
INTEGRATING A LOW-COST MEMS IMU INTO A LASER-BASED SLAM FOR 

INDOOR MOBILE MAPPING 
 

 

S. Karam 1, *, V. Lehtola 1, G. Vosselman 1 

 
1 Dept. of Earth Observation Science, Faculty ITC, University of Twente, 7514 AE Enschede, The Netherlands 

(s.karam, v.v.lehtola, george.vosselman)@utwente.nl 

 

Commission II 

 

 

KEY WORDS: Indoor mapping, mobile laser scanning, SLAM, IMU, integration, point clouds, 2D laser scanner 

 

ABSTRACT: 

 

Indoor mapping techniques are highly important in many applications, such as human navigation and indoor modelling. As satellite 

positioning systems do not work in indoor applications, several alternative navigational sensors and methods have been used to provide 

accurate indoor positioning for mapping purposes, such as inertial measurement units (IMUs) and simultaneous localisation and 

mapping algorithms (SLAM). In this paper, we investigate the benefits that the integration of a low-cost microelectromechanical 

system (MEMS) IMU can bring to a feature-based SLAM algorithm. Specifically, we utilize IMU data to predict the pose of our 

backpack indoor mobile mapping system to improve the SLAM algorithm. The experimental results show that using the proposed IMU 

integration method leads into a more robust data association between the measured points and the model planes.  Notably, the number 

of points that are assigned to the model planes is increased, and the root mean square error (RMSE) of the residuals, i.e. distances 

between these measured points and the model planes, is decreased significantly from 1.8 cm to 1.3 cm. 

 

1. INTRODUCTION 

There is a need for indoor mapping in many important 

applications, such as the mapping of hazardous sites, indoor 

navigation, disaster management, location-based services, and 

virtual reality displays. Since digital maps of public buildings 

(airports, hospitals, train stations, and so forth) are a prerequisite 

for navigating their interiors, there is a trend towards the 

development of geospatial indoor applications (Norris, 2013). In 

order to avoid the time-consuming and intense efforts that static 

mapping systems require to map building interiors, there has been 

increasing interest in indoor mobile mapping systems in recent 

years (Lehtola et al., 2017). As GNSS-based systems do not work 

indoors, several alternative navigational methods and sensors 

have been used to provide accurate indoor positioning for 

mapping purposes, such as simultaneous localisation and 

mapping algorithms (SLAMs) and inertial measurement units 

(IMUs). The essential solution methods and computational 

complexity of the SLAM problem are described by Durrant-

Whyte and Bailey (2006a, 2006b).  

 

SLAM has become a key technology in indoor mapping 

applications, and a wide variety of different SLAM algorithms 

have been proposed. These algorithms are based on data from 

cameras (Henry et al., 2014), laser scanners like HectorSLAM 

(Kohlbrecher et al., 2011) and Gmapping (Grisetti et al., 2007), 

(Lehtola et al., 2016; Wen et al., 2016)) or both (Liu et al., 2010; 

Naikal et al., 2009). Surveys, as conducted by Maximov (2013), 

have shown that the integration of multiple sources of 

navigational information improves the accuracy of a navigation 

system. IMUs are one of the most commonly used navigational 

data sources in attitude (Hyyti et al., 2015; Makni et al., 2014) 

and pose estimation methods (Feliz et al., 2009). In addition to 

being relatively inexpensive, the MEMS-based IMUs are 

relatively small in size, lightweight, and low in power 

consumption; as such, they are widely integrated into indoor 

navigation systems. For example, an IMU is fused with a Hokuyo 

scanner on unmanned aerial vehicles (UAVs) (Kumar et al., 
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2017) and with a Velodyne scanner and panorama camera on 

backpack platforms (Blaser et al., 2019).  

 

Many works have integrated visual and inertial sensors within 

indoor SLAM algorithms (Chow et al., 2014; Concha et al., 2016; 

García et al., 2016; Leutenegger et al., 2015; Wang et al., 2018). 

However, the camera-based SLAM algorithms fail in textureless 

or repetitive environments because those algorithms search for 

similar features in consecutive images. Moreover, the light 

conditions in indoor environments are sometimes not good 

enough for capturing high-quality images.  

 

In our previous work (Karam et al., 2019), we built our feature-

based SLAM algorithm based on three Hokuyo laser scanners. In 

this paper, we investigate the benefits obtained from integrating 

a low-cost microelectromechanical system (MEMS) IMU into 

this SLAM. Our effort is characterized by that we try to keep our 

system as inexpensive as possible by using less expensive 

LiDAR sensors with the low-cost IMU. All the involved sensors 

are mounted on a backpack platform, which provides more 

freedom than UAVs in terms of the weight of the mounted 

components. 

