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vAbstract

To decrease the emission of greenhouse gases, as well as to reduce our dependency
on fossil fuels for satisfying our energy needs, we see a trend towards the use
of more sustainable energy sources. While these sustainable energy sources,
such as solar and wind, accomplish these mentioned goals they also present new
challenges. One of these challenges lies in the fact that these energy sources are
intermittent and uncontrollable. One of the consequences is that times of energy
production do not necessarily coincide with times of demand. When energy is
generated by fossil fuel powered energy plants, it is relatively easy to match the
supply and demand of energy. However, this matching is much more difficult
when relying on sustainable energy sources, such as solar and wind energy, due
to their uncontrollable nature.

One of the solutions to deal with the mismatch of energy demand and produc-
tion is energy storage. With storage, energy generated during times of excess
production may be stored for use during times of energy shortage. In this con-
text, energy storage may be used to cover mismatches occurring during a day,
but also to cover the mismatch between different seasons. For the mismatches
during a day electrical storage (i.e. batteries) can be used. However, batteries
are currently too expensive for the large capacities required for seasonal storage.
One of the promising options for seasonal storage is thermal energy storage. The
Ecovat system is an example of such a seasonal thermal energy storage, which
aims to store excess thermal energy during times of the year with high ther-
mal and/or electrical energy production, generally during the summer, for use
during times of the year with high thermal energy demand, generally during
winter. The Ecovat system is designed to be able to satisfy the heat demand of a
neighbourhood of houses throughout the year.

The Ecovat system consists of a large well insulated underground buffer (i.e. a
large water tank), combined with a number of devices, namely photovoltaic
thermal (PVT) panels, heat pumps, and a resistance heater, to charge the buffer.
The buffer of the system consist of a number of segments, which although not
physically separated, may be charged or discharged individually through heat
exchangers integrated inside the buffer walls. The energy to charge the buffer
can be obtained from locally available energy or can be bought on the energy
market, preferably when the energy price is low.

In this thesis we focus on the operational control of such an Ecovat system.
We develop a model to determine which of the available devices in the system
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should charge which buffer segment at which point in time. Furthermore, the
model also determines which buffer segment should be used to satisfy the heat
demand from the neighbourhood. As the developed model should serve as the
base for handling the operational control of a real Ecovat system, we are not
just interested in an arbitrary model that is able to obtain charging/discharging
strategies, but in a model that is able to compute these strategies in a short time
(at most a few seconds).

Although we aim for a model with short computation times, we first focus
on a model that does not take this restriction on the computation time into
account. The goal of this first model is to get insight in the structure of a
good charging/discharging strategy, i.e. a strategy that has low operational costs
while satisfying the heat demand of the neighbourhood throughout the year.
Furthermore, this model acts as a benchmark for other models that do satisfy
the short computation time constraint. To this end, the first developed model
is based on an integer linear programming (ILP) model of the Ecovat system.

Due to the long time scales involved when dealing with seasonal thermal energy
storage (a year), as well as the short time interval lengths (15 minute time in-
tervals) required to incorporate energy markets into the model, the developed
integer linear programming (ILP) model can not be solved for an entire year at
once. Due to this we developed an approach based on solving the ILP model in a
rolling horizon fashion. Although this approach leads to a substantial reduction
of computation time, we observe that solving the model in this way does not
sufficiently take important seasonal effects into consideration.

To ensure that such seasonal effects are also taken into consideration by themodel,
we extend the model with a long-term planning step, which generates additional
input for the previously developed model. In this planning step we determine
daily energy targets for the buffer, based on historical data and predictions, which
have to ensure that the correct seasonal behaviour is obtained. While the rolling
horizon model with this extension is able to provide good charging/discharging
strategies, we observe that even with these modifications the ILP model based
approach is computationally still too expensive to be used in a practical situation,
as in some cases it requires multiple days to determine a charging/discharging
strategy for a year of operation of the Ecovat system.

Subsequently, we use the insights obtained from the ILP model based approach
to develop a heuristic method to control the Ecovat system. This method is based
on a number of rules of thumb, and contrary to the ILP model based approach,
it does not require predictions for weather data and energy prices for future
time intervals. This heuristic method requires much shorter computation times,
namely it takes only a few seconds to simulate a complete year of operation of
the Ecovat system. Comparing the results obtained with the heuristic method,
with the results obtained with the ILP model based approach, we find that the
heuristic method on average only increases the operational costs by 5.2%.

To get more insight in the practical use of the Ecovat system and the developed
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approach we performed a case study, where we simulate a neighbourhood of
houses including an Ecovat system in a decentralized energymanagement (DEM)
simulation, using the developed heuristic method to control the Ecovat system.
We compare the achieved results with a simulation using gas boilers to satisfy
the heat demand of the neighbourhood instead. The results of this comparison
show that using an Ecovat system to satisfy the heat demand leads to significant
benefits in terms of energy self-consumption within the neighbourhood, as well
as a decrease in C O2 emissions compared to using gas boilers. Furthermore, the
obtained results show that the developed approach is robust against prediction
errors, such as e.g. a winter that is colder than predicted.
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ixSamenvatting

Om de uitstoot van broeikasgassen te verlagen, en onze afhankelijkheid van fos-
siele brandstoffen voor onze energievoorziening te verminderen, zien we een
trend richting duurzamere energie bronnen. Hoewel duurzame energiebron-
nen, zoals zonne- en windenergie, deze doelen behalen leiden ze ook tot nieuwe
uitdagingen. Een van deze uitdagingen heeft te maken met het feit dat zulke
energiebronnen onregelmatig en niet aan te sturen zijn, dit betekent dat periodes
van energieaanbod en energievraag niet altijd samen vallen. Zolang energie gege-
nereerd wordt met behulp van fossiele brandstoffen is het relatief eenvoudig om
het aanbod van energie gelijk te houden met de energievraag. Echter, wanneer
we voor onze energie afhankelijk zijn van duurzame energiebronnen is dit veel
moeilijker, omdat zulke energiebronnen niet aan te sturen zijn.

Een oplossing voor deze mismatch tussen energievraag en energieaanbod is ener-
gieopslag. Met behulp van opslag kan energie die geproduceerd wordt tijdens
een periode met hoog energieaanbod opgeslagen worden voor gebruik tijdens
een periode met een hoge energievraag. Op deze manier kunnen niet alleen
mismatches gedurende een dag opgelost worden, maar ook de mismatch tussen
verschillende seizoenen. Voor mismatches gedurende een dag kan elektrische
opslag (batterijen) ingezet worden. Echter, de huidige kosten voor batterijen
zijn te hoog voor de grote capaciteiten die benodigd zijn voor seizoensopslag.
Een veelbelovende optie voor seizoensopslag is thermische energieopslag. Het
Ecovat systeem is een voorbeeld van zo’n thermische seizoensopslag, met als doel
om overschotten aan energie in tijden van hoge productie op te slaan, meestal
gedurende de zomer, voor consumptie tijdens een periode met hoge energie-
vraag, meestal gedurende de winter. Het systeem is ontworpen zodat het aan de
warmtevraag van een woonwijk kan voldoen gedurende het hele jaar.

Het Ecovat systeem bestaat uit een grote, goed geïsoleerde, ondergrondse water-
buffer, gecombineerd met een aantal apparaten, namelijk ’photovoltaic thermal’
(PVT) panelen, warmtepompen en een weerstandsverwarmer, om de buffer op te
laden. De buffer bestaat uit een aantal segmenten, die ondanks dat ze niet fysiek
gescheiden zijn, onafhankelijk van elkaar geladen of ontladen kunnen worden
met behulp van warmtewisselaars geïntegreerd in de wanden van de buffer. De
energie om de buffer te laden kan van lokale energiebronnen komen of gekocht
worden op de energiemarkt, bij voorkeur wanneer de energieprijs laag is.

In dit proefschrift focussen we op de operationele aansturing van zo’n Ecovat
systeem. We ontwikkelen een model dat bepaalt welke apparaten in het sys-
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teem, welke segmenten in de buffer moeten laden, en op welk moment dat laden
moet plaatsvinden. Daarnaast bepaalt het model welk segment van de buffer de
warmtevraag van de woonwijk vervuld. Omdat het ontwikkelde model bruik-
baar moet zijn voor de operationele aansturing van het Ecovat systeem in de
praktijk zijn we niet simpelweg geïnteresseerd in een model dat laad/ontlaad
strategieën voor het systeem geeft, maar een model dat dit kan doen in een korte
tijd (maximaal een paar seconden).

Hoewel het doel is een model te ontwikkelen met lage computationele tijd, fo-
cussen we eerst op een model dat geen restrictie op computationele tijd heeft.
Het doel van dit eerste model is om inzicht te krijgen in de structuur van een
goede laad/ontlaad strategie, met andere woorden een strategie die leidt tot lage
operationele kosten terwijl de warmtevraag van de woonwijk gedurende het
hele jaar voldaan word. Daarnaast kan dit model gebruikt worden als referen-
tiepunt voor een eenvoudiger model dat wel rekening houdt met de restrictie
op de computationele tijd. Met dit als doel, hebben we eerst een ’integer linear
programming’ (ILP) model van het Ecovat systeem ontwikkeld.

Door de lange tijdsperiodes benodigd voor het simuleren van de werking van
seizoensopslag, gecombineerd met de korte tijdsintervallen (15 minuten) die
nodig zijn voor het toevoegen van een energiemarkt in het model, is het niet
mogelijk om het ILP model in één keer op te lossen voor een heel jaar. Om
deze reden ontwikkelen we een aanpak gebaseerd op het ILP model die een
oplossing genereerd door middel van een rollende horizon aanpak. Hoewel deze
aanpak leidt tot een significante afname in de computationele tijd zien we dat
deze aanpak onvoldoende in staat is om seizoenseffecten mee te nemen.

Om te zorgen dat zulke seizoenseffecten voldoende meegenomen kunnen wor-
den in het ontwikkelde model, breiden we het uit met een langetermijnplanning
stap, die wordt uitgevoerd voor het eerder ontwikkelde model. In deze planning
stap bepalen we dagelijkse energiedoelen voor de buffer, gebaseerd op historische
data en voorspellingen. Deze energiedoelen worden vervolgens als extra input
gebruikt voor de rollende horizon aanpak. Hoewel de rollende horizon aanpak
met deze uitbreiding goede laad/ontlaad strategieën geeft, is de computationele
tijd nog te hoog voor het gebruik in een praktische situatie, gezien in sommige
gevallen een paar dagen nodig is om de laad/ontlaad strategie voor een jaar te
bepalen.

Vervolgens gebruiken we het inzicht dat we verkregen hebben door de op het
ILP model gebaseerde aanpak, om een heuristische methode te ontwikkelen om
het Ecovat systeem aan te sturen. Deze methode is gebaseerd op een aantal vuist-
regels, en in tegenstelling tot de op het ILP model gebaseerde aanpak, heeft het
geen voorspellingen voor het weer of de energieprijzen nodig voor toekomstige
tijdsintervallen. Deze heuristische methode vereist een veel lagere computatio-
nele tijd, namelijk slechts een paar seconden voor het simuleren van de werking
van het Ecovat systeem voor een jaar tijd. Bij het vergelijken van de strategieën
bepaald met de heuristische methode met die bepaald door de op het ILP model
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gebaseerde aanpak, zien we dat de heuristische methode gemiddeld slechts tot
5.2% hogere operationele kosten leidt.

Om meer inzicht te krijgen in de praktische toepassing van het Ecovat systeem
en de ontwikkelde aanpak bekijken we een casus, waarin we een woonwijk met
daarin een Ecovat systeem simuleren in een gedecentraliseerde energie manage-
ment simulatie. Hierin gebruiken we de ontwikkelde heuristische methode voor
het aansturen van het Ecovat systeem. We vergelijken de behaalde resultaten met
een simulatie waarin gasketels worden gebruikt om aan de warmtevraag van de
woonwijk te voldoen, in plaats van een Ecovat systeem. De resultaten van deze
vergelijking laten zien dat het gebruik van een Ecovat systeem, in plaats van
gasketels, om aan de warmtevraag van de woonwijk te voldoen leidt tot signifi-
cante voordelen, namelijk een toename in de zelfconsumptie van energie in de
woonwijk, en een afname in de C O2 emissie. Bovendien laten we zien dat de
ontwikkelde aanpak robuust is tegen voorspellingsfouten, bijvoorbeeld als een
koudere winter dan verwacht zich voordoet.
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11
Introduction

Today’s society is highly reliant on energy. We depend, among others, on energy
for the transportation of both goods and ourselves, for heating our homes and
for powering the various electronic devices present in the average modern house.
Historically, most of our energy comes from the combustion of (fossil) fuels,
starting with the combustion of wood thousands of years ago when fire was
discovered. Later on, especially during the industrial revolution, coal became a
popular source of energy. The combustion of coal allows for the evaporation
of water into steam, which in turn can be used in a steam engine to perform
mechanical work (or more recently, produce electricity). From that time on the
amount of energy consumed by society grew at a rapid pace. Eventually other
fossil fuels, in particular oil and natural gas, were added to satisfy the increasing
energy demand. To give an indication of the growth in energy consumption,
Figure 1.1 shows the global amount of consumed energy generated by the com-
bustion of coal, oil and natural gas from 1800 to 2016. This figure clearly shows
the immense increase in energy consumption since the industrial revolution,
particularly in the past century.

In the last two centuries the combustion of fossil fuels has allowed society to
make rapid progress. However, this combustion of fossil fuels has a major disad-
vantage, the emission of C O2 and other greenhouse gases. It is widely believed
that these greenhouse gases lead to global warming and climate change. The
consensus among most climate scientists (90-100% agreement) is that the recent
climate change is indeed caused by human behaviour [31]. In the last few decades
this has lead to a transition towards cleaner, more sustainable ways of generat-
ing electricity in an effort to reduce greenhouse gas emissions. In 2015, during
the United Nations Convention on Climate Change in Paris many countries,
among which the Netherlands, signed an agreement to reduce the emissions of
greenhouse gasses to keep the global temperature rise below 2 °C compared to
pre-industrial levels [9].
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Figure 1.1: Annual global energy consumption by fossil fuel source. Data ob-
tained from [6].

1.1 The energy transition

Aside from the aforementioned negative effects on climate change, fossil fuels
are a limited resource, which are to a large extent located in politically unstable
regions. For these reasons we see a shift away from such fossil fuels for satisfying
our energy needs, towards sustainable options such as solar and wind energy.
Figure 1.2 shows that the potential of renewables energy sources, especially solar,
is in principle more than sufficient to supply the global energy needs. In fact,
the yearly potential of solar energy is larger than the estimated total recoverable
reserves of fossil fuels and uranium combined. Note that the area of the squares
in Figure 1.2 on the left is proportional to the yearly potential and to the right on
the total reserve. For reference, the yearly potential of solar energy is estimated
at 23000 TWy/year, while the total reserve of coal is estimated at 830 TWy of
energy [72].

The shift from generating energy by burning fossil fuels to renewable energy
generation is called the energy transition. This energy transition has already
lead to a dramatic increase in the installed capacity of renewable energy sources,
in particular in the past decade. In Figure 1.3 the global installed capacity of
several renewable energy sources for electricity generation is shown. We can see
a clear increase in the installed capacities of renewables, with an especially sharp
increase in installed solar capacity due to the decreasing costs of photovoltaic
(PV) panels in the last years. Figure 1.4 shows the same figure but this time just
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Figure 1.2: The yearly potential of solar and wind energy compared to the total
estimated recovarable reserves of fossil fuels and uranium. The global energy
consumption of 2014 is shown for comparison. Data obtained from [72].

for the Netherlands. We see a trend comparable to the worldwide trend, with
the exception of hydro power, for which in the Netherlands the production is
almost zero, due to the very small height differences in the Netherlands. While
the installed capacity of renewables has increased a lot in the past decade, the
Netherlands is still quite far from the targets concerning renewable energy set
by the European Union [5]. The current share of renewables in the Netherlands
is at 6.6% in 2017 [2] compared to the required 14% in 2020. It is expected that
the installed capacities of renewable energy sources will continue to grow at a
fast rate.

Even though the increasing share of renewable energy sources solves a number
of problems, such as reducing the amount of green house gasses, it comes with its
own challenges. When energy is supplied by large fossil fuel based power plants
it is relatively easy to control the energy production in order to produce just
the requested demand for energy. However, with renewable energy sources such
as solar and wind energy this is no longer possible, due to the intermittent and
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Figure 1.3: Global capacity of renewable energy sources for electricity generation.
Data obtained from [8], the data is subject to copyright ( ©IRENA, 2018).
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from PV panels for a group of 16 houses.

uncontrollable behaviour of these energy sources. In other words, for solar and
wind energy the times of production are determined by circumstances beyond
our control, e.g. the time of day, the season and the weather. This often leads to
a mismatch between energy supply and energy demand. For example, the energy
production from PV panels in a residential neighbourhood tends to peak in the
afternoon, when a lot of people are not at home and thus energy consumption in
homes is low, while during the evening the energy demand peaks and the energy
production from solar panels is lower/zero. Similar imbalance between supply
and demand happens on a seasonal scale, where the solar energy production is
highest in summer, while the time of year with the highest energy demand is
the winter. Figure 1.5 shows this seasonal mismatch, with high (mostly thermal)
demand in winter and high production in summer from PV panels. Note, that
the differences in electricity consumption are much smaller over the year when
considering weekly data such as in Figure 1.5. When the energy production from
renewables in the energy system is lower than the energy consumption, this can
be solved by backup power generation consisting of the traditional fossil-fuelled
power plants. However, the use of such power plants is exactly what we are
trying to reduce by means of the energy transition. Moreover, when the share
of renewables increases this approach is no longer an economically viable option
due to the high cost of the only seldom used backup power units, and other
solutions for this problem need to be found.
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There are a number of possible solutions to the aforementioned mismatch of
energy supply and demand, from which we discuss two promising solutions
here. The first is demand side management (DSM), which instead of changing
the energy supply to match the energy demand tries to match the demand to
the supply instead. To give an example of such an opportunity to shift the
energy demand, consider a dishwasher. If someone turns on the dishwasher
before leaving for work in the morning he/she tends not to care whether the
dishwasher runs immediately or a few hours later, as long as it is finished by the
time he/she gets home. This gives some flexibility on the demand side, which can
be used to match the energy demand to the intermittent energy supply coming
from renewable energy sources. The second solution is energy storage. Energy
from renewable sources may be stored at times of surplus production, so that
it may be used during times when these renewable sources produce insufficient
energy to cover the demand. While this sounds like a simple and straightforward
solution, it is quite expensive to install sufficient storage capacity into a system
to simply solve the entire problem. Researchers often combine storage and DSM
to obtain the better results.

While so far we have only discussed energy consumption in the form of elec-
tricity, a large portion of the energy consumption is in the form of heat. In
2016 41.2% of the total energy consumption in the Netherlands was used for
heating, 20.2% for transport, 15% for electricity to power devices and the final
23.6% for the manifacturing of products using energy carriers as resources (for
example using oil to produce plastic) [11]. If we look at the energy consumed
within households the balance shifts even further towards heating, with 18%
of the consumed energy being used to power devices and 82% being used for
heating in 2018 [3]. Currently, most Dutch homes are heated with boilers using
natural gas. However, the Dutch government wants to phase out heating of
homes using natural gas completely by 2050 [7]. This means heating of homes
needs to be done using another energy source than natural gas. One option is
to use electrical means of heating, for example heat pumps, which can be com-
bined with renewable sources of electricity generation discussed earlier. The
disadvantage of this is that even more renewable energy is needed, exacerbating
the problem of the supply-demand mismatch, as well as causing increased loads
on the electrical grid. Another option is to rely on district heating networks
combined with renewable ways of generating thermal energy, such as geothermal
energy, solar collectors or photovoltaic thermal (PVT) panels (PV panels which
next to electricity also produce heat), to supply the required heat. Alternatively,
in some cases a district heating system may be fed with waste heat from other
sectors, such as industry or agriculture. One challenge for district heating, when
using renewable sources depending on the sun, is again a mismatch of energy
supply and demand, but this time on a seasonal scale. During summer solar col-
lectors and PVT panels generate more energy than is demanded, while in winter
the situation is reversed (i.e. demand is higher and the production is lower), as
shown in Figure 1.5. In this case DSM is not a real option, since there is very
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Figure 1.6: Construction of the Ecovat prototype in Uden, the Netherlands.
Image source: [4]

limited flexibility on the energy demand side. However, thermal energy storage
can still provide a solution to this mismatch of energy production and demand.
Advantages of thermal storage over electrical storage is that it is much cheaper
to install large storage capacities, and that depending on the specific thermal
storage technology, it has a much longer lifetime. The challenge, however, is
to develop thermal storage solutions that can efficiently store energy on a time
scale of months. One such particular seasonal thermal energy storage (STES)
technology, the Ecovat system, is the focus of this work.

1.2 The Ecovat system

The Ecovat system is a novel STES solution developed by the Ecovat com-
pany [4]. It is designed to satisfy the heat demand of a neighbourhood of houses
throughout the year. Themost important component of the system is the Ecovat
buffer, which is a large subterranean water tank. Energy is stored in the Ecovat
buffer by heating the water inside the buffer. Different size Ecovat buffers are
planned, the smallest of which has a diameter of 11 meters. The depth of the
buffer is around 16 meters, independent of the diameter. Figure 1.6 shows a
photograph of the construction of the Ecovat prototype in Uden, the Nether-
lands. The Ecovat buffer is divided into Ns e g horizontal segments, which can be
charged or discharged individually through heat exchangers built into the buffer
walls, meaning that in principle each segment will be at a different temperature.
The temperature of the buffer segments decreases from the top segment to the
bottom segment to avoid mixing. It is important to note that these buffer seg-
ments are not physically separated, but merely specify different regions inside
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the buffer. More precisely, the Ecovat buffer is thermally stratified, which means
that segments of different temperatures do not mix but instead are seperated by
a thin region with a steep temperature gradient. This phenomenon of thermal
stratification is also observed in nature, for example in lakes. In that case the
top region of the lake is heated by the sun while the bottom region remains
cold, and the boundary between these two regions is a thin region with a steeply
decreasing temperature. By using the heat exchangers in the walls of the Ecovat
buffer in a smart way the buffer can remain thermally stratified, which has been
shown to increase the efficiency of water tanks [62, 76].

The charging of the Ecovat buffer, i.e. storing energy in the buffer by means
of heating the water in one of the buffer segments, is done through a set of
devices accompanying the buffer. This set consists of PVT panels, a resistance
heater, and a number of heat pumps. In general, alternative configurations of
devices are possible in the future depending on the specific circumstances and
requirements of the party interested in installing an Ecovat system. However,
in this thesis we limit our focus on this specific configuration of devices for
charging the Ecovat system. In addition to the devices accompanying the buffer
other locally available heat sources (for example waste heat from industry or
agriculture) may be used for charging the buffer.

The PVT panels can produce both thermal and electrical energy. The thermal
energy can directly be stored in the Ecovat buffer, while the electrical energy
can be used to power the other devices accompanying the buffer, thus indirectly
charge the buffer. Note, that excess electrical energy produced by the PVT
panels can also be sold on the energy market. Conversely, additional electricity
to power the devices in the system can be purchased on the energy market as
well. The resistance heater can be used to convert large amounts of electrical
energy into thermal energy on a one-to-one basis in a short time. However, the
resistance heater is quite inefficient at heating the buffer, since the coefficient of
performance (COP) of a resistance heater is one while the COP for heat pumps
can be significantly higher. Due to this the resistance heater is preferably only
used during times when the energy price on the market is low or even negative.
In this way the buffer can be charged while simultaneously making a profit on
the energy market. The last device to charge the buffer is an air-water heat pump,
which uses the ambient air as a heat source and one of the buffer segments as a
heat sink.

Aside from the aforementioned devices to charge the buffer the Ecovat system
also contains two water-water heat pumps for internal use. The aim of these
heat pumps is to increase the energy quality of the buffer (high temperature heat
is considered to have a higher energy quality than low temperature heat). This
is done by using one of the buffer segments as a heat source and using another
buffer segment with a higher temperature as the heat sink. The reason to aim
for a high energy quality is that a certain minimum temperature is required to
satisfy the heat demand of buildings connected to the Ecovat system. To satisfy
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heat demand at a given demand temperature, Td e m , at least one of the segments
of the buffer needs to be at a temperature higher than Td e m . In the envisioned
setup of the Ecovat system there are two water-water heat pumps because the
possible temperature range (5-90 °C) across the buffer segments is too large to
be efficiently covered by one heat pump, since a larger temperature difference
between the heat source and heat sink leads to a lower COP of the heat pump.
Due to this, one water-water heat pump covers the lower part of the possible
temperature range (in general only the bottom segments of the buffer) while the
other covers the higher part of the temperature range (in general only the top
segments of the buffer).

The Ecovat buffer is well insulated to minimize heat losses to the surrounding
environment. According to a thermal analysis in an internal report [86] the
heat losses are estimated at 10% or less over a period of 6 months, depending
on the size of the Ecovat buffer. Note, that significant mixing between layers
of different temperatures in water tanks may occur, if water is pumped into or
out of the water tank. As this leads to a reduction of the temperature of the
hot layer(s) in the water tank and thus reduces the ability to satisfy the heat
demand as noted above, the Ecovat system uses solely the heat exchangers in the
buffer walls for the charging and discharging of the buffer. By this, the amount
of mixing is significantly reduced compared to other water tank designs.

1.3 Problem statement and approach

The previous section gives some insight into the operation of an Ecovat system.
However, it becomes clear that there are still a lot of questions regarding the
operational control of the Ecovat system. When should the Ecovat buffer be
charged/discharged or which energy price should we be willing to accept to
charge the buffer? Do we charge the buffer at the current time or do we wait for
potentially even better circumstances, e.g. even lower energy prices, to charge in
the future? If we do decide to charge the buffer, in which way should we do that
or in other words, which of the devices in the system should be used to charge
which segment of the buffer for the best result? Due to the very large amount of
options in such a complex system, these questions do not have a simple answer.
As such, research is needed to determine the best way to perform the operational
control of the Ecovat system. This leads us to the main research question of this
thesis:

How can we model and determine the operational control of the Ecovat
system such that the resulting method provides good charging/discharging
strategies, with a computational time short enough to be usable in a real
world situation?

The goal when controlling an Ecovat system is to supply the heat demand of a
neighbourhood of houses connected to the buffer at minimum operational costs.
However, due to the complexity of the system and the dependency on uncer-
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tain input data, such as weather predictions and energy prices, determining the
optimal charging/discharging strategy is not possible in practice. As such, our
goal is to obtain good charging/discharging strategies, i.e. charging/discharging
strategies that approach this optimal strategy, but that can be achieved in practice.
Hereby the goal is not just to develop a model that gives charging/discharging
strategies for the Ecovat system, but specifically a model which can do so on
time scales short enough to be usable by an Ecovat system in the real world. For
the control of such a real system a model is required which can make decisions
on (sub)second time scales to be able to adapt quickly to changing circumstances,
such as a change in the energy price or a change in the weather conditions. To
make these decisions on such a short time scale for a system as complex as the
Ecovat system it seems likely that some kind of heuristic method is required for
the operational control of the system in the real world. However, related to the
discussion before it is unclear what such a method should look like.

To investigate this topic in detail, a number of sub-questions are defined to guide
the development of such a heuristic method. The first sub-question is:

1. What is a possible method for determining the control of the Ecovat system,
which is able to provide a good charging strategy for the Ecovat, assuming
computational time is not a limitation?

For the first step in the process of answering the main research question, we as-
sume that computational time is not a restriction to determine a good charging
strategy, and furthermore, we also assume an unlimited amount of computa-
tional resources is available. The question now is what a proper model of the
Ecovat system should look like? Such a model has to be an optimization model
which can give a good charging schedule for the Ecovat system, but might be
too complex to be solved in a reasonable amount of time given limited computa-
tional resources. The goal in this step is to develop an unrestricted model as the
basis for the development of further simpler models. This leads us to the second
sub-question:

2. How can we adapt the developed control method to be solvable given lim-
ited computational time and resources, while maintaining a good charging
strategy?

In the second step an adapted version of the model in the first step is developed.
This adaptedmodel should be solvable in a limited amount of time using a limited
amount of computational resources, more specifically in time scales of hours
to days on a personal computer. The goal is to achieve a model of the Ecovat
system that is usable in simulations over a time frame of a complete year. This
model will still be an optimization model. However, the solutions provided by
this model will most likely be slightly worse due to the necessary adaptations to
make it solvable given limited time and computational resources. Note, that the
goal in this step is only to develop a model which gives good charging strategies
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and is solvable in limited time, but which will still be too slow for use in practice.
Such a model is useful to gain insight into the system, based on which we can
develop a simpler heuristic model that is usable in practice. Furthermore, this
model can then also be used as a benchmark to compare a simpler model against.
This leads us to the third sub-question:

3. How can we use the insights obtained from the approach developed for the
second sub-question to derive a heuristic method capable of controlling an
Ecovat system in real time, while maintaining a good charging strategy?

The final step is to develop a heuristic method which can provide good charging
strategies for the Ecovat system on a time scale short enough to be usable in a real
world Ecovat system. This can be achieved by using the insight obtained from
the model in the second step to develop a heuristic method which can generate
charging strategies very quickly. Furthermore, the strategies obtained using this
heuristic method can then be compared to the strategies obtained with the model
from the second step. In this way we can ensure that the strategies obtained using
the heuristic method are of good quality, i.e. close to the ones obtained using an
optimization model. Finally, after the development of such a heuristic method
for the Ecovat system, we are interested in testing the robustness of this model.
This leads us to the final sub-question:

4. How robust is the developed approach of the Ecovat system to unpredicted
deviations in the input data?

The developed model of the Ecovat system requires a number of inputs, such as
data on the expected heat demand, predictions for the weather, and predicted
energy prices on the energy market, to generate a charging/discharging strategy.
However, some of this data is expected to be unreliable, since in general making
predictions about the future is very hard, especially for volatile processes such
as the energy prices. As such, it would be preferable to have a model that either
does not depend on predictions at all, or if it does is robust against errors in
these predictions. Therefore, the robustness of the developed heuristic model to
errors in prediction is also considered in this thesis. This is done, among others,
by means of a case study in which a neighbourhood of houses, including an
Ecovat system, is simulated in a DSM setting.

1.4 Thesis outline

In this introductory chapter we have sketched the changes the energy system
is currently undergoing, shifting from the burning of fossil fuels for generating
energy to more sustainable alternatives. The challenge to match energy supply
and demand arising from this transition can, among others, be addressed using
energy storage. We have introduced a specific energy storage technology, the
Ecovat system, which is the STES technology this work focusses on.
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The remainder of this thesis is organized as follows. In Chapter 2 we give an
overview of different thermal storage solutions. We focus in particular on water
tanks, since those are the thermal storage solutions which closest resemble the
Ecovat system. We conclude the chapter with some background on district heat-
ing systems and DSM, specifically discussing DSM research including a thermal
storage. In Chapter 3 we describe the modelling of the Ecovat system and its
control in the form of an integer linear programming (ILP) model, which gives
good charging/discharging strategies for the Ecovat system but is too slow even
for simulation purposes. Subsequently, in Chapter 4 we describe the modifica-
tions to this ILP that are necessary to ensure it becomes usable in simulations.
Next, in Chapter 5 we use the insight gained from the ILP models developed
in Chapters 3 and 4 to develop a heuristic method for controlling the Ecovat
system, which is fast enough such that it is usable in practice. This heuristic
method is applied to a case study described in Chapter 6 in which we simulate a
neighbourhood including an Ecovat system in a DSM setting. Finally, in Chap-
ter 7 the conclusions of this thesis are presented and potential avenues for future
work are discussed.
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152
Background

Abstract – In this chapter we provide an overview of thermal energy storage
technologies, with specific focus onwater tanks, since that is the thermal energy
storage technology which closest resembles the Ecovat buffer. In the discussion
on water tanks we describe similarities and differences between these and the
Ecovat buffer. Furthermore, we provide a short discussion on district heating
systems and how the trend of decreasing temperatures in such systems increases
the usefulness of thermal storage technologies such as the Ecovat. Finally, we
conclude with a short overview of demand side management (DSM) methods,
focussing in particular on previous DSM research integrating thermal energy
storage.

As described in the previous chapter, one of the solutions to resolve themismatch
between demand and supply caused by the energy transition is energy storage.
Energy storage exists in many forms, such as: electrochemical storage (batter-
ies [35]), magnetic storage (superconducting magnetic energy storage [20]), me-
chanical storage (pumped hydro storage [74], compressed air storage [28], fly-
wheels [54]) and thermal storage. In this thesis we focus solely on thermal
energy storage, since the Ecovat system is a thermal energy storage technology.
For more information on the other mentioned energy storage technologies we
refer to literature reviews such as [26] and [15].

Thermal energy storage can be divided into three categories, sensible thermal
energy storage, latent thermal energy storage and chemical thermal storage. In
sensible thermal energy storage, energy is stored by means of heating the storage
medium, for example water or rocks. In latent thermal energy storage energy
is stored by means of a phase change in the storage medium, which in the case
of latent thermal energy storage are called phase change materials. Finally, in
chemical thermal energy storage heat is stored by means of reversible chemical
reactions, with one direction of the chemical reaction being endothermic (energy
is absorbed) and the other direction being exothermic (energy is released).
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In the remainder of this chapter we first describe different thermal storage tech-
nologies. After that we go into more detail on water tanks specifically, since
those are the thermal storage systems which closest resemble the Ecovat system.
Finally, we give some background on district heating systems and demand side
management.

2.1 Thermal energy storage

In this sectionwe present a short overview of the aforementioned three categories
of heat storage, i.e. sensible thermal energy storage, latent thermal energy storage
and chemical energy storage. Even though thermal energy storage can also be
used for storing cold (see e.g. [63, 96]), we focus mainly on the storage of heat
in this thesis, since that is the focus of the Ecovat system.

2.1.1 Sensible thermal energy storage

Asmentioned above in sensible thermal energy storage energy is stored bymeans
of increasing the temperature of the storage medium. Many different storage
media can be used for thermal storage, each with their own advantages and
disadvantages. The most commercially used storage medium is water [77]. The
advantages of using water as storage medium are its wide availability, low cost,
non-toxicity and high specific heat [19]. Other common storage media are earth
materials, i.e. soil, rocks, sand, gravel etc. Like water, these earth materials are
cheap, easily obtainable, non-toxic and non-flammable [19]. They can withstand
higher temperatures than water, but have lower specific heats. Additionally,
there are many other possibilities for storage media for sensible thermal storage,
such as e.g. thermal oils, molten salts and liquid metals [19, 85]. Compared
to water these materials have a larger temperature range over which they can
operate. However, they have (much) lower specific heats and are more expensive.
Specific heats of a number of materials used in sensible thermal storage are given
in Table 2.1 [18].

In the following we discuss a number of thermal storage technologies that use
water and/or earth materials as their storage media. Since the objective of the
Ecovat system is to provide seasonal thermal storage for a group of houses, and
since the most used storage media in seasonal thermal storage technologies are
water and earth materials [73], we focus on technologies using those storage
media in particular.

Water tanks: Water tanks are man-made structures and can be constructed under
or above the ground. They are generally thermally stratified, meaning that there
are separated regions of different temperatures within the water tank. Water
tanks have to be well insulated to prevent large heat losses to their surroundings.
Since a water tank is the thermal storage technology that closest resembles the
Ecovat buffer we discuss water tanks in more depth in Section 2.2.
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Storage material Type Specific heat (kJ/kg°C)

Water Liquid 4.18
Rock Solid 0.96
Sand Solid 0.83

Concrete Solid 0.85
Mineral oil Oil 1.97

Therminol VP-1 Oil 1.55
NaNO3 Molten salt 1.66
KNO3 Molten salt 0.96
NaOH Molten salt 0.92
KOH Molten salt 1.34
Al Liquid metal 0.89
Na Liquid metal 1.3

Table 2.1: Specific heat of some materials used in sensible thermal storage, data
obtained from [18]

Aquifer thermal storage: In aquifer thermal storage at least two wells (one hot
and one cold well) are drilled in an aquifer (a underground layer of material
permeated by water). In winter heat is extracted from the hot well and used to
heat the building(s) connected to the aquifer thermal storage. The resulting cold
water is then injected into the cold well. During summer this process is reversed
and water from the cold well is heated by e.g. solar energy or heat from the
building(s) and is injected into the hot well. Thermal energy is stored in both the
groundwater as well as the material in the aquifer, this means the volumetric heat
density depends on the properties of the material in the aquifer [32]. Aquifer
thermal energy storage can not be employed everywhere due to its geological
requirements, such as a sufficiently thick aquifer layer and low to no groundwater
flow within the aquifer [93]. Even though the energy density of aquifer thermal
storages is limited due to the low temperatures used (for example aquifers in the
Netherlands have a maximum temperature of 15-20 °C and a maximum injection
temperature of 25 °C [10]), they have a high storage capacity due to their large
volumes [33]. Aquifer thermal storages are implemented worldwide, with the
majority (85%) in The Netherlands [41].

