0.4mmday ' and < 0.1 mmday ™!
when ET, is < 0.4 mmday~!. This criterion was met in 70% of in-
stances for 15 stations in Europe.

Ershadi et al. (2014) compared SEBS, PM, advection-aridity (AA)
model and a modified Priestley-Taylor (PT-JPL) approach at 20
FLUXNET stations across the USA, including four cropped sites. The
relative errors at cropped sites were 38%, 56%, 61% and 38% for the
SEBS, AA, PM and PT approaches respectively. The grass sites showed
similar results. The AA methods performed best in grassland (relative
error = 73%). None of the approaches performed consistently in
croplands. The R? was highest in the crop and grass sites for both SEBS,
at 0.76 and 0.78 respectively, and PT-JPL approaches, at 0.74 and 0.77
respectively.

Various surface energy balance models show inconsistent results
when modelled at different locations. Singh and Senay (2016) com-
pared four energy balance methods for estimating ET,, SEBAL, METRIC,
SEBS and SSEBop with EC in three cropland sites in a humid continental
climate in the USA. METRIC and SSEBop had the best performance,
with relative errors (daily) between sites of 2.5-13.7% and 7.1-12.6%
respectively. The SEBAL and SEBS models performed considerably
worse; they typically understated ET,, especially on days when ET, was
high, with relative errors of 39.6-42.6% and 25-31.1% respectively.
The authors attributed higher errors in SEBAL and SEBS to the method
of upscaling of instantaneous to daily ET, and suggested that the daily
net radiation equation in SEBAL should be calibrated to local atmo-
spheric conditions. These remote sensing energy balance methods,
along with S-SEBI, were also validated against EC at 4 sites, including a
grassland and citrus orchard, in the USA (Bhattarai et al., 2016).
Overall, SEBAL had the lowest percent bias (1%), followed by SEBS
(3%), S-SEBI (—8%), METRIC (16%), and SSEBop (36%). SEBS had the
lowest RMSE (0.74 mm day_l) and SSEBop had the highest RMSE
(1.67 mm day ~!). The performance at all sites, except the lake which
performed worse, were comparable for the SEBS, S-SEBI, and METRIC
models. SSEBop had the worst performance of five surface energy
balance models.

Most recently, Khan et al. (2018), used triple collocation to provide
mutually uncorrelated absolute and relative error structure among
MOD16, Global Land Evaporation and Amsterdam Model (GLEAM),
and Global Land Data Assimilation System (GLDAS) ET, products. The
three products performed well in nine EC sites (AsiaFlux), including
three rice paddy and three grassland, with RMSE ranging between 3.69
and 12.98 mm 8-day " ! in the rice paddy and grassland sites. However,
all four datasets, including the EC data, had relative uncertainties ex-
ceeding 25%.

Karimi et al. (2019) compared ET, from a SSEBop and CMRSET
Ensemble product, downscaled with 250 m MODIS NDVI to the gross
inflows (effective precipitation plus irrigation withdrawals) in irrigated
sugarcane in Swaziland. The annual ET, from the Ensemble had relative
bias of —5%, a RMSE of 9% and a relative error of 7%, as compared to
the net inflows. This can be attributed to the groundwater table being
assumed to be steady, as the water table depth influences soil moisture
content. Therefore, errors may be higher than reported here.

Other authors have compared remote sensing-based ET, to basin
scale water balances. For example, Senay et al. (2011) compared annual
ET, estimates derived from SSEB to watershed water balances around
the globe. The agreement between SSEB ET, and water balance ET, was
very high. The R was 0.9 and the mean annual bias was —67 mm, or
11%. Senay et al. (2016) compared SSEBop to the water balance from
Colorado River Basin, USA and to the ET, estimated from two EC sta-
tions. SSEBop ET, showed relative bias, on an annual scale, of 7.3%,
10% and —0.5% for the total, upper and lower part of the basin.
SSEBop also showed a lower agreement at the EC stations. The R? va-
lues were 0.82 at both EC stations on a daily scale and 0.92 and 0.95 at
each station on a monthly scale. However, the relative bias was varied,
with daily relative bias of —22.1% and 13.1% at daily scale and —34.7
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and 2.4% on a monthly scale.