 

An IMU has strengths and weaknesses. Using only the IMU to 

navigate, the so-called dead reckoning leads to the drift of the 

predicted position from the physical one due to biases in the 

sensor observations. The IMU can provide reliable estimations of 

positions and attitudes for a short while, but its reliability 

decreases over time. In this work, we seek to exploit the strength 

of the IMU in measuring short-term pose changes and improving 

the pose prediction, thereby improving the data association 

robustness of the SLAM method. 

 

The remainder of this paper is organized as follows: Section 2 

presents the related works. Section 3 describes our backpack 

mapping system and the laser-based SLAM algorithm. Then we 

elaborate the strategy used in the IMU-SLAM integration. In 
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Section 4, we provide a brief overview of the datasets used to 

investigate this mapping technique. The analysis of the IMU 

performance is presented in Section 5. Section 6 discusses the 

results obtained from integrating the IMU with the laser-based 

SLAM. Finally, the paper draws conclusions in Section 7. 

 

2. RELATED WORK 

IMUs are widely used in indoor navigation and mapping systems. 

In addition to the works mentioned in the introduction, there are 

some specific ones that are closely related. For instance, an IMU 

is combined with one Hokuyo scanner and utilized for position 

estimation in 3D hand-held laser scanning system—ZEB-REVO 

(GeoSLAM, 2018)—evolved by GeoSLAM company. Blaser et 

al. (2019) incorporated MEMS IMU with two Velodyne VLP-16 

laser scanners and one panorama camera in a portable mobile 

mapping system. The fusion of IMU and scanners in their SLAM 

is exploited to orient the camera in indoor environments. The 

Leica Pegasus backpack system also integrates a dual Velodyne 

VLP-16 scanner with a high precision IMU for indoor mapping 

(Leica Geosystems, 2016). In addition, Lauterbach et al. (2015) 

presented a backpack mapping system equipped with 2D (SICK 

LMS 100) and 3D (Riegl VZ-400) laser scanners, and an IMU 

(Phidgets 1044). Two SLAM algorithms (3DOF HectorSLAM 

and 6DOF semi-rigid SLAM) execute successively, with the 

output of one being the input of the other. The first one, 

HectorSLAM, uses the data of SICK scanner and an IMU for 

initial trajectory estimation. The semi-rigid SLAM exploits this 

initial pose estimation to align point clouds captured by the 3D 

scanner. The integration of IMU data can also be utilised to 

increase the degrees of freedom (DOF) of a mobile system. For 

instance, Wen et al. (2016) extended a horizontal laser-based 2D 

SLAM using rotations captured by an IMU to obtain a 3D 

(6DOF) pose and improve the accuracy of the 3D map. Recently, 

Velas et al. (2019) proposed another mobile backpack solution 

that combines a pair of Velodyne scanners with IMU and satellite 

positioning. This makes the system capable to work outdoors as 

well. The IMU is utilized in indoor applications to align the 

horizontal planes, such as floor and ceiling, with the XY plane in 

the 3D model. 

 

3. LASER-BASED SLAM AND IMU INTEGRATION 

In the following section, we first describe our mobile mapping 

system and the employed laser-based SLAM algorithm. Then we 

introduce the methodology used to integrate IMU with SLAM. 

 

3.1 System Components 

Our backpack indoor mobile mapping system consists of three 

time-of-flight (TOF) scanners (Hokuyo UTM-30LX) and one 

Xsens MEMS IMU. The top scanner is horizontally positioned 

and mounted on the top of the backpack system, while the other 

two scanners are tilted and mounted to the right and left of the 

top one, as shown in Figure 1. The IMU is horizontally positioned 

and mounted underneath the top scanner. A laptop running 

Ubuntu 16.04.X and the robot operation system (ROS) is used to 

communicate with all the mounted sensors and visualize the 

captured data over time. 

 

3.2 Coordinate Systems and Registration Process 

Figure 1 shows the various coordinate systems in our backpack 

mapping system. In order to accurately fuse data from multiple 

sensors, their individual coordinate systems must be transformed 

into a unified coordinate system called the frame coordinate 

system (f). We adopt the coordinate system of the top scanner as 

the frame coordinate system. As described in our previous work 

(Karam et al., 2019), the two tilted scanners are registered in this 

frame coordinate system. For the relative rotation of the IMU 

with respect to the frame coordinate system, the z-axes of both 

the IMU and frame are assumed to be aligned by design. For full 

alignment, the IMU sensor system (s) need to be rotated around 

the z-axis through a 90˚ angle in a clockwise direction (𝑅𝑠
𝑓
).  