Borehole thermal storage: In borehole thermal storage deep vertical shafts, called
boreholes, are drilled into the soil. Inside these boreholes tubes are placed
through which the heat exchanger fluid flows and exchanges heat with the sur-
rounding soil. This is one of the differences compared with aquifer thermal
storage, where usually the ground water itself is used as heat transfer fluid. An-
other difference is that borehole thermal storage is not dependent on the presence
of an aquifer, or more generally the presence of groundwater, but can be used in
most ground formations [61]. Operation of borehole thermal storages is similar
to that of aquifer thermal storage. In summer the used heat transfer fluid is hot
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and heats up the surrounding soil to store heat in it, conversely in winter the
used heat transfer fluid is cold and extracts heat from the soil to provide energy,
for example for space heating. As with aquifer thermal storage the energy density
of borehole thermal storage is low. When compared to water tanks the volume
of the borehole thermal storage needs to be 3-5 times larger to store the same
amount of energy [93]. However, borehole thermal storage is less geographically
limited than aquifer thermal storage and less expensive than water tanks [61].
Borehole thermal storage is used around the world [61], with a well know ex-
ample being the Drake Solar Landing Community in Okotoks, Canada. In the
Drake Solar Landing Community, a small short-term energy storage and a bore-
hole thermal energy storage consisting of 144 boreholes supply energy for space
heating of 52 energy-efficient houses throughout the year. The energy in this
system is generated by PV panels. It was the first system of this kind designed
to supply more than 90% of the space heating requirement of a neighbourhood
throughout the year. In the fifth year of its operation a solar fraction of 97%was
reported [83], i.e. 97% of the space heating requirements were satisfied using
solar energy, clearly demonstrating the potential of such systems. However, that
year only 36% of the heat supplied to the borehole thermal storage was retrieved
for later use, showing that there are also sizeable heat losses in such a system.

Solar ponds: Solar ponds are generally 1-3m deep and designed to retain captured
sunlight. Solar ponds have a reversed natural temperature gradient. In other
words, the hot water is at the bottom of the pond while colder water is on top.
This reversed gradient is maintained by a layer of increasing concentrations of
salt towards the bottom of the pond, such that the density of the salt water at
the bottom of the pond is larger than the (less salty) water on top of it, even
when it is heated to a high temperature [34]. Due to the layer of increasing
density convective flows upwards are suppressed and heat exchange within the
pond only happens through conduction [89]. This leads to an insulating layer
that allows solar irradiation to penetrate the pond but retains the heat in the
bottom layer. Heat can be extracted from the pond by a heat exchanger in the
bottom layer of the pond or by extracting water from the bottom layer, using
an external heat exchanger, and returning the cold water back to the top of the
pond [37]. Solar ponds have a number of applications such as the heating of
buildings, power production, industrial process heating, desalination and salt
production [37, 84]. An example of a solar pond used for heating purposes is
a 2000 m2 pond constructed in 1978 in Miamisburg, Ohio to heat a swimming
pool during summer and the accompanying bathhouse throughout the entire
year [34]. However, even though solar ponds show potential as thermal energy
storage, a review of the literature shows only a few examples of solar ponds
in use. According to [33] favourable conditions for solar ponds include much
sunshine, little snow and easy availability of land, which may explain why we do
not see solar ponds being used much in e.g. Western Europe. However, in [84]
it is mentioned as a good option for developing countries.

Rock beds: Rock beds, or packed beds, consist of a container of rocks or other
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solid materials used to store heat. This is done by circulating a heat transfer
fluid, usually water or air, through the bed. To store heat the heat transfer fluid
flows through the bed in one direction, while during discharge the direction is
reversed. This means that contrary to water tanks, simultaneous charging and
discharging is not possible [77]. When air is used as the heat transfer fluid it does
not contribute to the storage, while if water is used the heat transfer fluid does
contribute to the storage [73]. Advantages of using rocks instead of water as the
heat storage medium include the easier containment of rocks as well as the higher
temperatures they can withstand. However, as mentioned before, a significant
disadvantage is the lower specific heat of rocks compared to water, which means
a larger volume is required to store the same amount of thermal energy (around
a factor of 3 larger [33]). While there is a lot of research being done on rock beds
in an experimental setting, e.g [17, 21, 29], there are only a few examples of rock
beds currently in use. One of these examples is presented in [99] were a rock
bed is used to supply space heating to a dormitory and cafeteria on Qinhuang
Island, China.

As evident from the discussion above sensible heat storage technologies are well
developed. Different forms, mainly water tanks, aquifer thermal storage and
borehole thermal storage, of sensible heat storage are currently being used in
practice in seasonal thermal storage projects around the world.

2.1.2 Latent thermal energy storage

In latent thermal energy storage thermal energy is stored by means of a phase
transition in the storagemedium. Storagemedia for latent thermal energy storage
are called phase change materials (PCM). Different phase changes can be used
for latent thermal energy storage. While liquid-gas PCM have a high latent heat,
they suffer from a high change in volume when transitioning from one phase
to the other [77]. The most used materials are solid-liquid PCM, which only
suffer from limited volume variations during the phase change [77]. The usage
of solid-solid PCM, where the phase change occurs between different crystalline
phases, is also being researched [39].

Advantages of latent thermal energy storage over sensible thermal energy stor-
age are the much higher energy densities involved in latent thermal energy stor-
age [93] as well as the near constant temperature during the phase change [77].
This means that the latent thermal energy storage can be discharged at a near
constant temperature. Disadvantages of latent thermal energy storage include
low thermal conductivity and, depending on the specific PCM, flammability
or corrosiveness [19]. In general PCM are also more expensive than sensible
thermal storage materials [19].

PCM are divided into organic and inorganic materials. Organic PCM include
paraffins, fatty acids, esters, alcohols and glycols [19]. Advantages of organic
PCM compared to inorganic PCM are that they are not corrosive, are chemically
and thermally stable and show little to no supercooling [77, 97] (supercooling is
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the phenomenon of a material solidifying (freezing) at a temperature below its
normal freezing point, which negatively impacts the efficiency of the PCM [25]).
Disadvantages are their low thermal conductivity, low phase change enthalpy and
organic PCM being flammable [97]. Inorganic PCM include salts, salt eutectics,
salt hydrates and metals and their alloys [19]. The advantage of inorganic PCM
is that they have greater phase change enthalpy than organic PCM. However,
disadvantages include corrosiveness, supercooling and thermal instability [97].
The thermal properties of a large number of different materials, both organic
and inorganic, have been studied for use as PCM. Many literature reviews have
been conducted and provide listings of these materials, e.g. [19, 81, 97].

A lot of research has been done on the integration of PCM in buildings, such as
in the walls and floor [51]. The benefits of this are reduced energy consumption
and smoothing out the temperature fluctuations inside the building, leading
to higher thermal comfort. The amount of research done on seasonal latent
thermal storage is quite limited thus far. One example of seasonal latent thermal
energy storage is presented in [69], where an experimental greenhouse is heated
using flat plate solar air collectors and a latent thermal storage. For this system
an average net energy efficiency of 40.4% was obtained. This is similar to the
efficiency of 36% reported for the borehole thermal storage working in the Drake
Solar Landing Community [83] (see Section 2.1.1).

Currently, latent thermal energy storage systems are mostly still in the research
and development phase [77]. Latent thermal energy storage shows promise,
especially in low temperature human comfort applications, such as the earlier
mentioned PCM integrated in the building envelope [51]. However, the cur-
rently preferred technology for large scale systems, such as seasonal thermal
storage, is sensible thermal storage [19].

2.1.3 Chemical thermal storage

In chemical thermal storage thermal energy is stored by means of chemical
processes. The storage is charged by means of a endothermic process, which can
be reversed to discharge the storage later. An example is a chemical reaction,
where a material A is separated into two materials B and C when heat is applied
to A. When B and C are mixed again at suitable conditions, energy in the form
of heat is released [77, 95]. In other words, the (reversible) reaction is given by:

A+heat←→ B +C .

A specific example given by [95] is the reversible dissociation of ammonia:

2N H3+heat←→N2+ 3H2.

Chemical thermal energy storage is divided into two categories, one using chem-
ical reactions (such as the example shown above) and the other using sorption
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processes [95]. In sorption processes a gas is absorbed by a liquid or solid, cre-
ating a new compound (absorption), or bonds to the surface of a solid without
creating a new material (adsorption) [93, 95].

One of the major advantages of chemical thermal storage is that there are no
significant long-term heat losses during storage, which is a large advantage for
seasonal thermal storage [73]. These low heat losses are due to the fact that as long
as the reaction products are kept separated heat losses are restricted to sensible
heat losses, i.e. the materials cooling down, which are usually much smaller
than the amount of heat produced in the reverse reaction during discharge [77,
93]. Another large advantage of chemical thermal energy storage, compared to
sensible and latent thermal energy storage, is the much larger energy densities
that can be obtained in chemical thermal energy storage. To illustrate this, in
[44] a comparison of the size of the storage needed to store 10GJ of energy using
different storage techniques is presented. For a storage using chemical reactions a
volume of 1m3 is needed, for sorption chemical storage the volume required is 10
m3, for latent thermal storage the volume grows to 20m3 and for sensible storage,
using water with a temperature range of 70 °C, a volume of 34 m3 is required.
Disadvantages of chemical heat storage include complex reactions, low efficiency
and high investment costs [95]. To be able to alleviate these disadvantages a lot
of effort has been put into researching different materials, conducting numerical
studies and work on reactor designs. For summaries on this we refer to [50, 95].

From the mentioned advantages of chemical thermal storage (i.e. high energy
density and low long-term heat losses) it is clear that it has large potential. How-
ever, currently chemical thermal storage is in the laboratory stage and further
research is required to make it commercially viable [19, 50].

2.2 Water tanks

In this section we provide a more in depth discussion on water tanks, since
the Ecovat buffer resembles other water tank designs closely. Furthermore, we
discuss the similarities and differences between the Ecovat buffer and other water
tank designs.

As mentioned in Section 2.1.1 water tanks are man-made structures to store
thermal energy, which is done by increasing the temperature of the storage
medium, in this case water. Discharging of a water tank is done by taking hot
water out of the tank, while cold water is added back to the tank. For charging
the water tank different configurations exist, divided into direct and indirect heat
transfer systems. In direct heat transfer water tanks hot water from a collector,
which can be any device supplying hot water, is directly pumped into the water
tank without any heat exchanger (top left in Figure 2.1). In indirect heat transfer
systems the charging is done through a heat exchanger. The three most common
configurations for these systems are [45]:
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collector
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Figure 2.1: Common water tank configurations.

» Immersed heat exchanger: in the immersed heat exchanger configuration
the heat exchanger is placed inside the water tank itself (top right in
Figure 2.1).

» External heat exchanger: in the external heat exchanger configuration an
external heat exchanger heats the water that is being pumped into the
water tank (bottom left in Figure 2.1).

» Mantle heat exchanger: in the mantle heat exchanger configuration a large
part of the tank walls is covered by a so called mantle, which can be
seen as a second tank surrounding a part of the first tank. This mantle
functions as a heat exchanger (bottom right of Figure 2.1).

The charging of the Ecovat buffer is somewhat similar to that of a water tank
using a mantle heat exchanger. However, instead of a single mantle for charging
the entire water tank each segment can be charged individually through the
heat exchangers in the Ecovat buffer walls. Furthermore, the heat exchangers
in the Ecovat buffer work differently than a mantle heat exchanger. The heat
exchange in the Ecovat buffer happens through pipes integrated into the buffer
walls instead of a mantle. The water in the mantle shows recirculating flow [80],
while this does not happen in the heat exchangers of the Ecovat buffer, since
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those are simply pipes through which water is pumped. Another difference is
in the discharging of the Ecovat buffer compared to other water tanks. In the
Ecovat buffer the discharging also happens through the same heat exchangers
while in most other water tanks this is done by pumping water into and out of
the water tank.

2.2.1 Thermal stratification

Thermal stratification is the phenomenon where the water inside the tank, due
to a difference in density is separated into two regions, a hot, less dense, water
region at the top of the tank and a cold, more dense, water region at the bottom
of the tank. The degree to which a water tank is thermally stratified ranges from
no stratification, i.e. the entire tank is at more or less the same temperature, up
to perfect stratification where the two regions are completely separated with no
transition area between them. However, in practice a thermally stratified water
tank will not show perfect stratification. Instead, there will be a generally thin
transition region between the hot and cold regions with a steep temperature
gradient from the temperature of the hot region to the temperature of the cold
region. Opposed to most water tanks, which only have 2 different tempera-
ture regions, the Ecovat buffer has multiple segments at different temperatures.
This implies that the Ecovat buffer has a transition region between each two
neighbouring segments.

An increased degree of thermal stratification generally leads to a more efficient
system [62, 76]. The four primary reasons for a decrease in thermal stratification
according to [76] are; 1) heat losses through the tank walls/ceiling/floor to the
surrounding environment, 2) heat conduction from the hot region of the tank
to the cold region of the tank, 3) vertical conduction through the walls of the
tank and 4) mixing inside the water tank during the charging and discharging
processes. Of these four the last is in general the most important reason for a
decrease in the thermal stratification. Furthermore, [76] notes that significant
mixing losses may occur if the heat is stored over long periods of time.

The effect of design parameters of water tanks on the thermal stratification has
been studied extensively. For the position of the inlet, i.e. the point where
cold water enters the water tank, the best position was found to be as close
as possible to the bottom of the tank [62]. Furthermore, it was found that a
low flow rate is beneficial to the degree of stratification in the water tank [52,
62, 94, 101]. Systems with multiple or flexible inlets were found to lead to a
better stratification as well. For example [62], shows that a copper tube with
holes connected to the inlet inside the water improves thermal stratification
by depositing the incoming water at the vertical position inside the tank with a
similar temperature, while [40] indicates that the use of a flexible tube connected
to the inlet of thewater tank shows the same improvement. Similarly, [42] shows
that having two outlets to draw water from during discharge improves thermal
stratification, leading to better performance. The amount ofmixing is suppressed
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if the difference in temperature between the hot water in the water tank and
the cold water injected in the inlet is large [52, 62, 94, 101]. Finally, a higher
aspect ratio (heigth/diameter) of the water tank is found to increase the thermal
stratification [52, 62]. The above discussed design parameters are relevant for all
the water tank configurations shown in Figure 2.1, where discharging is done
by drawing hot water from the top of the water tank while inserting cold water
is done at the bottom of the tank. Since mixing in the water tank is the most
important reason for a decrease in thermal stratification [76] it makes sense
that design choices which limit the amount of mixing in the tank lead to better
thermal stratification.

For the charging of a system using a mantle heat exchanger, which closest re-
sembles the way the Ecovat buffer is charged, similar research on thermal strat-
ification inside the water tank and the mantle itself has been done. One of the
conclusions from [58] is that a mantle heat exchanger promotes thermal stratifi-
cation inside the water tank even if the temperature at the inlet of the mantle is
lower than the temperature of the inner tank at the same height. In [57] different
positions of the inlet of a mantle heat exchanger are researched, showing that for
a high temperature at the inlet of the mantle the inlet should be placed at the top
of the mantle, while for a lower temperature a low position of the inlet improves
performance. Similar to the discussion above, it is observed that minimizing the
amount of mixing in the water tank in systems using a mantle heat exchanger
leads to better thermal stratification.

In the Ecovat buffer the amount of mixing is minimized by never pumping
water into or out of the buffer. The charging and discharging of the buffer is
done solely through the heat exchangers integrated into the buffer walls. During
charging and discharging there will be some flow in the buffer due to temperature
differences at the wall compared to the center of the buffer. The expectation is
that this flow will be restricted to the segment that is being charged/discharged
at that point in time as long as the temperature difference between the water
in the heat exchanger and the water in the buffer segment is not too large. As
such the thermal stratification between segments would not be disturbed. This
expectation is confirmed in a preliminary two-dimensional numerical study [38].
However, a verification of this behaviour using experimental data obtained from
an Ecovat in practice is not available yet, since such data was not available at the
time of writing.

2.2.2 Modelling of water tanks

Many different models for water tanks exist, ranging from very simple one-
dimensional models to complex three-dimensional computational fluid dynam-
ics (CFD) models. In general, complex multi-dimensional models describe the
thermal processes inside the water tank better. However, this comes at the cost
of a higher computational effort. In this section we present an overview of some
of these models.
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Time t1

V1 V2 V3

T1 T2 T3

Top water tank Bottom water tank

Step 1: add hot
water from
collector

Vc ,1 V1 V2 V3

Tc ,1 T1 T2 T3From collector

Step 2: add cold
water from

load

Vc ,1 V1 V2 V3 Vl ,1

Tc ,1 T1 T2 T3 Tl ,1 From load

Time t2

Vl ,1 V1 V2 V3 V4 Vc ,1

T1 T2 T3 T4 To collectorTo load

Figure 2.2: Operation of a plug flow model.

Two one-dimensional modelling approaches are presented and compared in [56].
The first is a multinode approach, in which the buffer tank is divided into a
number of nodes, with an energy balance equation describing the energy, or
equivalently the temperature, of each node. The second approach is a plug flow
model, which uses a varying number of segments of varying sizes, with different
temperatures. The operation of such a model is depicted in Figure 2.2. In this
model for every time step a volume Vc ,t of hot water, with temperature Tc ,t ,
coming from the collector is added to the top of the tank (step 1 in Figure 2.2).
If Tc ,t is larger than the highest temperature segment T1 in the water tank, a
new segment is created. If Tc ,t ⩽ T1, Vc ,t and V1 become one segment with
an averaged temperature. Simultaneously a volume of cold water coming from
load is added to the bottom of the tank in a similar way (step 2 in Figure 2.2).
These incoming volumes shift the temperature profile in the tank up or down,
depending on the relative sizes of the volumes. The parts of the profile that ’fall
outside’ the boundaries of the water tank are returned to the collector (Vc ,1 of
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cold water) and load (Vl ,1 of hot water). When comparing the approaches the
multinode model performs better in general than the plug flow model [56].

In [68] the authors compare a one-dimensional and a two-dimensional model
for a water tank. The one-dimensional model is again a multinode model, in this
case combined with a computational artifact to prevent temperature inversions
(i.e. a colder node on top of a hot node) at the top of the tank. This can be
done by either swapping the two nodes involved in such a temperature inversion,
or by assigning them both the mean temperature of the two nodes. The two-
dimensional model uses the finite volume method [91] in cylindrical coordinates.
The two-dimensional model is validated by experiments and used as a benchmark
for comparison with the one-dimensional multinode model. Even though there
is no physical base for using one of the computational artifacts mentioned earlier,
[68] finds that the one-dimensional multinode model incorporating such an arte-
fact show results close to those obtained with the two-dimensional model. The
authors conclude that for long-term simulation of solar water heating systems a
one-dimensional model is sufficient, while a two-dimensional model is useful to
get an understanding of the thermal phenomena taking place in water tanks.

In [94] a three-dimensional CFDmodel of a water tank is presented. The authors
validate their model based on experimental data from literature. The developed
CFD model is then used to study the thermal processes in a water tank for differ-
ent tank parameters. The authors conclude that the developed CFD model is a
useful tool to support the design of efficient water tanks. The trade off between
complexer models requiring higher computational times is nicely illustrated, as
the authors report simulation times of 9 to 24 hours for cases simulating 1000
to 3700 seconds of water tank operation, making it infeasible for simulations
over very long time horizons. Another example of a CFD model, this time for
a water tank with a mantle heat exchanger, is presented in [79]. The predictions
made by this CFD model are compared with experimental data, showing good
agreement. A simpler model for a water tank with mantle heat exchanger is
presented in [53]. The goal of [53] is to develop a model with shorter simulation
times than CFD models, such that it is feasible to simulate long time periods.
The authors use a zonal model for a water tank with a mantle heat exchanger,
which divides the simulated volume into a number of zones of constant tempera-
ture. The results show a difference between experiments and the zonal model of
less than 7%. The authors conclude that the model is useful for long simulations,
where CFD models may be computationally too expensive.

To conclude, we see that to specify the thermal processes in water tanks com-
plex models, such as CFD models, are very useful. However, in cases where
the exact thermal behaviour inside the water tank is not as important simpler
models are often sufficient. This is especially true when dealing with simulations
over long time periods (e.g. simulation of an entire year for seasonal thermal
storage), where for example CFD models may be infeasible due to their high
computational times.
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2.3 District heating systems

District energy systems consist of a system of pipes connecting groups of houses
with the goal of supplying those houses with thermal energy. In general these
systems are used for heating, cooling or both. Here, we focus exclusively on
such systems used for heating, i.e. district heating systems. There are many
advantages of a district heating system compared to heating through for example
individual gas boilers (the currently most common way of space heating in the
Netherlands), which include [75]:

» A reduced consumption of fuel, which leads to lower costs and emissions.

» Ease of using local energy sources (e.g. waste heat from industry).

» Safer operation.

» Increased reliability.

Disadvantages include [75]:

» Large up front investment costs to realize a district heating system.

» Requiring a heat source close by.

» Requiring sufficient consumers nearby.

Based on this, district heating may not be economically feasible everywhere [60,
75]. Nevertheless, district heating networks are expected to be an important
part of the future energy system in Europe [70].

A Dutch policy study on district heating systems [46] arrives at the same con-
clusion, namely that district heating has large potential to be an important piece
of the Dutch energy system of the future. A report from 2009 [78] shows only
a small amount of district heating systems in the Netherlands at that time. How-
ever, recently the interest in district heating systems has increased. For example
the municipality of Enschede (home of the University of Twente) is extending
its district heating system with the goal of supplying at least 50% of the city’s
heat load [14]. Furthermore, two older district heating systems which previ-
ously used a combined heat and power (CHP) unit and gas boilers as their heat
sources will use a more sustainable energy source in the future. This energy
source is the Twence waste incineration plant, which will be extended to include
a biomass plant (biomass from green waste material) to supply the extended
district heating network in Enschede.

The history of district heating systems is generally divided in several generations
of such systems. The current district heating systems fall into the third genera-
tion of district heating systems. In [66] an overview of the first three generations
of district heating systems is provided as well as an outlook to the future fourth
generation of district heating systems, both of which we summarize below. The
first generation of district heating systems, established between 1880 and 1930,
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used steam as their heat carrier. Two major disadvantages from using steam as
heat carrier are the high thermal losses as well as the danger of steam explosions,
which have lead to a fatal incident as recent as 2007 in New York [23], whose
district heating system still uses steam as its heat carrier. The second generation
(1930-1970) switched to pressurized water, with temperatures generally above
100 °C, as the heat carrier. Even though this eliminates the danger associated
with using steam as a heat carrier, the heat losses are still relatively high due
to the high temperature of the water. The third generation, which includes all
recently developed district heating systems, still uses pressurized water as the
heat carrier, but generally at temperatures below 100 °C. This leads to a decrease
in the heat losses. In the future fourth generation of district heating systems
the trend of lowering the temperature of the water in the systems in an effort
to reduce heat losses is expected to continue. The water temperatures in the
fourth generation of district heating systems is expected to be between 30 and
70°C [66]. One issue with such very low temperatures in a district heating
system is that an additional device is needed within individual households to
increase the water temperature for use as domestic hot water to avoid the risk of
legionella contamination, which may offset the economic benefit gained from
the reduced heat losses in the system. However, in [24] an economic analysis is
presented showing that (ultra-)low temperature (40 °C) district heating systems
are economically feasible at least in Germany.

The trend towards lower temperatures in district heating systems allows them to
be combined more effectively with low temperature thermal storage technolo-
gies, such as the Ecovat system. Assuming the output temperature of the thermal
energy storage (TES) is not increased before being delivered to the district heat-
ing system, the effective capacity of the storage is given by:

Ce f f = ms t cp (Tmax,s t −Td h s ), (2.1)

where, Ce f f is the effective capacity of the energy storage, ms t is the mass of the
storage medium, cp is the specific heat coefficient of the storage medium, Tmax,s t
is the maximum allowed temperature in the storage and Td h s is the temperature
of the district heating system. The intuition behind the definition of the effective
capacity as given by Equation 2.1 is that without a device to increase the output
temperature of the storage technology any thermal energy in the storage at a
temperature lower than the demanded temperature can not be used to satisfy
this energy demand. When a TES, such as the Ecovat system, is connected to a
district heating system, a lower temperature in the district heating system leads
to a larger effective capacity of the thermal storage, which makes it more effective
in shifting energy from times of surplus production to times of surplus demand.
To achieve a better performance of the TES a smart control strategy is required,
as demonstrated for example in [90], where a model predictive control approach
based on a mixed-integer linear programming model is used to show that both
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in simulations and experiments a decrease in the costs of supplying energy with
a district heating system is achieved.

2.4 Demand side management

As mentioned in Chapter 1 the massive introduction of renewable energy sour-
ces in the energy system leads to an increase in the difficulty of matching the
supply and demand of energy. Energy storage is one of the technologies that
supports the continuous matching of energy supply and demand, by storing
energy during times of excess supply and supplying energy during times of ex-
cess demand. Another means of maintaining the balance between supply and
demand is demand side management (DSM). DSM is defined as any measure
taken on the demand side of the energy system to increase the performance of
the energy system [71]. Some examples of DSM include load shedding or shift-
ing the energy demand of certain devices, like electric vehicles, to times with
high energy supply or less total energy consumption. Since DSM is not the main
focus of this thesis we only refer to other work containing extensive discussions
on DSM. For an overview of DSM methods we refer to e.g. [71]. DSM in a
broader context, including for example monitoring and communication systems
for DSM, is surveyed in [82].

Traditionally, DSM is often used in the development of smart grids. The defini-
tion of a smart grid by the International Energy Agency [1] is:

"A smart grid is an electricity network that uses digital and other advanced technolo-
gies to monitor and manage the transport of electricity from all generation sources to
meet the varying electricity demands of end-users. Smart grids co-ordinate the needs
and capabilities of all generators, grid operators, end-users and electricity market
stakeholders to operate all parts of the system as efficiently as possible, minimising
costs and environmental impacts while maximising system reliability, resilience and
stability."

As we can see, this definition strictly concerns the electricity grid. However,
recently an increased interest in so called smart energy systems is observed [67].
The definition of a smart energy system is given by [64] as:

"A smart energy system is defined as an approach in which smart electricity, thermal
and gas grids are combined with storage technologies and coordinated to identify
synergies between them in order to achieve an optimal solution for each individual
sector as well as for the overall energy system."

The reason to prefer a smart energy system over an approach just focussing
on one energy carrier is that a strong reduction in costs may be achieved by
using a smart energy system approach. An example of this is shown in [65],
where the author shows that for transforming the heating sector of Denmark
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to a 100% renewable energy solution a smart energy system approach leads to
significantly lower investment costs than a smart grid approach just focussed on
electricity. One of the reasons for this is that, at least currently, thermal energy
storage is much cheaper than electricity storage. As such it makes sense to not
only consider electricity, but also include other energy carriers, such as thermal
energy, on a smaller scale, such as a microgrid of a neighbourhood, as well.

Since we are focussing on thermal energy storage in this thesis, we limit the rest
of our discussion to DSM that includes thermal energy storage. Many of the
thermal storage technologies discussed in Section 2.1 are potential candidates for
use in DSM systems [22]. We conclude this section by discussing some examples
of DSM research incorporating thermal energy storage.

In [59] a microgrid consisting of a single house containing a number of household
devices and both electrical and thermal storage is simulated. The microgrid is
modelled as a mixed integer linear programming model. For the thermal storage
a very simple model is used that just considers the energy content of the storage
at every time step. The conclusion is that by using DSM and storage a reduction
of costs between 4.7 and 7.6% can be achieved for the simulated case. In [98] a
stochastic non-convex optimization model is presented for the optimization of
a microgrid. This model is then simplified to a linear programming model to be
able to solve it. In this model, the thermal energy storage is again modelled by
just considering the energy content of the storage at every time step. The model
is applied to historical data from a college in San Francisco and a 27.5% reduction
in costs is reported when comparing this model with a greedy approach. Three
buildings, each with their ownmicrogrid are considered in [49]. A comparison is
made between a case where each microgrid operates on its own and a case where
an energy management system is used to combine the operation of the three
microgrids. In the second case a larger network in which the three microgrids are
embedded is considered. The larger network includes thermal storage, which is
modelled by just considering the energy content of the storage. Using the energy
management system, including the thermal storage, leads to a reduction in costs
of 45.5% during summer and 38.5% during winter. In [16] the benefit of adding
thermal storage to a microgrid consisting of a building of 12 apartments and a
restaurant was investigated. The authors found that replacing part of the battery
storage with thermal storage, while keeping the total capacity equal, lead to a
reduction in costs of 8%. Similar to the previously discussed cases, the thermal
storage is simply modelled by just the energy content of the storage.

From the above mentioned examples we see that using an extremely simplified
model of the thermal storage is often used in demand side management research
that incorporates thermal storage. In this model the thermal storage is simply
described by a single parameter, which gives the energy content of the storage.
Research on demand sidemanagement that includes a thermal storage technology
is of course not limited to the examples discussed above. However, from a survey
of the literature it seems that little to none of this research uses a more complex
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model for the water tank thermal storage.

We end this section with a few remarks on decentralized energy management
(DEM). As the name implies, DEM focusses on decentralized energy manage-
ment, as opposed to the traditional centralized approach when large scale power
plants were used for the energy generation. Such a decentralized approach is
becoming more important, due to the large scale introduction of renewable en-
ergy sources. DSM and DEM are in some ways similar, however, where DSM
focusses solely on the demand side, DEM considers both the demand and supply
side of the energy system. As such, for the case study discussed in Chapter 6 we
feel it is more appropriate to use the term DEM instead of DSM, since in that
case study a neighbourhood is considered that also contains energy generation.

2.5 Conclusion

In this chapter we provided an overview of thermal storage technologies, as well
as some background on district heating systems and demand side management.
From our discussion on water tanks it can be concluded that to determine the
exact thermal processes in a water tank complex models, such as CFD models
are beneficial or even necessary. However, for cases where the exact thermal
behaviour of the water tank is less important, simpler models can often be
sufficient. This was confirmed when discussing research combining demand
side management methods and thermal storage, in which generally the simplest
model possible, namely just a single parameter describing the energy content of
the water tank, is used to model the thermal storage. In this type of research the
exact thermal behaviour inside the water tank is not as important, while using a
simpler model for the thermal storage reduces the complexity of modelling the
entire system (of which the thermal storage is just a part), which in turn reduces
the simulation times of such systems.
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333
Modelling of the Ecovat

system and its control

Abstract – In this chapter we present an integer linear programming (ILP)
model for the operation and control of the Ecovat system. The decision vari-
ables in this model are the possible control actions to charge/discharge the
Ecovat system. The restrictions and components of the Ecovat system are dis-
cussed and translated into a set of constraints on the possible decisions of the
control of the Ecovat system. The objective of controlling the Ecovat system,
and therefore the ILP model, is to satisfy the heat demand of the neighbour-
hood connected to the Ecovat system against minimal operational costs of
the system. The output of the ILP model consists of the charging/discharging
strategy for the Ecovat system as well as the temperature evolution within the
Ecovat buffer over the time horizon.

In Chapter 1 we introduced the Ecovat system, which is a seasonal thermal
storage technology designed to supply the heat demand of a neighbourhood of
houses. To operate such a storage system, a control strategy is needed which
decides at which time how much energy should be stored or supplied by the
system. This control strategy has to ensure that all the heat demand of the
neighbourhood is supplied throughout the year at minimum operational cost.
To determine such a control strategy asks for a proper model of the Ecovat
system.

To develop a control strategy for an Ecovat system that is usable in a practical
setting, the control strategy is required to make very fast (within seconds) deci-
sions. Due to this requirement such a control strategy will most likely not be

This chapter is based on [G:1].
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able to determine the optimal charging/discharging strategy for a given input.
However, to be able to judge the quality of such a practical strategy, it is desirable
to have a benchmark model, which gives a (near) optimal strategy, to compare
the results of the practical control strategy against. This benchmark model does
not have requirements on the computational time since it will not be used for
the operational control of an Ecovat system.

In this chapter we describe such a benchmark model. It is based on an ILP model
of the Ecovat system, which models the Ecovat system as well as its control. This
model is used as a benchmark to determine the performance of a simpler model,
which is usable to control an Ecovat system in a practical setting, i.e. in real
time.

The remainder of this chapter is structured as follows: in Section 3.1 the physical
model used for the Ecovat buffer is discussed. In Section 3.2 the ILP model of
the Ecovat system is described. Finally, in Section 3.3 a summary of the model
is given and conclusions are presented.

3.1 Physical model

The model to determine the charging/discharging strategy of the Ecovat system
should be based on a physical model that describes the temperature changes
inside the Ecovat buffer. If the goals is to accurately describe the temperature at
every point in the buffer a proper approach would be based on solving theNavier-
Stokes equations [30]. The solution of these equations describes the motion of
the fluid, which can in turn be used to obtain the temperature distribution inside
the buffer. Such a computational fluid dynamics (CFD) model [30] would in
theory give a very accurate description of the temperature evolution inside the
buffer. However, for the following reasons it is impractical to use this method
for a model of the Ecovat system. The combination of buffer size and time
scales considered (we would like to determine a charging/discharging strategy
for an entire year) makes such a model computationally too expensive, especially
considering the fact that we want to combine this physical model of the Ecovat
buffer with an optimization model to determine a good charging/discharging
strategy for the Ecovat system. Such a combination of a CFD model with an
optimization model would in theory be preferable, but is infeasible in practice.
To illustrate this: in Chapter 2 we discussed the long simulation times associated
with CFD modelling, e.g. the CFD model for a water tank introduced in [94]
requires 9 to 24 hours of simulation time to simulate 1000 to 3700 seconds
of water tank operation. From this it becomes clear that using a CFD model
to simulate a year of operation of the Ecovat system is impossible, especially
considering that for our purpose the CFDmodel would also need to be combined
with an optimization model leading to even longer simulation times.

Aside from the fact that a CFD model is computationally too expensive, it is
likely that for the required accuracy in the temperature distribution inside the
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buffer needed for our optimization, a less accurate model is also sufficient. Since
we are interested in the operational control of the system, the decrease in accuracy
when compared to amore complexmodel is not a problem as long as this decrease
does not significantly influence the decisionsmade in the optimization. To clarify
this: as long as the decisions made by the optimizationmodel do not significantly
differ for two different, but similar, temperature distributions (coming from two
different models), the less accurate model still fits our purpose. Furthermore,
given that some of the other inputs of the optimization model are also not
known exactly, but instead are based on predictions, a simple approximation of
the temperature distribution inside the buffer should be sufficient.

Based on the above considerations, we decided to use a very simple physical
model for the temperature distribution inside the buffer in which every segment
is assumed to have a uniform temperature. Obviously this is a simplification
of reality, however, the resulting model is computationally very inexpensive
compared to more complex models. Furthermore, as we have discussed in Chap-
ter 2, simple models are often used, especially in DSM related research, because
they are considered sufficient if the exact thermal processes inside the water tank
are not too important. When comparing a simple model with a more complex
model of the Ecovat buffer, there may be some specific cases, for example when
two buffer segments have temperatures very close to each other, in which a dif-
ference in temperature distributions between these models may lead to different
decisions being made in the optimization model. However, we estimate this
effect to be small. In other words, in the majority of cases we expect the deci-
sions resulting from the optimization to be indifferent to small differences in
temperature distributions between the different models. Furthermore, we expect
that whether a single average temperature is taken for a segment, or whether
a temperature distribution with a temperature gradient throughout the buffer
segment is taken (with for example slightly higher temperature at the walls than
in the center of the segment after charging), has a low impact on the decisions
made by the optimization model.

Additionally, we expect that even though within a segment there might be slight
temperature variations due to the charging/discharging of this segment, that
there is little to no water flow, and thus little to no temperature mixing, between
different segments due to low amounts of turbulence inside the buffer. The
reason for this is that the Ecovat buffer is thermally stratified and by using a
smart way of charging/discharging the buffer we can ensure that the temperature
remains decreasing from the top to bottom segment of the buffer preventing
segments from mixing. Ideally, this assumption, as well as further assumptions
made later on in this thesis, should be confirmed by measurement data from
an actual Ecovat buffer. However, at the time of writing such data is not yet
available.

As the buffer segments are heated from the buffer walls, this will induce some
circulation within a segment. However, assuming the temperature difference
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between the water in the heat exchangers and the water in the buffer is not too
large, the water circulation is expected to not disturb other segments in the buffer.
As mentioned in Chapter 2, this behaviour was confirmed in a preliminary two-
dimensional numerical study [38]. Even though within the optimization model
we do not specifically restrict the temperature difference between the water in the
heat exchangers and the water inside the buffer, the water flow through the heat
exchangers can be varied in practice, meaning that a low temperature difference
can be realised.

For the reasons given above we expect to only have some minor water flow
within a given segment, but not between different segments. As mentioned
before, we furthermore expect that the small temperature differences within a
given segment, induced by such flows, only have a minor impact on the decisions
made by the optimization model. This expectation is based on the fact that the
decisions made by the optimization model concern the energy content of the dif-
ferent buffer segments, which is important for satisfying the heat demand of the
neighbourhood throughout the year. As such, we expect that slight temperature
differences within a buffer segment do not lead to significantly different decisions,
compared to taking an average temperature over the entire buffer segment, as
both cases result in the same energy content.

One concern with using models, simple or complex, over longer time horizons
in a practical situation is that over time errors in the temperatures (when compar-
ing models with reality) may add up and as such the impact on the decisions of
the optimization model may start to become larger over time. However, during
practical operation of an Ecovat system this can be solved easily by a few temper-
ature sensors situated inside the buffer or the buffer walls. These sensors can then
be used to calibrate the temperatures in the model to the actual temperatures
in the buffer, for example at the end of every day. In this way the temperatures
of the model and the actual buffer should always be similar. This recalibration
of the model temperatures would also significantly reduce the effect of using a
simplified physical model instead of a complex model.