The Kcb remote sensing-based approach is not a generalised ap-
proach; however, it is discussed here briefly due to its popularity and
potential. K¢ and Kcb have been empirically related to VI in remote
sensing for > 30 years (Bausch and Neale, 1987; Neale et al., 1989).
The Kcb remote sensing approach estimates ET, based on the Kcb-VI
relationship. The relationship has been described by various empirical
equations including a power function (Nagler et al., 2013), as a scalar
(Glenn et al., 2011) and as a linear function (Choudhury et al., 1994;
Melton et al., 2012; Nagler et al., 2013). Accuracy from such methods
have been reported to be as high as 5-15% (Duchemin et al., 2006;
Hunsaker et al., 2007; Nagler et al., 2013). A review by Glenn et al.
(2010) found RMSE in the range of 10-30% across biomes and vege-
tation including, wheat, corn and cotton.

Several authors have been able to extrapolate Kcb-VI relationships
between crops (Campos et al., 2010, 2013; Odi-Lara et al., 2016), and a
generalised approach has been suggested for major crop categories, i.e.
vegetables, tubers, legumes, fibres, oils, cereals (Melton et al., 2012).
On the other hand, Calera et al. (2017) summarised Kcb-NDVI re-
lationships found in literature for different crops. Each study had un-
ique Kcb-NDVI relationship, whether for the different crops or the same
crop in different locations. Mateos et al. (2013) validated a synthetic
crop coefficient approach (Kcs) for estimated ET, under non-stressed
conditions in Spain. The approach was then applied at basin scale in the
Guadalquivir Basin (Gonzdlez-Dugo et al., 2013). The approach re-
quired prior information of crop location and the crop-growing cycle.
The approach performed well for annual and tree crops (except olive),
however, was less successful for seasonal crops. The overall RMSD was
0.75mm day ~*. The authors suggest the weakest part of the model is
the soil evaporation component and that further work on the Kcb-VI
relationship is required for more crops. Therefore, the Kcb-VI re-
lationship cannot always be extrapolated directly to new locations.
However, it has been shown that once the relationship is developed for
a specific crop and location, it can be a very reliable method for that
area.

Like remote sensing-based crop yield estimates, remote sensing-
based ET, estimates show a large range of reported errors. Locally
parameterised and calibrated ET, models have been validated nu-
merous times, however, the validation of global models in crop areas is
less common and more difficult. There is scarce ground data for
cropped areas when compared to the spatial extent of the global
models. The reported accuracy of remote sensing-based ET, varies
widely, between location and models. Karimi and Bastiaanssen (2015)
suggest remote sensing-based ET, error on an annual scale can be as low
as 5%, which is the same accuracy associated with lysimeters, while
Kalma et al. (2008) suggest accuracy in the range of 15-30%, which is
in the same range as expert and typical errors associated with the soil
water balance, Bowen ratio, and EC. Reported errors of generalised
models vary considerably. Some models have reported errors of < 15%
(Bhattarai et al., 2016; Singh and Senay, 2016) while other models have
reported errors of > 40% (Bhattarai et al., 2016; Ershadi et al., 2014).
The latter is within the range of in-situ lysimeter, Bowen ratio, and EC
measurements when performed by a novice.

4.4. Crop water productivity

Remote sensing-based estimates of CWP error are derived from the
reported error of remote sensing-based crop yield (and GPP) and ET,
errors. The lowest reported remote sensing-based crop yield and ET,
errors are in the range of 5-10% and 5-20% respectively. This corre-
sponds to a best case scenario of a CWP relative error of 7.1%—-22.4%.
Other case studies reported errors up to 70-90% for crop yield and
25-60% for ET,. This propagates to CWP ranges 74.3%-108.2%. This
corresponds well with the only cited literature on validating remote
sensing-based CWP in croplands (through EC GPP and ET,), which re-
ported errors of 82.3% and 14.7% on an annual scale for soybean and
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21.2% and 30.9% on an annual scale for maize (Tang et al., 2015). This
suggests that under the right conditions, remote sensing-based CWP can
be estimated to a similar accuracy of the combination of field-based
measurement techniques, like farmer recall combined with EC or soil
water balance.

The greatest challenge in synthesising the accuracy of remote sen-
sing datasets for CWP was the heterogeneity of error reporting. This
was also noted by other authors who reviewed accuracy of remote
sensing products (Karimi and Bastiaanssen, 2015). Reporting a number
of accuracy metrics is crucial for reporting and understanding scientific
results. It was identified that relative error was frequently not explicitly
stated (or able to be derived). While relative error may not provide the
complete picture or error characterisation, it does allow for: (i) com-
parison between products, for example yield and GPP, and (ii) error
propagation, which is required to ascertain the achievable accuracy of
CWP.