 

As the frame system is constantly moving, we need to define a 

fixed coordinate system in which the final 3D model will be 

defined. Our fixed model system (m) is established from the first 

scans of the three scanners, as described by Vosselman (2014). 

The moving frame system is registered in this model coordinate 

system over time 𝑡 using six transformation parameters, namely, 

three rotation parameters (𝜔𝑓t
𝑚, 𝜑𝑓t

𝑚, 𝜅𝑓t
𝑚) form the rotation 

matrix 𝑅𝑓𝑡
𝑚 and three translation parameters (𝑋𝑓t

𝑚, 𝑌𝑓𝑡
𝑚 , 𝑍𝑓t

𝑚
) 

form the translation vector 𝑇𝑓𝑡
𝑚. These transformation parameters 

are estimated within the laser-based SLAM. 

 

 

Figure 1. The backpack system with coordinate systems plotted 

for all four mounted sensors: the three scanners S0, S1, and S2, 

and the Xsens IMU (below S0). 

 

3.3 Laser-based SLAM 

Laser-based SLAM is a feature-based SLAM with 6DOF, three 

position (𝑇𝑓𝑡
𝑚) and three attitude (𝑅𝑓𝑡

𝑚) parameters. As the 

scanning frequency of the Hokuyo model used is 40 HZ, each 

scanner records one scanline within a local time window of 25 

ms. Our SLAM senses planar features, horizontal and vertical, in 

the mapped environment through the linear segments that are 

detected in the single scanlines. We model the frame pose 

parameters as a function of time using B-splines and define each 

plane by its normal vector and distance to the origin in the model 

coordinate system. 

 

The solution of SLAM goes through two consecutive laser-based 

estimation processes, a local pose spline estimation involving the 

data captured during only 75-100 ms, and a global adjustment. 

The methods are explained in detail in Karam et al. (2019). In 

this paper, we focus on the local spline estimation process in 

which the pose is predicted and the data association is tested. This 

estimation is based on the laser observations of only three to four 

scanlines from each of the scanners. The algorithm tries to 

establish the association between the linear segments in the three 

newly captured scanlines within the local window and the 
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previously reconstructed planes. This test is based on the 

predicted pose resulting from a linear extrapolation of the locally 

estimated splines. It uses a distance threshold to decide whether 

a segment should be associated with a previously reconstructed 

plane or whether a new horizontal/vertical plane needs to be 

instantiated. When the whole dataset is processed locally, the 

SLAM runs a final adjustment process that estimates not only the 

trajectory parameters but also the parameters of all the 

reconstructed planes in the model coordinate system. 

 

3.4 IMU-based Pose Prediction 

Here, we consider an Xsens MEMS IMU that is a combination 

of three-axial accelerometers used to measure dynamic 

acceleration and gravity and three-axial gyroscopes used to 

measure angular velocity. The accelerations and angular 

velocities are collected with a sampling frequency of 200 HZ; 

thus, there are few IMU measurements taken within each local 

window of one scanline. As an alternative to linear extrapolation, 

those measurements are utilized to provide a more reliable 

prediction of the system’s position and attitude, as described in 

the following subsections.  

 

We assume that the local window, for which we want to predict 

the pose, starts at 𝑡start and ends at 𝑡end. The IMU measurements 

are the angular velocities (𝜔̇𝑖𝑚𝑢
𝑠𝑡𝑖 ,  𝜑̇𝑖𝑚𝑢

𝑠𝑡𝑖 , 𝜅̇𝑖𝑚𝑢
𝑠𝑡𝑖 ) and accelerations 

(𝑋̈
𝑖𝑚𝑢

𝑠𝑡𝑖 , 𝑌̈
𝑖𝑚𝑢

𝑠𝑡𝑖 , 𝑍̈
𝑖𝑚𝑢

𝑠𝑡𝑖 ) observed at time 𝑡𝑖 in the IMU sensor 

system(s), where 𝑖 =1, 2, … ,n. We select 𝑡1 as the timestamp of 

the last IMU measurement before 𝑡start and 𝑡𝑛 as the timestamp 

of the first IMU measurement after 𝑡end. 

