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Film Thickness Calculations in 
Elastohydrodynamically Lubricated 
Circular Contacts, Using a 
Multigrid Method 
Minimum, central and average film thicknesses have been calculated for the isother­
mal E.H.L. point contact case, for a variety of load, rolling speed, and material 
parameters. The equations governing this problem were solved using a Multigrid 
method. This technique offers the possibility to work with a very fine grid, obtaining 
detailed and accurate solutions, at the cost of moderate cpu times and storage re­
quirements, on medium size computers. Computations for low loads, requiring a 
large inlet zone, have been carried out using local grid refinements. The fluid in 
these calculations is assumed to be compressible and its viscosity-pressure behavior 
is described by either the Roelands equation, or the Barus equation. The ratio be­
tween the calculated minimum film thickness and the central value varied with the 
parameters governing the problem, but for low loads, a value of 3/4 was obtained. 
The film thickness behavior at these low loads can be accurately described in terms 
of the minimum film thickness. For higher loads, however, a description based on a 
film thickness, averaged over the Hertzian contact, is more appropriate to be com­
pared with the asymptotic solution (Ertel, Grubin). 

Introduction 
Over the last decade, a large number of papers has been 

dedicated to the numerical solution of the Elasto 
Hydrodynamic Lubrication problem (E.H.L.). The majority 
of these papers dealt with the line contact case, because of its 
less complicated nature. Numerical techniques as Newton-
Raphson and Gauss-Seidel, with underrelaxation, have been 
used to obtain solutions. For the point contact case, however, 
the solution of the problem becomes much more time-
consuming, since the finite width of the contact adds another 
dimension to the equations. In spite of these difficulties, 
several succesful attempts to solve the 2d problem are known 
from literature. 

In the second half of the 70s, a breakthrough was achieved 
by Ranger et al. [1] and Hamrock and Dowson [2, 3]. More 
recently Evans and Snidle [4] obtained a solution for the 
heavily loaded case, using their inverse method. Chittenden et 
al. [5, 6], using basically the same approach as Hamrock and 
Dowson, calculated film thickness and pressure profiles for 
elliptical contacts, for different directions of lubricant 
entrainment. 

All these solutions have been obtained using a Gauss-Seidel 
iterative method with underrelaxation. Since the number of 
Gauss-Seidel iterations, needed to obtain a converged solu-
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tion, is proportional to the number of nodal points, the total 
work is proportional to the square of this number. 
Adding to this the large underrelaxation factor, it is not sur­
prising that calculational times tend to be large for problems 
with order 500 points. 

The large number of gridpoints, needed to obtain accurate 
and detailed solutions, more or less excludes the use of a 
Newton-Raphson method, which is commonly used nowadays 
for the line contact case. This is mainly so, because of the large 
cpu time and storage requirements. Nevertheless, Oh [7] has 
solved the time dependent problem using this approach, work­
ing with a relatively small number of nodal points. In contrast 
to these previously mentioned approaches, the Multigrid 
method is very well suited for the solution of numerical 
problems with many nodal points, as has been demonstrated 
by the authors for the line contact case [8] and the point con­
tact case [9]. 

E. H. L. Theory 
In this paper the Reynolds equation will be written in terms 

of the dimensionless pressure P, since the reduced pressure q 
= exp(-aP) cannot be applied because of the use of 
Roelands' pressure viscosity relation. Using the dimensionless 
parameters introduced in [9] (see Nomenclature), the 
Reynolds equation can be written as: 

dP\ d /pH3 dP\ d 
- ) + ( - ) - X (pH)=0 (1) 
/ dY V fi dY / 

J _ ('pHi 

dX \ Tj dX • dX 
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where 

X = 
12VOUR2

X 

b3Ph 

The density is assumed to depend on the pressure according 
to the Dowson and Higginson relation, and the pressure 
viscosity relations according to Barus as well as Roelands are 
used. 

The Barus equation reads in this notation: 

rj = exp( - aP) 

while the Roelands equation can be written as: 

[P0a (/. P 

where P0 = I.96e8/Ph 

Z = 0.68 

(2) 

(3) 

Using second order central discretization for the first two 
terms of (1) and first order backward (upstream) discretization 
of the third term, the discretized Reynolds equation reads: 

Pi + 1/2, jHi+1/2 J ,r> n \ 
A2Vi+W2,j 

, Pi-l/2,jH\- 1/2, j 

&2Vi-V2,j 

Pi, j + 1/2™ i,j+1/2 

&2Vi,j+i/2 

Pi,j-U2™i,j-U2 

A2 
Vi,j-l/2 

(Pi-UJ-Pij) 