Due to the reasons outlined in this section, we expect that a simple physical
model is sufficient for our purpose. To be able to directly quantify the effect that
using a simple physical model instead of a complex model has on the decisions
being made, one would have to use different physical models in combination
with the optimization model described in the remainder of this chapter. The
results of this could then be used to compare how often the optimization model
makes the same decisions versus how often the decisions differ when using a
different physical model. However, this research falls outside the scope of this
thesis.
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Figure 3.1: Schematic overview of the Ecovat system.

3.2 Integer linear programming model

In Section 1.2we gave a description of the Ecovat system consisting of the Ecovat
buffer and a set of devices charging this buffer. In this section we introduce an ILP
model to optimize the control of such an Ecovat system. A schematic overview
of the different components of this ILP model is depicted in Figure 3.1, which
includes the Ecovat buffer and the set of devices that can be used to charge the
buffer as described in Section 1.2.

The presented model is based on a discretization of the overall time horizon,
which in our case is a complete year, into Ni nt time intervals of equal length.
We define the set of time intervals in the time horizon as I = {1, ...,Ni nt + 1}.
The last time interval Ni nt + 1 is used to characterize the state of the system at
the end of the time horizon 1.

The input of the developed ILP model consists of a set of vectors contain-
ing the energy prices p = (p1, p2, ..., pNi nt

), the ambient temperature Tamb =
(T amb

1 ,T amb
2 , ...,T amb

Ni nt
), the global irradiation G = (G1,G2, ...,GNi nt

) and heat
demand of the neighbourhood D= (D1, D2, ..., DNi nt

) for every time interval in
the time horizon. For the developed ILP model we assume that predictions for
this input data are available for the entire time horizon on beforehand. Later

1Although the presented model can be used with any time interval length, all simulations in
this thesis are performed using 15 minute time intervals
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on, when developing a simpler heuristic model we will consider a more realistic
case in which such predictions are not available on beforehand.

The output of the ILP model consists firstly of a charging/discharging strategy
of the Ecovat system over the time horizon, which is given by the decision
variables of themodel. These variables indicate whether the devices in the system
are used during a given interval, and if so in which way they are used. Note,
that we assume the state of a device (e.g. whether it is turned on or not) does
not change within a time interval. Secondly, the output of the model includes
the temperature evolution inside the Ecovat buffer over the time horizon. The
temperatures of the buffer segments are calculated using the values for the input
parameters and the values of the decision variables.

The Ecovat buffer itself is modelled as a set of segments S= {1, ...,Ns e g }, where
Ns e g is the number of segments in the Ecovat buffer. The segments of the buffer
are numbered from top to bottom as shown in Figure 3.1. In general any number
of segments can be accommodated by the model, however, in this thesis we only
consider the case Ns e g = 5 since this is the number of segments the built proto-
type of the Ecovat buffer has, as well as the number of segments the currently
proposed versions of the Ecovat buffer will have. The temperature of segment s
at the start of time interval i is denoted by Ti ,s , where we assume that a given
segment has a uniform temperature throughout the entire segment, as described
in Section 3.1. Finally, we define the set of devices used for charging/discharging
the buffer as D = {pv t ,aw h p, l t h p, h t h p, r e s , d e m}, where the labels desig-
nate the different devices in the Ecovat system as shown in Figure 3.1. Note, that
we also include the heat demand in the device set D.

3.2.1 Decision variables

We model all the devices in the Ecovat system to be on/off devices. This implies
that when a device is turned on it will always run at its full capacity. This means
that all the decision variables in the ILP model, which designate the state of
a given device, can be modelled as binary variables. All decision variables are
written in the following form: xd e v

i ,s , which designates whether device d e v is
connected to buffer segment s during time interval i . If xd e v

i ,s = 1 then device
d e v is connected to buffer segment s during time interval i , while xd e v

i ,s = 0
means device d e v is not connected to buffer segment s during time interval i . If
for a time interval i∗ all the decision variables for a given device d e v∗ are equal
to zero, i.e.
∑

s∈S
xd e v∗

i∗,s = 0, device d e v∗ is turned off during that time interval.

Additionally, the design of the Ecovat system puts some constraints on the use
of the devices in the system. First, for any given time interval any device may
only be connected to at most one segment, i.e:
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∑

s∈S
xd e v

i ,s ⩽ 1 ∀i ∈ I, d e v ∈D. (3.1)

Second, at most one of the devices may be connected to a given segment during
any time interval:

∑

d e v∈D
xd e v

i ,s ⩽ 1 ∀i ∈ I, s ∈ S. (3.2)

All further, device specific, constraints are discussed in the corresponding sub-
sections, dealing with the specific devices.

3.2.2 PVT panels

Photovoltaic thermal (PVT) panels generate both electrical and thermal energy
from incident solar irradiation. The efficiency of such panels depends, among
others, on the temperature of the panels, with a lower temperature leading to
higher efficiency [100]. Therefore, the PVT panels connected to an Ecovat
system are cooled to increase their efficiency. This is done by connecting their
thermal output to the bottom segment of the Ecovat buffer. The choice for this
segment is natural since it has the lowest temperature. In this way the PVT panels
charge the bottom segment of the buffer, while simultaneously being cooled by
that segment. The maximum allowed temperature for the bottom segment of
the buffer has to be kept low, to be able to increase the efficiency of the PVT
panels in this way.

Whether the PVT panels are connected during a given time interval to the bot-
tom segment of the Ecovat buffer depends on their output temperature. The
output temperature of the PVT panels needs to be higher than the temperature
of the bottom buffer segment, Ti ,Ns e g

, to be able to charge the buffer. If the out-
put temperature of the PVT panels is lower than Ti ,Ns e g

the PVT panels are not
allowed to be connected to the buffer. However, even if the output temperature
is high enough the model should have the option to not connect the PVT panels
if that would lead to a better overall result. The reason for this overall better per-
formance could be that connecting another device to the bottom buffer segment
at that time interval leads to a better result, or that the connecting of the PVT
panels to the buffer in that time interval would restrict the options of the system
in future time intervals. To specify whether the PVT panels are connected a
binary decision variable wi is introduced that designates whether the output
temperature of the PVT panels is sufficiently high to charge the buffer (if wi = 1
the output temperature is sufficiently high, if wi = 0 it is not). The correct value
of this variable is set by the following two constraints:



40

C
h
a
p
t
e
r
3
–
M
o
d
e
l
l
i
n
g
o
f
t
h
e
E
c
o
v
a
t
s
y
s
t
e
m
a
n
d
i
t
s
c
o
n
t
r
o
l

weather
data

Gi T amb
i

PVT
panels

Ti ,Ns e g

T i n
i

T ou t
i

x pv t
i ,Ns e g

Figure 3.2: Schematic representation of the PVT panels connected to the bottom
Ecovat buffer segment.

T ou t
i ⩾ Ti ,Ns e g

wi ∀i ∈ I, (3.3)

T ou t
i ⩽ Ti ,Ns e g

+M wi ∀i ∈ I, (3.4)

where M is a sufficiently large constant. To allow for the option of not connecting
the PVT panels even if wi = 1, the following constraint is added:

x pv t
i ,Ns e g
⩽ wi ∀i ∈ I. (3.5)

In this constraint x pv t
i ,Ns e g

is the decision variable indicating whether the PVT
panels are connected to the bottom segment of the buffer in time interval i .
Note, that the PVT panels can only be connected to the bottom segment of the
buffer. However, for ease of formulation we also introduce such variables for
the other segments and set them to 0; i.e.:

x pv t
i ,s = 0 ∀i ∈ I, s ∈ S \ {Ns e g }. (3.6)

Figure 3.2 gives a schematic representation of how the PVT panels can be con-
nected to the bottom segment of the Ecovat buffer. The input temperature of
the panels during time interval i is denoted by T i n

i and the output temperature
of the panels during time interval i is denoted by T ou t

i . Note, that if x pv t
i ,Ns e g

= 1

the panels are connected to the bottom segment, and in this case the output
temperature of the PVT panels depends on the global irradiation Gi and the
ambient temperature T amb

i , as well as on the input temperature T i n
i .

To determine the thermal and electrical energy produced by the PVT panels we
need to consider the thermal and electrical efficiencies of the panels. The steady
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state thermal efficiency of a PVT panel, ηt h is defined as the yield of the panel
divided by the global irradiation incident on the panel [55]:

ηt h =
ṁ cp (T

ou t −T i n)

G A
, (3.7)

where ṁ is the mass flow rate of the heat transfer fluid running through the
PVT panel, which for simplicity we assume to be water (in reality this might be
mixed with another liquid to prevent freezing), cp is the specific heat of water
and A is the surface area of the PVT panel. The input temperature T i n of the
PVT panels is equal to the temperature of the bottom layer of the Ecovat buffer.
The heat transfer fluid of temperature T ou t is fed back to the bottom segment of
the buffer, which charges the buffer due to it now having a higher temperature
than the water in the bottom segment of the buffer. Simultaneously, this lowers
the temperature of the heat transfer fluid back to T i n = Ti ,Ns e g

and thus it can
further cool the PVT panels, increasing their electrical efficiency. Here we make
the simplifying assumption that by transferring energy from the heat transfer
fluid to the buffer segment, the temperature of the heat transfer fluid will always
be cooled down to the temperature of the bottom buffer segment. Note, that
by this charging of the bottom buffer segment over time the temperature in the
bottom segment will slowly increase. To counteract this temperature increase,
one of the water-water heat pumps may be used at some point in time to transfer
energy from the bottom segment to a higher segment of the buffer. This is done
during time intervals in which the PVT panels are not connected to the bottom
segment. We refer to Section 3.2.4 for further information on the modelling of
the water-water heat pumps.

If we look at Equation 3.7 we note that it does not give us the thermal efficiency
yet, since T ou t is also unknown. We solve this problem by deriving another
expression for the thermal efficiency of the PVT panels. This equation can be
combined with Equation 3.7 to obtain the thermal efficiency ηt h and the output
temperature of the PVT panels T ou t .

To obtain a second expression for the thermal efficiency of the PVT panels we use
the reduced temperature, which is a quantity defined as the difference between
the mean temperature in the PVT panels and the ambient temperature divided
by the global irradiation [36], i.e.:

T r ed =
T i n−T ou t

2 −T amb

G
, (3.8)

where T r ed is the reduced temperature and T amb is the ambient temperature.
The thermal efficiency of the PVT panels can be approximated as a linear func-
tion of the reduced temperature, T r ed (see for example [36, 100]):
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Figure 3.3: The output temperature of the PVT panels as a function of the
ambient temperature, T amb .

ηt h = ηt h
0 − at h T r ed , (3.9)

where ηt h
0 is the thermal efficiency of the PVT panels at a reduced temperature,

T r ed , of zero and at h is the thermal loss coefficient of the PVT panels. This
gives us a second expression for the thermal efficiency, leading to two equations
(Equations 3.7 and 3.9) and two unknowns, ηt h and T ou t . By combining Equa-
tions (3.7), (3.8) and (3.9) we obtain an expression for the output temperature
of the PVT panels, which is used in the ILP model:

T ou t
i =

2 ṁ cp T i n
i − at h A T i n

i + 2 A ηt h
0 Gi + 2 at h A T amb

i

at h A+ 2 ṁ cp
∀i ∈ I, s ∈ S.

(3.10)

In Figure 3.3 the output temperature of the PVT panels as a function of the
ambient temperature is shown for 3 different global irradiations. In the figure
the input temperature of the PVT panels, T i n

i , is set at 5°C. The solid line
corresponds to a global irradiation, Gi , of 100

W
m2 , the dashed line to a global

irradiation of 300 W
m2 and the dotted line to a global irradiation of 500 W

m2 . The
mass flow rate of the heat transfer fluid in the PVT panels considered in this
figure is equal to its value in the Ecovat system, which is ṁ = 0.018 kg/s.

As mentioned before, the PVT panels will not be connected to the buffer in
case the output temperature of the panels is lower than the temperature in the
bottom segment of the buffer. As one would expect, this occurs at times when
the ambient temperature is low and/or the level of global irradiation is low, as
confirmed by Figure 3.3.

To obtain the thermal and electrical outputs of the PVT panels in the ILP model
we need to add constraints on the reduced temperature, thermal efficiency and
electrical efficiency to specify their dependencies. The constraint for the re-
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duced temperature is as based on Equation 3.8, with an exception added to avoid
dividing by zero when the global irradiation is zero:

T r ed
i =



















Ti ,Ns e g
+T ou t

i

2
−T amb

i

Gi
, if Gi > 0

0, otherwise.

∀ i ∈ I, (3.11)

To make sure that the thermal efficiency takes the correct value in the ILP model
multiple constraints are required. This is because the thermal efficiency is re-
stricted to the range of 0 to ηt h

max , where ηt h
max is the maximum thermal efficiency

the PVT panels can reach. We define the following constraints to specify the
thermal efficiency of the PVT panels:

ηt h
i ⩽ η

t h
0 − at h T r ed

i +M y t h
i ∀i ∈ I, (3.12)

ηt h
i ⩽ η

t h
max (1− y t h

i ) ∀i ∈ I, (3.13)

ηt h
i ⩾ 0 ∀i ∈ I, (3.14)

where y t h
i is a binary indicator variable that indicates which of the Constraints

(3.12) or (3.13) is active during interval i and M is again a sufficiently large
constant. There are three different cases depending on the values for y t h

i and
T r ed

i :

» y t h
i = 0 and T r ed

i > 0: in this case Constraint (3.12) gives a tighter upper
bound than Constraint (3.13), i.e. ηt h

i ⩽ η
t h
0 − at h T r ed

i .

» y t h
i = 0 and T r ed

i ⩽ 0: in this case either Constraint (3.12) or Constraint
(3.13) gives a tighter upper bound to ηt h

i .

» y t h
i = 1: in this case ηt h

i = 0 due to Constraint (3.13) and Constraint
(3.14).

Due to the way the objective function is constructed, which is discussed in
Section 3.2.9, the model will always set y t h

i = 0 if possible and will always
select the upper bound for the thermal efficiency, in other words we have ηt h

i =
ηt h

0 − at h T r ed
i or ηt h

i = η
t h
max depending on the value of T r ed

i .

Finally, we approximate the electrical efficiency of the PVT panels in a similar
way as the thermal efficiency. This leads to a linear function of the reduced
temperature, similar to Equation (3.9). To model this, similar constraints as for
the thermal efficiency are defined for the electrical efficiency:
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ηe l
i ⩽ η

e l
0 − ae l T r ed

i +M y e l
i ∀i ∈ I, (3.15)

ηe l
i ⩽ η

e l
max (1− y e l

i ) ∀i ∈ I, (3.16)

ηe l
i ⩾ 0 ∀i ∈ I, (3.17)

where ηe l
i is the electrical efficiency of the PVT panels, ηe l

0 is the electrical ef-
ficiency at a reduced temperature of zero, ηe l

max is the maximum electrical effi-
ciency, ae l is the electrical loss coefficient of the PVT panels and y e l

i is a binary
indicator variable that indicates whether Constraint (3.15) or Constraint (3.16)
is active during interval i . The thermal and electrical output of the PVT panels,
which can be obtained using the thermal and electrical efficiencies, is discussed
in Section 3.2.8.

3.2.3 Air/water heat pump

A heat pump is a device that transfers thermal energy from a heat source to a
heat sink, where the heat source has a lower temperature than the heat sink.
To accomplish this transfer of thermal energy, which opposes the natural flow
of thermal energy, electrical energy is needed to operate the heat pump. An
air/water heat pump uses the ambient air as its heat source, and in the case of
the Ecovat system it uses one of the buffer segments as the heat sink.

The air/water heat pump can only charge a buffer segment s that has a temper-
ature, Ti ,s , within a limited temperature range: T aw h p

mi n ⩽ Ti ,s ⩽ T aw h p
max , where

T aw h p
mi n and T aw h p

max are the minimum and maximum temperatures the air/water
heat pump can supply. To make sure that the air/water heat pump is only con-
nected to a segment within this temperature range, the following constraints are
added to the ILP model of the Ecovat system:

(1− xaw h p
i ,s ) M +Ti ,s ⩾ T aw h p

mi n ∀i ∈ I, s ∈ S, (3.18)

xaw h p
i ,s Ti ,s ⩽ T aw h p

max ∀i ∈ I, s ∈ S, (3.19)

where xaw h p
i ,s is the decision variable that indicates whether the air/water heat

pump is connected to segment s during interval i . These constraints ensure that
if the air/water heat pump is selected to charge a buffer segment, that buffer
segment has a temperature within the temperature range of the air/water heat
pump.

It should be noted that Constraint (3.19) contains a multiplication of the conti-
nous variable Ti ,s and the binary variable xaw h p

i ,s , which means the constraint is
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not linear and in principle can not be used in this form in an ILP model. How-
ever, using the well known method (described for example in [92]) of modelling
the multiplication of the two variables as a new variable itself and placing a
number of constraints on this new variable, such a quadratic constraint can be
linearised. Note, that also all further quadratic constraints introduced in this
chapter can be linearised using the same method.

To give some insight in this linearization of quadratic constraints, consider as
example the multiplication xaw h p

i ,s Ti ,s from Constraint (3.19). First, we define

a new variable x̃aw h p
i ,s = xaw h p

i ,s Ti ,s . The following constraints ensure that this

variable x̃aw h p
i ,s always takes the correct value:

x̃aw h p
i ,s ⩾ 0 ∀i ∈ I, s ∈ S, (3.20)

x̃aw h p
i ,s ⩽M xaw h p

i ,s ∀i ∈ I, s ∈ S, (3.21)

x̃aw h p
i ,s ⩽ Ti ,s ∀i ∈ I, s ∈ S, (3.22)

x̃aw h p
i ,s ⩾ Ti ,s −M (1− xaw h p

i ,s ) ∀i ∈ I, s ∈ S, (3.23)

where M is again a large constant. Constraint (3.20) and Constraint (3.21) make
sure x̃aw h p

i ,s = 0 if xaw h p
i ,s = 0, while Constraint (3.22) and Constraint (3.23) make

sure x̃aw h p
i ,s = Ti ,s if xaw h p

i ,s = 1.

3.2.4 Water/water heat pumps

The water/water heat pumps in the Ecovat system work similarly to the air/wa-
ter heat pump, except that instead of using the ambient air as the heat source
they use one of the other buffer segments as the heat source. The buffer segment
used as the heat source has to have a lower temperature than the buffer segment
used as the heat sink. In this way the water/water heat pumps increase the en-
ergy quality of the buffer which is important for satisfying the heat demand as
discussed in Section 1.2. The Ecovat system is equipped with two water/water
heat pumps, which have different temperature ranges, to be able to cover the
entire temperature range possible in the buffer. One heat pump covers the lower
part of the temperature range, while the second heat pump covers the higher
part. We label these two heat pumps as low temperature heat pump (lthp) and
high temperature heat pump (hthp) respectively. In this section we only specify
the constraints required to model the lthp, since the constraints for the hthp are
exactly the same (they can be obtained by replacing all lthp labels with hthp
labels in the constraints discussed in this subsection).

As mentioned, the lthp has a limited output temperature range: T l t h p
mi n ⩽ Ti ,s ⩽

T l t h p
max , where T l t h p

mi n and T l t h p
max are the minimum and maximum temperature
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that the lthp can supply. For the lthp heat pump the temperatures of both the
buffer segment used as heat source and the buffer segment used as heat sink are
required to be in this range. To accommodate for the fact that the lthp needs
to be connected to two buffer segments we define the labels, lthp− and lthp+,
for the heat source and heat sink respectively. This means we extend the set
of devices to D = {pv t ,aw h p, l t h p−, l t h p+, h t h p−, h t h p+, r e s , d e m}. The
decision variables that indicate whether segment s is used as a heat source or
heat sink for the lthp during interval i are then x l t h p−

i ,s and x l t h p+
i ,s respectively.

The constraints to ensure that the temperatures of the segments selected as heat
source and heat sink are within the temperature range of the lthp are similar to
those given for the air/water heat pump:

(1− x l t h p−
i ,s ) M +Ti ,s ⩾ T l t h p

mi n ∀i ∈ I, s ∈ S, (3.24)

x l t h p+
i ,s Ti ,s ⩽ T l t h p

max ∀i ∈ I, s ∈ S. (3.25)

The buffer segment selected as heat sink must have a higher temperature than the
buffer segment selected as heat source, which is ensured by adding the following
constraint:

∑

s∈S
x l t h p+

i ,s Ti ,s >
∑

s∈S
x l t h p−

i ,s Ti ,s ∀i ∈ I. (3.26)

Finally, we need to ensure that a buffer segment is selected as heat sink if and
only if another buffer segment is selected as heat source. To make sure of this
the following constraint is added:

∑

s∈S
x l t h p+

i ,s =
∑

s∈S
x l t h p−

i ,s ∀i ∈ I. (3.27)

Constraint (3.1) combined with the extension of the device setD ensures that at
most one buffer segment can be selected as heat source and at most one buffer
segment can be selected as heat sink.

3.2.5 Resistance heater

The resistance heater is a simple device that converts electrical energy to thermal
energy on a one-to-one basis. The resistance heater can cover the entire range
of temperatures possible in the Ecovat buffer, so no constraints are necessary
to restrict its use. Furthermore, the resistance heater only connects to a single
buffer segment, which is already covered by Constraint (3.1). Due to this no
further constraints are necessary for the modelling of the use of the resistance
heater.
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3.2.6 Heat demand

As mentioned before, one of the inputs of the ILP model is the predicted heat
demand for every time interval in the time horizon. This demand is specified
by the amount Di of thermal energy demanded and a temperature Td e m this
demand should be supplied at, which we call the demand temperature. If during
a given time interval there is a non-zero heat demand, the model has to ensure
that this demand gets supplied. In other words, if there is a demand during
a given interval, a buffer segment has to be selected to fulfil that demand. A
consequence of this restriction is that the model must always ensure that the
buffer contains enough energy to satisfy the heat demand.

To be able to supply the heat demand the buffer segment selected to fulfil the
demand must have at least a temperature equal to the demand temperature. The
following constraint ensures the buffer segment that is selected to supply the
heat demand has a sufficiently high temperature:

Ti ,s ⩾ Td e m xd e m
i ,s ∀i ∈ I, s ∈ S, (3.28)

where xd e m
i ,s is the decision variable indicating whether segment s is supplying

the heat demand during time interval i . Furthermore, for the heat demand
constraint (3.1) is modified as follows:

∑

s∈S
xd e m

i ,s =
¨

1, if Di > 0
0, if Di = 0

∀ i ∈ I, (3.29)

which ensures that precisely one of the buffer segments is selected to supply the
heat demand if there is any demand during time interval i , and no buffer segment
is selected if there is no heat demand.

3.2.7 Heat losses

Over time the Ecovat buffer will lose some of its energy content to the surround-
ing environment. If the heat loss coefficient U of the Ecovat buffer is known
one can use the following constraint to determine the heat loss of the Ecovat
buffer to its surroundings:

Q l o s s
i ,s =U As (Ti ,s −Tg w ) ∀i ∈ I, s ∈ S, (3.30)

where Q l o s s
i ,s is the heat lost to the environment from segment s during time

interval i , As is the surface area of the walls (and lid for the top segment) of
segment s and Tg w is the temperature of the environment, which in the case of
the Ecovat buffer is the ground water temperature.
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However, at the time of writing no measurements concerning the heat loss of
the Ecovat buffer were available. For this reason estimates for the heat losses
presented in an internal report of the company were used to determine the heat
losses. However, the given data only specified an estimated heat loss over a
period of 6 months [86]. Because of this, the following constraint was used to
determine the heat loss of the Ecovat buffer instead:

Q l o s s
i ,s =
�

1− (1−β)
2

Ni nt

�

(Ti ,s −Tg w ) ms cp ∀i ∈ I, s ∈ S, (3.31)

where β is the given heat loss coefficient of the Ecovat buffer over 6months, ms

is the mass of segment s and the factor 2
Ni nt

is equal to one over the number of

time intervals in half a year ( 1
Ni nt /2

= 2
Ni nt

).

3.2.8 Temperature evolution

In the previous subsections we have described the modelling of the devices in the
Ecovat system. The decision variables xd e v

i ,s that describe whether these devices
run during a give time interval i and if so, to which buffer segment s they are
connected, determine when and how the buffer is charged/discharged. This
leads to changes in the temperature of the buffer segments. In this subsection we
define constraints that specify these temperature changes in the Ecovat buffer.
The temperature changes over the entire time horizon, i.e. the temperature
evolution in the Ecovat buffer, are one of the outputs of the ILP model.

To describe the temperature changes in the Ecovat buffer we take a differential
equation similar to the one used in [68] for a one-dimensional water tank model:

ms cp
dT
d t
=Qheat −Qcool −Ql o s s , (3.32)

where Qheat is the amount of energy added to the buffer (by devices in the
Ecovat system), Qcool is the amount of energy extracted from the buffer (when
used as heat source for one of the water/water heat pumps or to supply the
heat demand of the neighbourhood) and Ql o s s is the amount of energy lost
to the surroundings of the buffer. Note, that for simplicity we have omitted
the inclusion of a term to describe the heat exchange/mixing between different
segments of the buffer, since we expect those effects to be minor compared to
the heating and cooling terms from the devices in the system. However, if from
experiments it turns out that this heat exchange between segments is significant
it can easily be added to the model, at the cost of longer computational times.
After discretizing Equation 3.32 and some rewriting, we obtain a constraint
specifying the temperature changes in the buffer:
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Ti+1,s = Ti ,s +
∆t

ms cp

�

∑

d e v∈D
Qd e v

i ,s −Q l o s s
i ,s

�

∀i ∈ I \ {Ni nt + 1}, s ∈ S, (3.33)

where ∆t is the length of a time interval, Qd e v
i ,s is the energy change in segment

s during interval i induced by device d e v and T1,s is the initial temperature
distribution in the buffer. The Qd e v

i ,s terms differ for the different devices, these
terms are given below:

Q pv t
i ,s =
¨

0, ∀i ∈ I, s ∈ S \ {Ns e g },
ηt h

i Gi A x pv t
i ,s , ∀i ∈ I, s =Ns e g ,

(3.34)

Qaw h p
i ,s =C aw h p C OP aw h p xaw h p

i ,s ∀i ∈ I, s ∈ S, (3.35)

Q l t h p−
i ,s =−C l t h p (C OP l t h p − 1) x l t h p−

i ,s ∀i ∈ I, s ∈ S, (3.36)

Q l t h p+
i ,s =C l t h p C OP l t h p x l t h p+

i ,s ∀i ∈ I, s ∈ S, (3.37)

Q h t h p−
i ,s =−C h t h p (C OP h t h p − 1) x h t h p−

i ,s ∀i ∈ I, s ∈ S, (3.38)

Q h t h p+
i ,s =C h t h p C OP h t h p x h t h p+

i ,s ∀i ∈ I, s ∈ S, (3.39)

Q r e s
i ,s =C r e s x r e s

i ,s ∀i ∈ I, s ∈ S, (3.40)

Qd e m
i ,s =−Di xd e m

i ,s ∀i ∈ I, s ∈ S, (3.41)

where C OP d e v is the coefficient of performance of device d e v and C d e v is the
capacity of device d e v , which equals the consumption of device d e v when it is
turned on, since all devices in the Ecovat system are modelled as on/off devices
in the ILP model. The factor (C OP d e v − 1) in Constraints (3.37) and (3.39)
is due to the fact that even though C d e v C OP d e v units of thermal energy are
transferred to the heat sink, only C d e v (C OP d e v−1) units of energy are coming
from the heat source. The remaining C d e v is the electrical energy consumed by
the heat pump to transfer the thermal energy. It should be noted that we assume,
for simplicity, that there are no energy losses in the operation of the heat pump.
Furthermore, we assume a constant COP for the heat pumps. In reality the
COP of a heat pump will depend on the input and output temperatures of the
heat pump. However, including this non-linear dependence in an ILP model is
hard and would significantly increase the complexity. For this reason we assume
a constant COP for each heat pump, the value of which will be based on an
estimated average COP of that heat pump.

Finally, a few additional constraints need to be added to model the temperatures
of the buffer segments. The first ensures that the temperature inside a buffer
segment can not exceed the maximum allowed temperature in that segment:
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Ti ,s ⩽ T̄s ∀i ∈ I, s ∈ S, (3.42)

where T̄s is the maximum allowed temperature in segment s . The second ensures
that the temperature gradient from the top segment to the bottom segment of
the buffer is always decreasing:

Ti ,s ⩾ Ti ,s+1 ∀i ∈ I, s ∈ S \ {Ns e g }. (3.43)

3.2.9 Objective function

The objective of the Ecovat system is to minimize the operational costs of the
system under the restriction that the heat demandmust always be satisfied. Note,
that we only consider the operational costs of the system. We do not include
e.g. maintenance costs or the profit made by supplying the heat demand of
the neighbourhood, since we assume these do not depend on the specific charg-
ing/discharging strategy used.

The operational costs consist of the cost to run the devices that charge the Eco-
vat buffer, i.e. the air/water heat pump, the two water/water heat pumps and
the resistance heater. The cost to run any electricity consuming device during
time interval i depends on the electricity price during that interval, pi , which
may even be negative, the length of a time interval ∆t and the capacity of the
device C d e v . The cost to run a device d e v during time interval i is then given
by
∑

s∈S
pi ∆tC d e v xd e v

i ,s . The operational costs are reduced by the amount of

electrical energy E pv t
i produced by the PVT panels in the Ecovat system, which

is given by:

E pv t
i = ηe l

i Gi A
∑

s∈S
x pv t

i ,s ∀i ∈ I. (3.44)

The operational costs Ki incurred during time interval i , are then given by:

Ki = pi ∆t
�

∑

s∈S
(C aw h p xaw h p

i ,s +C l t h p x l t h p−
i ,s +C h t h p x h t h p−

i ,s +C r e s x r e s
i ,s )

− E pv t
i

�

∀i ∈ I, (3.45)

There are a few things to note; first, in Constraint (3.45) we have used x l t h p−
i ,s

and x h t h p−
i ,s to determine whether the water/water heat pumps are running dur-

ing time interval i , and are thus contributing to the costs during that interval.
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Whether we use those decision variables or x l t h p+
i ,s and x h t h p+

i ,s does not mat-
ter, since it gives the same results due to Constraint (3.27). Second, in Con-
straint (3.45) we make the assumption that any electrical energy that is generated
by the PVT panels and is not consumed by the Ecovat system can be sold for
the electricity price at that time. This assumption is based on the current net-
metering (salderen in Dutch) laws in the Netherlands [12]. However, the current
net-metering law is planned to be replaced by a different regulation, which de-
creases the feed-back tariff for consumers based on the prices of PV panels at that
point in time [13] (the goal of this regulation is to keep the payback time of PV
panels around 7 years to still incentive consumers to invest in PV panels). When
this changes in the future it is straightforward to include this different feed-back
tariff in the model.

As stated before, the objective of the Ecovat system is to minimize the total
operational costs over the time horizon, i.e min

∑

i∈I
Ki . However, a few more

terms need to be added to the objective function to ensure the model shows the
desired behaviour. First, we want the model to favour the charging of buffer
segments situated higher in the buffer, in other words those of higher tempera-
ture. The reason this is important is that, as discussed in Section 3.2.6, at least
one segment in the buffer is required to have a temperature at least as high as
the demand temperature. For time intervals inside the time horizon the model
will allow only solutions where there is always at least one buffer segment with
sufficiently high temperature to satisfy the heat demand. However, we would
like to ensure that this is also true after the time horizon has passed. The reason
for this is that in a real world situation the system would be operating con-
tinuously. As such, it is desirable to favour the charging of high temperature
segments, to ensure the system always has the means to satisfy the heat demand
of the neighbourhood, even after the time horizon. To ensure this behaviour the
term−c1
∑

s∈S
ws Ti ,s is added to the objective function, where the weights ws are

chosen such that ws > ws+1. This choice for the weights ensures that a segment
with higher temperature is favoured over a segment with lower temperature. In
our case we choose the weights as ws = 6− s . Second, we need to ensure that the
upper bound on the thermal efficiency constraints discussed in Section 3.2.2 is
always selected. To do so we add the term −c2 Q pv t

i ,s to the objective function. A
higher thermal efficiency leads to a higher value of Q pv t

i ,s , and as such, the term
−c2 Q pv t

i ,s ensures that the highest thermal efficiency allowed by the constraints
discussed in Section 3.2.2 is always selected. In most cases the model will select
the upper bound on the thermal efficiency even without the inclusion of this
term. However, cases can occur in which it would be beneficial for the model to
select a thermal efficiency of zero while simultaneously having a high electrical
efficiency. This would lead to a situation in which the PVT panels have a high
electrical efficiency due to being cooled, but without heating up the heat transfer
fluid that is doing this cooling, which is physically not possible. The addition
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of this second term to the objective function prevents such cases from occurring
in the model. The full objective function is then given by:

min
∑

i∈I

�

Ki − c1

∑

s∈S
(6− s) Ti ,s − c2 Q pv t

i ,s

�

, (3.46)

where c1 and c2 are small, positive constants.

3.3 Conclusion

In this chapter we have modelled the Ecovat system and its control as an ILP
model. The objective of the model is to find a minimum cost charging/dis-
charging strategy for the Ecovat system over a given time horizon, under the
restriction that the requested heat demand from the connected neighbourhood
must always be satisfied. This charging/discharging strategy is determined by
specifying for each time interval in the time horizon which devices are turned
on, and to which buffer segment they are connected in case they are turned on.
In the different subsections of this chapter we have described these devices and
presented a set of variables and constraints to properly model the restrictions
of each device. Next to the device specific restrictions, a number of general
restrictions apply to the system among which the most important are:

» A device may only be connected to at most one buffer segment during
each time interval (Constraint 3.1).

» A buffer segment may have only one device connected to it during each
time interval (Constraint 3.2).

» Each buffer segment must have a temperature lower than a specified
maximum temperature at all times (Constraint 3.42).

» Each buffer segment must have a lower temperature than the buffer seg-
ment above it at all times (Constraint 3.43).

As output the presented model gives a charging/discharging strategy for the
Ecovat system over the time horizon. This strategy is specified by the decision
variables of the model, which describe whether a device is connected to a specific
segment during a given time interval. Additionally, the model provides the
temperature evolution within the segments of the buffer over the entire time
horizon as output. As input the model requires predictions for the energy prices,
the heat demand of the neighbourhood, the ambient temperature and the global
irradiation over the entire time horizon.

While this model in theory finds a good charging/discharging strategy for the
Ecovat system given a certain input, it is not yet usable in practice. Since the Eco-
vat systems is a seasonal thermal storage it is important to consider a sufficiently
long time horizon to include seasonal effects, which will be important for such a



53

3.
3
–
C
o
n
c
l
u
s
i
o
n

system. For this reason, a time horizon of a year is considered in this thesis. Fur-
thermore, we wish to incorporate an energy market into the model, in our case
this is the Dutch imbalance market. Since the Dutch imbalance market operates
on time intervals of 15 minutes, this is also the time interval length we consider
in this thesis. However, due to the combination of a short time interval length
and a long time horizon, the number of variables and constraints in the ILP
model presented in this chapter is too large to be solved in a feasible amount of
time. As such, some modifications are required to make the ILP model solvable
in a shorter time (at most around a week of simulation time). The modifications
required to achieve this are discussed in the next chapter.
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554
Method for operational

control in simulations

Abstract – In this chapter we adapt the ILP model presented in the previous
chapter to be able to solve it in a reasonable amount of time. To achieve this,
we first introduce a rolling horizon approach. However, it turns out that this
approach insufficiently incorporates seasonal effects, and as a consequence often
fails to generate a good solution. To properly incorporate seasonal effects we
extend the model with a long-term planning step and present the results of this
extended model, which significantly improves the results obtained without
this long-term planning step. Furthermore, we analyse the effect of prediction
errors in the energy prices on the results achieved with the presented model.

In the previous chapter we have presented an ILP model to describe the Ecovat
system. The output of this model includes a charging strategy for the Ecovat
system. However, as noted the model from Chapter 3 can not be solved for
reasonable instances. Due to the complexity of the model, the long time scales
involved in seasonal thermal storage, and the short time intervals required to
incorporate the energy market into the model, the computational time required
to solve the ILP model would be unrealistically long (see Chapter 3). Our goal in
this chapter is to limit the solving time of the model to at most a few days when
optimizing a year of operation for an Ecovat system. Therefore, in this chapter
we start by introducing a rolling horizon approach to ensure the presented ILP
model becomes solvable in the previously specified amount of time, i.e. at most
around a week of simulation time on a personal computer.