 

The following pose parameters are known at 𝑡1 from the SLAM 

estimation process that ran before: 

 

- The attitude parameters (𝜔𝑓𝑡1,slam
𝑚 , 𝜑𝑓𝑡1,slam

𝑚 , 𝜅𝑓𝑡1,slam
𝑚 ) form the 

rotation matrix 𝑅𝑓𝑡1,slam
𝑚  from the frame coordinate system to the 

world coordinate system at 𝑡1. 

 

𝑅𝑓𝑡1,slam
𝑚 = 𝑅1(𝜔𝑓𝑡1,slam

𝑚 )𝑅2(𝜑𝑓𝑡1,slam
𝑚 ) 𝑅3(𝜅𝑓𝑡1,slam

𝑚 )          (1) 

 

- The position parameters (𝑋𝑓𝑡1,slam
𝑚 , 𝑌𝑓𝑡1,slam

𝑚 , 𝑍𝑓𝑡1,slam
𝑚

) form 

the translation vector 𝑇𝑓𝑡1,slam
𝑚  from the frame coordinate system 

to the world coordinate system at 𝑡1. 

 

       𝑇𝑓𝑡1,slam
𝑚 = (𝑋𝑓𝑡1,slam

𝑚 , 𝑌𝑓𝑡1,slam
𝑚 , 𝑍𝑓𝑡1,slam

𝑚
)
𝑇
             (2) 

 

-  The approximate velocity of the frame in the model coordinate 

system at time 𝑡1. 

      𝑇̇𝑓𝑡1,slam
𝑚 = (𝑋̇𝑓𝑡1,slam

𝑚 , 𝑌̇𝑓𝑡1,slam
𝑚 , 𝑍̇𝑓𝑡1,slam

𝑚
)
𝑇
             (3) 

 

 

3.4.1 Attitude 

 

The three attitude parameters can be determined by integrating 

time with the angular velocity. Since the IMU observes angular 

velocities in the IMU sensor system (s), they need to be rotated 

to the frame coordinate system (f) with the time-independent 

rotation matrix 𝑅𝑠
𝑓
.  

 

(

 
 
𝜔̇𝑖𝑚𝑢
𝑓𝑡𝑖

𝜑̇𝑖𝑚𝑢
𝑓𝑡𝑖

𝜅̇𝑖𝑚𝑢
𝑓𝑡𝑖
)

 
 
= 𝑅𝑠

𝑓

(

 
 
𝜔̇
𝑖𝑚𝑢

𝑠𝑡𝑖

𝜑̇𝑖𝑚𝑢
𝑠𝑡𝑖

𝜅̇𝑖𝑚𝑢
𝑠𝑡𝑖

)

 
 

                  (4) 

 
We obtain the incremental angles of the frame rotation from 𝑡𝑖 to 

𝑡𝑖+1. If we multiply the angular velocities in the frame coordinate 

system by Δ𝑡 = 𝑡𝑖+1 − 𝑡𝑖, we arrive at: 

 

𝑅𝑓𝑡𝑖

𝑓𝑡𝑖+1 = 𝑅1 (𝜔̇𝑖𝑚𝑢
𝑓𝑡𝑖 Δ𝑡)𝑅2 (𝜑̇𝑖𝑚𝑢

𝑓𝑡𝑖 Δ𝑡)𝑅3 (𝜅̇𝑖𝑚𝑢
𝑓𝑡𝑖 Δ𝑡)        (5) 

 

Then, the rotation matrix 𝑅𝑓𝑡𝑖+1
𝑚 from the frame coordinate system 

to the model coordinate system at 𝑡𝑖+1 can be computed as 

follows: 

𝑅𝑓𝑡𝑖+1
𝑚 = 𝑅𝑓𝑡𝑖

𝑚(𝑅𝑓𝑡𝑖

𝑓𝑡𝑖+1)𝑇                (6) 

 

where 𝑅𝑓𝑡𝑖
𝑚= 𝑅𝑓𝑡1,slam

𝑚 , if 𝑖 = 1,  and 𝑅𝑓𝑡𝑖
𝑚= 𝑅𝑓𝑡𝑖−1

𝑚 otherwise. 

 

From the resulting rotation matrix 𝑅𝑓𝑡𝑖+1
𝑚 , we can infer the 

predicted attitude parameters (rotation angles) at 𝑡𝑖+1, 𝜔𝑓𝑡i+1
𝑚 ,

𝜑𝑓𝑡𝑖+1
𝑚 , 𝜅𝑓𝑡𝑖+1

𝑚 . 