(pu+i-pu) 

(Pu-t-Pij) 

(Pi,jHi,j-Pi-l,jHi-l,j)=0 (4) 

The film thickness equation can be made dimensionless by the 
same parameters. After discretization, this equation reads: 

Xf Yj 2 v v , 

Z Z 7T k i 

\\xp\ah(JR-) + \yp\ah(^-) + \xrn\ah(^-) 
(. \ xv / V VP / V xm / 

\ym\ah\ ) - \xp\ah\ ) - \yp\ah{ ) 
V ym / \ xp / V yp / 

\xm\ah\ ) - \ym\ah\ ) j 
V xm / \ym / J 

-Xk-A/2 where xp = X,—Xk + A/2, xm=Xi—^.k-
yp = Yj ~Y{+ A/2, ym = Yj -Yt- A/2 
ah(z) =arcsinh(z) = ln(z + v( l +z2)) 
A = Xi-Xi_l = Yj-YJ.„i 

The third equation, describing the force balance, gives: 

2ir 

T 

(5) 

EL^,,4=o (6) 

Multigrid Method 

A short description of the Multigrid technique, applied to 
the E.H.L. point contact problem, is given in [9]. For a more 
general and detailed treatment of this matter the reader is 
referred to Brandt [10, 11] and Hackbusch [12]. 

Local Grid Refinements 

When using Multigrid techniques, there is no reason why a 
finer grid should extend over the same region as the coarser 
ones. This gives the user the opportunity to place increasingly 
finer grids over increasingly smaller subdomains. The idea is 
to use finer grids only locally, for instance in regions where 
large gradients in the solution occur, see Fig. 1. The only 
restriction is, that a finer grid may not extend beyond its next 
coarser grid. For more information the reader is referred to 
Brandt [11] and Venner [14]. 

For the E.H.L. point contact problem, this means that the 
finest grid will only be used in the Hertzian region, while in­
creasingly coarser grids are used to cover the inlet zone. This 
large inlet zone is needed in the low loaded case, to avoid 
"numerically" starved lubrication. 

When all grids extend over the same domain it is almost im­
possible to obtain accurate solutions for these low load condi­
tions because the requirement of using a fine grid results in ex­
cessive computational costs. 

Analytical Solutions 

Where the three asymptotic solutions for the line-contact 

b 
E' 

G 

H 

Hhd 

HIM 
H' 

Hi 

H' 

L 

= the contact radius 
= reduced Youngs modulus, 

HE' = (\-vl)/Ex + 
Q-'iVBi 

= dimensionless material 
parameter according to 
Hamrock and Dowson G = 
aE' 

= dimensionless film thickness, 
H = hRx/b

2 

= dimensionless film thickness 
according to Hamrock and 
Dowson Hhd = h/Rx 

= dimensionless constant 
= dimensionless minimum film 

thickness according to Moes, 
H'=Hhd(2U)~i/2 

= dimensionless central film 
thickness (at dP/dX=0) 

= dimensionless average film 
thickness 

= dimensionless material 

M 

P 

P„ 
Rx 

u 

U 

«E 
w 
W 

X 

parameter according to Moes, 
L = G(2U)lM 

= dimensionless load parameter 
according to Moes, 
M=W(2U)~i/4 

= dimensionless pressure, P = 
P/P„ 

= maximum Hertzian pressure 
= reduced radius of curvature 
= tangential velocity (mean 

velocity) u = (ul + u2)/2 
= dimensionless velocity ac­

cording to Hamrock and 
Dowson U = t)0u/E'Rx 

= sum velocity u-E = ul+u2 

= load 
= dimensionless load according 

to Hamrock and Dowson, W 
= w/E'Rx 

= dimensionless coordinate, 
X=x/b 

Y 

a 

a 

A 

V 
Vo 

n 

P 
PD 

P 

X 

= dimensionless coordinate, 
Y=y/b 

= pressure viscosity coefficient 
according to Barus 

= dimensionless pressure 
viscosity coefficient, a = 
aPh 

= distance between two 
neighboring gridpoints 

= viscosity 
= viscosity at atmospheric 

conditions 
= dimensionless viscosity, ij = 

Vho 
- density 
= density at atmospheric 

conditions 
= dimensionless density, p = 

P/Po 
= dimensionless velocity 

parameter 
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Fig. 1 Pressure and film thickness distribution using local grid 
refinements, M = 5, L = 1,Xa= - 1 6 , Ya= - 8 

case can be combined to serve as a solution for the full 
problem (see [13]) just one asymptote is known from 
literature, for the point-contact problem. The rigid-isoviscous 
asymptote was calculated by Brewe et al. [15] as: 

H' = 34/M2 
(7) 

More accurate calculations by Venner [14], using Multigrid 
techniques, show that the constant is 35.5. 