The identified crop yield, ET,, and CWP error estimates are valid
and based on an exhaustive literature review. However, they do not
comprehensively consider the errors within the validation process itself,
which can include: comparing the remote sensing value to field mea-
surements with their own inherent error, error characterisation, issues
with spatial and temporal scaling between remote sensing and in-situ
products, and scale issues between the resolution of the remote sensing
products and the scale in which they are required by the user (Zeng
et al., 2015).

Remote sensing estimates are comprised of both random and sys-
tematic errors. Random errors are caused by unknown and un-
predictable changes and are always present; systematic errors are
consistent and introduced by the inaccuracy inherent to the system.
Random errors are typically normally distributed and can be re-
presented by the standard deviation of their distribution (Povey and
Grainger, 2015). In certain applications of CWP, a systematic error will
have a lower impact on the analysis. For example, when undertaking a
comparative assessment — of one user to another or the same user over
time (all estimated under the same model) — a systematic bias should
not influence the result. However, in estimating absolute values of CWP
and comparing to other studies or literature, systematic bias could
significantly misinform the user. Many of the studies reported on bias,
which can help the user identify if the errors in the remote sensing
dataset is dominated by systematic error.

The point spread function (PSF) effect describes the response of the
imaging system to the point source or object (Mira et al., 2015; Van der
Meer, 2012). This effect means that the signal for a given pixel is a
weighted combination of contributions from within the pixel and also
contributions from neighbouring pixels, based on the across-track and
along track directions. This effect introduces the greatest uncertainty in
heterogeneous landscapes (Duveiller et al., 2015, 2011).

Field based observations have their own uncertainties, and remote
sensing-based estimates are being compared to field methods which
frequently have errors exceeding 20% (Nagler et al., 2013; Nouri et al.,
2016). All the literature cited reported the remote sensing-based errors
against the value of the field observation, thus accepting the field ob-
servation as the true value. However, as discussed in Section 3, the field
observations are associated with their own, often significant errors.
Triple collocation attempts to deal with this issue by characterising
error, both systematic bias and random error, through observing the
spatial and temporal difference in three independent datasets. How-
ever, triple collocation requires multiple datasets with large numbers of
coincident data points, including in-situ (Su et al., 2014), that are not
frequently available for ET, and crop yield. The only cited literature
using this method for ET, found relative uncertainties exceeding 25% in
both the remote sensing-based data and the in-situ observations (Khan
et al.,, 2018). Ultimately, the actual accuracy of remote sensing is
constrained by the accuracy of the field measurements they are com-
pared to (Glenn et al., 2011).

In-situ measurements not only have their own sources of error, they
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can prove difficult for comparison with remote sensing data due to
spatial and temporal scaling issues and the difficulties of identifying the
area of representation. Scaling issues when comparing remote sensing
and in-situ measurements arise from: (i) the local and point scale
measurement being compared with a spatially continuous dataset (Ran
et al., 2016), (ii) the sparsity and availability of point measurements in
both time and space, (iii) vegetation heterogeneity within a pixel (Clark
et al., 2001; Foken and Leclerc, 2004; Stoy et al., 2013), (iv) geoloca-
tion errors, and (v) systematic errors, e.g. Foken (2008) suggested the
main cause of errors in EC are due to the different spatial and temporal
scales in the energy balance components.

User requirements will vary dependent on the specific application of
CWP. The user could be estimating a time series of a single user (inter-
or intra-seasonally), a comparison of users in a season within an irri-
gation scheme, comparing an irrigation scheme to another irrigation
scheme, assessing whether the CWP meets local or national targets,
setting CWP targets, or considering the CWP for a basin scale to assess
user demand. Each of these applications may require not only a dif-
ferent accuracy, but also a different spatial resolution. Reported ac-
curacies in this review cover a large range of sensors with varying re-
solutions; for example, the Landsat sensor has a spatial resolution of
30 m while the MOD16 has a spatial resolution of 1km. The spatial
resolution of the dataset not only influences the dataset accuracy — as
pixel heterogeneity has a significant influence on accuracy (Liu et al.,
2016) - but the applicability of the product. For example, a 30 m pro-
duct may be used to estimate in-field variability (Kharrou et al., 2013)
while a 1km product may be limited to estimate inter-scheme varia-
bility or inter-annual variability at scheme level (Al Zayed et al., 2016).