 

3.4.2 Position 

 

The three position parameters can be derived via the double 

integration of the acceleration. The IMU also observes 

accelerations in its sensor system and can be rotated to the model 

coordinate system using the 𝑅𝑠
𝑓
 and 𝑅𝑓𝑡𝑖

𝑚  predicted above as 

follows: 

 

(

𝑋̈𝑖𝑚𝑢_𝑡𝑖
𝑚

𝑌̈𝑖𝑚𝑢_𝑡𝑖
𝑚

𝑍̈𝑖𝑚𝑢_𝑡𝑖
𝑚

) = 𝑅𝑓𝑡𝑖
𝑚  𝑅𝑠

𝑓

(

 
 
𝑋̈𝑖𝑚𝑢
𝑠𝑡𝑖

𝑌̈𝑖𝑚𝑢
𝑠𝑡𝑖

𝑍̈
𝑖𝑚𝑢

𝑠𝑡𝑖

)

 
 

                     (7) 

 

As the accelerations are now resolved in the model system where 

the z-axis is assumed to be vertical, we subtract the average 

gravity (𝑔) from the acceleration along this axis. 

 

 𝑇̈𝑖𝑚𝑢_𝑡𝑖
𝑚 = (

𝑋̈𝑖𝑚𝑢_𝑡𝑖
𝑚

𝑌̈𝑖𝑚𝑢_𝑡𝑖
𝑚

𝑍̈𝑖𝑚𝑢_𝑡𝑖
𝑚 − 𝑔

)                         (8) 

 

Using these accelerations and the known frame position and 

velocity at 𝑡𝑖, we can obtain the frame position and velocity at 

𝑡𝑖+1 as follows: 

 

𝑇𝑓𝑡𝑖+1
𝑚 = 𝑇𝑓𝑡𝑖

𝑚 + Δ𝑡  𝑇̇𝑓𝑡𝑖
𝑚 +

1

2
Δ𝑡2 𝑇̈𝑖𝑚𝑢_𝑡𝑖

𝑚            (9) 

 

 

𝑇̇𝑓𝑡𝑖+1
𝑚 =  𝑇̇𝑓𝑡𝑖

𝑚 + Δ𝑡  𝑇̈𝑖𝑚𝑢_𝑡𝑖
𝑚         (10) 

 

 where 𝑇̇𝑓𝑡𝑖
𝑚= 𝑇̇𝑓𝑡1,slam

𝑚  and 𝑇𝑓𝑡𝑖
𝑚 = 𝑇𝑓𝑡1,slam

𝑚 , if 𝑖 = 1, and 𝑇̇𝑓𝑡𝑖
𝑚= 𝑇̇𝑓𝑡𝑖−1

𝑚  

and 𝑇𝑓𝑡𝑖
𝑚 = 𝑇𝑓𝑡𝑖−1

𝑚 otherwise. 
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3.4.3 SLAM and IMU Integration 

 

The IMU fusion with the SLAM system is based mainly on the 

replacement of linear extrapolation by the IMU-based prediction, 

eq.(6) and eq.(10), to test the data association within the local 

window. Here, we fit cubic splines through all the predicted poses 

(six cubic splines for six pose parameters) and used these splines 

to test the data association. 

 

4. DATASETS 

Two datasets are captured by the backpack mapping system and 

used in this work. The first dataset is collected in a cube-shaped 

room with some bending movements. Specifically, the operator 

first stands inside a room with planar and vertical structures, 

which represents an optimal environment for our SLAM. Then 

the operator starts recording data with the scanners and IMU 

while bending forward and sideward (right and left), then rotating 

90˚ to perform these bends again. He continues the rotation and 

bending steps until he is back at his starting orientation. The 

dataset collected in this manner is then utilized for IMU data 

analysis, as described in Section 5.1. 

 

The second dataset is acquired at the University of 

Braunschweig, Germany. The scanned floor shows a distinct 

office environment. It is the main dataset used in this study and 

is utilized to investigate the IMU prediction in comparison with 

linear extrapolation and show the benefits of the IMU-SLAM 

integration, as described in Sections 5.2 and 6. 