Venner also calculated the Grubin type asymptote i.e., 

H'= 1.02 L3MM~ (8) 

assuming the pressure distribution to be rotational symmetric 
and the film thickness to be parallel. These asymptotes can be 
compared with the full numerical solution, see Figs. 2 and 4. 
No two-dimensional equivalent of Herrebrugh's solution is 
known to the authors. 

Calculational Details 
As was found for the line-contact case [13], the use of the 

second order backward discretization of the third term in 
equation (1), resulted in more accurate values for the 
minimum film thickness, using relatively few points. 
However, this second order accurate discretization gave no 
converging solutions for high loads. 

Most solutions presented in this paper, have been calculated 
using the first order backward discretization of the third term 
in equation (1), see equation (4), using almost 3000 points, 
consuming two hours of cpu time on a VAX11/750. For the 
calculations using local grid refinements, the computing time 
was half an hour. 

For the high load conditions, all grids extended over the 

CIRCULAR-CONTACT 
minimum value 

I " " I M 
10.0 20.0 100.0 200.0 

Fig. 2 Minimum film thickness graph, the full circles represent the 
solutions obtained with a larger domain. The drawn line is the 
isoviscous-rigid asymptote, equation (7) 

CIRCULAR-CONTACT 
central value 

n r 
100.0 200.0 

Fig. 3 Central film thickness graph, the full circles represent the solu­
tions obtained with a larger domain. The drawn lines are the film 
thickness values predicted by Chittenden et al., equation (10) (L = 5, 
L = 10) and the isoviscous-rigid asymptote, equation (7). 
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mean v a l u e 

» : 25 
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Fig. 4 Average film thickness graph, the full circles represent the solu­
tions obtained with a larger domain. The drawn line is the film thickness 
according to the Grubin asymptote, equation (8), L = 10. 

same domain, the inlet was at X= - 4 , while the width of the 
domain was twice the Hertzian radius. For the low loaded 
case, local grid refinement techniques were used, the coarsest 
grid started at X= - 16 and Y= - 8, while generally the finer 
grids covered only a quarter of the domain of the next coarser 
level. Convergence of the solution up to truncation errors of 
the discretized equations, was checked as described in [9] and 
by Brandt [11]. 
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Table 1 Ratio 

7 

1.3 
1.3 
1.3 
1.3 
1.3 
1.2 

10 

1.3 
1.3 
1.3 
1.4 
1.4 
1.3 

14 

1.3 
1.3 
1.4 
1.4 
1.4 
1.3 

20 

1.3 
1.4 
1.5 
1.5 
1.5 
-

Fig. 5 Pressure- (P) and film thickness (H) contour plot, using 11505 
points for M = 32, L = 10, AP = 0.05, AH = 0.01. The dark region of large 
gradients in the film thickness coincides with the pressure spike region. 

Results 

Contrary to the line contact case, the point contact case 
does not give a constant ratio between the central and the 
minimum film thickness. 

For the low loads, the ratio of He/'Hm was 4/3. For higher 
loads however, large deviations occurred, as was reported by 
Chittenden et al. In Table 1 the value of Hc/Hm is given as a 
function of the dimensionless parameters L and M. 

In Fig. 1 a plot is presented of the pressure distribution and 
the film thickness profile for a low loaded case, using the local 
grid refinement technique. For the low load case, the 
minimum film thickness was found along the central line of 
the contact, while for higher loads, it was located in the side 
lobes. Because of the nonconstant ratio of Hc/Hm, it was not 
possible to present the results of these calculations in one for­
mula, as was done for the line contact case [13]. For low M-
values, the minimum film thickness can be described by a 
Martin-Giimbel type of analysis, (equation (7), Fig. 2). For 
high M values, a Grubin type of analysis is needed, assuming a 
constant film thickness throughout the Hertzian contact zone. 

as a function of L and M 

32 

1.4 
1.4 
1.6 
1.6 
1.6 

50 

1.4 
1.5 
1.6 
1.8 
1.7 

71 

1.5 
1.6 
1.8 
1.9 
1.8 

100 

1.6 
1.8 
2.0 
2.0 
-

141 

2.0 
2.1 
2.2 
2.2 
-

200 

3.2 
2.7 
2.5 
2.4 
-

To be able to compare the numerical results with this asymp­
totic solution, an average film thickness H is introduced, 
defined as: 

