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ABSTRACT:

Point clouds obtained from mobile and terrestrial laser scanning are imperfect as data is typically missing due to occlusions. This
problem is often encountered in 3D reconstruction and is especially troublesome for 3D visualization applications. The missing
data may be recovered by intensifying the scanning mission, which may be expensive, or to some extent, by computational means.
Here, we present an inpainting technique that covers these occlusion holes in 3D built environment point clouds. The proposed
technique uses two neural networks with an identical architecture, applied separately for geometry and colors.

1. INTRODUCTION

Mobile laser scanning (MLS) and terrestrial laser scanning (TLS)
are used to measure forest, urban, roadway, and indoor envir-
onments. The data captured from these is used for various ap-
plications such as surveying, visualization, or simulation (Le-
htola et al., 2017). The strength of MLS and TLS, compared
to airborne laser scanning for instance, is that the point clouds
are very dense and very accurate. However, the exploitation of
these data is hindered by the presence of occlusion that appear
as shadows in the measured 3D point clouds, see e.g. (Och-
mann et al., 2016, Nikoohemat et al., 2018). In simulation for
machine learning, for example, this could hinder the training
of agents for autonomous vehicles, because missing data can
cause problems with generalization.

There are some techniques to prevent occlusions from happen-
ing. A straightforward way is to plan the scanning mission so
that all relevant surfaces are covered by at least one scanning
location. Unfortunately in built environments some areas will
be out of limits for the scanner, such as rooftops of surrounding
buildings when scanning at the street level. After a reasonable
physical effort to improve the scanning geometry and trajector-
ies, the remaining problem can be addressed computationally.
One suitable technique for this is inpainting.

Inpainting is a well-known technique for reconstructing blank
spots in 2D images (Bertalmio et al., 2000). In 3D, inpaint-
ing has been employed for patching ancient mutilated statues
and other objects (Perez et al., 2012, Setty, Mudenagudi, 2018,
Hu et al.,, 2019). Usually the scans represent single objects
that have clearly defined interior and exterior volumes, so the
depth images can be rendered from an outside perspective. In
general, formulating the 3D inpainting problem in 2D allows a
wide range existing techniques to be used. However, applying
2D inpainting methods to scans from built environment is not
straightforward.

Built environment data is different from 3D objects because
they represent disjoint surface regions with varying point dens-
ities. Poor scanning geometry, such as a long distance between

*Corresponding author

the scanner and the target surface combined with a slope in the
target surface, results in an inadequate sampling of some areas
of the scan. Built environment data can also have holes be-
cause of windows and other structures that are not present in
e.g. sculptures. These difficulties come on top of the normal oc-
clusion effect, i.e., when something in front is casting a shadow
on something in the background. Since built environment data
are composed of multiple distinct regions, it could be helpful to
classify the point cloud before processing it.

Classification of 3D point cloud data from MLS and TLS is
a well-known problem (Weinmann et al., 2015, Grilli et al.,
2017). Novel approaches in classification include machine learn-
ing (Qi et al., 2017) and direct processing of the unregistered
LIDAR data (Lehtola et al., 2019). Hence, it is reasonable to
assume that the point cloud has been semantically classified be-
fore the inpainting process.

In this paper, we propose a novel inpainting technique suitable
for 3D built environment point clouds. Our technique incre-
mentally fills surface holes one small round surface patch at
a time. Each patch is reduced into a pair of depth and color
images, which are then inpainted by a Convolutional Neural
Network (CNN). We exploit the fact that large 3D scans have
multiple well-sampled homogeneous regions that can be used
to train the network, so the common problem of costly data ac-
quisition can be avoided. The dataset used in this work is shown
in Figure 1.

The paper is organized as follows. In Section 2 we briefly re-
view the literature relevant to inferring missing areas in 2D and
3D data. Section 3 describes our inpainting procedure and the
neural network architecture, followed by Section 4 where we
explain our dataset construction in more detail. The results are
visually examined in Section 5, concluded by a short summary
in Section 6.

2. RELATED WORK

Disocclusion, i.e. repairing the occlusions, is a well known in-
painting problem for 2D images (Tauber et al., 2007). When
using multiple cameras to reconstruct 3D geometry, a typical
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Figure 1. The 106 million point subset of the Pharsalia TLS
dataset used for evaluation in this work. Segments Backyard (A)
and Stairs (B) are annotated in the image.

cause for the occlusions is the movement of objects (or the
camera) in which case the inpainting can be aided with depth
information (Daribo, Pesquet-Popescu, 2010). Disocclusion in
MLS or TLS is also related to the positioning and movement of
objects and the sensor platform, but the occlusions manifest in
3D point clouds instead of 2D images.

However, since 2D data format is easier to handle, many in-
painting techniques for 3D point clouds begin with taking a
2D range image snapshot from the 3D point cloud and then
formulate the inpainting problem as if it was 2D. Example
works include individual object hole filling with image inpaint-
ing of range images (Wang, Oliveira, 2003, Salamanca et al.,
2008) and manifold triangle mesh inpainting using range im-
ages (Perez et al., 2012).