 

5. ANALYSIS OF IMU PERFORMANCE 

5.1 IMU Data Analysis 

In order to analyse the IMU data, we check the consistency of the 

IMU angular velocity with the first-order derivatives of the 

rotation splines estimated by the laser-based SLAM. We run the 

SLAM on the first dataset because we have large changes in 

rotation around all three axes, and we want to check if the 

approximate values of rotational rates estimated by SLAM show 

the same pattern as the rotational rates measured by the IMU. The 

angular velocities (𝜔̇𝑖𝑚𝑢
s ,  𝜑̇𝑖𝑚𝑢

s , 𝜅̇𝑖𝑚𝑢
s ) measured by the IMU are 

observed around the axes of the IMU sensor. What we need are 

the partial derivatives of the rotation angles (splines) estimated 

by SLAM and used to rotate between the model and the frame 

coordinate system, i.e. 𝜔̇𝑓,𝑠𝑙𝑎𝑚
𝑚 , 𝜑̇f,slam

𝑚 , 𝜅̇𝑓,𝑠𝑙𝑎𝑚
𝑚 . To determine 

the relationship with the observed angular velocities, we first 

need to define the order and direction of rotation exactly. So far, 

we have defined 𝑅f
𝑚 using eq.(1); hence, the rotation from the 

model coordinate system to the frame coordinate system 𝑅𝑚
f  can 

be defined as: 

 

𝑅𝑚
f = (𝑅f

𝑚)𝑇 = 𝑅3(𝜅𝑓,𝑠𝑙𝑎𝑚
𝑚 )

𝑇
𝑅2(𝜑𝑓,𝑠𝑙𝑎𝑚

𝑚 )
𝑇
𝑅1(ω𝑓,𝑠𝑙𝑎𝑚

𝑚 )
𝑇
 (11) 

 

Once the model coordinate system is aligned with the frame 

coordinate system, we can apply the time-independent rotation 

𝑅𝑓
𝑆 = (𝑅𝑠

𝑓
)
𝑇
 from the frame to the IMU sensor coordinate 

system. Here, the entire rotation from the model coordinate 

system to the IMU sensor coordinate system will be: 

 

𝑅𝑚
𝑠 = 𝑅𝑓

𝑆𝑅𝑚
𝑓

            (12) 

 

As κ is the first rotation applied when rotating from the frame to 

the model coordinate system, we do not have to rotate the 𝜅̇𝑠𝑙𝑎𝑚
𝑚  

from the model to the frame.  

 

The measured angular velocity  𝜑̇𝑖𝑚𝑢
s  around the y-axis does not 

correspond directly to the first derivative of 𝜑𝑓,𝑠𝑙𝑎𝑚
𝑚  when just 

rotating (𝑅𝑓
𝑆) from the frame to the IMU sensor coordinate system 

because the y-axis has already been rotated by −𝜅𝑓,𝑠𝑙𝑎𝑚
𝑚  around 

the z-axis prior to measuring  𝜑̇𝑖𝑚𝑢
s  in the IMU sensor coordinate 

system. Hence, the derivative of 𝜑𝑓,𝑠𝑙𝑎𝑚
𝑚  should also be rotated to 

the frame coordinate system. Similarly, the derivative of 𝜔𝑓,𝑠𝑙𝑎𝑚
𝑚  

needs to be rotated by −𝜑𝑓,𝑠𝑙𝑎𝑚
𝑚  around the y-axis and −𝜅𝑓,𝑠𝑙𝑎𝑚

𝑚  

around the z-axis to obtain an angular velocity vector in the frame 

coordinate system. So, all the rotated angular velocity vectors 

together determine the angular rotation velocities that are 

measured in the frame coordinate system. Hence, after rotating 

from the frame to the IMU coordinate system, we obtain the 

angular velocities as derived by the SLAM in the IMU coordinate 

system as 

 

(

𝜔̇𝑠𝑙𝑎𝑚
𝑆

𝜑̇𝑠𝑙𝑎𝑚
𝑆

𝜅̇𝑠𝑙𝑎𝑚
𝑆

) = 𝑅𝑓
𝑆 (

0
0

𝜅̇𝑓,𝑠𝑙𝑎𝑚
𝑚

)+ 𝑅𝑓
𝑆𝑅3(𝜅𝑓,𝑠𝑙𝑎𝑚

𝑚 )
𝑇
(

0
𝜑̇f,slam
𝑚

0

) +

      𝑅𝑓
𝑆𝑅3(𝜅𝑓,𝑠𝑙𝑎𝑚

𝑚 )
𝑇
𝑅2(𝜑𝑓,𝑠𝑙𝑎𝑚

𝑚 )
𝑇
(
𝜔̇𝑓,𝑠𝑙𝑎𝑚
m

0
0

)   (13) 

 