Reported errors are related to not only to specific spatial resolu-
tions, but also temporal resolutions. While some authors reported error
on a seasonal scale, others reported error on a daily scale (e.g. Yan
et al., 2015) or at the resolution of the satellite return period (e.g. Wang
et al. 2013b). This creates a temporal scale mismatch between the sa-
tellite derived product and the field observation. The scale mismatch
requires either aggregation of the high resolution of dataset to the low
resolution dataset, averaging over the same period or disaggregation of
the low resolution dataset. Further, it can be difficult to compare the
accuracy of remote sensing products that are reported with different
temporal and spatial scales. However, it is important to provide ac-
curacies at all available scales. CWP is a seasonal product with an as-
sociated error at a seasonal scale; however, the user often aggregates
daily values to a seasonal product that may range from a few months up
to two years.

The accuracy of remote sensing is typically derived from compar-
ison to in-situ measurements or estimates. CWP relative error derived
from in-situ measurements are low, 7-11%, when undertaken by an
expert (Fig. 4). However, the typical errors have large ranges from 7 to
36% (not including sap flow). Though this reportedly aligns with the
accuracy of CWP from remote sensing, the application must be con-
sidered as even the accuracy of in-situ methods may still not be suitable
for all user applications.

When CWP values are being used as absolute values, rather than
relative to other users, the scale of error may be related to the required
precision. For example, the ET, precision required for irrigation can be
low quite low for some irrigation methods. This is reflected in potential
distribution uniformity, which ranges from 60% for furrow irrigation to
90% for drip irrigation (Brouwer et al., 1989). The actual CWP required
for the purpose of understanding consumption and efficiency may be
different than the precision useful for a farmer to make yield or ET,
improvements. There is no use stipulating an accuracy or precision
requirement for a farmer, if the farmer cannot achieve that accuracy
with their inputs such including irrigation application.

With the onset of the WaPOR database, the continental dataset is
expected to be more frequently applied in local settings. Therefore, the
accuracy of the global models should be carefully validated and re-
ported so the user can determine if it meets their requirements. The
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accuracy of remote sensing should at least be comparable to the accu-
racy between the expert and typical ranges of ground measurements.
This can be difficult to prove and quantify for large scale remote sensing
datasets. Any developments and improvements in remote sensing will
be difficult to prove without improvement of the in-situ measurements
they are validated against (Glenn et al., 2007). It is also essential to
provide an accuracy metric (such as a relative error) that the user can
clearly understand in order to determine if the dataset is useful for their
application.

5. Conclusions

The main objective of this research was to assess the accuracy of
remotely sensed and in-situ CWP products. Remote sensing provides a
tool to estimate CWP at much larger extents and in areas where field
measurements are not available. CWP datasets are typically not pro-
vided as a remote sensing product; however, its two main constituents,
yield and ET,, are. The accuracy of CWP was therefore derived by
propagating the reported accuracy of both remote sensing and in-situ
ET, and crop yield. The in-situ methods were first described. In-situ
methods have commonly been used to understand crop performance
and are typically used as the reference value for remote sensing esti-
mates to quantify their accuracy. They are ascribed as the benchmark
for accuracy of CWP. The reported accuracy of remote sensing-based
methods were then synthesised and compared to the benchmark, or the
error accuracy with in-situ products.

The error associated with in-situ methods for estimating crop yield
ranges from < 5% (whole-plot harvest) to 45% (crop-cutting and
farmer surveys), while for estimating ET, it ranges from 5 to 15% (ly-
simeter) to 50% (sap flow measurements). This propagates to CWP
errors from field measurements that range from 7 to 67%. Based on
remote sensing reported accuracy of ET, and yield (or GPP), the best
case scenario of a CWP relative error from remote sensing is in the
range of 7.1-22.4%. Other case studies reported errors up to 70-90%
for crop yield and 25-60% for ET,, which propagates to CWP ranges of
74.3%-108.2%.

The literature review revealed that remote sensing can estimate
CWP within the error range from in-situ methods. However, the review
also revealed a great deal of heterogeneity in the reporting of both
errors and uncertainty. The characterisation of error, e.g. random error
or systematic bias, will define if the data products are suitable for dif-
ferent applications of CWP. Further research should describe the way in
which these errors are reported to ensure that end-user requirements
are met. It was also identified that the gap between remote sensing
estimates of GPP and crop yield needs further development, as large
uncertainty lies with the intermediates that convert GPP to yield.
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