In addition to inpainting, small holes can be filled by using a
smoothing operator and point resampling (Alexa et al., 2003),
or by using radial basis functions (Ohtake et al., 2003). A re-
view of 34 hole filling methods for triangle meshes can be found
in (Pérez et al., 2016). More recently, machine learning tech-
niques have gained interest. Deep learning is applicable for
geometric inpainting e.g. by using a combination of discretized
signed distance fields and range images (Han et al., 2017).

Even if the 2D inpainting problem is well-known, the formu-
lation of the problem for 3D point clouds yet has some spe-
cific challenges. The first one is the 3D to 2D transformation
that must be applied before inpainting. It is straightforward
to render a range image by projecting the points to a plane,
but how is the plane of projection chosen? In (Salamanca et
al., 2008) the reference system of a 3D scanner is used, and in
(Perez et al., 2012) the direction that maximizes the projected
area of a hole is chosen. In (Roveri et al., 2018) the plane is
computed by a neural network. If oriented surface normals are
available then a tangent plane of a smoothed normal field can
be used. That is the approach in our method.

The second challenge is hole identification, a more complex
task for 3D point clouds than 2D images, because the edge
of a point cloud cannot be determined from pixel coordinates.
Therefore, distinguishing between the boundaries of the point
cloud and the holes within the point cloud can be complex, es-
pecially if an occlusion is close to a boundary. For example in
(Hu et al., 2019) a 3D point cloud is first projected to a single
range image for hole detection, and image edges are used to
distinguish between holes and the scan boundaries.

There is a strong tradition that only individual objects, e.g. hu-
man faces, antique vases, traffic signs etc. are used as an in-
put to a hole filling algorithm (Pérez et al., 2016) or a machine

learning model (Wu et al., 2015, Yang et al., 2017). This ap-
proach in an adapted form would make sense also in built en-
vironment, where the problem of point classification and seg-
mentation is well known (Qi et al., 2017, Lehtola et al., 2019).
That is, patches for the learning data would be sampled from
specific pools of already labelled data.

3. METHOD

We propose a Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) based inpainting network to fill point cloud
occlusion holes. The network operates on images of circular
surface patches with missing areas, and generates inpainted im-
ages that are back-projected to the point cloud. We use un-
corrupted scan regions as training data by performing artificial
corruption operations on them. Therefore the method can be
considered to store the patterns of the surrounding scan into the
network weights, which are then used to infer the missing areas.
We train separate models, G geptr, and Gi.gs, for depth and color
images, respectively, using the same architecture. See Figure 2.

We run the inpainting network only in the vicinity of surface
boundaries. Surface boundary points are found using the angle
criterion of (Bendels et al., 2006). The inpainted patches are
clipped to a 2D convex hull of the original patch to avoid ex-
tending the surface outwards. The radius of each patch is 15 cm.

We implemented the inpainting model with the PyTorch library
(Paszke et al., 2017) and exposed it as a plugin for the open

source CloudCompare point cloud processing application'.

3.1 Network architecture

The network architecture is similar to U-Net (Ronneberger et
al., 2015), and it is identical for both color (G,4) and depth
(Geptn) image models. We train the network with an ad-
versarial technique similar to (lizuka et al., 2017) using a simple
five layer convolutional network as a discriminator. The loss
function of the inpainting network is a combination of a per-
pixel L1 reconstruction loss and an adversarial hinge loss (Lim,
Ye, 2017). We pre-train the network using only the L; loss, and
add the adversarial loss once L1 loss has converged. The recon-
struction loss gives larger weight to pixels surrounding the hole,
which has been noted to increase the output quality (Pathak et
al., 2016).

4. DATA

We apply our method on the TLS Pharsalia dataset, a courtesy
of Trimble Inc. The dataset was captured with a Trimble TX8
scanner and it represents a historic plantation house in Virginia,
USA. The scan contains both built structures and flora as can
be seen in Figure 1. Since the point cloud is very large, we
crop a 106 million point subset for our evaluation. From this
subset, we extract two smaller subsets that we name Stairs and
Backyard. These subsets have large amounts of occlusion, and
are therefore used for evaluation.

We extract 200,000 patches from the uncorrupted regions as
64 x 64 pixel depth and color images. The patches are used as
training data for the neural network model. Similar to (Roveri et
al., 2018), each point is interpolated with a truncated Gaussian.

Lhttp://www.cloudcompare.org
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Figure 2. Processing a single surface patch. The points of a boundary region are first projected to into three images: a depth image, a
color image, and an occupancy mask. The depth and color images are processed by the respective G gepir, and G4y inpainting
networks. The inpainted images are of the same dimension as the input. Finally, the pixels corresponding to the empty areas of the
occupancy mask are back-projected to the point cloud.

Figure 3. Examples of ground truth height maps (top row) and
artificially corrupted images (bottom row) used as input data
during training.