This chapter is based on [G:1] and [G:2].
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4.1 Rolling horizon

As mentioned, due to the very large number of variables in the ILP model and
the short time intervals required it is not possible to optimize over a whole year
at once. For this reason a rolling horizon approach is introduced in which the
year-long optimization is divided into smaller overlapping periods of k days,
whereby from an optimization of each of these periods only the first part is
realised. This process is depicted in Figure 4.1 for the situationwherewe optimize
for k = 2 days and only realise the first day. In each of the optimizations, the
initial conditions of the Ecovat buffer are taken based on the already realised
days and combined with predictions for the next days (in the case of Figure 4.1
the next two days) to optimize the charging/discharging strategy for the Ecovat
system. From this solution, only the realization for the first part of the period
is used. The temperature distribution in the buffer at the end of this first part
is then used as the initial conditions for the next period which starts at the
end of that first part. This process is repeated until the whole time planning
period of a complete year has been considered. The effect of different rolling
horizon lengths, i.e. different values of k, on the resulting charging strategies has
been investigated and the corresponding results are presented in Section 4.1.2.
It is clear that the total objective value for the entire optimization using this
method will be worse compared to an optimization over the whole year at once.
However, the iterative approach employed in the rolling horizon approach better
simulates reality, as for example good weather predictions are only available for
a few days in advance.

As even for the shorter periods it may happen that solving the corresponding
model takes quite long, we have introduced the following stopping criteria for
the optimizations over a period using the ILP model discussed in Chapter 3:

» The gap between the best lower bound and the best solution found by
the solver is less than 0.2 %.

» The absolute value of the gap between the best lower bound and the best
solution found by the solver is 1 €or less.

» The solver takes longer than one hour to reach one of the previous two
conditions.

4.1.1 Optimization setup

The ILP model of the Ecovat system described in Chapter 3 requires a number
of input parameters and profiles. The first profile that is required is the heat
demand of the buildings connected to the Ecovat system. For this heat demand
we consider a case described in a study on the sizing of the Ecovat system [27]. In
this case 78 apartments distributed over five apartment buildings are connected
to the Ecovat system. To obtain a heat demand profile for the entire year a
typical heat demand profile for a winter, a spring, an autumn and a summer day
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Figure 4.1: Scheme showing the build up of the solution using a rolling horizon
approach. In this case a rolling horizon length of 2 days is used.
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Figure 4.2: The daily heat demand profiles used as input for the model of the
Ecovat system.

is constructed based on historical data from the housing corporation owning
the apartment buildings [27]. As the spring and autumn days are quite similar
we use the same profile for these two seasons. Figure 4.2 shows the resulting
daily heat demand profiles for the different seasons. As the profiles include
both space heating and tap water demand there is still a significant heat demand
during the summer. From these daily profiles a yearly heat demand profile is
then constructed in the following way.

The optimization starts on January 1, the first 60 days are winter days, followed
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Figure 4.3: The weather data used as input for the model of the Ecovat system.

by 91 spring days, 91 summer days, 91 autumn days and finally 32 winter days
for a total of 365 days. Every day uses the heat demand profile from Figure 4.2
corresponding to the season of that day. The heat demand temperature Td e m
was taken constant throughout the year. In the cases described in this chapter we
consider the same heat demand profile for every day in a given season, since we
are primarily interested in determining whether the developed model is capable
of generating good strategies, and not yet in simulating a realistic use case. As
such, simple heat demand profiles are sufficient for the cases considered in this
chapter. In Chapter 6 we consider a more realistic case in which every day has
a different heat demand profile. Furthermore, in that chapter we investigate
the effect of increased heat demand, due to for example a cold winter, on the
performance of the developed model.

For the evaluation in this chapter we consider two different heat demand temper-
atures, namely Td e m = 40 °C and Td e m = 60 °C. These values were chosen since
the expectation is that the heat demand temperature in future district heating
systems will be lower than is currently common. As discussed in Chapter 2,
fourth generation district heating systems are expected to operate at tempera-
tures between 30 and 70 °C.

Two other required input profiles are related to the weather data, namely a profile
for the ambient temperature and a profile for the solar irradiation. For these
profiles averages based on historical data for the city of Eindhoven, where the
apartment buildings from the considered case are located, are used. The used
profiles are shown in Figure 4.3. The considered weather data profiles have a
resolution of one hour.

The final input profile that is required is a profile for the energy prices. For
this we use the energy prices from the Dutch imbalance market for the year
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Figure 4.4: The energy prices of January and August 2014, which are used as
input for the model of the Ecovat system.

2014. The imbalance market is chosen for the high volatility in its energy prices,
including negative energy prices, since this market presents the most interesting
business case for an Ecovat system. In this case the system can charge during
time intervals with very low (preferably negative) energy prices, leading to lower
operational costs. In Figure 4.4 the energy prices for January and August 2014
are shown to indicate the difference in energy prices between a winter and a
summer month. We observe that extremely high energy prices are much more
frequent in January, and that the average energy cost is higher in January (an
average price of 50.94 €

MW h in January versus an average energy price of 34.19
€

MW h in August). Furthermore, from this figure we can see that negative energy
prices are more abundant in August, but even in January there are time intervals
in which the energy price is negative. This indicates that time intervals with
negative energy prices occur around the year. As mentioned, these intervals are
the most interesting times to re(charge) the Ecovat system from an economical
point of view.

The three previously discussed input profiles are expected to be similar from year
to year, with only limited variations. While some years may for example have
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a colder winter than other years, the shape of the heat demand profile or the
ambient temperature profile will be very similar from year to year. However, for
the energy prices this is not the case. Here, the exact moment at which extreme
prices occur (in either positive or negative direction) will differ from year to
year. Furthermore, we expect that the profile for the energy prices has a strong
influence on the outcome of the optimizations. As such, it does not make sense
to use an average profile for the energy prices, but to consider instead specific
years.

For the cases considered in this section we only consider the energy prices from
2014, while in later sections we also consider the energy prices from different
years. Furthermore, the influence of a higher than expected heat demand on the
performance of the developed model is investigated in Chapter 6. However, the
effect of variations in the weather data are not explicitly studied in this work.
The weather data, in particular the solar irradiation, mostly determines the
performance of the PVT panels in the Ecovat system. However, those contribute
only a small portion to the total energy of the system over an entire year. As
such, small variations in the weather data are expected to have only a minor
effect on the charging strategies obtained.

Aside from the input profiles a number of input parameters have to be specified,
see Table 4.1. The values for the thermal efficiency of the PVT panels at a reduced
temperature of zero degrees ηt h

0 , the thermal loss coefficient of the PVT panels
at h , the electrical efficiency of the PVT panels at a reduced temperature of zero
degrees ηe l

0 and the electrical loss coefficient of the PVT panels ae l are obtained
from measurements given in [36], where the reduced temperature is defined
as the difference between the mean temperature in the PVT panels and the
ambient temperature divided by the global irradiation. Values for the maximum
efficiencies, ηt h

max and ηe l
max have been selected slightly higher than those at zero

reduced temperature, because of the positive effect cooling has on the PVT
panels. The capacities and temperature ranges of the devices are based on one of
the setups described in [27]. The heat loss factor β of the buffer is based on an
estimation made in [86], since no measurements of a real Ecovat system were
available at the time of writing.

As noted in Chapter 3, the COP values in the ILP model have been taken as
constants in this research. To determine these values a heuristic model for the
Ecovat system presented in the aforementioned study on the sizing of the Ecovat
system [27] is used. While this heuristic is too simple to be used for the opera-
tional control of an Ecovat system, it does include a non-linear calculation of the
COPs of the heat pumps. A year long simulation was run using this heuristic
and an average COP for each heat pump was determined over this year. These
average COPs were used as input values for the ILP model. From a quick com-
parison between two simulations by this heuristic, one using non-linear COPs,
and one using the averaged COPs, we find that the difference in performance
is very small, namely less than one percent. This indicates that, at least for a
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Input parameters for modelling the Ecovat system

Parameter Value Parameter Value

Ns e g 5 A 149.4 m2

Ni nt 35040 ηt h
0 0.73

∆t 900 s ηt h
max 0.75

ms {1.04e6, 1.04e6, 1.04e6, at h 7.25
9.11e5, 9.11e5}∗ kg ηe l

0 0.1
ṁ 0.018 kg/s ηe l

max 0.15
cp 4186 J/(kg K) ae l 0.44
β 0.08 C aw h p 9 kW
T1,s {90,75,50,30,5} °C C l t h p 15 kW
Td e m 40 or 60 °C C h t h p 15 kW
T aw h p

mi n 0 °C C r e s 1000 kW
T aw h p

max 59 °C C OP aw h p 2.686
T l t h p

mi n 0 °C C OP l t h p 2.851
T l t h p

max 49 °C C OP h t h p 3.681
T h t h p

mi n 48 °C c1 1e-5 €°C
T h t h p

max 79 °C c2 1e-5 €kWh
T̄s {90,90,78,48,5} °C M 150

Tg w 15 °C

Table 4.1: Listing of the input parameters for the modelling of the Ecovat system.
∗The top 3 segments have a length of 3.3 m and the bottom 2 segments a length
of 2.9 m, the diameter of the modelled buffer is 20 m and the density of water is
taken as 1000 k g

m3 .

simpler model, taking an average COP over the entire year does not perform
significantly worse than using a non-linear model to determine the COP.

4.1.2 Results

In this section we present the results of the rolling horizon approach applied
to the ILP model described in Chapter 3 combined with the input profiles and
parameters presented in this chapter. We look at different scenarios, based on
the demand temperature Td e m , and the rolling horizon length. As mentioned,
we consider two different values for the demand temperature, Td e m = 40°C and
Td e m = 60°C. For the horizon length we consider lengths of two, three and
five days. We do not consider horizon lengths longer than five days, because
for those the computational time becomes too long. For all considered horizon
lengths only the first day is realised for each step of the optimization as discussed
in Section 4.1. The performance of the model in the presented cases is evaluated
based on two metrics. First and most importantly, the objective value of the
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ILP model is used, which gives the total operation costs over the time horizon.
The second metric is the amount of useful energy that is contained in the Ecovat
buffer at the end of the time horizon. We define useful energy to be the energy
that can be used to satisfy the heat demand, i.e. energy at temperatures higher
than the given demand temperature Td e m . This means the useful energy, Ui at
the start of time interval i is given by:

Ui =
∑

s∈S
ms cp max{Ti ,s −Td e m , 0}, (4.1)

where ms is the mass of segment s , cp is the specific heat of water and Ti ,s is the
temperature of segment s at the start of time interval i . Using equation (4.1) we
can also obtain the maximum useful capacity Ū of the buffer by substituting the
maximum temperature of the buffer segments T̄s instead Ti ,s . As we can see from
(4.1) the useful energy content, and thus the useful energy capacity depends on
the demand temperature. This indicates that it is not useful to consider higher
demand temperatures, since in that case the useful energy capacity of the buffer
is very low.

The useful energy content of the buffer at the end of the time horizon is an
important quantity when the Ecovat system will continue to operate also after
the considered time horizon, which will be the case for a real world system. In
such a case starting the following year with a very low useful energy content
would most likely lead to much higher operation costs during that year. In such
a case more energy needs to be bought on the energy market to compensate for
the low useful energy content, and thus higher energy prices might need to be
accepted to charge the buffer enough to be able to satisfy the heat demand of
that next year.

We first consider the results for the cases where Td e m = 40 °C. In Figure 4.5 the
temperature evolution inside the Ecovat buffer throughout the year is shown for
rolling horizon lengths of two, three and five days. The different coloured lines in
the figure give the temperatures of the different segments in the buffer. As long as
at least the top segment, i.e. the red line, is above the demand temperature, in this
case 40 °C, the buffer has energy to supply the heat demand. The further a line
is above the demand temperature the more useful energy that segment contains.
Additionally, the lines in Figure 4.5 are not allowed to cross one another due to
the constraint that a buffer segment must have a temperature at least as large as
the buffer segment below it, to avoid situations which can not occur in practice.

We can see from Figure 4.5 that the temperature evolution, and thus the useful
energy content of the buffer throughout the year is very similar for all three
considered rolling horizon lengths. Furthermore, we can see that there is always
more than enough useful energy content to be able to supply the heat demand.
The objective value, the useful energy content of the buffer at the end of the
time horizon and the optimization time for the different rolling horizon lengths
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Hor. length (days) Obj. value (€) Useful energy (kWh) Opt. time (s)

2 -28131 74420 6462

3 -28161 73578 12093

5 -28175 72711 36355

Table 4.2: The objective value, the useful energy content at the end of the time
horizon and the optimization time for different rolling horizon lengths and
Td e m = 40 °C.

are shown in Table 4.2. From this table we can see that the objective value
gets slightly lower with increasing rolling horizon length, at a cost of slightly
lower useful energy content at the end of the time horizon. This indicates that
for a demand temperature of 40 °C the different rolling horizon lengths show
similar performance. However, the optimization time increases significantly
with increasing rolling horizon length. Due to this, we conclude that for a
demand temperature of 40 °C using longer rolling horizon lengths is not really
beneficial.

The second set of cases we consider are those where Td e m = 60 °C. The temper-
ature evolution inside the Ecovat buffer throughout the year for rolling horizon
lengths of two, three and five days is shown in Figure 4.6. We can see that for
these cases there are extended periods of time during which the useful energy
content of the buffer is almost zero. Since the heat demand must always be satis-
fied, a situation where the buffer is almost empty for extended periods of time
is undesirable. The reason for this is that such a situation may lead to increased
costs if no time intervals with low energy prices are available during that period
of time. In this case the model is forced to buy energy at a higher energy price
to be able to satisfy the heat demand.

In Table 4.3 the objective function, the useful energy content at the end of
the time horizon and the optimization time for the different rolling horizon
lengths is shown. We can see that the objective values are higher than in the
scenarios where the demand temperature is 40 °C, which is expected because
the useful capacity of the buffer is lower. This means that less useful energy can
be stored during summer and more charging has to be done during the winter
months, which in general have less time intervals with low energy prices. We
see the same trend as for the cases where a demand temperature of 40 °C was
considered, namely that longer horizon lengths lead to lower objective values,
but the differences being very small. Additionally, we can see that the useful
energy content of the buffer at the end of the time horizon is close to zero. This
means that during the next year of operation the costs are expected to be much
higher, as discussed previously. Furthermore, we see that the optimization times
for these cases are much longer compared to the cases with a demand temperature
of 40 °C, requiring around 10 to 12.5 days of optimization time.
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Figure 4.5: Temperature evolution inside the Ecovat buffer for different rolling
horizon lengths in the ILP model for Td e m = 40 °C.
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Figure 4.6: Temperature evolution inside the Ecovat buffer for different rolling
horizon lengths in the ILP model for Td e m = 60 °C.
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Hor. length (days) Obj. value (€) Useful energy (kWh) Opt. time (s)

2 -27694 291 853646

3 -27743 272 989700

5 -27804 312 1072847

Table 4.3: The objective value, the useful energy content at the end of the time
horizon and the optimization time for different rolling horizon lengths Td e m =
60°C.

From the results presented in this section we observed that the ILP model pre-
sented in Chapter 3 in combination with the rolling horizon approach intro-
duced in this section performs well when a demand temperature of 40 °C is
requested. In that case the buffer always has more than enough energy to supply
the heat demand throughout the year. However, when the demand temperature
is increased to 60 °C the performance of the model decreases significantly. In
this case long time periods are observed where the useful energy content of the
buffer is low. This may lead to severely increased costs if a period of high energy
prices would come up at such a point in time. In this case the model would
not have the option to delay charging of the buffer due to the fact that the heat
demand must be satisfied at all times. The reason that such situations of low
useful energy content occur is due to the fact that the ILP model solved in a
rolling horizon fashion can only look a few days ahead, i.e. the rolling horizon
length, for future problems and opportunities. In other words, seasonal effects
are not properly taken into account in the ILP model yet, since the model can
not look far enough ahead to do so. This leads to a situation where the buffer
is almost empty long before the winter months are over. To include seasonal
effects using the approach presented here, we need to consider a horizon length
of a few months, which is not possible due to the already long computational
time observed for the short horizon lengths of two to five days. Therefore, in
the next section we extend the ILP model with a long-term planning, which
allows it to properly take seasonal effects into account without requiring very
long computational times.

4.2 Long-term planning

In the previous section it got clear that the ILP model described in Chapter 3
when solved using the introduced rolling horizon approach is not able to incor-
porate seasonal effects well. This shortcoming was especially visible for the case
in which a higher temperature (60 °C) was demanded. In that case, the buffer
was not sufficiently charged to deal with time periods of high heat demand. This
meant that the energy content of the buffer stayed very low for a large part of
the year, which may lead to higher costs for satisfying the heat demand. This
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issue may be prevented if we extend the model with a method that is able to
plan further ahead. As such, we present an extension to the ILP model based
approach in this section that adds a long-term planning before solving the ILP
model in rolling horizon fashion. In this long-term planning daily targets for the
useful energy content of the Ecovat buffer are generated based on predictions
for the energy prices and heat demand. The ILP model described in Chapter 3
is then slightly modified, to make sure the useful energy content in the buffer
stays close to these generated targets. The remainder of this section is built up
as follows. In Section 4.2.1 we state the problem that needs to be solved to gen-
erate the mentioned daily useful energy targets, while we discuss the algorithm
designed to solve this problem in Section 4.2.2. The input data used to solve the
problem of generating these targets will be discussed in Section 4.2.4. Finally,
the results of adding this long-term planning to the ILP model based approach
are presented in Section 4.2.5.

4.2.1 Problem definition

To overcome the problem of the ILP model being unable to incorporate seasonal
effects, we generate, in advance, a target for the useful energy content of the
Ecovat buffer at the end of every day over the complete time horizon (in the cases
considered in this thesis, a year). These targets have to ensure that enough useful
energy will be available throughout the year and that this energy is produced
during beneficial times (in other words, preferably at times the energy price is
negative). However, allowing targets that are close to 0 or the maximum capacity
of the buffer may lead to problematic situations where the ILP model ends a day
with a useful energy content close to one of these extremes (i.e. almost empty
or almost full). In such a situation the ILP model only has flexibility in one
direction, which is especially problematic if the useful energy content of the
buffer is very close to 0 at the end of a day. If the useful energy content of the
buffer at the end of a day is close to 0, and during the next day only time intervals
with high energy prices are available, unnecessarily high operational costs may be
incurred. As such, we introduce predetermined minimum and maximum values
for the targets of the useful energy content of the buffer, Cmi n and Cmax , that
are close to 0 and the maximum useful energy capacity of the buffer respectively,
but still allow for some flexibility when solving the ILP model. Furthermore,
we allow flexibility in the model by not requiring that the ILP model exactly
achieves a given target value for each day, but only that it stays close to the targets
by way of an extra incentive term in the objective function. Additionally, we
add a constraint that the target for the useful energy content of the buffer at the
end of the time horizon is at least equal to the useful energy content at the start.
This ensures that the useful energy content of the buffer at the end of the year
will be, equal to or higher than the useful energy content of the buffer at the
start of the year. In this way we make sure that the buffer is prepared for the next
year of operation, which will be very important when controlling an Ecovat in
a real world situation.
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As we specify the targets for the useful energy content of the buffer only for one
time interval of a day, we introduce a new set, which represents the days in the
time horizon and is defined as: J= {1, ..., 365}. Since we consider time intervals
of length 15minutes, a day contains 96 time intervals. This means day j contains
the time intervals {( j −1) ·96+1, ..., j ·96}. We set a target for the useful energy
of the buffer at the end of the last time interval of each day, or equivalently at
the start of the first time interval of the next day. As such, we define the time
interval at which we set the target for day j as: tar( j ) = j · 96+ 1. As the input
of the problem to generate such targets, we consider predictions for the energy
prices and the heat demand during the optimization period. We use the same
vectors p andD as in Chapter 3, which contain predictions for the energy prices
and heat demand for each interval in the time horizon.

The output of the target generation problem are the targets for the useful energy
content of the Ecovat buffer at the end of every day in the time horizon. These
targets are obtained by determining during which time intervals the buffer is
charged. The decision on whether to charge the buffer during a give time interval
depends on the energy prices, the heat demand of the neighbourhood and an
estimate for the amount of useful energy that can be stored during a time interval.

The decision variables of the problem are given by the vector z= (z1, z2, ..., zNi nt
),

where zi is the binary decision variable that determines if energy is stored in
the Ecovat buffer during time interval i or not. Hereby, a value of one for zi
means energy is stored in the Ecovat buffer during time interval i , while a value
of zero means no energy is stored during time interval i . If we decide to store
energy during a time interval i (i.e. zi = 1), the amount of useful energy that
gets stored is a given estimated amount ei . We consider two values for ei , one
value for time intervals in which the energy price is at most 0 €

MW h , which we
call e−, and one value for time intervals in which the energy price is larger than
0
€

MW h , which we call e+. The difference between e− and e+ lies in the fact that
for simplicity, we assume that the resistance heater accompanying the buffer is
only used when the energy price is non-positive, while the heat pumps are also
used during intervals with positive energy prices if required (concrete choices
for these parameters are given in Section 4.2.4). Note that we do not create
operational plans for the different devices when solving the target generation
problem, but that we only decide if during a time interval the buffer is charged.
The amount of useful energy that can be stored during time interval i is defined
as:

ei =
¨

e−, if pi ⩽ 0
e+, if pi > 0,

(4.2)

where e− and e+ are the mentioned given values.
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The resulting problem to be solved is to minimize the total monetary energy cost
under the given constraints, which we call the Target Generation (TG) problem:

Problem TG

min
zi

∑

i

pi zi ei , (4.3a)

s.t. Vi =Vi−1+ ei zi −Di ∀ i ∈ I, (4.3b)
VNi nt
⩾U0, (4.3c)

Vtar( j ) ⩾Cmi n ∀ j ∈ J, (4.3d)

Vtar( j ) ⩽Cmax ∀ j ∈ J, (4.3e)

V0 =U0 (4.3f)
zi ∈ {0,1}, (4.3g)

where U0 is the initial useful energy content of the Ecovat buffer and Vi is
the target for the useful energy content of the buffer at the start of interval i .
Constraint (4.3b) describes the change in the amount of useful energy due to
energy being stored in the buffer, and heat demand being satisfied. Constraint
(4.3c) makes sure that the target for the useful energy content of the buffer at
the end of the time horizon is at least as high as at the start of the optimization.
Finally, Constraints (4.3d) and (4.3e) ensure that the targets for the amount
of useful energy stay within the specified minimum and maximum bounds,
respectively.

It should be noted that we neglected heat losses to the surroundings of the buffer
in Problem TG. Incorporating these losses in Problem TG would change the
results, as due to the losses, some extra intervals have to be selected to store
energy to compensate for these losses. However, we estimate the difference in
results to be small, assuming that the time intervals with low energy prices are
somewhat evenly distributed over the entire year as they seem to be at this point
in time (this could change in the future if prices become more volatile due to
an increased share of renewables). Note, that even if we assume that the time
intervals with low energy prices are somewhat evenly distributed across the year,
i.e. the charging of the buffer can be somewhat evenly distributed across the year,
the heat demand is not distributed evenly across the year. As such, the situation
in which the time intervals with low energy prices are evenly distributed across
the year, does not diminish the benefits of long-term energy storage.

By solving Problem TG for given vectors of energy prices p and heat demandD,
we obtain targets Vtar( j ) for the energy content of the Ecovat buffer throughout
the year. Even though by solving Problem TG a target is generated for each time
interval, only the targets Vtar( j ) at the end of each day are used in the ILP model.
This ensures the ILP model has some flexibility to deal with unexpected circum-
stances, such as prediction errors in the energy prices. In other words, by solving
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Problem TG we obtain useful energy targets for the buffer for every day in the
time horizon, which determine how much energy needs to be charged during
each day. These targets subsequently will be used as input for the ILP model
described in Chapter 3, which will then determine the charging/discharging
strategy of the Ecovat buffer over the year. This charging/discharging strategy
gives the specific operational plans for the different devices in the system. For
a simulation of a year, Problem TG only needs to be solved once to obtain the
targets for the entire year.

4.2.2 Implementation

Although Problem TG has a much smaller size than the ILP presented in Chap-
ter 3, it still is an ILP problem with around 35,000 integer variables, which leads
to long computational times if a general ILP solver is used to solve the problem
to optimality. Therefore, we decided to develop a fast heuristic algorithm to
solve Problem TG.

The heuristic follows a ’greedy’ principle to decide which time intervals are
used to provide energy to the buffer. To describe this principle, we first rewrite
Constraints (4.3b), (4.3d) and (4.3e) as:

Cmax +
j
∑

i=1

Di ⩾U0+
j
∑

i=1

ei zi ⩾
j
∑

i=1

Di +Cmi n ∀ j ∈ J. (4.4)

This constraint tells us that the sum of the useful energy we store up to time
interval j plus the useful energy we initially start with has a lower bound equal
to the sum of the demand up to time interval j plus the minimum allowed target
value Cmi n , and an upper bound equal to the sum of the demand up to time
interval j plus the maximum allowed target value Cmax . For simplicity, we
rename these as the lower bound (LB j ) and upper bound (U B j ), respectively:

U B j ⩾U0+
j
∑

i=1

ei zi ⩾ LB j ∀ j ∈ J. (4.5)

Similarly, we rewrite Constraint (4.3c) by defining:

LBNi nt
:=

Ni nt
∑

i=1

Di +U0 . (4.6)

Equations (4.5) and (4.6) specify the bounds on the solution of Problem TG.
These bounds are used in our greedy algorithm designed to solve the problem.

Our algorithm starts by setting all decision variables, zi , to zero. It then checks at
which time interval j the first violation (which has to be a violation of the lower
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U0

LB

U B

U0+
j
∑

i=1

ei zi

j ′

V

j

U0

LB

U B

j ′k

U0+
j
∑

i=1

ei zie−

Figure 4.7: On the left, the algorithm starts with an initial (infeasible) solution
with zi = 0 ∀ i ∈ I. j ′ is the first interval violating the lower bound (LB ) and
k is the interval with the lowest energy price in {1, ..., j ′} (in this case, we have
pk < 0). On the right, the change after setting zk = 1 is shown

bound) occurs; we call this time interval j ′. The algorithm then determines
the time interval in {1, ..., j ′} with the lowest energy cost, we call this interval
k. If setting zk = 1 does not violate the upper bound, we update the solution
with zk = 1; this process is depicted in Figure 4.7. The algorithm then repeats
this process until the violation of the lower bound at time interval j ′ has been
resolved. Subsequently, the algorithm checks where the next violation (if any)
of the lower bound occurs and resolves it in the same way. This is repeated until
all violations of the lower bound have been resolved.

To avoid checking the same interval multiple times, every interval is assigned
a flag fi that designates whether adding this interval to the solution does not
violate the upper bound. At the start, all the flags fi are set to true, denoting that
all intervals can be added without violating the upper bound. While looking for
the interval k with the lowest price, only intervals with fi = true are considered.
If it is concluded that setting zk = 1 would violate the upper bound, it is instead
kept at zk = 0, and the flag fk is set to false. Furthermore, we know that if
adding time interval k to the solution violates the upper bound, that all other
time intervals before k, with the same or a larger amount of energy to be stored
(i.e. time intervals for which the amount of energy ei that can be stored is larger
or equal to ek ), will also violate the upper bound. This means that we set all
flags fi to false for time intervals i < k for which the energy amount ei during
time interval i is larger than or equal to the energy amount during time interval
k, ek .

When all the violations of the lower bound have been resolved, the algorithm has
found a feasible solution. However, it may be possible to find a better solution,
since there may still be time intervals with negative energy prices that have
not been used and can be added to the solution without violating the upper
bound, thus decreasing the objective value given by (4.3a). For this reason, the
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algorithm checks if there are any time intervals left that have pi ⩽ 0, zi = 0 and
fi = true. If such time intervals exist they are added to the solution in order of
ascending energy price, as long as they do not violate the upper bound, until no
such time intervals remain. The entire algorithm is summarized in pseudocode
in Algorithm 1. It should be noted that similar problems are discussed in the
literature; for example, [87] discusses Problem TG with continuous instead of
binary decision variables.

Algorithm 1: Determine daily target values.
1 input : pi , Di , ei ,Cmi n ,Cmax , U0
2 output :Uj

3 set zi = 0 and fi = true ∀ i ∈ I
4 while solution is infeasible do
5 determine first violation of LB
6 let j ′ be the corresponding interval
7 let I ′ be the set of intervals i = {1, ..., j ′}
8 while LB is violated at interval j ′ do
9 let k be the interval in I ′ with the lowest pi while satisfying

zk = 0 and fk = true
10 if setting zk = 1 does not violate U B then
11 set zk = 1 and update current solution
12 else
13 set fk = false
14 set fi = false for all intervals i < k that satisfy ei ⩾ ek

15 while there exists an interval i ∈ I with pi ⩽ 0, zi = 0 and fi = true do
16 let k be the interval in I with the lowest pi while satisfying
17 zk = 0 and fk = true
18 if setting zk = 1 does not violate U B then
19 set zk = 1 and update current solution
20 else
21 set fk = false
22 set fi = false for all intervals i < k that satisfy ei ⩾ ek

If this greedy algorithm would be adapted for the LP relaxation of Problem
TG (i.e. if Constraint (4.3g) is relaxed so that zi can take a fractional value),
it would provide an optimal solution [87]. This implies that the error of our
greedy algorithm is somehow related to the integrality gap of Problem TG. Fur-
thermore, it is easy to see (by an interchange argument) that the algorithm gives
the optimal solution to Problem TG if e− = e+. However, in our case, where
e− ̸= e+, there are specific cases imaginable where our algorithm does not give
the optimal solution. However, based on the relation with the integrality gap
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and the specific structure of the problem, we expect that for the cases considered
here, the solution will be very close to optimal.

4.2.3 Incorporation of the target values into ILP model

To incorporate the targets Vtar( j ) resulting from the solution of Problem TG into
the ILP model, an additional term that penalizes the solution for being under
the target Vtar( j ) at the end of a day is added to the objective function. This term
is given by: −c j (Utar( j ) −Vtar( j )), which ensures the further the useful energy
content of the buffer Utar( j ) is below the target at the end of the day Vtar( j ), the
more the solution is penalized. The value of c j is set at the start of each day j
based on whether the target for the previous day is met, i.e. based on the value of
Utar( j−1)−Vtar( j−1). The further away from the target Vtar( j−1) the useful energy
content Utar( j−1) was at the end of the previous day the higher the value of c j is
chosen. The specifics of setting the value for c j are described in Section 4.2.4.
Based on this way of incorporating the targets into the model, the value of c j
determines the energy price the model is willing to accept during day j to charge
the buffer. As mentioned, the further the useful energy content of the buffer
gets below the target, the higher the value of c j becomes, and thus the higher
the costs are the model is willing to accept to increase the useful energy content
of the buffer. The objective function, including this new term then becomes:

min
∑

i∈I

�

Ki − c1

∑

s∈S
(6− s) Ti ,s − c2 Q pv t

i ,s

�

−
∑

j∈J
c j (Utar( j )−Vtar( j )), (4.7)

By incorporating long-term planning, via daily useful energy targets, into the
model long-term trends such as seasonal effects are taken into consideration. As
such, long rolling horizon lengths are no longer required to incorporate such ef-
fects, contrary to what we observed in Section 4.1, where no long-term planning
was included. Note, that in the approach used in Section 4.1 the optimization
considered k days (the rolling horizon length), but only the first of those k days
was realized. As mentioned previously, without long-term planning k needs to
be on the order of a few months to properly include seasonal effects. However,
once long-term planning is included by the introduced targets much lower values
of k may be used since the long-term effects are already taken into account by
means of these pre-generated targets. In our approach the value of c j , which de-
termines the energy prices the model is willing to accept to charge the buffer, is
set on a daily basis. This means that if we take k > 1 we either need to somehow
estimate the values of c j for the days we optimize over, or we take the same value
of c j for all days within the optimization. The problem with the first option is
that it is hard to estimate this value for each day within the optimization, since
c j is based on the amount of useful energy content of the buffer at the end of
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day j − 1, which in turn is based on the heat demand and the energy prices,
which are hard to predict on beforehand. The problem with the second option
is that in this case the realization of the first day is based on a constant value
of c j for the entire optimization period. This means that the decisions made in
the first day are based on the information that c j remains constant for the entire
optimization period, while in reality the value for c j might change after realizing
the first day. Note that, due to the fact that the value of c j is determined in a
non-linear way (we refer to Section 4.2.4 for more details) we can integrate the
change of this value in a linear optimization over multiple days. Additionally,
since future days are already taken into account through the long-term planning,
we estimate that the difference in performance between taking a rolling horizon
length of k = 1 or a value k of a few days is small. As such, we reduce the rolling
horizon approach to its ’extreme’ case, where we optimize the behaviour of
the Ecovat system over only one day and subsequently realise that day, i.e. the
horizon length is equal to the period realised, i.e. k = 1.

4.2.4 Simulation setup

The input parameters and profiles for the weather data and heat demand we use
to evaluate the impact of adding long-term planning to the ILP model are the
same as those in Section 4.1.1, i.e. those given in Figures 4.2 and 4.3 and Table 4.1.
In this section we consider the energy prices for 2011, 2013, 2014 and 2015 to
investigate the effect of different energy prices on the model. We have omitted
2012 from this analysis, since we wanted to avoid normalization issues because
2012 was a leap year.

If we want to apply the developed model in practice an additional complication
arises, namely that the energy prices on the imbalance market are not known
on beforehand and are generally hard to predict. Note that, whereas a good
estimate for the expected heat demand can be made based on historical data
and weather predictions, this is much harder for future energy prices. For this
reason, we also investigate the impact of errors in energy price predictions on the
achieved results. To do so, we consider two cases. In the first case, we use perfect
predictions (PP) to generate the daily target values for the useful energy content
of the Ecovat buffer. In this case, we assume that all prices of the entire year
are known to us beforehand. In the second case, we consider the other extreme,
namely that we have no predictions (NP) available to generate the target values.
This implies that the intervals in which energy needs to be stored get distributed
equally over the entire year, since we have no reason to favour one period in time
over another in this case. Note, that we do not even include seasonal information
concerning the energy prices in this case. In the NP case, we therefore do not
require any input data for the energy prices. All the other input data used are
the same for both the PP and NP cases.

As discussed previously, the weight c j for deviating from the targets Vtar( j ) in
the additional term added to the objective function of the ILP model, is varied
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from day to day based on the difference between the target and the useful en-
ergy content of the buffer at the end of the previous day (Vtar( j−1) and Utar( j−1)
respectively). We distinguish between three different cases; 1) the useful energy
content of the buffer is below the target, 2) the useful energy content of the
buffer is above the target and 3) the buffer is almost full, i.e. the useful energy
content is close to the useful capacity of the buffer. The case for an almost full
buffer is added to ensure the model saves some of its useful capacity for any very
low energy prices that may come up in the future, instead of filling the entire
buffer as soon as it can. The value of c j is determined by:

c j = a1 (Ū − a2−Utar( j−1)) if Utar( j−1) > Ū − a2 (4.8a)

c j = 0 if Utar( j−1) ⩾Vtar( j−1), (4.8b)

c j =
�

a3

�

1−
Utar( j−1)

Vtar( j−1)

�
�2

+ a4 if Utar( j−1) <Vtar( j−1), (4.8c)

where a1, a2, a3 and a4 are constants. The range of possible values for c j , which
equates to the maximum energy price the model is willing to accept for charging
the Ecovat buffer, is based on the values of these constants. In the case that
the useful energy content of the buffer is below the target (Equation 4.8c) the
constant c j varies between a4

€
kW h , when the useful energy content is just below

the target, and a3+ a4
€

kW h if the useful energy content of the buffer is at zero.
This increase in c j is non-linear, in this way the further the useful energy content
of the buffer drops below the target the more quickly the costs increase to ensure
that the model stays close to the target, while still allowing some flexibility.
When the useful energy content of the buffer is above the target (Equation 4.8b)
c j is set to 0, i.e. a maximum energy price of 0 €kWh is accepted. Finally, when
the buffer is almost full (Equation 4.8a) c j in in the interval [−a1 · a2,0]

€
kW h ,

depending on how close the useful energy content of the buffer is to its useful
capacity, i.e. maximum energy prices between −a1 · a2

€
kWh (0 kWh capacity

remaining) and 0 €kWh (a2 kWh capacity remaining) are accepted by the model.
The condition for Equation 4.8a can be true at the same time as one of the
conditions for the other two cases. In this case Equation 4.8a takes priority over
the other case.

The used values for the constants in Equations (4.8a), (4.8b) and (4.8c) used
are given in Table 4.4. These values have been determined experimentally to
work well. However, when controlling a real Ecovat system, these values may
be changed depending on the circumstances during the year, such as unexpected
changes in heat demand or energy prices. For example, if the winter months
are expected to be colder than usual, and thus there is a higher heat demand
during those months, it could be desirable to accept higher energy prices than
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Constant Value

a1 10−5 €
kW h2

a2 15000kW h
a3 0.241 €

kW h2

a4 0.009 €kW h

Table 4.4: The values of the constants in Equations (4.8a), (4.8b) and (4.8c) used
in this work.

one would normally accept during autumn to mitigate the risk of ending up
with too little useful energy in the buffer during winter, which could lead to
even higher costs.

The final parameters that we need to specify are the minimum and maximum
values for the targetsCmi n andCmax in ProblemTG and the values of e− and e+ in
Equation 4.2, which give estimates for the amount of energy that can be charged
to the Ecovat buffer during a time interval with a negative energy price and a
time interval with positive energy price respectively. The most straightforward
way would be to choose the minimum and maximum values for the targets,
Cmi n and Cmax , at 0 kWh and the buffers useful capacity, respectively. However,
as discussed previously, this is undesirable since targets at these extremes leave
very little flexibility when solving the ILP model. As such, we choose slightly
different values to allow for a ‘safety margin’.