These angular velocities should be comparable to those measured 

by the IMU. To verify this, the angular velocities 

(𝜔̇𝑠𝑙𝑎𝑚
s ,  𝜑̇𝑠𝑙𝑎𝑚

s , 𝜅̇𝑠𝑙𝑎𝑚
s ) are plotted against (𝜔̇𝑖𝑚𝑢

s ,  𝜑̇𝑖𝑚𝑢
s , 𝜅̇𝑖𝑚𝑢

s ) 

and the differences are computed. Figure 2 shows 𝜑̇𝑓,𝑠𝑙𝑎𝑚
𝑆  plotted 

against 𝜑̇𝑖𝑚𝑢
𝑆 .  After the burn-off period of 0.2 s, the results are 

promising because both the IMU- and SLAM- based angular 

velocities exhibit the same patterns. The differences between the 

IMU and SLAM angular velocities along all axes are mostly 

within ±0.05-0.1 degrees/s. 

 

 
Figure 2. An example plot for testing the IMU integration. The 

angular velocities measured by the IMU along the y-axis are 

plotted against the first-order derivatives of the rotation y-splines 

estimated by the laser-based SLAM. Similar tests were done for 

all axes of the gyroscope. 

 

5.2 IMU Prediction Analysis 

We run the laser-based SLAM on the second dataset. As an initial 

analysis of the SLAM-IMU combined performance, we use the 

IMU data to predict the pose of the next scan (𝑃𝑝𝑟𝑒𝑑
𝑖𝑚𝑢 ) using the 

equations introduced in Section 3.4 and compare the resulting 

pose with the linearly predicted one (𝑃𝑝𝑟𝑒𝑑
𝑙𝑖𝑛𝑒𝑎𝑟). As ground truth 

we use the poses (𝑃𝑒𝑠𝑡) obtained in the optimal global pose 
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estimation of the SLAM procedure. Figure 3 shows that the 

predicted rotation angles around the X-axis (ω) and Z-axis (κ) by 

the IMU are closer to the ground truth angles than the linearly 

predicted ones. Table 1 lists the RMSE values computed using 

eq.(14) for all the pose parameters, namely, the rotation angles 

(ω, ϕ, κ) and positions (X, Y, Z).  

 

𝑅𝑀𝑆𝐸𝑃
𝑚𝑒𝑡ℎ = √

1

𝑁
∑(𝑃𝑝𝑟𝑒𝑑_𝑖

𝑚𝑒𝑡ℎ − 𝑃𝑒𝑠𝑡_𝑖)
2

𝑁

𝑖=1

        (14) 

 

 

where P refers to one the pose parameters {x, y, z, ω, φ, κ} , 𝑃𝑒𝑠𝑡 
is the estimated pose parameter by the laser-based SLAM.  The 

term “meth” refers to the prediction method, “imu” when we rely 

on IMU for pose prediction and “linear” otherwise. 

 

 
            (a) 

 
                (b) 

Figure 3. Part of the rotation angles (ω, κ) trajectories. (a) for ω. 

(b) for κ. Each blue line connects the two estimated angles (ω, 

κ) at the start and end of one local window (≈ 25 ms). The 

dashed black and red lines are the IMU and linear predictions of 

angle (ω, κ), respectively. 

 

SLAM 

Rotation Angles 

RMSE (deg) 
Position RMSE (m) 

ω φ κ X Y Z 

With 

IMU 
0.092 0.106 0.100 0.0054 0.0033 0.0031 

Without 

IMU 
0.166 0.160 0.231 0.0054 0.0032 0.0032 

Table 1. RMSE values of all the predicted pose parameters, 

rotation angles, and position coordinates. 

The RMSE results indicate that the IMU prediction of orientation 

is about two times more accurate than the linear prediction. As 

the operator walking speed is usually less than 1.4 m/s, the 

expected translation between two scanlines (within 25 ms) is 

about 3 cm. Thus, the fractions of millimetres improvement in 

position prediction is irrelevant for data association. The most 

crucial issue is the orientation prediction because the operator can 

make a large change in orientation within 25 ms or an even 

shorter time span. Moreover, a small error in the orientation 

prediction can have serious effects on the data association 

quality. As a simple example, if there is a point at a distance of 

10 m from the system, a linear prediction error of the angle κ of 

one sigma (0.231˚) would already result in a 4.0 cm lateral 

displacement of this point compared to a 1.7 cm lateral 

displacement with the IMU prediction. 

 

6. INTEGRATION RESULTS AND DISCUSSION 

In order to test the performance of the IMU-SLAM integration, 

the IMU prediction-based SLAM was run on the second dataset. 