H=4r \ H{X,Y)dXdY (9) 

integrating over the Hertzian zone Q 
From Figs. 2 and 3 it can be seen that the minimum film 

thickness for low M values tends to be too low due to the 
"numerical" starvation effect. For the low M values (M< 10) 
an even larger inlet zone should be used, resulting in the need 
to use an infinite domain for the asymptotic isoviscous-rigid 
case. From Fig. 2, an additional decrease of the film thickness 
can be detected for high M values, due to the small film 
thickness values in the side lobes, see also Table I. For small 
values of M the minimum film thickness is found along the pr­
axis of the contact while for higher values of M it moves to the 
side lobes. Contrary to Fig. 2, the central film thickness in Fig. 
3, shows no signs of an additional decrease for high M values. 

In Fig. 3 the numerical results are compared with the for­
mula derived by Chittenden et al. for the central film 
thickness: 

//C '=1.75L°-49M-0073 (10) 

It can be seen that the results are in reasonable agreement. 
The numerically calculated values are somewhat larger than 
the values predicted by this formula. Also it can be concluded 
that the dependency of the central film thickness is somewhat 
smaller than predicted by Chittenden's formula. All results 
have been calculated for a compressible fluid, using Roelands' 
pressure viscosity relation. 

Similar to the line-contact problem [13] the differences in 
the solution when using the Barus pressure viscosity equation 
instead of Roelands' were small. The results of the calcula­
tions using the extended inlet are given in full circles. 

Taking advantage of the possibility to use many calcula-
tional points, the effect of the pressure spike on the film 
thickness profile can be studied. As can be seen from the 
Reynolds equation (1), regions where the second derivative of 
the pressure is large (the pressure spike) should coincide with a 
region where the first derivative of the film thickness is large. 
Figure 5 shows a pressure- and a film thickness contour plot 
for the case M = 3 2 , Z,= 10, which is heavily spiked, using 
almost 12,000 points. In the film thickness plot a horseshoe-
shaped region can be detected where the film thickness gra­
dients are large and this is indeed the pressure spike region. 
This knowledge can perhaps be used to study the pressure 
spike from optical interference measurements of the film 
thickness profile. 

Conclusions 

Film thickness distributions have been calculated for a 
variety of conditions and local grid refinements were used to 
cover a large inlet region at low loads. The calculated low load 
minimum film thickness values agrees quite well with the 
isoviscous-rigid asymptote (Fig. 2), though for very low values 
of M, a larger inlet zone is needed. For Z, = 10, M > 2 0 the 
average film thickness is accurately predicted by the Grubin 
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asymptote (equation (8), Fig. 4), although the numerically 
calculated slope is less than the predicted one. This can be ex­
plained with the results of Table 1; the side lobes form an in­
creasingly effective seal against side leakage. Grubin's analysis 
does not account for this effect. For lower values of L, the in­
fluence of the isoviscous-elastic asymptote becomes increas­
ingly important, and the Grubin asymptote predicts a too low 
value for the actual film thickness. 

The ratio between the central and the minimum film 
thickness is found to be 4/3 for low loads, but increases fast 
for higher loads. For these high loads, the minimum film 
thickness is located in the side lobes. 

To obtain one single formula that predicts the film thickness 
throughout the entire range of conditions, the central film 
thickness is best suited, since the Grubin asymptote can also be 
used, but unfortunately, it is less interesting for practical pur­
poses. However, to accomplish this, an expression for the 
elastic-isoviscous asymptote has to be found first. 
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Authors' Closure 

The authors would like to thank Dr. Chittenden for his 
careful study of the paper and would like to clarify the follow­
ing points. 

(a) The initial grid was refined five times while the domain 
of calculation was approximately halved in both directions. 
This means that the number of points on each level was ap­
proximately constant. 

ib) The number of stored variables is proportional to the 
number of points of the finest grid when this grid would cover 
the calculational domain of the coarsest grid. This because of 
the calculation of the elastic integral. 

(c) The refinement boundaries where chosen such that fur­
ther extension of the boundaries did not result in changes of 
more than one percent in characteristic values such as max­
imum pressure, minimum filmthickness, etc. and the places 
where these values occur. 

(a) The computational boundary was determined 
analogous to the position of the refinement boundaries. 

(b) In both cases the boundaries where determined as 
described above. 

(c) The maximum Hertzian pressure ranged from 0 GPa to 
1.5 GPa. 

A demonstration computer program describing the applica­
tion of Multilevel techniques to Hydrodynamic Lubrication is 
available from Twente University (either PASCAL or FOR­
TRAN versions). 
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