We wish to retain enough flexibility in the solving of the ILP model, such that
when a period with a very low number of time intervals with low energy prices
occurs, the model is not forced to charge the buffer during time intervals with
very high energy prices. As such we choose the minimum target value Cmi n
such that two days of heat demand can still be satisfied without any charging,
which in the cases considered in this work corresponds to Cmi n = 5000 kWh.
This value was found to work sufficiently for the cases considered in this work,
since throughout the year, there are always some intervals with low energy
prices when considering periods of a few days. However, if long periods of
time with only a few or no intervals with low energy prices are expected, a
higher minimum capacity would have to be used to avoid unnecessarily high
costs. This is especially important for the no predictions (NP) case, where such
an expectation is not taken into account specifically (the targets are generated
by distributing the amount of time intervals during which the buffer is charged,
to be able satisfy the heat demand throughout the year, equally over the days in
a year in this case). Even though we assume in that case that no predictions are
available for the energy prices, we may still have the more general expectation
that during winter, a longer period without low energy price time intervals
might occur. In that case, taking a higher value for Cmi n may be advisable to
avoid potentially high costs.
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Table 4.5: Table showing values of e− and e+.

e− (kWh) e+ (kWh)

Low estimate 256 6

Medium estimate 262 12

High estimate 268 18

Similarly, to ensure the model has some flexibility to accept very low energy
prices when the buffer is almost full we set Cmax equal to 95% of the actual
maximum useful energy capacity of the Ecovat buffer. Since themaximum useful
capacity of the buffer depends on the demand temperature we have chosen for
this case to save 5% of the maximum useful capacity for this flexibility instead
of a constant value.

The values for the estimates of the useful energy storable during an interval at a
negative or positive energy price, e− and e+ respectively, depend on the average
amount of useful energy generated by the heat pumps and resistance heater. To
estimate these values we make the simplifying assumption that the resistance
heater is only used to store energy when the energy price is non-positive. Note,
that this is not necessarily true since depending on the values of c j the resistance
heater may also be used when the energy price is positive. We evaluate the effect
this assumption has in Section 4.2.5. When considering e−, the total estimate
for the useful energy that can be charged during a time interval with negative
energy price is a combination of the estimated amount of useful energy produced
by the resistance heater, and by the heat pumps in the system during such a
time interval. The amount of energy the resistance heater contributes to e−
is easy to determine because of its constant coefficient of performance of one.
However, the contribution of the heat pumps is much harder to estimate. Their
contribution depends on the demand temperature Td e m , the temperatures inside
the buffer Ti ,s , the temperature ranges of the heat pumps and their coefficients of
performance. This implies that these values are dependent on the current state
of the buffer and that therefore e− and e+ can only be rough estimates. For this
reason, we also investigate the effect of various estimates of these parameters on
the results of the model. To this end, we use three estimates for e− and e+, a low
estimate, a medium estimate and a high estimate. These estimates are given in
Table 4.5. For the results presented in Section 4.2.5, the medium estimate is used,
unless specified differently. The differences in the estimates for e− are relatively
small because the contribution of the resistance heater, which supplies by far
the largest portion of the energy during intervals with negative energy prices,
is easily estimated as mentioned before. On the other hand, the estimates for
the heat pumps are much more uncertain, however, they supply a much smaller
portion of the energy during such times, leading to small relative differences.
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4.2.5 Results

By solving the target generation problem TG using the method described in
Section 4.2.2, we obtain a target for the useful energy content of the Ecovat
buffer at the end of every day within the time horizon. First, we investigate
whether the approach we applied for the no predictions (NP) case, namely that
we distribute the amount of time intervals in which storing energy is required
evenly throughout the year, leads to target values that are close to those obtained
from the perfect predictions (PP) case. In Figure 4.8, the resulting target values
are shown for a demand temperature of 40 °C for the PP case when using real
Dutch energy prices from the years 2011, 2013, 2014 and 2015, as well as for
the NP case (which is the same for every year, since the heat demand in all
considered cases is equal). The targets for the PP case using energy prices from
2013 or 2015 have a similar shape as the targets for the NP case. However, the
targets for the PP case using energy prices from 2011 or 2014 are significantly
different from the targets for the NP case. This means the choice to distribute
the number of intervals in which energy needs to be stored equally over the year
seems reasonable for the years 2013 and 2015, but leads to significantly different
targets for the years 2011 and 2014 compared to the PP case. This is due to an
uneven spread in energy prices in 2011 and 2014, while the NP case assumes a
fairly even spread throughout the year.

Figure 4.9 shows the same type of results for the PP and NP cases, however, this
time for a demand temperature of 60 °C. Similarly to Figure 4.8, the targets for
the PP case using energy prices from 2013 or 2015 have a similar shape compared
to the targets for theNP case, while the targets for the PP case using energy prices
from 2011 or 2014 are significantly different. The largest difference between
Figures 4.8 and 4.9 is that in the case with a demand temperature of 60 °C
the buffer is almost completely depleted at the end of winter or during spring,
except for the PP case using energy prices from 2014, while in Figure 4.8, this
only occurs for the PP case using energy prices from 2011. The buffer being
almost completely depleted after winter for most of the years when a demand
temperature of 60 °C is used, is due to the fact that the energy demand stays the
same as for the 40 °C case, but at the same time the initial useful energy content
of the buffer is much lower, due to the higher demand temperature.

From the previous figures, we have seen that the PP and NP cases can lead to
target values that differ significantly. Next, we investigate whether this difference
in target values also leads to a significant difference in the results of the ILPmodel.
Furthermore, we compare the results obtained by using the model extended with
long-term planning, with the previously obtained results for the model that did
not incorporate targets for the useful energy content of the buffer.

In Figure 4.10, the results of the optimization with a demand temperature of
40 °C without targets are compared with optimizations using the long-term
planning. For the case without targets we use the results from the optimization
with a horizon length of two days presented in Section 4.1.2. As already observed
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Figure 4.8: Targets obtained by solving Problem TG for the perfect predictions
(PP) case using the energy prices from 2011, 2013, 2014 and 2015 for a demand
temperature of 40 °C. Additionaly, the targets obtained for the no predictions
(NP) case are shown.

previously, the optimization without long-term planning does quite well in this
case, as there is always enough energy to supply the requested heat demand. In
this case, adding a long-term planning (both in the PP andNP cases) has the effect
of a larger amount of useful energy being present in the buffer throughout the
year, which is shown in the figure by the temperatures in the buffer being higher
throughout the year. However, this leads to a slight increase in the objective
value of the ILP as shown in Table 4.6 as well. The higher objective value for the
model that includes targets is compensated by the higher useful energy content
of the buffer at the end of the optimization, due to the safer strategy used by
adding these targets. Even though in this case, it would be possible to not include
long-term planning in the model, and still obtain good results, we observe that
the differences are small. The advantage of not including the long-term planning
in cases such as this is a slightly lower objective value, i.e. slightly higher profit.
However, the disadvantage is that if in such a case a time period without low
energy prices may occur at a moment that the buffer is low on energy, meaning
high costs may be incurred. Conversely, the advantage of including the long-term
planning is that a time period without low energy prices will not lead to such
an increase in costs, since the long-term planning ensure the buffer has enough
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Figure 4.9: Targets obtained by solving Problem TG for the perfect predictions
(PP) case using the energy prices from 2011, 2013, 2014 and 2015 for a demand
temperature of 60 °C. Additionaly, the targets obtained for the no predictions
(NP) case are shown.

energy stored before this time period occurs. The disadvantage of including the
long-term planning is that in some cases, such as the one presented here, the profit
may be slightly lower. This means there is a trade-off between a chance of higher
profit at a higher risk. Since in this case the differences in profit are only small,
we think it is advisable to incorporate targets in order to employ a safer charging
strategy. Furthermore, when the long-term planning is incorporated lead to a
higher useful energy content of the buffer at the end of the year. The monetary
advantage of this extra useful energy is hard to estimate, since it depends heavily
on the energy prices at the start of the next year. If high prices are expected the
extra useful energy is very valuable, while if a lot of negative prices are expected
the extra useful energy can even be a disadvantage, since this means there is less
capacity remaining to charge at a profit. However, in general at the start of the
year, i.e. during winter, the heat demand is high and time intervals with low
energy prices not very frequent. This means that we consider a higher useful
energy content of the buffer at the end of a year a benefit, although we are not
able to specify exactly how large the benefit is.

It should be noted that even though there are some differences between the
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Case Obj. value (€) Useful energy (kWh) Opt. time (s)

No targets -28131 74081 6462

PP -27865 110370 28163

NP -27776 110145 46632

Table 4.6: Table comparing optimizations using the energy price data from 2014

and Td e m = 40°C.

Case Obj. value (€) Useful energy (kWh) Opt. time (s)

No targets -27694 291 853646

PP -27170 47894 39839

NP -26409 57100 50325

Table 4.7: Table comparing optimizations using the energy price data from 2014

and Td e m = 60°C.

PP and NP cases in Figure 4.10, the differences in objective value and useful
energy content at the end of the time horizon are very small, as shown in and
Table 4.6 (less than 1% in objective value). We finally note that the incorporation
of the long-term planning increases the computational time by a factor of 4 to 7

compared to the case that uses no targets and a horizon length of two days.

While the model without long-term planning performs well for the case with a
demand temperature of 40 °C, we showed in Section 4.1.2 that this is no longer
the case when the demand temperature is increased to 60 °C. In Figure 4.11, the
results are shown for a demand temperature of 60 °C. In this case, the optimiza-
tion without long-term planning performs very poorly as was already observed
previously. The addition of long-term planning makes a large difference in this
case. As can be seen in the figure, for these two cases there is always enough
useful energy in the buffer to be able to supply the heat demand. Furthermore,
the amount of useful energy in the buffer at the end of the optimization is a
lot higher compared to the case when no long-term planning is used. Table 4.7
shows the objective values and the amount of useful energy in the buffer at the
end of the optimization for the considered cases. While the objective value is
slightly lower when incorporating the long-term planning, the useful energy con-
tent at the end of the year is much higher and the optimization times required
are much shorter. When a demand temperature of 60 °C is used, it is clear
that the addition of long-term planning to the ILP model based approach leads
to a substantial improvement in the results. Again, we see that the differences
between the PP and NP cases are small (less than 3% in objective value).

In Figures 4.10 and 4.11, there seems to be little difference in the results when
comparing the PP and NP cases. To get some more insight regarding this be-
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Figure 4.10: Temperature evolution inside the Ecovat buffer throughout the year
without using targets, as well as the PP and NP cases when using targets. These
results are for a demand temperature of 40 °C and energy prices from the year
2014.
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Figure 4.11: Temperature evolution inside the Ecovat buffer throughout the year
without using targets, as well as the PP and NP cases when using targets. These
results are for a demand temperature of 60 °C and energy prices from the year
2014.
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Case Obj. value (€) Useful energy (kWh) Opt. time (s)

Td e m = 40°C, 2011, PP -22709 115696 35369

Td e m = 40°C, 2011, NP -22097 145635 211282

Td e m = 40°C, 2013, PP -41711 114694 28876

Td e m = 40°C, 2013, NP -41609 117096 100755

Td e m = 40°C, 2014, PP -27865 110370 28163

Td e m = 40°C, 2014, NP -27776 110145 46632

Td e m = 40°C, 2015, PP -50634 125215 2831

Td e m = 40°C, 2015, NP -50528 125739 3018

Td e m = 60°C, 2011, PP -22339 56187 79324

Td e m = 60°C, 2011, NP -21164 78399 66952

Td e m = 60°C, 2013, PP -41343 52309 35715

Td e m = 60°C, 2013, NP -40681 59093 45735

Td e m = 60°C, 2014, PP -27170 47894 39839

Td e m = 60°C, 2014, NP -26409 57100 50325

Td e m = 60°C, 2015, PP -52196 55796 39417

Td e m = 60°C, 2015, NP -51640 61916 39239

Table 4.8: Table comparing the PP and NP cases for the years 2011, 2013, 2014
and 2015 as well as Td e m = 40°C and Td e m = 60°C.

haviour, we investigate whether this is the same for the other years: 2011, 2013
and 2015. The corresponding results are summarized in Table 4.8. We can see
that for all the years and both demand temperatures considered, the PP and NP
cases give very similar results. The largest relative difference is observed for 2011,
but even there, the difference in the objective value is only slightly higher than
5%. We observe that the NP case generally gives slightly higher objective values
for the years and demand temperatures considered, but it also has a higher useful
energy content at the end of the optimizations to compensate for this. Whether
this trade-off is worthwhile depends on the expected energy prices occurring in
the time intervals after the optimization horizon.

Finally, we investigated the influence of the used estimates for the amounts of
energy that can be charged by the Ecovat buffer during a time interval with a
negative energy price e− and during a time interval with a positive energy price
e+ on the results. We again take the energy prices from 2014 and a demand
temperature of 60 °C and compare the effect of different estimates for e− and e+.
The results of this comparison are presented in Figure 4.12 and Table 4.9. As can
be seen, the results are again very similar. The higher the estimates for e− and
e+, the lower the objective value, but the lower the amount of useful energy in
the buffer at the end of the optimization. We also performed this analysis using
energy price data from the other years, yielding similar results to those shown
in Figure 4.12 and Table 4.9.

We observe that different values for e− and e+, which lead to different sets of
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Figure 4.12: Temperature evolution inside the Ecovat buffer throughout the year
for different estimates of e− and e+, using the energy price data from 2014 and
Td e m = 60°C.
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Estimate Obj. value (€) Useful energy (kWh)

Low estimate -27132 48529

Medium estimate -27170 47894

High estimate -27249 46890

Table 4.9: Table comparing optimizations using the energy price data from 2014

and Td e m = 60°C for different estimates of e− and e+.

target values, give very similar results when used as input for the ILPmodel. And
more generally, we find that two quite different sets of target values still give very
similar results when used as input for the ILP model. This leads us to believe
that the simplifying assumption we made at the end of Section 4.2.4, namely that
for determining e−, we assume the resistance heater only runs when the energy
price is non-positive, has a negligible effect on the results of the optimizations
presented here.

The comparison between the ILP model with and without targets shows that
adding long-term planning to the model improves the results. Furthermore,
the results show that the model is only slightly influenced by differences in the
prediction of the energy prices, as we observed that the difference between cases
where perfect predictions were assumed, and cases where no predictions for the
energy prices were assumed to be available, were small. This means that as long
as the ILP model is given target values that somewhat follow the actual energy
prices, or more generally, if they follow the expected seasonal behaviour (for
example, a high target at the end of summer), the results of the ILP model will
differ only slightly (by a few percent). However, if as a consequence of the
energy transition, the energy prices will get more volatile in the future, this may
change.

These results may seem surprising, but can be explained by taking a closer look
at the energy prices. In Figure 4.13, the energy prices from 2014 are plotted after
sorting them from lowest to highest. The figures shows that there are only a few
very low energy prices, which the model will always try to use, but also only a
few very high energy prices, which the model will always try to avoid. However,
between those extremes, there are many energy prices that differ only slightly
from each other. This means that even if the ILP model is not given the optimal
targets, and as a consequence some time intervals with a higher energy price are
unnecessarily selected, the difference in objective value will be very small.

4.3 Conclusion

In this chapter we first introduced a rolling horizon approach to be able to
solve the ILP model presented in Chapter 3. We observed that this approach
works well if the demand temperature is low, but fails once a higher temperature
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Figure 4.13: Energy prices from 2014 sorted from lowest to highest.

is demanded. Furthermore, we observed that the optimization time increased
dramatically in that case. The reason that the developed rolling horizon approach
fails (the energy content of the buffer is close to 0 for long periods of time) when
considering a higher demand temperature is that the approach is incapable of
looking far enough ahead to be able to incorporate seasonal effects. Due to the
long optimization times required, even for horizon lengths of only a few days, it
is impossible to extend the horizon far enough to be able to include such seasonal
effects in that approach.

Subsequently, we presented a long-term planning step, to be executed before solv-
ing the ILP model. This step determines targets for the useful energy content
of the Ecovat buffer for every day throughout the year. Based on this long-term
planning the model is then capable of including seasonal effects properly. We
showed that including long-term planning greatly improves the results. Further-
more, we showed that by adding long-term planning the model is very robust
against prediction errors. The results obtained when assuming perfect predic-
tions, and the results obtained when assuming we do not know anything about
the energy prices on beforehand, show only small differences. Finally, we showed
that the estimates of the amount of energy that can be stored in one time interval
by the Ecovat buffer (i.e. the values for e− and e+ ), only have a small effect on
the results of the ILP model based approach as well.

In conclusion, we observe that as long as the targets for the useful energy content
of the Ecovat buffer that are used as input to the ILP model, are not too differ-
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ent from reality, i.e. if they show the expected seasonal behaviour, the results
obtained from the ILP model are very similar.

Even though the ILP model extended with long-term planning provides good
charging strategies for the Ecovat system it is still computationally too expensive
to be used for the control of an Ecovat system in practice, for which very fast
decisions will be necessary. The ILP model in some cases requires 12 hours or
more to determine a strategy for a year, which means an average of almost 2min-
utes (and in some extreme cases a much longer time) is required to determine the
strategy for a day, while for the control of an Ecovat system in practice decision
making in less than a second is needed. Additionally, shorter solution times
allow the integration of a model of the Ecovat system into DEM simulations.

For these reasons in the next chapter we present a heuristic method to control
the Ecovat system, which is based on the insights obtained by studying the ILP
model and its output data for different cases. In that chapter we present not only
this method, but also compare the results obtained with it to the results obtained
when using the ILP model.
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915
Method for operational

control in practice

Abstract – In this chapter we present a heuristic method to control the op-
eration of an Ecovat system. This heuristic method is based on the insights
obtained by using the ILP model presented in the previous chapter. The goal
of this heuristic method is to provide charging/discharging strategies that are
of comparable quality to the strategies provided by the ILP model, while being
fast enough to be usable in a practical setting, i.e. when controlling a real
Ecovat system. To determine the quality of the strategies obtained by using
the heuristic method we compare them against the strategies obtained with
the ILP model.

In Chapter 3 we presented an ILP model to determine charging/discharging
strategies for an Ecovat system. For deriving that approach we did not take
into account any restriction on the runtime of this model. The combination of
the long time horizon and the short time interval length that are required for
modelling the Ecovat system, make that with current solvers the model as it is
presented in Chapter 3 can not be solved within a reasonable time. Subsequently,
in Chapter 4we first presented a rolling horizon approach, which makes the ILP
model based approach feasible. However, as the results showed, this approach is
insufficiently capable of incorporating important seasonal effects. To deal with
this, we presented a long-term planning step, to be run before the rolling horizon
approach, which determines a target for the useful energy content of the Ecovat
buffer for every day. We then slightly modified the previously developed ILP
model such that it ensures a useful energy content in the Ecovat buffer close to

This chapter is based on [G:3].
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those pre-generated targets. We observed that this method is capable of incorpo-
rating seasonal effects and leads to an improvement in the results, compared to
the rolling horizon approach without long-term planning. However, as observed
in Chapter 4 the computational times for yearly simulations based on this model
are still in the order of a few days for some cases. This means that the ILP model
based approach is still not usable for the real-time control of an Ecovat system
in practice, since in that case very fast decision making (around a second or less)
is required.

In this chapter we present an approach of controlling the Ecovat system for
which the computational times are short enough for use in a practical situation.
We set up this approach such that it considers all time intervals iteratively, and
only requires input for the current time interval it is considering, i.e. that it does
not require input data for future time intervals, such as weather predictions and
future energy prices. The exception to this are pre-generated targets for the useful
energy content of the Ecovat buffer, which are generated in the same way as for
the ILP model based approach in the previous chapter. The approach developed
in this chapter is a heuristic method, which is developed based on the insights
obtained from the ILP model based approach, as well as the output data from
the ILP model based approach for the different considered cases in Chapter 4.
More specifically, based on output data from the ILP model based approach
we derive some ’rules of thumb’ for the control of charging/discharging of the
Ecovat system. The heuristic then applies these rules of thumb to each time
interval in an iterative manner, to obtain a charging/discharging strategy for
the Ecovat system. Clearly, this approach of applying some generalized rules
of thumb should lead to results of lower quality compared to an optimization
based approach, such as the presented ILP model based approach. Therefore,
our goal is to develop a fast heuristic method that gives charging/discharging
strategies which are at least of comparable quality to those obtained using the
ILP model based approach. Summarizing, our goals for designing this heuristic
method are:

1. Produce charging/discharging strategies that are still of good quality, i.e.
close to the strategies determined by the ILP model based approach.

2. Produce such charging/discharging strategies in a short computational
time (seconds).

3. Produce such charging/discharging strategies without requiring input
data, such as energy prices or weather data, beyond the time interval
that the heuristic method is considering at that moment.

The remainder of this chapter is structured as follows. In Section 5.1 we present
the heuristic method derived from the insights obtained from the ILP model
based approach. We describe the rules of thumb derived from the output data
of the ILP model based approach, as well as the iterative process the heuristic
uses to construct a charging/discharging strategy. In Section 5.2 we compare
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the results obtained with the heuristic approach presented in this chapter to the
previously presented results from the ILP model based approach. Finally, in
Section 5.3 we present our conclusions with regards to the presented heuristic
method.

5.1 Heuristic approach

Similar to the ILP model based approach, the heuristic first generates a target
Vtar( j ) for the useful energy in the buffer at the end of every day j of the year. This
is done in the same way as for the ILP model based approach, i.e. Algorithm 1

is used (see Section 4.2.2). After this, the heuristic iteratively considers every
time interval in the time horizon and determines the decisions which have to
be made for this time interval. This process consists of eight steps. We first
summarize these steps below and go into more detail on each individual step
after that. During each time interval i the following steps are performed:

1. If the time interval is the first time interval of a new day, determine the
maximum accepted energy price for running the devices in the system
for the coming day.

2. Calculate the expected output temperature of the PVT panels.
3. Decide if the PVT panels are connected to the bottom buffer segment,

and whether or not the lthp and/or the hthp run during time interval i .
4. Decide from which segment the heat demand is supplied and if the resis-

tance heater and/or awhp run during time interval i .
5. Calculate the heat losses of the Ecovat buffer to the surroundings during

time interval i .
6. Calculate the changes in energy content in the system due to the decisions

made in Steps 2–4 and the calculated heat loss from Step 5.
7. Update the temperatures in the segments of the Ecovat buffer.
8. Calculate the operational costs resulting from the decisions made in Steps

2–4.

After the last time interval in the time horizon the total operational costs in-
curred over the entire horizon are calculated. The objective of the heuristic is
the same as that of the ILP model based approach, i.e. to minimize the total
operational cost over the time horizon while satisfying the heat demand of the
neighbourhood at all times.

To execute the above steps for a time interval i of day j , the heuristic considers
only the current state of the buffer, i.e. the temperatures of the buffer segments
Ti ,s , as well as the input data for that time interval, and the energy targetVtar( j ) at
the end of day j as input. Note, that the heuristic does not take any future data
into account, besides the target of day j , Vtar( j ). The heuristic uses a set of rules
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of thumb to determine, based on the current state and input data, the devices that
will be connected to specific buffer segments. Whether a device is connected to
a buffer segment is modelled by the binary variable yd e v

i ,s . If yd e v
i ,s = 1 device d e v

is connected to segment s during the complete time interval i and if yd e v
i ,s = 0

it is not connected. All decisions variables yd e v
i ,s are set to 0 at the start of the

heuristic.

It is worth mentioning that within the heuristic all the constraints of the Ecovat
system still have to be taken into account, as well as restrictions on the tempera-
tures of the buffer segments, i.e.:

» A device may only be connected to at most one buffer segment during
each time interval.

» A buffer segment may have only one device connected to it during each
time interval.

» Each buffer segment must have a temperature lower than a specified
maximum temperature at all times.

» Each buffer segment must have a lower temperature than the buffer seg-
ment above it at all times.

The derived rules of thumb have to ensure that these constraints are not violated
by the decisions made. While in Chapter 3, when introducing the ILP model,
we ensured the model can accommodate any number of buffer segments, we
now focus specifically on the case where the Ecovat buffer has 5 segments when
discussing the heuristic method. If a buffer with a different number of segments
is considered these rules may have to be adapted.

In the following the steps taken by the heuristic are explained in more detail.

Step 1: If the time interval is the first time interval of a new day, determine
the maximum accepted energy price for running the devices in the system
for the coming day.
Running any of the devices in the system leads to operational costs, which
depend on the energy price during the time interval in which the device runs.
Therefore, there is a trade-off between the price one is willing to pay to run a
device and the need to charge the buffer, which is related to the targets Vtar( j ).
To take this trade-off into account we specify a maximum energy price we are
willing to accept during day j to charge the buffer using the devices in the system.
As such, this maximum accepted energy price is an input for Steps 3 and 4 of
the heuristic, in which the heuristic decides which devices will run during a
given time interval i . However, note that devices may also be turned on for
reasons other than a low energy price, for example to prevent a constraint on
the temperatures of the buffer segments from being violated. In such cases the
introduced price constraint will be overruled.
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The determination of the maximum accepted energy price only takes place if
the considered time interval i is the first time interval of day j , i.e. only if
i = ( j − 1) · 96+ 1.

The maximum accepted energy price p̄ j+1 for the next day j + 1 is determined
by comparing the useful energy target Vtar( j ) at the end of day j , with the useful
energy content of the Ecovat buffer Utar( j ) at the end of day j , where tar( j ) =
j · 96+ 1 as in Chapter 4. The chosen approach is similar to how c j (the weight
factor in the objective function of the ILP model that ensures the model stays
close to the targets for the useful energy content of the buffer) was determined
in the ILP model based approach. Here we consider the same three cases; 1)
the useful energy content of the buffer is below the target, 2) the useful energy
content of the buffer is above the target and 3) the buffer is almost full, i.e. the
useful energy content is close to the maximum useful energy content Ū of the
buffer. The used formula for the maximum accepted energy price p̄ j+1 for the
next day is then given by:

p̄ j+1 =



















0.01 ·
�

Ū − 15000−Utar( j )

�

if Utar( j ) > Ū − 15000

0 if Utar( j ) ⩾Vtar( j )

241 ·
�

1− Utar( j )

Vtar( j )

�2
+ 9 if Utar( j ) <Vtar( j ).

(5.1)

The maximum accepted energy price p̄ j when the useful energy content of the
buffer is below the target ranges from 9 €MWh , when the useful energy content
is slightly below the target, to 250 €MWh , when the useful energy is at 0 kWh. If
the useful energy content of the buffer is above the target a maximum accepted
energy price of p̄ j = 0 €MWh is chosen unless the buffer is almost full. In that case
a maximum accepted energy price ranges from 0 €MWh , when still 15000 kWh of
useful capacity is remaining, to 150 €MWh , when the buffer is full. These values
are the same as those used when determining c j in the ILP model as discussed
in Section 4.2.4. We set the maximum accepted energy price for the first day to
0 €MWh , since the first target is only defined at the end of day 1.

Step 2: Calculate the expected output temperature of the PVT panels.
To determine whether the PVT panels are used for charging the Ecovat buffer
(i.e. are connected to the bottom segment) is based on the output temperature
of the PVT panels. Similar to the ILP model, the heuristic only connects the
PVT panels to the bottom segment of the buffer when the output temperature
of the PVT panels is higher than the temperature of the bottom segment of the
buffer. However, even if this requirement is met, the PVT panels may not be
connected to the buffer if it is necessary to connect another device to the bottom
buffer segment to prevent a constraint violation.
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The output temperature T ou t
i of the PVT panels in the heuristic is determined

in the same way as for the ILP model, i.e. using equation:

T ou t
i =

2 ṁ cp T i n
i − at h A T i n

i + 2 A ηt h
0 Gi + 2 at h A T amb

i

at h A+ 2 ṁ cp
, (5.2)

where ṁ is the mass flow rate of the heat transfer fluid through the PVT panels,
cp is the specific heat of water, T i n

i is the input temperature of the PVT panels,
at h is the thermal loss coefficient of the PVT panels, A is the surface area of
the PVT panels, ηt h

0 is the thermal efficiency of the PVT panels at a reduced
temperature of zero degrees and T amb

i is the ambient temperature. The values
of the parameters used in the heuristic approach are the same as those used in
the ILP model based approach (see Section 4.1.1). This output temperature T ou t

i
is used in combination with the maximum accepted energy price for the current
day p̄ j to determine which devices will run during time interval i .

Step 3: Decide if the PVT panels are connected to the bottom buffer seg-
ment, and whether or not the lthp and/or the hthp run during time inter-
val i
In this step of the heuristic, the two water/water heat pumps (the lthp and hthp,
covering the low and high part of the total temperature range of the Ecovat
buffer respectively) and the PVT panels are considered. We schedule these de-
vices sequentially, whereby aspects of the other devices scheduled later are taken
into account. In Step 4 of the heuristic, the air/water heat pump (awhp), the
resistance heater and the heat demand are scheduled simultaneously, since the
choices for these devices influence each other to a much higher degree than the
lthp, hthp and PVT panels do.

From the data obtained by the ILP model we observed that the lthp is mostly
used to ensure the bottom segment of the Ecovat buffer stays below its maximum
temperature T̄5, which has to ensure the PVT panels are cooled. From this we
take as rule of thumb that the lthp is only used by the heuristic to keep the tem-
perature of the bottom segment of the buffer below this maximum temperature.
For this we consider three cases, based on two temperature levels T̄5−δ

l t h p
1 and

T̄5 −δ
l t h p
2 , where δ l t h p

1 and δ l t h p
2 are positive constants with δ l t h p

1 > δ l t h p
2 .

These two temperature levels are used to specify how close the bottom buffer
segment is to its maximum temperature. The three considered cases for the lthp
are:

» Case 1: The temperature Ti ,s of the bottom segment of the buffer is low
enough, meaning that it is below or equal to T̄5−δ

l t h p
1 . In this case the

lthp is not used.
» Case 2: The temperature of the bottom segment is between the two
temperature levels, i.e. T̄5 −δ

l t h p
1 < Ti ,5 ⩽ T̄5 −δ

l t h p
2 . In this case the
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lthp will be turned on when the energy price is at most the maximum
accepted energy price p̄ j for the current day j , i.e. if pi ⩽ p̄ j .

» Case 3: The temperature of the bottom segment is higher than T̄5−δ
l t h p
2 .

In this case the lthp will be turned on no matter what the energy price is.

Note that, this only specifies whether or not the lthp is turned on, but not yet
to which segments of the buffer it is connected when it is turned on. In case the
lthp is turned on the heat source of the lthp is always the bottom buffer segment,
so y l t h p−

i ,5 = 1. In Case 2, where energy price is at most the maximum accepted
energy price, the heat sink of the lthp is taken to be the lowest temperature
segment (excluding the bottom segment) that has a temperature lower than the
maximum temperature the lthp can generate (i.e. Ti ,s < T l t h p

max ) and that does
not break the thermal stratification of the buffer if it is selected as the heat sink
(i.e. Ti ,s +∆T l t h p < Ti ,s−1, where ∆T l t h p is the change of the temperature of
the buffer segment when selected as the heat sink for the lthp). The change in
the temperature ∆T d e v of a buffer segment when it is charged by device d e v is
given by:

∆T d e v =
C d e v C OP d e v∆t

ms cp
, (5.3)

where C d e v is the capacity of device d e v, C OP d e v is the coefficient of perfor-
mance of device d e v, ∆t is the length of a time interval, ms is the mass of
segment s and cp is the specific heat of water.

The reason to select the lowest temperature segment as heat sink for the lthp is
to keep the higher temperature segments available for other devices. Note, that
in Case 2 the energy price is below the maximum accepted energy price, and
it is beneficial to turn on the largest number of devices possible to minimize
the operational costs. Furthermore, leaving the upper segments ’available’ gives
the potential to connect the awhp and resistance heater to segments with high
temperatures leading to a higher energy quality of the buffer, when compared
to a situation where those devices are connected to lower temperature buffer
segments. As such, it is beneficial to specifically keep the high temperature
segments available for those devices.

In Case 3 as heat sink the highest temperature segment is chosen (excluding
segments 1) that has a temperature lower than the maximum temperature the
lthp can handle and that does not break the thermal stratification of the buffer
if it is selected as the heat sink. The two differences compared to the second case
are that the highest temperature segment is selected as the heat sink instead of the
lowest temperature segment, and that the highest segment (i.e. s = 1) is excluded
as heat sink as well. The reason to select the highest temperature segment is that
in this case the energy price is above the maximum accepted energy price, and
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as such most other devices will not run. The advantage of selecting a higher
temperature segment in this case is the resulting increase in energy quality of the
buffer. The reason to exclude s = 1 when selecting a segment as heat sink is to
ensure that there is a segment with sufficient temperature available to satisfy the
heat demand during the current time interval.

The process of determining the decision variables for the lthp is summarized in
Algorithm 2. As mentioned previously, all decision variables are set to 0 at the
start of the heuristic, so the heuristic only needs to change any decision variables
if a device is turned on.

The results obtained with the ILP model based approach indicate that the hthp
has similar behaviour as the lthp. The hthp is mostly used to keep the temper-
ature of segment 4 below its maximum temperature T̄4, such that the lthp will
always have a buffer segment to use as heat sink when cooling the bottom buffer
segment. As such, we take a similar rule of thumb for the hthp as for the lthp,
namely that the hthp is only used to ensure that the temperature of segment 4
does not reach the maximum allowed temperature of that segment.

Similar to the lthp, we define two temperature levels for the hthp, T̄4−δ
h t h p
1 and

T̄4−δ
h t h p
2 , where δ h t h p

1 and δ h t h p
2 are positive constants with δ h t h p

1 >δ h t h p
2 .

The difference, compared to the lthp, is that the hthp connects to segments of
the buffer that are used by other devices when the energy prices are low, such
as the resistance heater. For this reason the hthp often runs when the energy
costs are (slightly) higher than the maximum accepted energy cost that is used
to determine if the lthp, the awhp and the resistance heater run (see also Step 4).
In this way, the other devices can be connected to the buffer segments when the
energy prices are low, which outweighs the extra costs made by turning on the
hthp when the energy price is higher. As such, the rule of thumb we use for the
hthp in the heuristic considers three cases:

Algorithm 2: Set decision variables for the lthp.

1 if pi ⩽ p̄ j & Ti ,5 > T̄5−δ
l t h p
1 then

2 set y l t h p−
i ,5 = 1

3 set y l t h p+
i ,s = 1 for lowest temperature segment s , excluding s = 5 that

satisfies Ti ,s < T l t h p
max & Ti ,s +∆T l t h p < Ti ,s−1

4 else if Ti ,5 > T̄5−δ
l t h p
2 then

5 set y l t h p−
i ,5 = 1

6 set y l t h p+
i ,s = 1 for highest temperature segment s , excluding s = 1 and

s = 5, that satisfies Ti ,s < T l t h p
max & Ti ,s +∆T l t h p < Ti ,s−1
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» Case 1: The temperature of the fourth segment of the buffer Ti ,4 is low
enough, meaning that it is below or equal to T̄4−δ

h t h p
1 . In this case the

hthp is not used.

» Case 2: The temperature of the bottom segment is between the two
temperature levels, i.e. T̄4−δ

h t h p
1 < Ti ,4 ⩽ T̄4−δ

h t h p
2 . In this case the

hthp will be turned on when the energy price is between the maximum
accepted energy price and a predefined maximum energy price for the
hthp p̄h t h p , i.e. p̄ j ⩽ pi ⩽ p̄h t h p , assuming it is possible to turn the hthp
on during the current time interval.

» Case 3: The temperature of the bottom segment is higher than T̄4−δ
h t h p
2 ,

in this case the lthp will be turned on no matter what the energy price
is, assuming it is possible to turn the hthp on during the current time
interval.

Note that, even when the temperature and energy price constraints for Case 2
and 3 are valid during the current time interval, it might not be possible to turn
on the hthp because of the decisions made for the lthp, i.e. the lthp may already
be connected to the fourth buffer segment during the current time interval.

The three cases describe when the hthp is turned on, but not yet to which seg-
ments it is connected when it is turned on. The heat source of the hthp is always
taken to be the fourth buffer segment, to ensure the lthp always has a buffer seg-
ment to use as heat sink when cooling the bottom buffer segment. The segment
chosen as heat sink differs between Case 2 and Case 3. In Case 2, the energy
price is above the maximum accepted energy price used to determine whether
the lthp, awhp and resistance heater run, meaning those devices are not turned
on during any time interval where this case holds. This means the hthp can be
connected to any segment without taking into account other devices scheduled
after it, since those devices will not run during such a time interval. As such,
the highest temperature segment, excluding segment 1, that has a temperature
lower than the maximum temperature the hthp can generate (i.e. Ti ,s < T h t h p

max )
and that does not break the thermal stratification of the buffer if it is selected
as the heat sink (i.e. Ti ,s +∆T h t h p < Ti ,s−1, where ∆T h t h p is the change in
temperature of the buffer segment when selected as the heat sink for the hthp,
obtained using Equation (5.3)). Segment 1 is again excluded to ensure there is at
least one segment available to satisfy the heat demand during the current time
interval. Again, the allowed segment with the highest temperature is chosen to
maximize the energy quality of the Ecovat buffer.

In Case 3, where the hthp is turned on independent of the energy price, the
segment chosen as the heat sink for the hthp is always segment 3. The reason for
this is that in this case the energy price may be lower than the maximum accepted
energy price, which is used to determine if the other devices run. This means
that it is beneficial to keep the segments with higher temperatures available for



100

C
h
a
p
t
e
r
5
–
M
e
t
h
o
d
f
o
r
o
p
e
r
a
t
i
o
n
a
l
c
o
n
t
r
o
l
i
n
p
r
a
c
t
i
c
e

the other devices that are scheduled after the hthp, to increase the potential profit
that can be made during the current time interval.