The generated point cloud is shown in Figure 5. In order to 

evaluate the benefits of this integration, we compare the number 

of points assigned to the planes and the RMSE of the residuals in 

two cases: SLAM with and without IMU prediction (Table 2). In 

this paper, SLAM without IMU refers to the linear prediction-

based SLAM. The residuals are the distances of the points to the 

estimated planes. 

 

SLAM Without IMU With IMU 

Number of assigned points 24 527 978 24 562 619 

RMSE of the residuals (cm) 1.80 1.31 

Table 2. The number of assigned points and the corresponding 

RMSEs of the residuals. 

The table shows that using the IMU data to predict the pose of 

the next scans slightly increases the number of points assigned to 

the planes. More importantly, the RMSE value of the points’ 

residuals with IMU prediction is quite a lot lower than that 

obtained via linear prediction, meaning that there are more 

correct associations when the IMU is used for pose prediction. 

 

In addition, histograms of the computed distances (residuals) 

between the assigned points and their corresponding 

reconstructed planes are generated in order to provide an overall 

impression of the data association quality in both cases. Each 

histogram is built with 0.01 m bins, as shown in Figure 4, 

demonstrating that approximately 13% of the residuals exceed 3 

cm when the IMU is not used.  This percentage decreases to less 

than 4% when the IMU is utilized in pose prediction. 
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Figure 5. A top view of the generated point cloud by SLAM with IMU. The colours indicate point associations to a particular plane. 

 

 

Figure 4. Histograms of the points’ residuals in two cases, 

SLAM with and without IMU. 

 

Since the perpendicularity and parallelism characteristics are 

predominant in the second indoor environment we scanned, we 

utilize our evaluation method with architectural constraints 

(Karam et al., 2018) to evaluate the ability of our updated 

mapping system to capture the true geometry of its environment. 

The method is applied with same thresholds on the reconstructed 

planes by SLAM in two cases, with and without IMU. We 

compute the angles between the (perpendicular/parallel) 

reconstructed planes and we derive the deviations of these angles 

from the corresponding expected value (90º / 0º). The computed 

deviations are called angles’ errors. The results of this evaluation 

process are summarized in tables (3, 4). 

 

 

 

 

 

SLAM Errors range [0º 0.5º[ [0.5º 1º] >1º 

With 

IMU 

parallelism 66% 13%    21% 

perpendicularity 70% 23% 7% 

Without 

IMU 

parallelism 50% 12% 38% 

perpendicularity 58% 26% 16% 

Table 3. Percentages of angles’ errors for parallelism and 

perpendicularity in two cases, SLAM with and without IMU. 

 

SLAM Constraint RMSE 

With 

IMU 

parallelism 1.39º 

perpendicularity 0.66º 

Without 

IMU 

parallelism 1.76º 

perpendicularity 1.34º 

Table 4. RMSE of angles’ errors for parallelism and 

perpendicularity in two cases, SLAM with and without IMU. 

 

The results show that IMU-based prediction improves the 

reconstruction accuracy where the percentages of small angles’ 

errors (<0.5º) increases and of outliers (>1º) decreases.  

 

The level of improvements addressed above is linked directly to 

the IMU drift rate specifications. In other words, if the IMU 

performance is efficient, larger and more sudden rotations can be 

handled. Hence, we predict the orientation and translation of the 

system using available IMU data within a local window. In this 

study, the width of this local window is selected to cover the time 

interval of one scanline.  

 

In our previous work, we compensated for the low pose update 

frequency by using overly-relaxed data association thresholds 

(Karam et al., 2019). Now, with the IMU prediction, these 

thresholds can be tightened to create a more robust data 

association process. Consequently, the pose estimation and the 

output planar representation become more accurate.  
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7. CONCLUSIONS AND FUTURE WORK 

In this paper, we presented an improvement of our laser-based 

SLAM algorithm by integrating an IMU sensor. We show that 

even a low-cost IMU improves the accuracy of the predicted pose 

within SLAM. Furthermore, this improves also the robustness of 

the data association. 

 

In future work, we intend to deepen the IMU integration by 

including the IMU observations in the pose estimation equations. 

More observations might enable us to use cubic instead of linear 

splines and increase the robustness in the estimation process. 

Moreover, we plan to test how long we can rely on the IMU for 

prediction. Reliable IMU prediction for a wider local window 

could lead into a better hypothesis generation for the planar 

structures, thus this enabling the SLAM to work in a more 

complex environment (e.g. with slanted walls). 
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