The process of determining the decision variables for the hthp is summarized
in Algorithm 3. In the pseudocode for this algorithm, and the subsequent al-
gorithms, we use the shorthand notation "segment s is free" when there is no
previously considered device connected to segment s yet, i.e.

∑

d e v∈D
yd e v

i ,s = 0 for

the current time interval i and the considered segment s .

Algorithm 3: Set decision variables for the hthp.

1 if p̄ j ⩽ pi ⩽ p̄h t h p & Ti ,4 > T̄4−δ
h t h p
1 & segment 4 is free then

2 set y h t h p−
i ,4 = 1

3 set y h t p h+
i ,s = 1 for highest temperature segment s , excluding s = 1, that

satisfies Ti ,s < T h t h p
max & is free

4 else if Ti ,4 > T̄4−δ
h t h p
2 & segments 3 and 4 are free then

5 set y h t h p−
i ,4 = 1

6 set y h t h p+
i ,3 = 1

The rule of thumb used for the PVT panels is very straightforward: the PVT
panels are connected to the bottom segment of the Ecovat buffer if the output
temperature of the PVT panels is higher than the temperature of the bottom
segment of the buffer, i.e. T ou t

i > Ti ,5 and no other device is connected to
segment 5 yet. Algorithm 4 summarizes the process of determining the decision
variable for the PVT panels.

Algorithm 4: Set decision variables for the PVT panels.
1 if T ou t

i > Ti ,5 & segment 5 is free then
2 set y pv t

i ,5 = 1

Step 4: Decide from which segment the heat demand is supplied and if the
resistance heater and/or awhp run during time interval i .
In this step, the heat demand, the resistance heater and the awhp are considered.
Note that, the heat demand of the neighbourhood must be satisfied at all times,
meaning that the heuristic must always select one of the buffer segments to
supply the heat demand. Furthermore, to maximize the profit resulting from
turning on the devices in the system (and thus minimize the operational costs)
the resistance heater and the awhp must be turned on during time intervals with
negative energy prices as much as possible. As such, these devices are often
turned on in the same time interval. This fact, combined with the restriction
that only one device can be connected to a given buffer segment during a time
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interval, means the decisions with respect to the operation of the three devices
considered in this step strongly influence each other. For this reason, these three
devices are considered simultaneously by the heuristic.

Even though the heat demand, the resistance heater and the awhp are often
connected to the Ecovat buffer during the same time intervals, this is not always
the case. Therefore, we first determine in which specific situations each of these
devices is turned on. Since the heat demand of the neighbourhood must be
satisfied at all times, one of the buffer segments must be assigned to supplying
the heat demand during every time interval. Furthermore, the heuristic will try
to turn the resistance heater on when the energy price is at most the maximum
accepted energy price. However, in some circumstances this may not be possible
due to the temperature distribution over the buffer segments, e.g. when the
buffer is already at its capacity. Finally, the heuristic will try to turn on the
awhp when the energy price is at most the maximum energy price multiplied by
the coefficient of performance of the awhp. The reason for this multiplication is
that this leads to the same accepted maximum energy price per unit of thermal
energy as for the resistance heater, which has a coefficient of performance of
one. However, as with the resistance heater, it might not be possible to turn the
awhp on even if the energy price is low enough. To summarize, this leads to
three different cases, based on the energy price pi during a given time interval i :

» Case 1: pi ⩽ p̄ j . In this case, we try to turn on the resistance heater and
awhp if possible. Furthermore, a segment must be selected to supply the
heat demand.

» Case 2: p̄ j < pi ⩽ p̄ j C OP aw h p . In this case, we try to turn on the awhp.
Furthermore, a segmentmust be selected to supply the heat demand. (this
case does not occur if p̄ j ⩽ 0).

» Case 3: pi > p̄ j C OP aw h p . In this case, we only select a segment that
supplies the heat demand.

The general procedure of determining the decision variables for the heat demand,
the resistance heater and the awhp is the same in all three cases. In the following,
we only discuss the first case, which is the most complex, in detail. The other
two cases are very similar, and therefore only summarized in Algorithm 5 at the
end of the discussion.

For specifying this step of the heuristic we make use of the following parameters:
ȳ r e s

i , ȳaw h p
i and

¯
yd e m

i , which are defined in the following way: ȳ r e s
i is the highest

temperature segment that can be charged by the resistance heater, ȳaw h p
i is the

highest temperature segment that can be charged by the awhp and
¯
yd e m

i is the
lowest temperature segment that can supply the heat demand. For all three
parameters it holds that selecting that segment should not lead to a violation of
the temperature stratification constraint, the maximum temperature constraint
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of the buffer or a device specific constraint. Below we discuss in more detail
the determination of these parameters for each device. Note, that ȳ r e s

i , ȳaw h p
i

and/or
¯
yd e m

i can take the same value.

When determining ȳ r e s
i , the highest temperature segment s that the resistance

heater can charge without breaking any constraints, we need to ensure that if the
heuristic selects the resistance heater to charge segment s that the maximum tem-
perature constraint of the buffer or the temperature stratification constraint are
not violated. To avoid breaking the maximum temperature constraint segment
s needs to satisfy Ti ,s +∆T r e s ⩽ T̄s , where ∆T r e s is the temperature change
caused by the resistance heater charging a buffer segment (∆T r e s can be obtained
using Equation (5.3)). When checking whether charging segment s with the re-
sistance heater violates the temperature stratification constraint, the heuristic
takes into account that segment s−1 might be chosen to supply the heat demand,
i.e. segment s needs to satisfy Ti ,s +∆T r e s ⩽ Ti ,s−1−∆T d e m , where ∆T d e m is
the temperature change caused by the heat demand being supplied by a buffer
segment (∆T d e m can be obtained using Equation (5.3), where the ’capacity’ of
the heat demand is simply the amount of heat demand during that interval, i.e.
C d e v =Di ). An important observation is that if a segment s can be charged by
the resistance heater, any segments below that can be charged by it as well, since
those segments have a lower temperature than segment s .

Determining ȳaw h p
i is done in a similar way as determining ȳ r e s

i . As mentioned
before, ȳaw h p

i is defined as the highest temperature segment s that the awhp
can charge without violating any constraints. Again, we need to ensure that
the temperature stratification is kept intact, which is done in a similar way as
discussed above, when determining ȳ r e s

i . Furthermore, segment s needs to have
a temperature below the maximum temperature that the awhp can supply, i.e.
Ti ,s < T aw h p

max . Similar to the resistance heater, we know that if the awhp can
charge segment s it can also charge segments with lower temperatures.

Finally, we determine
¯
yd e m

i , which is defined as the lowest temperature segment
s that can supply the heat demand without breaking any constraints. When
determining

¯
yd e m

i the heuristic needs to ensure the temperature stratification
stays intact, which is done in a similar way as discussed above when determining
ȳ r e s

i . Furthermore, segment s needs to have a sufficiently high temperature to
satisfy the heat demand from the neighbourhood, i.e. Ti ,s > Td e m . In the case
of the heat demand, we know that if segment s can supply the heat demand of
the neighbourhood, so can any segment of higher temperature.

The procedure to determine the segments to which the resistance heater, awhp
and heat demand are connected considers the buffer segments in order of increas-
ing temperature, excluding the bottom segment. This implies that the procedure
starts with segment 4. It first checks in the following order if one of the devices
can be connected to this segment: resistance heater, awhp, heat demand. If for
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one of the segments a connection is possible, this connection is established. The
reason the heat demand is checked last, even though it is the only ’device’ that
always has to run, is that the top segment, which is considered last in this proce-
dure, always has the highest temperature and thus is always able to supply the
heat demand of the neighbourhood, assuming the buffer has a sufficiently high
useful energy content to satisfy the heat demand. However, the heuristic ensures
that this assumption is always the case. Below we go into more detail on this
procedure, by specifying the procedure of setting the decision variables for the
resistance heater, the awhp and the heat demand for a given segment s .

The entire procedure of determining the decision variables for the resistance
heater, the awhp and the heat demand is given in Algorithm 5. First, the heuristic
checks whether none of the devices considered in Step 3 (lthp and hthp) are
connected to segment s yet (for example in line 5 of Algorithm 5). If this is not
the case, it checks whether the resistance heater can be connected to segment
s , i.e. if ȳ r e s

i = s . If this is possible, the resistance heater is connected to this
segment, i.e. y r e s

i ,s = 1 (e.g. in line 6 of Algorithm 5). Since only one device
can be connected to a buffer segment during any time interval the procedure
stops considering segment s at this point and proceeds to the next segment, i.e.
segment s −1. If the resistance heater is not connected to segment s , the process
is repeated for the awhp, i.e. if ȳaw h p

i = s the awhp is connected to segment s

(yaw h p
i ,s = 1) and the procedure proceeds to the next segment (e.g. in line 7 of

Algorithm 5). If the awhp is not connected to segment s , the heuristic checks
whether this segment can supply the heat demand and the heat demand is not
yet supplied by another segment yet, i.e. if both

¯
yd e m

i ⩾ s and
∑

s∈S
yd e m

i ,s = 0 are

satisfied, segment s is assigned to supply the heat demand (yd e m
i ,s = 1, e.g. in

line 14 of Algorithm 5). The reason to check
¯
yd e m

i ⩾ s instead of
¯
yd e m

i = s is
due to the fact that any segment with a higher temperature than segment s can
also supply the heat demand (contrary to ȳ r e s

i and ȳ r e s
i which give the highest

temperature segments those devices can be connected to).

The above procedure works well if ȳ r e s
i , ȳaw h p

i and
¯
yd e m

i have different values.
However, this is not necessarily the case. To integrate the cases in which some of
these parameters are equal as well, some extra checks have to be added to allow
more devices to be connected to the Ecovat buffer. To give a specific example, if
both ȳ r e s

i and ȳaw h p
i have the same value s , the above procedure would connect

the resistance heater to segment s and the awhp would not be connected to any
segment. However, it might be possible to connect the awhp to segment s+1 in
that case, since that segment has a lower temperature. To take this into account
the heuristic checks whether ȳ r e s

i = s and ȳaw h p
i = s when considering segment

s + 1. If this is the case then the awhp is connected to segment s + 1 and the
resistance heater can be connected to segment s as before. Line 8 of Algorithm 5

gives an example of the above mentioned extra checks. Note, that if ȳ r e s
i = 3
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and ȳaw h p
i = 3 the awhp gets connected to segment 4 in line 8, i.e. yaw h p

i ,4 = 1,
and the resistance heater gets connected to segment 3 in line 11, i.e. y r e s

i ,3 = 1.
Furthermore, note that due to the way the decision variables for the lthp and
hthp are set, segment 4 can not be free while segment 3 is not free when pi ⩽ p̄ j .
As discussed before, in the cases in which less devices are considered the decision
variables are determined in a similar way, as can be seen in Algorithm 5.

Algorithm 5: Set decision variables for the resistance heater, the awhp and
the heat demand.
1 set ȳ r e s

i = s1 where s1 is the highest segment that res can charge without
breaking the maximum temperature or temperature stratification
constraints

2 set ȳaw h p
i = s2 where s2 is the highest segment that awhp can charge

without breaking the temperature stratification constraint and that
satisfies Ti ,s < T aw h p

max

3 set
¯
yd e m

i = s3 where s3 is the lowest segment that can supply the heat
demand without breaking the temperature stratification constraint and
that satisfies Ti ,s > Td e m

4 if pi ⩽ p̄ j then
5 if segment 4 is free then
6 if ȳ r e s

i = 4 then set y r e s
i ,4 = 1

7 else if ȳaw h p
i = 4 then set yaw h p

i ,4 = 1

8 else if ȳ r e s
i = 3 & ȳaw h p

i = 3 then set yaw h p
i ,4 = 1

9 else if
¯
yd e m

i ⩾ 4 then set yd e m
i ,4 = 1

10 if segment 3 is free then
11 if ȳ r e s

i = 3 then set y r e s
i ,3 = 1

12 else if ȳaw h p
i = 3 then set yaw h p

i ,3 = 1

13 else if ȳ r e s
i = 2 & ȳaw h p

i = 2 then set yaw h p
i ,3 = 1

14 else if
¯
yd e m

i ⩾ 3 & demand not satisfied yet then set yd e m
i ,3

15 else if ȳaw h p
i ⩽ 2 & ȳ r e s

i ⩽ 2 &
¯
yd e m

i ⩽ 2 then set yaw h p
i ,3 = 1

16 if segment 2 is free then
17 if ȳ r e s

i = 2 then set y r e s
i ,2 = 1

18 else if ȳaw h p
i ⩽ 2 & awhp not connected to a segment yet then set

yaw h p
i ,2 = 1

19 else if
¯
yd e m

i ⩾ 2 & demand not satisfied yet then set yd e m
i ,2 = 1

20 else if ȳ r e s
i = 1 &

¯
yd e m

i = 1 then set y r e s
i ,2 = 1

21 if
¯
yd e m

i ⩾ 1 & demand not satisfied yet then set yd e m
i ,1 = 1

22 else if ȳ r e s
i = 1 then set y r e s

i ,1
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23 else if p̄ j < pi ⩽ p̄ j C OP aw h p then
24 if segment 4 is free then
25 if ȳaw h p

i = 4 then set yaw h p
i ,4 = 1;

26 else if ȳaw h p
i = 3 & segment 3 not free then set yaw h p

i ,4 = 1;
27 else if

¯
yd e m

i ⩾ 3 then set yd e m
i ,4 = 1;

28 if segment 3 is free then
29 if ȳaw h p

i = 3 then set yaw h p
i ,3 = 1;

30 else if ȳaw h p
i = 2 & segment 2 not free then set yaw h p

i ,3 = 1;
31 else if

¯
yd e m

i ⩾ 2 & demand not satisfied yet then set yd e m
i ,3 = 1;

32 if segment 2 is free then
33 if ȳaw h p

i ⩽ 2 then set yaw h p
i ,2 = 1;

34 else if
¯
yd e m

i ⩾ 2 & demand not satisfied yet then set yd e m
i ,2 = 1;

35 if
¯
yd e m

i = 1 then set yd e m
i ,1 = 1;

36 else
37 if

¯
yd e m

i ⩾ 4 & segment 4 is free then set yd e m
i ,4 = 1;

38 else if
¯
yd e m

i ⩾ 3 & segment 3 is free then set yd e m
i ,3 = 1;

39 else if
¯
yd e m

i ⩾ 2 & segment 2 is free then set yd e m
i ,2 = 1;

40 else set yd e m
i ,1 = 1;

Step 5: Calculate the heat losses of the Ecovat buffer to the surroundings
during time interval i .
The previous steps consider the charging/discharging of the Ecovat buffer by the
devices in the system. Next to this, the state of the Ecovat buffer is also influenced
by energy losses to the surrounding environment over time. In this step the
heuristic determines the amount of heat lost by each of the buffer segments
during time interval i . This is done using the same equation as in the ILP model:

Q l o s s
i ,s =
�

1− (1−β)
2

Ni nt

�

(Ti ,s −Tg w ) ms cp , (5.4)

where Q l o s s
i ,s is the heat lost by buffer segment s during time interval i , β is the

given heat loss coefficient of the Ecovat buffer over 6 months, ms is the mass of
segment s , cp is the specific heat of water and the factor 2

Ni nt
is equal to one over

the number of time intervals in half a year (see also Equation 3.30 in Chapter 3).

Step 6: Calculate the changes in energy content in the system due to the
decisions made in Steps 2–4 and the calculated heat loss from Step 5.
The decisions in Steps 3 and 4 of the heuristic lead to changes in the energy
content of the buffer segments, which in turn lead to temperature changes. In
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this step the heuristic determines the changes in the energy content induced by
the charging/discharging Qd e v

i ,s done by the devices in the system. For the lthp,
hthp, awhp and the resistance heater these changes depend on the capacity C d e v

of the device and the coefficient of performance of the device C OP d e v . For
the heat demand it depends on the energy demand Di during that time interval.
Finally, for the PVT panels the changes depend on the thermal efficiency of the
panels. Of the involved parameters the thermal efficiency of the PVT panels
is the only value that is not an input of the model. As in the ILP model, the
thermal efficiency is modelled as a linear function of the reduced temperature,
which is defined as the difference between the mean temperature in the PVT
panels and the ambient temperature divided by the global irradiation [36]. This
means the reduced temperature T r ed

i is given by:

T r ed
i =















Ti ,5+T ou t
i

2
−T amb

i

Gi
, if Gi > 0

0, otherwise,

(5.5)

where T amb
i is the ambient temperature during time interval i and Gi is the

global irradiation during time interval i . Using the reduced temperature, the
thermal efficiency of the PVT panels ηt h

i is given by:

ηt h
i = η

t h
0 − at h T r ed , (5.6)

where ηt h
0 is the thermal efficiency of the PVT panels at a reduced temperature

T r ed of zero and at h is the thermal loss coefficient of the PVT panels. Once
the thermal efficiency of the PVT panels is known, the changes in the energy
content Qd e v

i ,s of the buffer segments, resulting from the charging/discharging
done by the devices in the system, can be calculated using the same equations as
in the ILP model:

Q pv t
i ,s =
¨

0 if s = 1, .., 4,
ηt h

i Gi A y pv t
i ,s if s = 5,

(5.7)

Qaw h p
i ,s =C aw h p C OP aw h p yaw h p

i ,s , (5.8)

Q l t h p−
i ,s =−C l t h p (C OP l t h p − 1) y l t h p−

i ,s , (5.9)

Q l t h p+
i ,s =C l t h p C OP l t h p y l t h p+

i ,s , (5.10)

Q h t h p−
i ,s =−C h t h p (C OP h t h p − 1) y h t h p−

i ,s , (5.11)

Q h t h p+
i ,s =C h t h p C OP h t h p y h t h p+

i ,s , (5.12)
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Q r e s
i ,s =C r e s y r e s

i ,s , (5.13)

Qd e m
i ,s =−Di yd e m

i ,s . (5.14)

Additionally, we have to determine the amount of electrical energy produced by
the PVT panels which is needed in Step 8 of the heuristic. For this the electrical
efficiency of the PVT panels is required, which is modelled in the same way as
in the ILP model:

ηe l
i = η

e l
0 − ae l T r ed . (5.15)

Using the electrical efficiency of the PVT panels, the amount of electrical energy
produced during time interval i is given by:

E pv t
i = ηe l

i Gi A
∑

s∈S
y pv t

i ,s . (5.16)

Step 7: Update the temperatures in the segments of the Ecovat buffer.
The changes in the energy content of the buffer segments imply also changes in
their temperatures. In this step the heuristic calculates those temperatures. The
temperature changes in the buffer segments follow from the following equation:

Ti+1,s = Ti ,s +
∆t

ms cp

�

∑

d e v∈D
Qd e v

i ,s −Q l o s s
i ,s

�

, (5.17)

where the temperatures Ti+1,s are the temperatures of the buffer segments at the
start of time interval i + 1. These temperatures are used by the heuristic when
determining the decision variables for the next time interval i + 1.

Step 8: Calculate the operational costs resulting from the decisions made in
Steps 2–4.
In the final step the heuristic determines the operational costs incurred during
the current time interval i , due to the decisions made in Steps 3 and 4. As for
the ILP, these costs consist of the costs of running the devices in the system, and
are reduced by the amount of electrical energy produced by the PVT panels. As
before, we only consider the operational costs and do not consider costs such
as maintenance costs, or the profit made from supplying the heat demand of
the neighbourhood, since we assume these to be equal for different charging/dis-
charging strategies. The operational costs Ki incurred during time interval i are
given by:

Ki = pi ∆t
�

∑

s∈S
(C aw h p yaw h p

i ,s +C l t h p y l t h p−
i ,s +C h t h p y h t h p−

i ,s

+C r e s y r e s
i ,s )− E pv t

i

�

. (5.18)
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Parameter Value

δ l t h p
1 0.3 °C
δ l t h p

2 0.1 °C
δ h t h p

1 0.3 °C
δ h t h p

2 0.1 °C
T h t h p

max 50
€

MWh

Table 5.1: Parameters specific to the heuristic method for controlling an Ecovat
system.

The overall heuristic repeats Steps 1–8 for every time interval in the time horizon,
and sums up the operational costs over all time interval to obtain the total
operational costs over the entire time horizon, i.e. the total operational costs
are given by:

Kt ot =
∑

i∈I
Ki . (5.19)

5.2 Results

The heuristic method presented in the previous section requires, next to the daily
energy targets Vtar( j ), only input data for the time interval that the heuristic is
considering at that moment. It uses future data only indirectly through the long-
term planning introduced in Chapter 4, which depends on historical data for
the heat demand of the neighbourhood and may depend on predictions for the
energy prices. Similar to the results presented in Section 4.2.5, in this section we
compare cases where perfect predictions (PP) are available for the energy prices
with cases where no predictions (NP) are available for the energy prices when
determining the daily useful energy targets for the Ecovat buffer in the long-term
planning step.

For determining the performance of the heuristicmethodwe again use the energy
price data from the years 2011, 2013, 2014 and 2015. Additionally, we consider
two different demand temperatures Td e m = 40°C and Td e m = 60°C, leading to
the same 16 cases we considered in Section 4.2.5 where we presented the results
obtained with the ILP model based approach. In this section, we compare results
obtained using the developed heuristic with the results obtained using the ILP
model based approach. Except for the parameters given in Table 5.1, which are
specific to the heuristic method, the inputs used for the heuristic are the same as
for the ILP model based approach discussed in Chapter 4.

We first compare the quality of the solutions obtained using the heuristic and the
ILPmodel based approach. For this we consider the samemetrics as in Chapter 4,
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i.e. the operational costs over the time horizon, and the useful energy content
of the Ecovat buffer at the end of the time horizon. In Table 5.2 the operational
costs and the useful energy content of the Ecovat buffer at the end of the time
horizon are shown for the 16 cases mentioned above, for both the heuristic as
well as the ILP model based approach. Furthermore, the relative difference in
operational costs between the heuristic and the ILP model based approach is
shown in the last column of Table 5.2.

The results presented in Table 5.2 show that for a demand temperature Td e m of 40
°C the results obtained using the heuristic presented in this chapter differ only
a few percent from the results obtained using the ILP model based approach.
To get more insight into the behaviour of the approaches, we have a look at
the temperature evolution inside the Ecovat buffer throughout the year for two
specific cases. In Figure 5.1 the temperature evolution is given for both the
heuristic and the ILP model based approach, for the PP case using energy price
data from 2014 and a demand temperature Td e m of 40 °C. This is one of the
considered cases where the heuristic performs very well, showing only a 1.4%
difference compared to the result obtained using the ILP model based approach.
The graphs in Figure 5.1 show that the temperature evolution is very similar for
both cases.

When considering a demand temperature Td e m of 60 °C we observe that the
differences between the heuristic and the ILP model based approach become
larger. Table 5.2 shows that the largest difference is observed in the NP case using
the energy price data from 2011. In this case the difference in operational costs
between the heuristic and the ILP model based approach is 14%. In Figure 5.2
the temperature evolution inside the Ecovat buffer for this case is shown for both
the heuristic and the ILP model based approach. We can see that the differences
between both models are larger compared to Figure 5.1, as expected. However,
even in this case we see the same general trends in the temperature evolution
throughout the year.

Over all 16 considered cases, we observe an average decrease in performance of
5.2% when comparing the heuristic with the ILP model based approach. Fur-
thermore, we can see that the useful energy content of the buffer is generally
very similar for both models. Finally, we observe that the differences between
the PP and NP cases are in general very small for the heuristic. This is the same
behaviour we observed in Chapter 4 when considering the results obtained with
the ILP model based approach. This reinforces the conclusion that as long as
the daily targets for the useful energy content of the Ecovat buffer follow the
expected seasonal behaviour, the obtained results are very similar.
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Figure 5.1: Temperature evolution inside the Ecovat buffer throughout the year
for the PP case using the energy price data from 2014 and Td e m = 40°C.

We observe that the cases in which the relative difference between the approaches
is largest are the cases in which the buffer is either almost empty (2011) or al-
most full (2015) at some time during the year. Intuitively it makes sense that
the advantage of being able to consider future input data, which is the advantage
the ILP model based approach has over the heuristic, is largest in these extreme
cases. However, even in these cases the largest observed difference is not larger
than 14.0%. Note that, as discussed before, the ILP model based approach only
gives an upper bound on the performance of the heuristic as it additionally uses
(generally unknown) input data for future time intervals to determine the charg-
ing/discharging strategy for the current time interval. In a real world situation
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Figure 5.2: Temperature evolution inside the Ecovat buffer throughout the year
for the NP case using the energy price data from 2011 and Td e m = 60°C.

it is unlikely that we have very accurate predictions for these inputs, such as the
energy prices, and are instead forced to make operational decisions based only
on data available at that point in time or on predictions which may be quite un-
certain. As such, a worst case difference of 14.0% between the heuristic, which
only uses input data for the time interval it is currently considering, and the ILP
model based approach, which uses input data for future time intervals to make
better informed decisions, seems to be an acceptable decrease in performance.

We have discussed the quality of the results obtained using the heuristic com-
pared to those obtained with the ILP model based approach, taking into account
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the fact that the heuristic only uses input data for the time interval it is consider-
ing at that time. The final goal of the heuristic method as described at the start
of this chapter is to provide charging/discharging strategies in a short amount of
time. While the ILP model has quite a large spread of computational times for
the different considered cases, the computational time for the heuristic is a few
seconds for all 16 considered cases. This means that the heuristic is computation-
ally a lot cheaper than the ILP model based approach which requires around 8

to 15 hours for most considered cases (with some extreme cases even taking a lot
longer). The resulting computational time of a few seconds for the heuristic to
simulate an entire year of operation makes the presented heuristic fast enough
to be usable for operational (real-time) control of a practical system. This means
the heuristic satisfies all three goals outlined at the start of this chapter.

5.3 Conclusion

In the previous chapters we presented an ILP model based approach to control
the Ecovat system, which provides good charging/discharging strategies, but
which was too slow to be used in a practical situation. Furthermore, that ap-
proach required input data for future time intervals (e.g. the energy prices),
which are unlikely to be available in practice. Therefore, in this chapter we
developed a heuristic to control the Ecovat system, which:

1. produces charging/discharging strategies that are still of good quality, i.e.
close to the strategies determined by the ILP model based approach,

2. produces such charging/discharging strategies in a short computational
time (seconds), and

3. produces such charging/discharging strategies without requiring input
data, such as energy prices or weather data, beyond the time interval that
the heuristic method is considering at that moment.

From the results presented in this chapter we observe that the charging/discharg-
ing strategies obtained using the heuristic are still of good quality compared
to the strategies obtained with the ILP model based approach. We observed a
worst case decrease in performance of 14% when comparing the heuristic to the
ILP model based approach. However, in most simulated cases the decrease in
performance is significantly smaller, with an average decrease in performance of
5.2%. Hereby we have to take into account that the ILP model based approach
gives an upper bound on the performance of the heuristic as it considering also
input data for time intervals in the future, which generally is not available in a
practical situation. The developed heuristic does not require such input data for
future time intervals, and only uses available input data for the time interval it is
considering at that time. Finally, we observe that for a low demand temperature
the differences between the heuristic and the ILP model based approach are es-
pecially small. For these reasons we conclude that the decrease in performance
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is acceptable, especially considering the decrease in computational time for the
heuristic (this computational time is only a few seconds) compared to the ILP
model based approach (computation times of generally 8 to 15 hours, but in
some extreme cases even longer).

Summarizing, the presented heuristic method satisfies the three goals outlined
above, and as such can be used to control an Ecovat system in practical situations.
In the next chapter we present a case study of integrating an Ecovat system in
a decentralized energy management (DEM) simulation of a neighbourhood.
In this case study the Ecovat system is controlled using the heuristic method
presented in this chapter.
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1176
Case study: decentralized

energy management simulation

including an Ecovat system

Abstract – In this chapter we present a case study of using an Ecovat system
within a neighbourhood of houses. We combine the heuristic method to con-
trol an Ecovat system presented in the previous chapter with the Decentralized
Energy Management Toolkit (DEMKit), which is a simulator designed to per-
form decentralized energy management (DEM) simulations. We investigate
the sensitivity of the Ecovat system to expected and unexpected increases in
the heat demand, by considering different neighbourhood sizes and different
heat demand profiles (e.g. due to an unexpectedly cold winter). Furthermore,
we determine the benefit of using an Ecovat system to satisfy the heat demand
of a neighbourhood of houses as a replacement for using gas boilers, which is
currently the most common way of heating houses in the Netherlands.

In the previous chapter we presented a heuristic method for the control of an
Ecovat system. We compared this heuristic method to the ILP model based
approach described in Chapters 3 and 4 and found that the heuristic method
leads to an acceptable decrease in performance compared to the ILP model based
approach, while the heuristic method has much shorter computational times.
In this chapter, we consider a case study in which we perform a decentralized
energy management (DEM) simulation of a neighbourhood containing an Eco-
vat system. In this case study the control of the Ecovat system is done by the
heuristic method presented in the previous chapter.

This chapter is based on [G:4].
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The goals of this case study are: 1) to determine whether the Ecovat system can
supply the heat demand of a neighbourhood throughout the year, 2) to deter-
mine the sensitivity of the system to major changes in heat demand, and 3) to
determine the benefits in terms of CO2 reduction and self-consumption of using
an Ecovat system to supply the heat demand of the neighbourhood, compared
to using gas boilers (which is how the majority of Dutch homes is currently
heated). These goals are realised by combining the heuristic method to control
an Ecovat system, developed in the previous chapter, with the Decentralized En-
ergy Management Toolkit (DEMKit) [47], which is designed to perform DEM
simulations (see Section 6.1.1 for more background on DEMKit).

The remainder of this chapter is structured as follows. In Section 6.1 we discuss
the way the neighbourhood is simulated by combining the heuristic method
for controlling the Ecovat system presented in the previous chapter and the
DEMKit simulator. Furthermore, we discuss the input and output of this model
and provide some background on the DEMKit simulator. Afterwards, in Sec-
tion 6.2 we introduce the five different cases we consider during this case study.
Subsequently, in Section 6.3 we present the results of the simulations for the
considered cases. Finally, in Section 6.4 we conclude this chapter.

6.1 Simulation setup

The neighbourhood considered in this case study is based on a future scenario,
where we expect a higher penetration of emerging technologies such as electric
vehicles and PV panels than is currently common. We are interested in the
benefits the Ecovat system can provide in such a scenario, where a decentralized
approach with regards to the energy management is required.

More specifically, we used data from a neighbourhood with a mix of single
worker households, dual worker households, households of families with chil-
dren and households of retired persons. In this neighbourhood 13% of the house-
holds have an electric vehicle and a further 32% have a plug-in hybrid electric
vehicle. Furthermore, 50% of the households have PV panels and 10% have a
battery. Additionally, 25% of households uses induction cooking and between
20% to 60% of the households have a dishwasher, based on the type of house-
hold, whereby households consisting of more persons having a higher chance
of owning a dishwasher. Finally, we assume that every household has common
devices such as a washing machine, oven and refrigerator. For satisfying the heat
demand, we assume every house is heated by a gas boiler, as this allows us to
quantify the benefits an Ecovat system has over gas boilers for satisfying the heat
demand of this neighbourhood.

To start, we give a general description of the two parts required for the simula-
tion of this neighbourhood, as well as the input and output of both these parts.
Subsequently, we discuss the input data used and provide some more details on
specific parts of the simulation. In the first part of the simulation we use the
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DEMKit simulator to optimize the electricity consumption within the neigh-
bourhood. In our case the objective of this optimization is the flattening of
the electricity profile of the neighbourhood. In this part of the simulation the
control of the heat consumption is not yet optimized, since we model a neigh-
bourhood in which the heating is done using only gas boilers, which can simply
be turned on whenever there is a heat demand. The input required for this first
part of the simulation is the weather data for the location of the neighbourhood,
as well as a data set containing the loads of the houses in the neighbourhood
over the time horizon. This data set includes the electrical and thermal loads in
the houses during every time interval, as well as the flexibility of these loads, i.e.
whether the loads can be shifted and if so by how much (for more details about
this data set and its generation, see Section 6.1.2, from here on we refer to this
data set as the load data of the neighbourhood). The output of the first part of
the simulation consists of the total heat demand of the neighbourhood as well as
any excess of electricity from the neighbourhood (i.e. the amount of generated
electricity the neighbourhood could not consume itself).

In the second part of the simulation the heuristic for controlling the Ecovat
system is used to satisfy the heat demand of the neighbourhood. The objective
of this second part is the same as in the previous chapter, i.e. to minimize the
operational costs of the Ecovat system. The input for this part are the outputs
of the first part, e.g. the total heat demand of the neighbourhood and the excess
electricity, which the system can use to charge the Ecovat buffer. Additionally,
like in the previous chapter the heuristic needs weather data and energy prices as
input. The output of this part of the simulation consist of the operational costs
of the system, the temperature evolution inside the Ecovat buffer and the amount
of electricity that is fed back into the grid. Electricity is only fed back if during
some time interval the neighbourhood had electricity it could not consume itself
and that also could not be used to charge the Ecovat buffer. Figure 6.1 gives an
overview of the different components of the simulation.

To perform such a simulation we would in general consider all time intervals in
the time horizon iteratively, where we first use DEMKit to optimize the elec-
tricity consumption in the neighbourhood, and subsequently use the heuristic
for the Ecovat system to satisfy the heat demand of the neighbourhood for the
current time interval. However, since in our case there is no feedback from the
Ecovat heuristic back to DEMKit, we can simplify the simulation process by
splitting it in two distinct parts. First we optimize the electricity consumption
of the neighbourhood over the entire year using DEMKit. And second, we use
the heuristic for the Ecovat system for satisfying the heat demand of the neigh-
bourhood, where for every time interval we use the output of DEMKit for that
time interval.

As discussed above, the input for the first part of the simulation consist of
weather data for the location of the neighbourhood, as well as the load data
of the houses in the neighbourhood. For the location of the neighbourhood we
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Figure 6.1: Overview of the used models and their inputs and outputs.

choose the municipality of Enschede, as such we use the ambient temperature
and solar irradiation profiles measured by weather station Twenthe in Enschede,
the Netherlands. For the simulations in this chapter we use the historical data
from the the year 2014. The load data of the houses in the neighbourhood are
generated using the Artificial Load Profile Generator (ALPG) described in [48].
We give some more background on the ALPG in Section 6.1.2.

Based on the load data and the weather data DEMKit optimizes the electricity
profile of the neighbourhood, in our case by flattening it as much as possible,
given the flexibility provided by smart devices (which is included in the load
data of the houses). DEMKit outputs the heat demand profile of the neighbour-
hood, as well as the excess local electricity produced within the neighbourhood,
which are subsequently used as input for the second part of the simulation. In
our simulation we assume that this excess local electricity can be consumed by
the Ecovat system at zero cost. This could be in exchange for a lower heating
bill, as well as from a desire to improve the degree of self-consumption of the
neighbourhood.

In the second part of the simulation the output of the first part, the heat demand
of the neighbourhood and the excess electricity, are used as input. Furthermore,
as input weather data for the location of the neighbourhood as well as the energy
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prices are needed. For the weather data we use the same profiles as in the first
step. For the energy prices we use the prices on the Dutch imbalance market of
the year 2014.

In general the heuristic method tries to use as much of the local excess electricity
as possible to charge the Ecovat buffer, as this improves the self-consumption of
the neighbourhood (and decreases the operational costs, assuming the energy
would otherwise be bought on the energy market when the energy price is
positive). This means that the heuristic method needs to ensure that the local
excess electricity is consumed by the Ecovat system if possible. This is done in
the following way: if the lthp and/or hthp are scheduled to run during a time
interval with an excess of local electricity, this excess local electricity is used to
run those heat pumps. After that, if there is any excess local electricity remaining
the heuristic first tries to turn on the awhp to consume this excess electricity, and
finally the resistance heater if necessary. The awhp is prioritized here because of
its higher efficiency compared to the resistance heater. The scheduling of these
devices is done using the algorithms presented in Chapter 5. Note, that if the
energy price pi is less than the maximum accepted energy price p̄ j during that
day the Ecovat system simply purchases less electricity on the energy market
compared to the case considered in Chapter 5, while the scheduling of the devices
in the system is not changed. If pi ⩾ p̄ j some extra devices may be turned
on, compared to the case considered in Chapter 5, to consume the excess local
electricity. While devices that are turned on based on the energy price during
a time interval always run at maximum capacity, devices that are turned on to
consume the excess local electricity only run at a power equal to the amount
of this excess electricity. This means we are making the simplifying assumption
that these devices can run at any power, i.e. they do not require a minimum
power to run and are not limited to a number of discrete power values at which
they may run.

The values for the parameters used in the heuristic are the same as those given in
the previous chapter, with one exception. We use a different initial temperature
distribution in the Ecovat buffer to better simulate a real world system. From the
results in the previous chapter we observe that after operating for some time the
bottom two buffer segments are generally close to their maximum temperatures,
while for a demand temperature Td e m = 60°C the temperatures of the top three
segments do not decrease much below 60°Cwhen their useful energy is depleted.
For this reason we take an initial temperature distribution in the Ecovat buffer
of T1,s = {90,75,59.5,47.5,4.5} instead of T1,s = {90,75,50,30,5} we used in
the previous chapters, to better simulate a real Ecovat system that has been in
operation for some time. Note, that for a demand temperature of Td e m = 60°C
both initial temperature distributions give the same initial useful energy content
in the buffer. It is worth mentioning that the Ecovat buffer we are simulating has
a diameter of 20meter, which is relatively small compared to the largest planned
buffers which have more than ten times as large volume.
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In this case study we only consider a demand temperature of Td e m = 60°C, as
opposed to previous chapters were we also considered a demand temperature
of Td e m = 40°C. The reason for this is that from the results presented in the
previous chapters we can see that the performance of the system is always lower
for a demand temperature of Td e m = 60°C, since this is the ’harder’ case of the
two. As such, if the results from this case study show that the Ecovat system
performs well for a demand temperature of Td e m = 60°C, it should also perform
at least as well for a lower demand temperature.

6.1.1 Decentralized energy management toolkit

To performDEM simulations of a neighbourhood of houses the DEMKit simula-
tor, developed at the University of Twente [47], is used. This simulator considers
integrated energy systems combining various energy carriers such as e.g. heat
and electricity. This open-source simulator allows the user to define a model of
a neighbourhood, build up of houses with individually modelled devices. To
this end, DEMKit includes a library of device components, such as; washing
machines, dishwashers, batteries, heat pumps, PV panels and electric vehicles.
Furthermore, DEMKit includes components to control these devices by means
of various optimization algorithms.

Asmentioned, DEMKit can optimize the consumption of multiple commodities,
such as electricity and heat. However, in this case study we only use DEMKit to
optimize the electricity consumption within the neighbourhood, while taking
the requirements of the heat demand into account. The used optimization ap-
proach in this work is the profile steering algorithm [43], which uses a desired
power profile (in this case a flat profile) as steering signal instead of electricity
prices, which are used in many other tools as steering signal. More specifically,
DEMKit uses the extended version of this algorithm presented in [47], which
uses a two-phase approach. In the first phase based on predictions a synchronous
planning is made for the neighbourhood, while in the second phase profile steer-
ing is used to schedule the individual devices. This second phase happens asyn-
chronously and is event driven.

The output of the DEMKit simulator consist of, among others, the consumption
and generation of energy on both device and neighbourhood level, and the
amount of electricity imported from and exported back to the grid.

6.1.2 Artificial load profile generator

For the generation of the load data of the neighbourhood, which are one of
the inputs required by DEMKit, we use the ALPG [48]. This open-source tool
uses a bottom-up approach to create an occupancy profile for a given house, by
modelling the presence and behaviour of its occupants. Taking into account
when the occupants are at home, the usage patterns of devices are created (e.g. a
device that requires input of an occupant never runs when no one is at home).
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Figure 6.2: Heat demand throughout the year for the h50 case.

The generated profiles include electrical devices, but also consumption of heat
used for space heating and hot water. The profiles that the ALPG gives as output
consist of one electrical load profile for all uncontrollable devices together (this
contains e.g. lighting, televisions and computers), vectors specifying constraints
for any controllable smart devices (such as the time range in which a washing
machine is required to run) a vector with temperature setpoints for the thermo-
stat, which specify the desired temperature inside the house, a ventilation profile
of the house and a hot water consumption profile. This means that the load
data also includes the flexibility provided by the smart devices present in the
neighbourhood.

To create the load data, the ALPG requires some parameters of the neighbour-
hood, such as the types of households in the neighbourhood and the devices
available in those households. In our case we use the parameters for the neigh-
bourhood specified before, i.e we consider a neighbourhood with a higher pene-
tration of emerging technologies than is currently common, and with a mix of
single worker households, dual worker households, households of families with
children and households of retired persons.

6.2 Case descriptions

To investigate the benefits of using an Ecovat system instead of gas boilers for
satisfying the heat demand of the neighbourhood, as well as determining the
influence of a higher heat demand on the performance of the system we consider
five different cases. The base case consists of a neighbourhood of 50 houses which
aims to maximize its self-consumption of energy (we call this case h50). In the
base case we assume any excess of electrical energy from the neighbourhood is
offered for free to the Ecovat system, where it can be converted to heat and stored
for later use by the neighbourhood. In this case self-consumption is preferred
even if the energy price is negative. The resulting heat demand profile of the
neighbourhood for this case is given in Figure 6.2.

The second case differs from the base case only in its objective, which switches
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from maximizing self-consumption to maximizing profit (we call this case h50-
profit). In this case electricity might be fed back to the grid by the neighbour-
hood, while simultaneously electricity is bought on the energy market for a
negative price by the Ecovat system. This assumes that the neighbourhood is
not penalized for feeding back electricity to the grid even though the energy
price is negative, or that the neighbourhood and the Ecovat system operate on
different markets. In other words the consumers would still receive the normal
feed-in tariff from the supplier in this case. It should be noted that while maxi-
mizing profit in this way is sound from an economical perspective, it may not
be preferable from a social standpoint.

The third case is again similar to the base case with the exception that the heat
demand during the winter months is increased by an average of 30%. This will
give us an indication how robust the Ecovat system is in handling heat demands
which are higher than was expected, for example due to a colder winter than
expected (we call this case h50-winter). To simulate this case, the previously
discussed heat demand profile is taken and the value for the heat demand in every
time interval in the months December, January and February is multiplied by
a random number between 1 and 1.6 taken from a uniform distribution. To
model that the increased heat demand is unexpected, and thus not known on
beforehand, this case uses the same targets for the useful energy content of the
Ecovat buffer at the end of every day, as those used for case h50.

The fourth case is the same as the base case but instead of a 50 house neighbour-
hood we consider a 65 house neighbourhood, we call this case h65. The fifth case
combines the third and fourth cases, meaning that we consider a neighbourhood
of 65 houses with increased demand in winter (we call this case h65-winter). The
case h65-winter uses the same targets for the energy content of the Ecovat buffer
at the end of every day as case h65, for the same reasons as for the h50-winter
case.

Because of the randomness introduced in the heat demands of theh50-winter and
h65-winter cases we have simulated each of these cases five times and determined
the average results obtained from these five simulations for both cases. For each
of these two cases the simulation that gives the results closest to the average
result is presented in the next section. It should be noted that even though some
randomness was introduced in the heat demand, the results for all the simulations
were close to the average (all within 5% from the average).

6.3 Results

The first goal of this case study is to determine to which extend the Ecovat system
can supply the heat demand of a neighbourhood throughout the year. In this
case study we consider an Ecovat buffer with a diameter of 20meter, as in the rest
of this thesis. However, larger buffers are planned for construction in the future,
which may serve larger neighbourhoods than those considered in this case study.
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Case Operational costs (€) Useful energy (kWh)

h50 -18894 49569

h50p -18968 49569

h50w -18022 43660

h65 -19339 44422

h65w -15921 42025

Table 6.1: Operational costs and useful energy content of the Ecovat buffer at
the end of a year of operation, for the five considered cases.

Figure 6.3 shows the temperature distribution of the Ecovat buffer throughout
the year for the cases h50, h50-winter, h65 and h65-winter. The h50-profit
case is not included since the temperature distribution is the same for that case
as for the h50 case. This is due to the fact that the decisions whether and how to
charge the buffer do not change between these two cases, merely the preferred
energy source (excess neighbourhood electricity versus electricity bought on the
energy market) changes. The temperature evolutions in this figure show that the
Ecovat system is capable of supplying the heat demand of the neighbourhood in
all considered cases, as there is always at least one segment with a temperature
higher than the demand temperature of Td e m = 60°C. However, we can see from
Figure 6.3 that already in the base case, h50, the Ecovat buffer is low on useful
energy (T2 = 60°C and T1 is around 70°C) at the end of February (around day
60) and almost full during summer (all segments are close to their maximum
temperatures), as one would expect. As can be seen in Figure 6.3 the temperature
evolution inside the Ecovat buffer is very similar for the different considered
cases. While the exact temperature values differ between cases, for example in
cases with higher heat demand the temperature of the top segment of the buffer
comes closer to the demand temperature of 60°C at the end of the winter, the
’pattern’ of the temperature evolution is very similar between all cases.

The second goal of this case study is to investigate the sensitivity of the Ecovat
system to changes in the heat demand of the neighbourhood. To do so, we look
at the temperature evolution inside the Ecovat buffer throughout the year, the
operational costs of the Ecovat system and the useful energy of the buffer at
the end of the year for the different cases described in Section 6.2. This gives a
good indication about how well the Ecovat system is capable of supplying the
heat demand of the neighbourhood for different circumstances. Table 6.1 shows
the operational costs of the Ecovat system as well as the useful energy at the
end of the simulated year. For reference, the initial useful energy content of the
buffer and thus the target at the end of the year is 54246 kWh. As before, we
only consider the operational costs and do not include for example the costs
for maintenance or the profit made from supplying heat to customers in the
neighbourhood.
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Figure 6.3: Temperature evolution inside the Ecovat buffer for the different
simulation cases.
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From Table 6.1 we can see that for the h50 case the useful energy content at
the end of the year is about 10% lower than the aforementioned target of 54246
kWh. As mentioned in Section 4.2.5, the cost of a lower useful energy content
of the buffer is hard to estimate. However, we concluded that a lower useful
energy content of the buffer leads to higher costs during the next year, as the
difference in useful energy has to be made up by extra charging during time
intervals with positive energy prices, leading to extra costs. When operating a
real Ecovat system this deficit would cause the costs to increase in the following
year due to starting the year at a lower useful energy content. The costs for the
h50-profit case are only slightly lower than for the h50 case. This is due to the
fact that the amount of extra electricity that is bought on the energy market (at
negative prices) in this case is only small compared to the base case, h50. For
the h50-winter case we see that the buffer is a bit closer to empty at the end of
February, but the overall temperature evolution inside the buffer is very similar.
As expected, the operational costs are higher than for the h50 case due to the
increased heat demand during winter. Finally, the useful energy content of the
buffer at the end of the year is lower than for the h50 case, again due to the
increased demand during winter.

When looking at the h65 case we see that the operational costs are lower than
for the base case, which may be surprising. However, since the energy prices on
the market can be negative, a higher energy demand does not necessarily mean
higher operational costs. The increase of the energy demand during summer,
when the buffer is almost full in all considered cases, actually leads to more
opportunities to charge the buffer while the energy price is negative, leading to
lower operational costs. However, this does come at the cost of a lower useful
energy content compared to the h50 case. Finally, for the h65-winter case we
observe higher operational costs and lower useful energy content at the end
of the year, compared to both the h65 and h50 cases. In this case the extra
heat demand, compared to the h65 case, is concentrated in the winter months.
During the winter months the buffer was already getting close to empty in the
h65 case, by only charging during time intervals with low energy prices. This
means, that the extra demand in the h65-winter case needs to be compensated
for by charging the buffer while the energy prices are higher, leading to higher
operational costs. Additionally, we observe a lower useful energy content of the
buffer at the end of the year. In this case the costs to compensate for the lack of
useful energy during the next year of operation would be even larger than for
the previous cases.

To investigate the effect of the lower useful energy at the end of the year in the five
considered cases, we simulate a second year of operation of the system. For this
second year of operation we take the same input data as for the first year, except
that we take the temperature distribution (and thus the useful energy content of
the buffer) at the end of the first year as the initial temperature distribution in
the Ecovat buffer at the start of the second year. The results for these simulations
are summarized in Table 6.2, which gives the operational costs during the second
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Case Operational costs (€) U. energy start (kWh) U. energy end(kWh)

h50 -18836 49569 49760

h50p -18909 49569 49760

h50w -17916 43660 43662

h65 -19139 44422 44565

h65w -15760 42025 42024

Table 6.2: Operational costs and useful energy content of the Ecovat buffer at
the end of the second consecutive year of operation, for the five considered cases.

year of operation as well as the useful energy content of the buffer at start and
the end of the second year. We observe that the useful energy content at the end
of the second year is very similar to the useful energy content at the start of the
year. This means that amount of energy used to charge the buffer throughout the
year is almost equal to the sum of the heat demand throughout the year, which
gives a better indication of the actual operational costs during a year of operation.
From Table 6.2we observe slightly higher operational costs compared to the first
year for all considered cases. This is expected, since the Ecovat buffer starts with
a lower useful energy content in this case, which needs to be compensated for by
extra charging of the buffer at positive energy prices during winter. Furthermore,
we see the same trends as in the first year, i.e. the winter cases have higher
operational costs due to the extra demand during the winter months, when
the buffer is almost empty already, while extra demand throughout the entire
year does not necessarily lead to higher operational costs, due to extra charging
opportunities during the summer when the buffer would be full otherwise.

We observe that for all cases considered the Ecovat system is capable of supplying
the heat demand of the connected neighbourhood of houses throughout the
entire year. The results show that a higher heat demand due to an unexpectedly
cold winter leads to higher operational costs as expected. Furthermore, we
observed that a higher heat demand due to a larger neighbourhood does not
always lead to higher operational costs. However, as seen from Table 6.2 the
difference between h50 and h50-winter cases is much smaller than the difference
between h65 and h65-winter cases. The reason this difference is larger is that in
the h65 case a larger number of time intervals with low energy prices is already
used to charge the buffer, since that case has a higher heat demand than the h50
case because of the extra houses. This means that an extra increase in the heat
demand on top of that, due to a cold winter, forces the model to charge during
time intervals with higher energy prices in the h65 case compared to the h50 case,
leading to a larger difference in operational costs between theh65 andh65-winter
cases than the h50 and h50-winter cases. This means that even though a larger
neighbourhood may lead to lower operational costs when there is no unexpected
increase in heat demand, the risk of much higher operational costs during a cold
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Case Electricity fed back (kWh) Decrease (%)

No Ecovat, 50 houses 44596 -
No Ecovat, 65 houses 55778 -
h50 4546 89.8
h50p 5454 87.8
h50w 4283 90.4
h65 9148 83.6
h65w 7308 86.9

Table 6.3: The amount of electricity fed back to the grid for the five considered
cases. Also shown is the relative decrease in the amount of electricity fed back
compared to using gas boilers to satisfy the heat demand of the neighbourhood.

winter are also higher. In other words, for a larger neighbourhood the Ecovat
system is more sensitive to unexpected changes in the heat demand. A question
for further research is which neighbourhood size is optimal for an Ecovat system,
especially when taking into account that a larger neighbourhood will also lead
to higher profit for satisfying the heat demand of the neighbourhood. However,
this question is outside the scope of this thesis.

The third goal of this case study is to determine the benefits of using an Ecovat
system to supply the heat demand of a neighbourhood of houses instead of
using gas boilers, in terms of CO2 reduction and self-consumption. One of the
benefits of using an Ecovat system instead of gas boilers is that part of the excess
electricity produced in the neighbourhood, for example from PV panels, can be
used to charge the Ecovat system instead of being fed back to the electrical grid.
Table 6.3 shows the amount of electricity fed back to the grid over the entire year
for the considered cases. The ’No Ecovat’ cases give the amount of electricity fed
back to the grid if gas boilers are used instead of the Ecovat system. The second
column gives the percentage decrease of electricity fed back to the grid compared
to the ’No Ecovat’ case for the same number of houses. We can see that for all
the considered cases the amount of electricity fed back to the grid is decreased
significantly if an Ecovat system is used instead of gas boilers to satisfy the heat
demand. Even for the h50-profit case we see a large decrease in electricity being
fed back, the decrease being only slightly smaller than for the base case h50.
In the h50-profit case extra electricity, compared to the h50 case, is fed back
to the grid during times where there is both excess local production as well as
negative energy prices on the energy market. This happens only for a small
number of time intervals. As such, the majority of the excess local production
is used to charge the Ecovat system. This extra feedback of electricity would
translate to some extra profit in the h50-profit case compared to the h50 case.
However, this is only a small amount (about 41 € if we assume a feedback price
of 0.04 €/kWh). Combined with the small decrease in operational costs in the
h50-profit case compared to the h50 case the total increase in profit is relatively
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Case Total heat demand (kWh) Reduction CO2 (ton)

h50 4.5 · 105 91.4
h50-winter 5.3 · 105 107.2
h65 5.9 · 105 118.6
h65-winter 6.9 · 105 138.8

Table 6.4: CO2 emission reduction when using an Ecovat system to satisfy the
heat demand of the simulated neighbourhood, compared to satisfying the heat
demand using gas boilers.

small, which means that even a small incentive to increase self-consumption is
enough to disregard the h50-profit option. Finally, we note that most of the
electricity that is still fed back to the grid in all the considered cases is fed back
during summer when the Ecovat buffer is at its capacity.

Another benefit of using the Ecovat system to supply the heat demand instead of
using gas boilers is the reduction in CO2 emissions. The Ecovat system produces
zero emission during the charging and discharging of the buffer. Which implies
that, assuming the energy used to charge the buffer is generated in a sustainable
way, the Ecovat system is emmision free. This means that using an Ecovat system
instead of gas boilers causes a CO2 emission reduction equal to the total emission
of the gas boilers. Table 6.4 lists the total heat demand during the year for each
case, as well as the amount of CO2 reduction that can be achieved by replacing
the gas boilers by an Ecovat system. The CO2 reduction is calculated using the
emission factor of 56 ton CO2/TJ for natural gas in the Netherlands [88].

Finally, we compare a scenario with an Ecovat system with an ’all electric’ neigh-
bourhood, where the heat demand of the neighbourhood is supplied by heat
pumps. Using heat pumps to satisfy the heat demand has the same benefit as
the Ecovat, namely no CO2 emissions. As it is not in the scope of this work to
carry out a detailed comparison of such a neighbourhood using an elaborated
DEM method, we present a simplified analysis to give a first impression of the
advantages and disadvantages of using the Ecovat system to satisfy the heat de-
mand of the considered neighbourhood compared to using heat pumps. To this
end, we make some simplifying assumptions. First, we assume the heat pumps
have a constant coefficient of performance, and we chose the value 4 for this
coefficient. And second, we assume that during any time interval in which the
neighbourhood has a non-zero heat demand, this heat demand is directly sup-
plied by the heat pumps during that time interval. This implies that the heat
pumps are not combined with a buffer, and we do not apply any smart control
to the heat pumps, they simply run at the exact time interval during which heat
is demanded. For the comparison presented here there is no difference between
considering a large central heat pump for the entire neighbourhood or smaller
heat pumps for each individual house. However, note that when considered in
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Figure 6.4: Imported electricity to satisfy the heat demand of the neighbourhood.

Case Total electricity imported (kWh) Costs (€)

Ecovat 3.7 · 105 -18894
Heat pumps 1.3 · 105 5069

Table 6.5: Amount of electricity imported to satisfy the heat demand of the
neighbourhood and the associated costs.

a real implementation the option of individual heat pumps does not require a
district heating network to be present. This in contrast to a central heat pump
or the Ecovat system, where such a system is needed to distribute the heat to
the houses. Finally, we have chosen to perform the comparison for the case h50
described in Section 6.2.

The advantage of using heat pumps compared to the Ecovat system is the fact
that a lot less electricity needs to be imported to satisfy the heat demand of the
neighbourhood, due to the high coefficient of performance of the heat pumps
(compared to the coefficient of performance of the resistance heater, which con-
sumes by far the most electricity in the Ecovat system). We can see this difference
in Figure 6.4, where the imported electricity is shown for the first week of Jan-
uary for both the Ecovat system as well as the heat pumps. Furthermore, we can
see that the Ecovat system has much higher peaks in the imported electricity,
but also imports electricity in a much lower number of time intervals.

The total imported electricity over the year is given in Table 6.5 for both cases.
As mentioned before, the total import of electricity is significantly higher for
the Ecovat system compared to using heat pumps for satisfying the heat demand.
However, we see that the associated costs of these imports are much lower for
the Ecovat system. The reason for this is that the Ecovat system can import
electricity during time intervals with low energy prices, while in the case where
heat pumps are used the electricity has to be imported during the time interval
in which there is a heat demand.
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While this comparison shows that using the Ecovat system leads to a large fi-
nancial advantage compared to using heat pumps to satisfy the heat demand,
we need to take into account that we have used smart control for the Ecovat
system while no smart control is used in the heat pumps case. To make a fair
comparison we would have to consider a case where smart control is used for
controlling the heat pumps as well, which we expect will lower the costs of the
imported electricity for the case using heat pumps. However, unless a buffer is
used in combination with the heat pumps, there is only limited flexibility in
when to turn on the heat pumps. While some pre-heating of houses may be
done during time intervals of low energy prices, this is limited to only a short
time before the expected heat demand. Furthermore, to do so predictions of
the energy prices for the next time intervals are required, which the heuristic
method used to control the Ecovat system does not require. As such, we ex-
pect that when using smart control for the heat pumps the costs will decrease,
but will not be as low as those for the Ecovat system. Even though the Ecovat
system requires substantially more imported electricity, the large advantage of
the Ecovat system is the ability to charge during time intervals with low energy
prices, even if those are already months in advance of the actual heat demand.
Note, that this assumes that time intervals with negative energy prices occur (in
which case requiring more electricity is not always purely a disadvantage since
it gives more opportunities to make a profit). If time intervals with negative
energy prices would not occur any more, or would become much rarer, the costs
for the Ecovat system would increase significantly, in which case heat pumps
might become a more attractive alternative.

To conclude, the advantages of using an Ecovat system compared to gas boilers to
satisfy the heat demand of a neighbourhood include a higher self-consumption
of electricity in the neighbourhood, as well as a reduction in the CO2 emissions.
The advantage of using an Ecovat system compared to heat pumps to satisfy
the heat demand of a neighbourhood is a lower cost according to the simple
comparison presented in this chapter. However, the exact difference is hard to
specify without a more in depth comparison, which is outside the scope of this
thesis.

6.4 Conclusion

In this chapter we presented a case study in which we simulate a neighbourhood
of houses including an Ecovat system. The goals of this case study are: 1) to
determine whether the Ecovat system can supply the heat demand of a neigh-
bourhood throughout the year, 2) to determine the sensitivity of the system to
major changes in heat demand, and 3) to determine the benefits in terms of CO2
reduction and self-consumption of using an Ecovat system to supply the heat
demand of the neighbourhood, compared to using gas boilers. To achieve these
goals we use the DEMKit simulator developed at the University of Twente [47]
to optimize the electricity consumption in this neighbourhood, and the heuristic



133

6
.
4
–
C
o
n
c
l
u
s
i
o
n

method for controlling the Ecovat system, presented in Chapter 5, to determine
the charging/discharging strategy for the Ecovat system, while satisfying the
heat demand of the neighbourhood.

The results show that the considered Ecovat system is capable of supplying the
heat demand of a neighbourhood of 50 or 65 houses throughout the year, even
if the heat demand is unexpectedly higher, such as due to a colder winter than
expected. For a neighbourhood of 50 houses, such a cold winter leads to a
slight increase in operational costs, while the increase in operational costs for a
neighbourhood of 65 houses during a cold winter is much larger. This means that
the Ecovat system is more sensitive to unexpected changes in the heat demand
when the size of the neighbourhood increases. The reason for this is that extra
energy is demanded during winter, at times when the Ecovat buffer is almost
empty and all time intervals with low energy prices are already used to charge
the buffer. This extra energy then needs to be charged during time intervals
with higher energy prices, which leads to larger differences in operational costs
when considering a larger neighbourhood. The reason for this is that a larger
neighbourhood has a higher energy demand initially due to the increased number
of houses, which leads to a larger increase in costs when even more energy is
demanded.

The presented case study shows that the benefits of using an Ecovat system in-
stead of gas boilers for satisfying the heat demand of the neighbourhood include
a reduction in the electricity fed back to the grid by 83.6 to 90.4% (increased
self-consumption), as well as a reduction in CO2 emission by 91.4 to 138.8 ton
for the considered cases.
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Conclusion

In this thesis an approach to determine charging/discharging strategies for an
Ecovat system, a seasonal thermal storage technology, throughout an entire year
is presented. The requirements for the approach were that the resulting charg-
ing/discharging strategies for the Ecovat system should be of good quality and
that the needed computational time should be low enough such that the approach
is usable in practice. The latter means that the computational time required for
such an approach needs to be short. Therefore, a heuristic method that satisfies
these requirements was developed. This heuristic method was evaluated in a case
study, to determine the benefits of using an Ecovat system instead of gas boilers
to satisfy the heat demand of a neighbourhood. In this chapter we summarize
and conclude the results of the thesis.

The remainder of this chapter is structured as follows. In Section 7.1 we give a
short summary of the preceding chapters. Subsequently, in Section 7.2we answer
the research question and the sub-questions presented in Chapter 1. Finally, in
Section 7.3 we give some recommendations for future work.

7.1 Summary

The goal of the work presented in this thesis was to develop an approach for the
operational control of an Ecovat system that gives good charging strategies, i.e.
strategies that have a low operational cost while satisfying the heat demand of
the neighbourhood, and does so in a computational time that is short enough
to be used in practice, i.e. when controlling an Ecovat system in real-time. To
determine an approach that satisfies these constraints we started by developing
a control method based on an ILP model for the control of the operation of an
Ecovat system, without taking into account the restriction on the computational
time. In Chapter 3 we presented such an ILP model, in which the restrictions
and constraints of the Ecovat system are taken into account. At the end of
Chapter 3we concluded that even though an approach based on the presented ILP
model would give good charging/discharging strategies, it is not useful without
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modifications. The reason for this is that to model the operation of an Ecovat
system, which is a seasonal thermal storage technology, we need to consider
optimizing over a long time horizon (which due to seasonal effects should be
at least 1 year), while for the energy market that we wish to incorporate time
intervals of 15 minutes are used. This combination of a optimization horizon,
short time intervals and the complexity of the system leads to an approach that
is by far not solvable to optimality for the entire time horizon at once.

Subsequently, in Chapter 4 we introduce a rolling horizon approach to solve the
ILP model presented in Chapter 3. This allows us to solve the ILP model based
approach in reasonable computational time. However, we observed that solving
the ILP model based approach in this way fails to incorporate seasonal effects,
since the rolling horizon length could only be a few days, while to incorporate
these seasonal effects the approach would need to be able to look ahead for a few
months. To overcome this problem we introduced a long-term planning step,
which is executed before solving the ILP model. In this long-term planning step
we generate energy targets for the Ecovat buffer for each day of the year. The
ILP model is then altered slightly, by introducing an extra term in the objective
function that penalizes the model if the useful energy content of the buffer
drops below these targets. This ensures that the approach incorporates seasonal
effects, for example by making sure that the Ecovat buffer is full at the end of the
summer, to ensure that the heat demand of the neighbourhood can be supplied
throughout the winter without incurring unnecessarily high operational costs.
We observed that with this extension the ILP model based approach performs
well, but that it still does not satisfy the constraint of having a computational
time short enough to be usable for the real-time control of an Ecovat system.

Therefore, in Chapter 5 we presented a heuristic method to control the Ecovat
system. The goal of this heuristic method is to provide charging/discharging
strategies for the Ecovat system that are of comparable quality to the strategies
obtained with the ILP model based approach, while requiring a computational
time that is short enough to be used in practice. To accomplish this we de-
rived a set of rules of thumb based on the insights gained from the ILP model
based approach. The heuristic method simply follows these rules of thumb to
construct charging/discharging strategies, leading to very short computational
times. In contrast to the ILP model based approach the heuristic method does
not require input data for time intervals in the future, such as predictions of
weather data or energy prices, but instead only uses input data that are known
at the time interval it is considering. When comparing the charging/discharging
strategies obtained with the heuristic method to the strategies obtained with the
ILP model based approach we observe that for the cases considered the heuristic
on average only performs 5.2%worse and in the worst case shows a 14% decrease
in performance (i.e. increased operational costs). The differences are especially
small when considering a lower demand temperature. Furthermore, the compu-
tational time of the heuristic method is only a few seconds, compared to the 8-15
hours generally required by the ILP model based approach (with some extreme
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cases taking more than a day).

Finally, in Chapter 6 we presented a case study of a neighbourhood including an
Ecovat system. In this case study we used the previously developed heuristic to
control the Ecovat system in this neighbourhood. In this case study a detailed
simulation of the considered neighbourhood is executed to achieve a proper
reflection of the energy needs of a (future) neighbourhood. For the simulation
of the neighbourhood the Decentralized EnergyManagement Toolkit (DEMKit)
simulator is used. In detail, we first optimize the electricity consumption and
production in the neighbourhood usingDEMKit, with the objective of flattening
the electricity profile of the neighbourhood. In this first step we assume the heat
demand of the neighbourhood is supplied by gas boilers. Subsequently, we
use the heuristic method for controlling the Ecovat system to determine the
way the Ecovat system would satisfy the heat demand of the neighbourhood
instead. In this way we can determine the benefits of using the Ecovat system
instead of using gas boilers to satisfy the heat demand. We observe that for the
considered cases the amount of electricity fed back to the grid is reduced by 83.6
to 90.4%, increasing the self-consumption of the neighbourhood. Furthermore,
we observe a reduction in CO2 emission by 91.4 to 138.8 ton for the considered
cases when using the Ecovat system instead of gas boilers for satisfying the heat
demand of the neighbourhood.

7.2 Conclusions

In Chapter 1 we presented the main research question of this thesis, namely:

How can we model and determine the operational control of the Ecovat
system such that the resulting method provides good charging/discharging
strategies, with a computational time short enough to be usable in a real
world situation?

In this section we conclude the thesis by answering this question. We do so by
considering the sub-questions introduced in Chapter 1. The first sub-question is:

1. What is a possible method for determining the control of the Ecovat system,
which is able to provide a good charging strategy for the Ecovat, assuming
computational time is not a limitation?

When computational time is not a limiting factor, a global optimization model
is a good choice to determine charging/discharging strategies for the Ecovat sys-
tem. We presented such a model in Chapter 3. In this ILP model we integrated
the components and restrictions of the Ecovat system as constraints. If com-
putational time is not a limitation we can simply solve this model for a time
horizon of any length (assuming we have access to a computer with sufficiently
large memory), and obtain a charging/discharging strategy for the complete time
horizon. This would give good charging/discharging strategies for the Ecovat



138

C
h
a
p
t
e
r
7
–
C
o
n
c
l
u
s
i
o
n

system, since all time intervals are considered at once when optimizing the op-
eration of the system. However, in practice the computational time of solving
the presented ILP model is already very long for only relatively short time hori-
zons of a few days. This is due to the fact that the model is complex, and we
require short time intervals of 15 minutes to incorporate the energy market of
interest into the model. Furthermore, since we are also interested in the seasonal
behaviour of the Ecovat system we require a time horizon of a year, which leads
to computational times that are much too long for a practical application. This
leads to the second sub-question, namely:

2. How can we adapt the developed control method to be solvable given lim-
ited computational time and resources, while maintaining a good charging
strategy?

To ensure the ILP model presented in Chapter 3 becomes solvable given limited
computational time and resources we started by introducing a rolling horizon
approach to solve the ILP model in Chapter 4. In this approach we iteratively
determined the charging/discharging strategy for of the Ecovat system for every
day in the time horizon. We did so by solving the ILP model based approach for
a few days at a time (2,3 or 5 days in Chapter 4) and realizing just the first day
of these few days. While this approach allows us to create solutions for the ILP
model based approach in a computational time of a few days/weeks, we observed
that it is insufficiently capable of incorporating important seasonal effects.

To ensure the ILP model based approach can incorporate such seasonal effects
we introduced a long-term planning, to be executed before creating a solution
using the ILP model. The goal of this long-term planning is to generate a daily
useful energy target for the Ecovat buffer. We then integrated these targets into
the ILP model. The results show that with the addition of long-term planning
the ILP model based approach does incorporate seasonal effects correctly and
the computational time is further reduced to a few hours/days, depending on
the considered case.

Creating a solution for the ILP model in this way leads to an increase of the
objective value, i.e. higher operational costs, compared to solving the model for
the entire time horizon at once. However, it also simulates a more realistic use
case in which predictions for the input data, especially the energy prices, are not
available for the entire time horizon on beforehand.

Even though predictions for the input data are in general not available, the ILP
model based approach (which does require such predictions) provides a good
charging/discharging strategy to use as a benchmark for a simpler model (which
will not require such predictions) that can be used for the real time control of
an Ecovat system. This leads to the third sub-question, namely:

3. How can we use the insights obtained from the approach developed for the
second sub-question to derive a heuristic method capable of controlling an
Ecovat system in real time, while maintaining a good charging strategy?
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We used the insights obtained from the ILP model based approach to develop
a heuristic method for controlling the Ecovat system presented in Chapter 5.
Based on these insights and the output data generated by the ILP model based
approach for the cases described in Chapter 4 we derive a set of rules of thumb
for determining a charging/discharging strategy for the Ecovat system. The
heuristic method then simply applies these rules of thumb to every time interval
in the time horizon in an iterative way. Furthermore, in this approach only
data for this time interval is taken into account and no predictions for future
time intervals are needed. This means that the heuristic method is not only a
lot simpler than the ILP model based approach, which we see reflected in the
computational times, which are only a few seconds for the heuristic method
compared to the hours/days for the ILP model based approach, but it is also not
dependent on predictions.

From the results presented in Chapter 5 we observe that the heuristic method
shows an average decrease in performance of 5.2% compared to the ILP model
based approach for the considered cases. We conclude that the charging/discharg-
ing strategies given by the heuristic method are still good enough, since we are
comparing them to strategies which can only be obtained in a situation where
perfect predictions are available for some of the input data a day in advance,
which in general will not be the case in a real world situation. In practice, some
of the input data for a given time interval will only be available when that time
interval starts and obtaining good predictions of these inputs is hard, especially
for the energy prices which are very volatile. As such, a decrease in performance
of 5.2% seems acceptable compared to an approach which does assume perfect
predictions a day in advance.

The developed heuristic method only indirectly uses predictions, namely for
obtaining the daily useful energy targets for the Ecovat buffer, which may be
based on historical data. Since such predictions may be unreliable, ideally the
influence of errors in these predictions on the charging/discharging strategies
generated by the heuristic method is only small. This leads to the final sub-
question, namely:

4. How robust is the developed approach of the Ecovat system to input data
differing from predictions?

When generating the daily useful energy targets for the Ecovat buffer, predictions
for the energy prices and the heat demand of the neighbourhood are required.
In Chapters 4 and 5 we investigate the effect of errors in the predictions for the
energy prices on the results of the developed approaches. We consider two cases
for the required predictions of the energy prices. In the first case we assume
that perfect predictions are available when generating the targets, and thus we
know how to distribute the amount of charging (which the Ecovat system has
to do during the year to supply the heat demand of the neighbourhood) over the
days in the year to achieve the lowest costs for this charging. In the second case
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we assume there are no predictions available, and simply distribute the amount
of charging that needs to be done throughout a year over all the days. These
two cases generate two different sets of targets that can be used as input for the
developed approaches. Comparing the results using these two target sets as input
we observe that the difference in the results between the two considered cases is
very small. As such, we conclude that the approaches are robust against changes
in the predictions of the energy prices. As long as the targets somewhat follow
the expected seasonal behaviour the results differ only slightly.

In the case study presented in Chapter 6we investigate the effect of a heat demand
that is higher than predicted when generating the daily useful energy targets. For
this we compare cases where the heat demand is as predicted, with cases where
winter is colder than was predicted when generating these targets. The results
presented in Chapter 6 show that the Ecovat system is capable of dealing with
a heat demand that is higher than was predicted. As expected, the operational
costs increase when the demand is unexpectedly high. We see that this increase is
small for a neighbourhood of 50 houses, but becomes significantly larger when
considering a neighbourhood of 65 houses with the same size of the Ecovat
system. In other words, when an Ecovat system of the same size is connected
to a larger neighbourhood the influence of an increased heat demand compared
to the predictions leads to a larger increase in the operational costs, i.e. the
robustness of the approach to changes in the predicted heat demand decreases
when the neighbourhood size increases. A likely reason for this is that in case of
a larger number of houses the Ecovat system is operated more at its limits with
respect to the capacity of the Ecovat buffer.

From the discussion above we conclude that by using the heuristic method pre-
sented in this thesis, we control the Ecovat system in a way that provides good
charging/discharging strategies, in a time frame short enough to be usable in a
real world situation, thus answering the main research question. We observe that
the heuristic method requires only a few seconds to simulate a year of operation
of the Ecovat system, which makes it fast enough to be used for the real-time
control of an Ecovat system, where quick decision making is important. Further-
more, we show that the heuristic method does not require predictions for input
data of future time intervals to still obtain charging/discharging strategies that
are on average only 5.2% worse than those resulting from the ILP model based
approach, which does require predictions for the input data to be available for
an entire day in advance, and as such gives an upper bound on the performance
of the heuristic method. Summarizing, the heuristic method gives good charg-
ing/discharging strategies for the Ecovat system in a time frame short enough
to be usable for the real-time control of an Ecovat system.
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7.3 Recommendations for future work

In this final section of the thesis we discuss some potential avenues for future
work on the modelling of the Ecovat system, in no particular order.

» In this thesis we only considered one device configuration for the Ecovat
system, namely a configuration consisting of PVT panels, two water/wa-
ter heat pumps, an air/water heat pump and a resistance heater. However,
an interesting research direction for future work would be to consider
different device configurations and determine their advantages and disad-
vantages. An example which seems promising is to consider removing or
replacing the PVT panels in the system. In the configuration considered
in this thesis, the contribution of the PVT panels is relatively small com-
pared to that of the other devices, while it places some severe restrictions
on the system. Most importantly, to keep the panels cooled, and thus
keep their efficiency high, the temperature in the bottom buffer segment
has to be kept very low. By removing or replacing the PVT panels this
restriction can be dropped and gives the system a lot of extra flexibility.
Another option would be to connect the output of the PVT panels to a
small buffer tank, and use a heat pump to increase the temperature before
charging the Ecovat buffer. This would also allow us to drop the low
maximum temperature restriction on the bottom segment of the buffer.
Alternatively, heat pipes could be used instead of PVT panels. Heat pipes
produce heat of a much higher temperature than PVT panels, whichmake
them a more interesting energy source for the Ecovat system.

» It may be interesting to explore cheap locally available heat sources to
charge the Ecovat buffer, instead of just relying on the energy market. An
example of this is that a lot of industrial processes produce heat which is
useless to the process itself and is thus considered a waste product. This
waste heat, which is often of high enough temperature to be useful for
the Ecovat system, could be a good cheap energy source for charging the
system. While this will not be a feasible option for every residential area,
since it requires closeby industry producing waste heat, it is an interesting
option to investigate for the areas where it is available.

» For the work presented in this thesis a number of assumptions concerning
the physical properties of the Ecovat system have been made, since there
was no measurement data available from an Ecovat system operating in
a real world situation at the time of writing. In the future it would be
beneficial to verify whether the made assumptions, for example on the
effects of charging/discharging the buffer on the temperatures inside the
buffer, hold in practice or whether they should be modified, which can
be done by analysing the measurement data from an Ecovat system that
is operating in a real world situation.

» As mentioned in Chapter 6 it would be of interest to perform an eco-
nomical analysis on the ideal neighbourhood size in relation to the size
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of an Ecovat system. As we observed in Chapter 6 connecting a larger
neighbourhood to an Ecovat system of the same size leads to larger risks
of increased operational costs if there is an unexpected increase in the heat
demand of the neighbourhood, for example due to an unexpectedly cold
winter. However, a larger neighbourhood would of course lead to a larger
profit for supplying the heat demand of the neighbourhood. This leads to
the question which neighbourhood size is a good fit for a given size of the
Ecovat system. Additionally, such an analysis can determine whether an
Ecovat system is economically feasible for a given neighbourhood. In that
case the analysis should also include other costs and profits which we have
ignored in this work, such as the maintenance costs and the revenue from
supplying heat. We assumed they are equal for different charging/dis-
charging strategies, however, they are important when determining the
economic feasibility of an Ecovat system for a given neighbourhood.
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145Acronyms

A ALPG Artificial Load Profile Generator
awhp air-water heat pump

C CFD computational fluid dynamics
CHP combined heat and power
COP coefficient of performance

D DEM decentralized energy management
DEMKit Decentralized Energy Management Toolkit
DSM demand side management

H hthp high temperature heat pump

I ILP integer linear programming

L lthp low temperature heat pump

P PCM phase change materials
PV photovoltaic
PVT photovoltaic thermal

S STES seasonal thermal energy storage

T TES thermal energy storage
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Notation Description
A Total size of the PVT panels.
ae l Electrical loss coefficient of the PVT panels.
at h Thermal loss coefficient of the PVT panels.

β Heat loss factor of the Ecovat buffer over 6 months.

C d e v Capacity of device d e v.
Cmax Maximum allowed useful energy content of the Eco-

vat buffer when generating energy targets.
Cmi n Minimum allowed useful energy content of the Eco-

vat buffer when generating energy targets.
cp Specific heat of water.
C OP d e v Coefficient of performance of device d e v.

Di Heat demand during interval i .
∆t Length of a time interval.

ei Amount of energy that can be stored in the Ecovat
buffer during interval i .

E pv t
i Electrical energy produced by the PVT panels during

interval i .

fi Flag that indicates whether adding time interval i to
the solution of the algorithm to determine the daily
energy targets violates the upper bound.

Gi Global radiation during interval i .

Ki Cost of the system during interval i .
Kt ot Total cost of the system summed over all intervals.

LB j Lower bound up to time interval j in algorithm to
determine daily energy targets.

ms Mass of segment s .
ṁ Mass flow rate of the heat transfer fluid through the

PVT panels.
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Notation Description
ηe l

0 Electrical efficiency of the PVT panels at a reduced
temperature of zero degrees.

ηe l
i Electrical efficiency of the PVT panels during interval

i .
ηe l

max Maximum electrical efficiency of the PVT panels.
Ni nt Number of intervals in the time horizon.
Ns e g Number of segments in the Ecovat buffer.
ηt h

0 Thermal efficiency of the PVT panels at a reduced
temperature of zero degrees.

ηt h
i Thermal efficiency of the PVT panels during interval

i .
ηt h

max Maximum thermal efficiency of the PVT panels.

pi Energy price during interval i .
p̄ j Maximum energy price accepted during day j .

Qd e v
i ,s Thermal energy change in segment s during interval

i due to device d e v.
Q l o s s

i ,s Thermal energy lost to the surroundings from seg-
ment s during interval i .

T amb
i Ambient temperature.

Td e m Demand temperature.
T d e v

max Maximum temperature of device d e v.
T d e v

mi n Minimum temperature of device d e v.
Tg w Temperature of the ground water.
T i n

i Input temperature of the PVT panels.
Ti ,s Temperature of segment s at the start of interval i .
T̄s Maximum temperature of segment s .
T ou t

i Output temperature of the PVT panels.
T r ed

i Reduced temperature.

Ui Useful energy content of the buffer at the start of time
interval i .

Ū Maximum useful energy content of the buffer.
U B j Upper bound up to time interval j in algorithm to

determine daily energy targets.

Vtar( j ) Target energy content of the Ecovat buffer for day j .

xd e v
i ,s Decision variable in the ILP model indicating

whether device d e v is connected to segment s during
interval i .

yd e v
i ,s Decision variable in the heuristic indicating whether

device d e v is connected to segment s during interval
i .
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Notation Description

zi Indicator variable that indicates whether energy is
stored in the Ecovat during interval i .



150



151Bibliography

[1] Technology Roadmap - Smart Grids. technical report, International Energy
Agency (IEA). Last accessed on March 7, 2019. (Cited on page 29).

[2] Aandeel hernieuwbare energie naar 6,6 procent, CBS. [Online]
https://www.cbs.nl/nl-nl/nieuws/2018/22/aandeel-hernieuwbare-
energie-naar-6-6-procent, Dutch. Last accessed on November 1, 2018. (Cited
on page 3).

[3] Energie in Nederland 2018, Energie Beheer Nederland. [Online] https://www.
ebn.nl/wp-content/uploads/2018/01/EBN-Infographic-2018-pdf.pdf,
Dutch. Last accessed on April 26, 2019. (Cited on page 6).

[4] Ecovat Renewable Energy Technologies BV. [Online] www.ecovat.eu. Last
accessed on March 1, 2019. (Cited on page 7).

[5] Directive 2009/28/EC of the European Parliament and of the Council of 23April
2009 on the promotion of the use of energy from renewable sources and amending
and subsequently repealing Directives 2001/77/EC and 2003/30/EC. [Online]
http://data.europa.eu/eli/dir/2009/28/oj. Last accessed on November 1,
2018. (Cited on page 3).

[6] Our World in Data. [Online] https://ourworldindata.org/fossil-fuels.
Last accessed on October 11, 2018. (Cited on page 2).

[7] Energieagenda: Naar een CO2-arme energievoorziening, Ministerie van
Economische Zaken. [Online] https://www.rijksoverheid.nl/documenten/
rapporten/2016/12/07/ea, Dutch. Last accessed on November 1, 2018. (Cited
on page 6).

[8] IRENA (2018), Renewable capacity statistics 2018, International Re-
newable Energy Agency (IRENA), Abu Dhabi. [Online] http:
//www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/
Mar/IRENA_RE_Capacity_Statistics_2018.pdf. Last accessed on October 12,
2018. (Cited on page 4).

[9] United Nations Convention on Climate Change. Adoption of the Paris Agree-
ment, 2015. [Online] https://unfccc.int/resource/docs/2015/cop21/eng/
l09r01.pdf. Last accessed on October 11, 2018. (Cited on page 1).

[10] Ondiepe bodemenergie - open systemen. Rijksdienst voor Ondernemend
Nederland (RVO), [Online] https://www.rvo.nl/onderwerpen/duurzaam-
ondernemen/duurzame-energie-opwekken/nationaal-expertisecentrum-
warmte/bodemenergie-en-aardwarmte-geothermie/bodemenergie, Dutch.
Last accessed on February 19, 2019. (Cited on page 17).

https://www.cbs.nl/nl-nl/nieuws/2018/22/aandeel-hernieuwbare-energie-naar-6-6-procent
https://www.cbs.nl/nl-nl/nieuws/2018/22/aandeel-hernieuwbare-energie-naar-6-6-procent
https://www.ebn.nl/wp-content/uploads/2018/01/EBN-Infographic-2018-pdf.pdf
https://www.ebn.nl/wp-content/uploads/2018/01/EBN-Infographic-2018-pdf.pdf
www.ecovat.eu
http://data.europa.eu/eli/dir/2009/28/oj
https://ourworldindata.org/fossil-fuels
https://www.rijksoverheid.nl/documenten/rapporten/2016/12/07/ea
https://www.rijksoverheid.nl/documenten/rapporten/2016/12/07/ea
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf
http://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/IRENA_RE_Capacity_Statistics_2018.pdf
https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/duurzame-energie-opwekken/nationaal-expertisecentrum-warmte/bodemenergie-en-aardwarmte-geothermie/bodemenergie
https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/duurzame-energie-opwekken/nationaal-expertisecentrum-warmte/bodemenergie-en-aardwarmte-geothermie/bodemenergie
https://www.rvo.nl/onderwerpen/duurzaam-ondernemen/duurzame-energie-opwekken/nationaal-expertisecentrum-warmte/bodemenergie-en-aardwarmte-geothermie/bodemenergie


152

B
i
b
l
i
o
g
r
a
p
h
y

[11] Energieverbruik 2016, Energie Beheer Nederland. [Online] http://www.
energieinnederland.nl/2016/energieverbruik, Dutch. Last accessed on
April 26, 2019. (Cited on page 6).

[12] Beleidsregel redelijke terugleververgoedingen vergunninghouders elektriciteit.
Staatscourant, [Online] https://zoek.officielebekendmakingen.nl/stcrt-
2006-82-p28-SC74915.html, Dutch, 2006. Last accessed on December 7, 2018.
(Cited on page 51).

[13] Kamerbrief Stimuleringsbeleid lokale hernieuwbare elektriciteitsproductie.
[Online] https://www.rijksoverheid.nl/documenten/kamerstukken/
2018/06/15/kamerbrief-stimuleringsbeleid-lokale-hernieuwbare-
elektriciteitsproductie, Dutch, 2018. Last accessed on March 8, 2019. (Cited
on page 51).

[14] Warmtebaan Enschede. [Online] https://ennatuurlijk.nl/warmtebaan-
enschede, Dutch, 2018. Last accessed on December 13, 2018. (Cited on page 27).

[15] D. Akinyele and R. Rayudu. Review of energy storage technologies for sustainable
power networks. Sustainable Energy Technologies and Assessments, 8:74–91, 2014.
(Cited on page 15).

[16] I. Aldaouab and M. Daniels. Microgrid battery and thermal storage for improved
renewable penetration and curtailment. In 2017 International Energy and Sustain-
ability Conference (IESC), 2017. (Cited on page 30).

[17] K. Allen, T. von Backström, and D. Kröger. Packed rock bed thermal storage in
power plants: design considerations. Energy Procedia, 49:666–675, 2014. (Cited
on page 19).

[18] G. Alva, L. Liu, X. Huang, and G. Fang. Thermal energy storage materials and
systems for solar energy applications. Renewable and Sustainable Energy Reviews,
68:693–706, 2017. (Cited on pages 16 and 17).

[19] G. Alva, Y. Lin, and G. Fang. An overview of thermal energy storage systems.
Energy, 144:241–378, 2018. (Cited on pages 16, 19, 20, and 21).

[20] N. Amaro, J. Murta Pina, J. Martins, and J. Maria Ceballos. Superconducting
magnetic energy storage: A technological contribute to smart grid concept imple-
mentation. In Proceedings of the 1st International Conference on Smart Grids and
Green IT Systems (SMARTGREENS-2012), pages pages 113–120, 2012. (Cited on
page 15).

[21] R. Anderson, L. Bates, E. Johnson, and J. Morris. Packed bed thermal energy
storage: A simplified experimentally validated model. Journal of Energy Storage,
4:14–23, 2015. (Cited on page 19).

[22] A. Arteconi, N. Hewitt, and F. Polonara. State of the art of thermal storage for
demand-side management. Applied Energy, 93:371–389, 2012. (Cited on page 30).

[23] J. Barron. Steam Blast Jolts Midtown, Killing One. The New
York Times, [Online] https://www.nytimes.com/2007/07/19/nyregion/
19explode.html, 2007. Last accessed on February 8, 2019. (Cited on page 28).

http://www.energieinnederland.nl/2016/energieverbruik
http://www.energieinnederland.nl/2016/energieverbruik
https://zoek.officielebekendmakingen.nl/stcrt-2006-82-p28-SC74915.html
https://zoek.officielebekendmakingen.nl/stcrt-2006-82-p28-SC74915.html
https://www.rijksoverheid.nl/documenten/kamerstukken/2018/06/15/kamerbrief-stimuleringsbeleid-lokale-hernieuwbare-elektriciteitsproductie
https://www.rijksoverheid.nl/documenten/kamerstukken/2018/06/15/kamerbrief-stimuleringsbeleid-lokale-hernieuwbare-elektriciteitsproductie
https://www.rijksoverheid.nl/documenten/kamerstukken/2018/06/15/kamerbrief-stimuleringsbeleid-lokale-hernieuwbare-elektriciteitsproductie
https://ennatuurlijk.nl/warmtebaan-enschede
https://ennatuurlijk.nl/warmtebaan-enschede
https://www.nytimes.com/2007/07/19/nyregion/19explode.html
https://www.nytimes.com/2007/07/19/nyregion/19explode.html


153

B
i
b
l
i
o
g
r
a
p
h
y

[24] I. Best, J. Orozaliev, and K. Vajen. Economic comparison of low-temperature and
ultra-lowtemperature district heating for new building developments with low
heat demand densities in Germany. International Journal of Sustainable Energy
Planning and Management, 16:45–60, 2018. (Cited on page 28).

[25] A. Bland, M. Khzouz, T. Statheros, and E. Gkanas. PCMs for Residential Building
Applications: A Short Review Focused onDisadvantages and Proposals for Future
Development. Buildings, 7:78, 2017. (Cited on page 20).

[26] V. Boicea. Energy Storage Technologies: The Past and the Present. Proceedings of
the IEEE, 102:1777 – 1794, 2014. (Cited on page 15).

[27] R. Bosch. Modelling the effects of different renovation scenarios of apartments on
the configuration of the Ecovat energy storage system. Master’s thesis, Technische
Universiteit Eindhoven, the Netherlands, 2015. (Cited on pages 56, 57, and 60).

[28] M. Budt, D.Wolf, R. Span, and J. Yan. A review on compressed air energy storage:
Basic principles, past milestones and recent developments. Applied Energy, 170:
250–268, 2016. (Cited on page 15).

[29] M. Cascetta, G. Cau, P. Puddu, and F. Serra. Experimental investigation of a
packed bed thermal energy storage system. Journal of Physics: Conference Series,
655:012018, 2015. (Cited on page 19).

[30] Y. Çengel and J. Cimbala. Fluid Mechanics. McGraw-Hill, 2nd edition, 2010.
(Cited on page 34).

[31] J. Cook, N. Oreskes, P. T. Doran, W. R. L. Anderegg, B. Verheggen, E. W.
Maibach, J. S. Carlton, S. Lewandowsky, A. G. Skuce, S. A. Green, D. Nuccitelli,
P. Jacobs, M. Richardson, B. Winkler, R. Painting, and K. Rice. Consensus on
consensus: a synthesis of consensus estimates on human-caused global warming.
Environmental Research Letters, 11(4):048002, 2016. (Cited on page 1).

[32] J. Dickinson, N. Buik, M. Matthews, and A. Snijders. Aquifier thermal energy
storage: theoretical and operational analysis. Géotechnique, 59:249–260, 2009.
(Cited on page 17).

[33] I. Dincer and M. Rosen. Thermal Energy Storage. Systems and Applications, second
edition. John Wiley and Sons, 2011. (Cited on pages 17, 18, and 19).

[34] J. Duffie and W. Beckman. Solar Engineering of Thermal Processes, fourth edition.
John Wiley and Sons, 2013. (Cited on page 18).

[35] B. Dunn, H. Kamath, and J.-M. Tarascon. Electrical Energy Storage for the Grid:
A Battery of Choices. Science, 334:928–935, 2011. (Cited on page 15).

[36] R. Dupeyrat, C. Ménézo, and S. Fortuin. Study of the thermal and electrical
performances of PVT solar hot water system. Energy and Buildings, 68:751–755,
2014. (Cited on pages 41, 60, and 106).

[37] A. El-Sebaii, M. Ramadan, S. Aboul-Enein, and A. Khallaf. History of the solar
ponds: A review study. Renewable and Sustainable Energy Reviews, 15:3319–3325,
2011. (Cited on page 18).



154

B
i
b
l
i
o
g
r
a
p
h
y

[38] S. Ephrati and H. Jonker. A numerical study of the Ecovat with IFISS, 2017. BSc
thesis, University of Twente, unpublished. (Cited on pages 24 and 36).

[39] A. Fallahi, G. Guldentops, S. Tao, M. Granados-Focil, and S. Van Dessel. Review
on solid-solid phase change materials for thermal energy storage: Molecular struc-
ture and thermal properties. Applied Thermal Engineering, 127:1427–1441, 2017.
(Cited on page 19).

[40] S. Fanshawe, A. Al-Habaibeh, and B. Shakmak. An Innovative Design and Evalu-
ation of a Stratified Hot Water Storage System - The Water Snake. In Proceedings
of 2015 IEEE Jordan Conference on Applied Electrical Engineering and Computing
Technologies (AEECT), 2015. (Cited on page 23).

[41] P. Fleuchaus, B. Godschalk, I. Stober, and P. Blum. Worldwide application of
aquifer thermal energy storage – A review. Renewable and Sustainable Energy
Reviews, 94:861–876, 2018. (Cited on page 17).

[42] S. Furbo, E. Andersen, A. Thür, L. Shah, and K. Andersen. Performance improve-
ment by discharge from different levels in solar storage tanks. Solar Energy, 79:
431–439, 2005. (Cited on page 23).

[43] M. Gerards, H. Toersche, G.Hoogsteen, T. van der Klauw, J. Hurink, andG. Smit.
Demand Side Management using Profile Steering. In PowerTech, 2015 IEEE Eind-
hoven, 2015. doi: 10.1109/PTC.2015.7232328. (Cited on page 122).

[44] J. Hadorn. Advanced storage concepts for active solar energy - iea-shc task 32 2003-
2007. In Proceedings of Eurosun - 1st International Congress on Heating, Cooling
and Buildings, 2008. (Cited on page 21).

[45] Y. Han, R. Wang, and Y. Dai. Thermal stratification within the water tank.
Renewable and Sustainable Energy Reviews, 13:1014–1026, 2009. (Cited on page 21).

[46] N. Hoogervorst. Toekomstbeeld klimaatneutrale warmtenetten in Nederland.
[Online] https://www.pbl.nl/sites/default/files/cms/publicaties/
pbl-2017-toekomstbeeld-klimaatneutrale-warmtenetten-in-nederland-
1926.pdf, Dutch, 2017. Policy study, Planbureau voor de Leefomgeving,
PBL-publicatienummer: 1926, Last accessed on December 13, 2018. (Cited on
page 27).

[47] G. Hoogsteen. A Cyber-Physical Systems Perspective on Decentralized Energy Man-
agement. PhD thesis, University of Twente, 12 2017. CTIT Ph.D. thesis series no.
17-449. (Cited on pages 118, 122, and 132).

[48] G. Hoogsteen, A. Molderink, J. Hurink, and G. Smit. Generation of flexible
domestic load profiles to evaluate demand side management approaches. In 2016

IEEE International Energy Conference (ENERGYCON). IEEE PES, 4 2016. (Cited
on pages 120 and 122).

[49] A. Hussain, V. Bui, H. Kim, Y. Im, and J. Lee. Optimal Energy Management
of Combined Cooling, Heat and Power in Different Demand Type Buildings
Considering Seasonal Demand Variations. Energies, 10:789, 2017. (Cited on
page 30).

https://doi.org/10.1109/PTC.2015.7232328
https://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-toekomstbeeld-klimaatneutrale-warmtenetten-in-nederland-1926.pdf
https://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-toekomstbeeld-klimaatneutrale-warmtenetten-in-nederland-1926.pdf
https://www.pbl.nl/sites/default/files/cms/publicaties/pbl-2017-toekomstbeeld-klimaatneutrale-warmtenetten-in-nederland-1926.pdf


155

B
i
b
l
i
o
g
r
a
p
h
y

[50] H. Jarimi, D. Aydin, Z. Yanan, G. Ozankaya, X. Chen, and S. Riffat. Review on
the recent progress of thermochemical materials and processes for solar thermal
energy storage and industrial waste heat recovery. International Journal of Low-
Carbon Technologies, 14:44–69, 2019. (Cited on page 21).

[51] S. Kalnæs and B. Jelle. Phase change materials and products for building appli-
cations: A state-of-the-art review and future research opportunities. Energy and
Buildings, 94:150–176, 2015. (Cited on page 20).

[52] A. Karim, A. Burnett, and S. Fawzia. Investigation of Stratified Thermal Storage
Tank Performance for Heating and Cooling Applications. Energies, 11:1049, 2018.
(Cited on pages 23 and 24).

[53] L. Kenjo, C. Inard, and D. Caccavelli. Experimental and numerical study of ther-
mal stratification in a mantle tank of a solar domestic hot water system. Applied
Thermal Engineering, 27:1986–1995, 2007. (Cited on page 26).

[54] A. Khodadoost Arania, H. Karamia, G. Gharehpetiana, and M. Hejazi. Review
of Flywheel Energy Storage Systems structures and applications in power systems
and microgrids. Renewable and Sustainable Energy Reviews, 69:9–18, 2017. (Cited
on page 15).

[55] J.-H. Kim and J.-T. Kim. Comparison of electrical and thermal performances of
glazed and unglazed PVT collectors. International journal of photoenergy, 2012.
article ID:957847. (Cited on page 41).

[56] E. Kleinbach, W. Beckman, and S. Klein. Performance study of one-dimensional
models for stratified thermal storage tanks. Solar Energy, 50(2):155–166, 1993.
(Cited on pages 25 and 26).

[57] S. Knudsen and S. Furbo. Thermal stratification in vertical mantle heatexchangers
with application to solar domestic hot-water systems. Applied Energy, 78:257–272,
2004. (Cited on page 24).

[58] S. Knudsen, G. Morrison, M. Behnia, and S. Furbo. Analysis of the flow structure
and heat transfer in a vertical mantle heat exchanger. Solar Energy, 78:281–289,
2005. (Cited on page 24).

[59] P. O. Kriett and M. Salani. Optimal control of a residential microgrid. Energy,
42:321–330, 2012. (Cited on page 30).

[60] A. Lake, B. Rezaie, and S. Beyerlein. Review of district heating and cooling
systems for a sustainable future. Renewable and Sustainable Energy Reviews, 67:
417–425, 2017. (Cited on page 27).

[61] M. Lanahan and P. Tabares-Velasco. Seasonal Thermal-Energy Storage: A Criti-
cal Review on BTES Systems, Modeling, and System Design for Higher System
Efficiency. Energies, 10:743, 2017. (Cited on pages 17 and 18).

[62] Z. Lavan and J. Thompson. Experimental study of thermally stratified hot water
storage tanks. Solar Energy, 19:519–524, 1977. (Cited on pages 8, 23, and 24).



156

B
i
b
l
i
o
g
r
a
p
h
y

[63] G. Li, Y. Hwang, R. Radermacher, and H. Chun. Review of cold storage materials
for subzero applications. Energy, 51:1–17, 2013. (Cited on page 16).

[64] H. Lund. Renewable Energy Systems - A Smart Energy Systems Approach to the
Choice and Modeling of 100% Renewable Solutions, second edition. Academic Press,
2014. (Cited on page 29).

[65] H. Lund. Renewable heating strategies and their consequences for storage and
grid infrastructures comparing a smart grid to a smart energy systems approach.
Energy, 151:94–102, 2018. (Cited on page 29).

[66] H. Lund, S. Werner, R. Wiltshire, S. Svendsen, J. Thorsen, F. Hvelplund, and
B.Mathiesen. 4th GenerationDistrict Heating (4GDH) integrating smart thermal
grids into future sustainable energy systems. Energy, 68:1–11, 2014. (Cited on
pages 27 and 28).

[67] H. Lund, P. Østergaard, D. Connolly, and B. Mathiesen. Smart energy and smart
energy systems. Energy, 137:556–565, 2017. (Cited on page 29).

[68] R. Oliveski, A. Krenzinger, and H. Vielmo. Comparison between models for the
simulation of hot water storage tanks. Solar Energy, 75:121–134, 2003. (Cited on
pages 26 and 48).

[69] H. Öztürk. Experimental evaluation of energy and exergy efficiency of a sea-
sonal latent heat storage system for greenhouse heating. Energy Conversion and
Management, 46:1523–1542, 2005. (Cited on page 20).

[70] S. Paardekooper, R. Lund, B. Mathiesen, M. Chang, U. Petersen,
L. Grundahl, A. David, J. Dahlbæk, I. Kapetanakis, H. Lund, N. Ber-
telsen, K. Hansen, D. Drysdale, and U. Persson. Heat Roadmap Eu-
rope 4 : Quantifying the Impact of Low-Carbon Heating and Cool-
ing Roadmaps. Aalborg University, Denmark, 2018, [Online] http:
//vbn.aau.dk/files/288075507/Heat_Roadmap_Europe_4_Quantifying_
the_Impact_of_Low_Carbon_Heating_and_Cooling_Roadmaps..pdf. Last
accessed on 13 December 2018. (Cited on page 27).

[71] P. Palensky and D. Dietrich. Demand Side Management: Demand Response,
Intelligent Energy Systems, and Smart Loads. IEEE transactions on industrial
informatics, 7:381–388, 2011. (Cited on page 29).

[72] M. Perez and R. Perez. A fundamental look at supply side energy reserves for the
planet. Solar Update: IEA SHC Newsletter, 62, 2015. (Cited on pages 2 and 3).

[73] P. Pinel, C. Cruickshank, I. Beausoleil-Morrison, and A. Wills. A review of
available methods for seasonal storage of solar thermal energy in residential appli-
cations. Renewable and Sustainable Energy Reviews, 15:3341–3359, 2011. (Cited on
pages 16, 19, and 21).

[74] S. Rehman, L. Al-Hadhrami, and M. Alam. Pumped hydro energy storage system:
A technological review. Renewable and Sustainable Energy Reviews, 44:586–598,
2015. (Cited on page 15).

http://vbn.aau.dk/files/288075507/Heat_Roadmap_Europe_4_Quantifying_the_Impact_of_Low_Carbon_Heating_and_Cooling_Roadmaps..pdf
http://vbn.aau.dk/files/288075507/Heat_Roadmap_Europe_4_Quantifying_the_Impact_of_Low_Carbon_Heating_and_Cooling_Roadmaps..pdf
http://vbn.aau.dk/files/288075507/Heat_Roadmap_Europe_4_Quantifying_the_Impact_of_Low_Carbon_Heating_and_Cooling_Roadmaps..pdf


157

B
i
b
l
i
o
g
r
a
p
h
y

[75] B. Rezaie and M. Rosen. District heating and cooling: Review of technology and
potential enhancements. Applied Energy, 93:2–10, 2012. (Cited on page 27).

[76] M. Rosen. The exergy of stratified thermal storages. Solar Energy, 71:173–185,
2001. (Cited on pages 8, 23, and 24).

[77] I. Sarbu and C. Sebarchievici. A Comprehensive Review of Thermal Energy
Storage. Sustainability, 10(1):191, 2018. (Cited on pages 16, 19, 20, and 21).

[78] B. Schepers and M. van Valkengoed. Warmtenetten in Nederland: Overzicht
van grootschalige en kleinschalige warmtenetten in Nederland. [Online]
https://www.acm.nl/sites/default/files/old_download/documenten/
nma/Onderzoek_Warmtenetten_in_Nederland.pdf, Dutch, 2009. CE Delft,
Publicatienummer: 09.3031.45, Last accessed on December 13, 2018. (Cited on
page 27).

[79] L. Shah and S. Furbo. Correlation of Experimental and Theoretical Heat Transfer
in Mantle Tanks used in Low Flow SDHW Systems. Solar Energy, 64:245–256,
1998. (Cited on page 26).

[80] L. Shah, G. Morrison, and M. Behnia. Characteristics of Vertical Mantle Heat
Exchangers for Solar Water Heaters. Solar Energy, 67:79–91, 1999. (Cited on
page 22).

[81] A. Sharma, V. Tyagi, C. Chen, and D. Buddhi. Review on thermal energy storage
with phase change materials and applications. Renewable and Sustainable Energy
Reviews, 13:318–345, 2009. (Cited on page 20).

[82] P. Siano. Demand response and smart grids: A survey. Renewable and Sustainable
Energy Reviews, 30:461–478, 2014. (Cited on page 29).

[83] B. Sibbitt, D. McClenahan, R. Djebbar, J. Thornton, B. Wong, J. Carriere, and
J. Kokko. The performance of a high solar fraction seasonal storage district heating
system – five years of operation. Energy Procedia, 30:856–865, 2012. (Cited on
pages 18 and 20).

[84] H. Tabor. Solar Ponds. Solar Energy, 27(3):181–194, 1981. (Cited on page 18).

[85] S. Ushak, A. G. Fernández, and M. Grageda. Using molten salts and other liquid
sensible storage media in thermal energy storage (TES) systems. In L. Cabeza, edi-
tor,Advances in Thermal Energy Storage Systems, chapter 3, pages 49–63. Woodhead
Publishing, 2015. (Cited on page 16).

[86] J. Van Berkel. Ecovat thermodynamics. concept evaluation report (internal report,
unpublished), 2014. (Cited on pages 9, 48, and 60).

[87] T. van der Klauw, M. Gerards, and J. Hurink. Resource allocation problems in
decentralized energy management. OR Spectrum, 39:749–773, 2017. (Cited on
page 72).

[88] A. van Harmelen and W. Koch. TNO-report R2002/174: CO2
emission factors for fuels in the Netherlands. Available online at:
https://www.rvo.nl/sites/default/files/2013/10/Harmelen2002. (Cited on
page 130).

https://www.acm.nl/sites/default/files/old_download/documenten/nma/Onderzoek_Warmtenetten_in_Nederland.pdf
https://www.acm.nl/sites/default/files/old_download/documenten/nma/Onderzoek_Warmtenetten_in_Nederland.pdf


158

B
i
b
l
i
o
g
r
a
p
h
y

[89] V. Velmurugan and K. Srithar. Prospects and scopes of solar pond: A detailed
review. Renewable and Sustainable Energy Reviews, 12:2253–2263, 2008. (Cited on
page 18).

[90] F. Verrilli, S. Srinivasan, G. Gambino, M. Canelli, M. Himanka, C. Del Vecchio,
M. Sasso, and L. Glielmo. Model Predictive Control-Based Optimal Operations of
District Heating System With Thermal Energy Storage and Flexible Loads. IEEE
Transactions on Automation Science and Engineering, 14(2):547–557, 2017. (Cited
on page 28).

[91] H. Versteeg and W. Malalasekera. An Introduction to Computational Fluid Dynam-
ics - The Finite Volume Method, second edition. Pearson Education Limited, 2007.
(Cited on page 26).

[92] H. Williams. Model Building in Mathematical Programming. John Wiley & Sons
Ltd, 5th edition, 2013. (Cited on page 45).

[93] J. Xu, R. Wang, and Y. Li. A review of available technologies for seasonal thermal
energy storage. Solar Energy, 103:610–638, 2014. (Cited on pages 17, 18, 19, and 21).

[94] W. Yaïci, M. Ghorab, E. Entchev, and S. Hayden. Three-dimensional unsteady
CFD simulations of a thermal storage tank performance for optimum design.
Applied Thermal Engineering, 60:152–163, 2013. (Cited on pages 23, 24, 26, and 34).

[95] T. Yan, R. Wang, T. Li, L. Wang, and I. Fred. A review of promising candidate
reactions for chemical heat storage. Renewable and Sustainable Energy Reviews,
43:13–31, 2015. (Cited on pages 20 and 21).

[96] J. Yau and B. Rismanchi. A review on cool thermal storage technologies and
operating strategies. Renewable and Sustainable Energy Reviews, 16:787–797, 2012.
(Cited on page 16).

[97] B. Zalba, J. Marín, L. Cabeza, and H. Mehling. Review on thermal energy storage
with phase change: materials, heat transfer analysis and applications. Applied
Thermal Engineering, 23:251–283, 2003. (Cited on pages 19 and 20).

[98] G. Zhang, Z. Shen, and L.Wang. Online EnergyManagement forMicrogridsWith
CHP Co-Generation and Energy Storage. IEEE transactions on control systems
technology, IEEE early access articles, 2018. (Cited on page 30).

[99] D. Zhao, Y. Li, Y. Dai, and R. Wang. Optimal study of a solar air heating system
with pebble bed energy storage. Energy Conversion and Management, 52:2392–
2400, 2011. (Cited on page 19).

[100] H. Zondag. Flat-plate PV-Thermal collectors and systems: A review. Renewable
and Sustainable Energy Reviews, 12:891–959, 2008. (Cited on pages 39 and 41).

[101] Y. Zurigat, A. Ghajar, and E. Moretti. Stratified Thermal Storage Tank Inlet
Mixing Characterization. Applied Energy, 30:99–111, 1988. (Cited on pages 23
and 24).



159List of Publications

[G:1] G.J.H. de Goeijen, G.J.M. Smit, and J.L. Hurink. An integer linear programming
model for an ecovat buffer. Energies, 9:592, 2016.

[G:2] G.J.H. de Goeijen, G.J.M. Smit, and J.L. Hurink. Improving an integer linear
programming model of an ecovat buffer by adding long-term planning. Energies,
10:2039, 2017.

[G:3] G.J.H. de Goeijen, J.L. Hurink, andG.J.M. Smit. A heuristic approach to control
the ecovat system. In 2018 IEEE PES Innovative Smart Grid Technologies Europe
(ISGT Europe), 2018.

[G:4] G.J.H. de Goeijen, G. Hoogsteen, J.L. Hurink, and G.J.M. Smit. Using the
ecovat system to supply the heat demand of a neighbourhood. In 2019 IEEE
Powertech, Milano, 2019.

This thesis

@phdthesis{goeijen2019:thesis,
author={Goeijen, Gijs J. H. de},
title={Developing a Method for the Operational Control of an Ecovat System},
school={University of Twente},
address={PO Box 217, 7500 AE Enschede, The Netherlands},
year={2019},
month=dec,
day={20},
number={IDS Ph.D. Thesis Series No. 19-022},
issn={2589-7721},
isbn={978-90-365-4909-7},
doi={10.3990/1.9789036549097}

}

BibTEX of this thesis



ISBN 978-90-365-4909-7

9 789036 549097


	Front cover
	Colophon
	Abstract
	Samenvatting
	Dankwoord
	Contents
	1 Introduction
	1.1 The energy transition
	1.2 The Ecovat system
	1.3 Problem statement and approach
	1.4 Thesis outline

	2 Background
	2.1 Thermal energy storage
	2.1.1 Sensible thermal energy storage
	2.1.2 Latent thermal energy storage
	2.1.3 Chemical thermal storage

	2.2 Water tanks
	2.2.1 Thermal stratification
	2.2.2 Modelling of water tanks

	2.3 District heating systems
	2.4 Demand side management
	2.5 Conclusion

	3 Modelling of the Ecovat system and its control
	3.1 Physical model
	3.2 Integer linear programming model
	3.2.1 Decision variables
	3.2.2 PVT panels
	3.2.3 Air/water heat pump
	3.2.4 Water/water heat pumps
	3.2.5 Resistance heater
	3.2.6 Heat demand
	3.2.7 Heat losses
	3.2.8 Temperature evolution
	3.2.9 Objective function

	3.3 Conclusion

	4 Method for operational control in simulations
	4.1 Rolling horizon
	4.1.1 Optimization setup
	4.1.2 Results

	4.2 Long-term planning
	4.2.1 Problem definition
	4.2.2 Implementation
	4.2.3 Incorporation of the target values into ILP model
	4.2.4 Simulation setup
	4.2.5 Results

	4.3 Conclusion

	5 Method for operational control in practice
	5.1 Heuristic approach
	5.2 Results
	5.3 Conclusion

	6 Case study: decentralized energy management simulation including an Ecovat system
	6.1 Simulation setup
	6.1.1 Decentralized energy management toolkit
	6.1.2 Artificial load profile generator

	6.2 Case descriptions
	6.3 Results
	6.4 Conclusion

	7 Conclusion
	7.1 Summary
	7.2 Conclusions
	7.3 Recommendations for future work

	Acronyms
	Symbols
	Bibliography
	List of Publications
	Back cover