We synthesize the training data by adding artificial missing re-
gions and noise to the ground truth patches. An example set of
height map images is shown in Figure 3.

5. RESULTS

We treat the visual quality of the results as the main indicator
of the validity of the proposed method. For thoroughness, we
show results on two segments that have different properties.
The first segment Stairs has smooth surface shapes and clear
color textures, and the second segment Backyard is more com-
plex and has more occlusion.

The input scan and the output result from our method are both
shown, side by side, in Figures 4, 5 and 6, and in 3D at web?.

Our method can reconstruct a plausible surface shape even in
highly occluded regions, as can been seen in Figure 4. This is
also shown in Figure 6 where the boundary of the lid is correctly
extrapolated. The overall shape of the missing corner of a step
in Figure 4 is reconstructed correctly, but the generated surface

has varying point density. This is explored more in Section 5.1.

The neural network model produces plausible colors with no
visible seams between the input and output surface areas. We
hypothesize this is behavior is encouraged by the boundary
weighted loss used during network training. We also find that
the adversarial loss yields more detailed inpainting results than

The data is assumed to have oriented normals, which in this case
were computed using Principal Component Analysis (PCA) and
oriented using scanner locations. We also assume a rudimentary

classification has been performed, so that points belonging to
the ground plane can be separated from individual objects.

Training the color and geometry models are done in two sep-
arate passes using the 200,000 patches. The patches, i.e. the
training data, consists of four classes (Walls, Roofs, Flora, and
Sand). We balance the classes during training by giving a smal-
ler weight to errors in larger classes. This is equivalent in the
expectation to resampling the dataset so that each class is of the
same size. This weighting is done solely to balance the skew
in the dataset, since the dataset contains large grass areas that
would otherwise cause the network output to be biased (see Fig-
ure 1).

using just the per-pixel L; reconstruction loss. However, in
smooth regions the difference is small, which indicates higher-
level structure was already learned in the pre-training phase.

If the surrounding point colors are blurry, the model output de-
generates into smooth interpolation as can be seen in Figure 7.
Note how the hole boundary is not visible in the inpainting res-
ult, which would not have been the case if the model had hallu-
cinated high frequency details.

Sometimes the lighting conditions vary in between the indi-
vidual scans, which causes incompatible colors for neighboring

2Interactive point cloud visualizations are available through a weblink
https://blog.umbra3d.com/blog/fixing-laser-scans-with-deep-learning
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Figure 4. A close up of the Stairs segment. From left to right: the input scan, the inpainted colors, and estimated PCA normals of the
inpainted surface. The dark outlier points were caused by the normal estimation. The visible cracks in the inpainted surface (middle)
happen when the pixel grid of a back-projected depth image doesn’t have sufficient resolution to capture sharp elevation changes.

Figure 5. Inpainting the Backyard segment. Even though the
input data (left) is of low quality, a plausible surface can be Figure 7. An example of a large occlusion hole surrounded by
inferred in the output (right) point cloud. poorly sampled colors in the Backyard segment. The colors of
the input (left) are smoothly interpolated in the inpainting result
(right). The bust visible in the image was processed separately.
Points in the background have been removed for visual clarity.

points on the same surface. The input in Figure 5 is an example
of such a case, but our method still produces continuous colors
that are broken up into individual regions.

Processing each patch takes 20 ms on a system with NVIDIA
GTX 1070 GPU and an Intel i7 7700K processor. A kd-tree
lookup to gather the patch points was not included in the meas-
urement. The inpainting step is straightforward to parallelize on
the GPU, but was not pursued here since we processed patches
serially in order to back-project the points between each in-
painting step.

5.1 Limitations

While our method gives plausible results in many scenarios,
some limitations remain. First of all, one assumption is that
all blank pixels in the input image must be inpainted. This be-
comes problematic when some holes in the surface must be pre-
served. For example windows or pipes should not be modified
by the inpainting network.

Figure 6. A close-up view of input (left) and output (right) point
cloud of a wooden barrel in the Backyard segment. Note how
both the shape and colors of the generated surfaces match the

surrounding scan.

Also, the inpainting network operates only locally one surface
patch at a time. This means all context must be inferred from
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Figure 8. Color leaks in the Stairs segment. The input point
cloud (left) has greenish tint around the occluded region because
of projected colors captured by the RGB camera. In the
inpainting result (right) the same tint has been propagated to the
generated regions.

the patch image itself which in many cases is impossible. This
could be partially remedied by passing class information dir-
ectly to the network e.g. as a separate image.

The presence of noise can disturb normal estimation, which
may cause some patches to be projected from a grazing angle.
This produces varying point densities seen in Figure 4. In ad-
dition, our implementation back-projects each pixel as a single
point which sometimes causes small cracks in the output. This
is also visible in Figure 4.

Since input colors are assumed correct, the network will inter-
polate even erroneous colors. This is apparent in Figure 8 where
colors of occluding shrubs have been projected to a wall.

Finally, training the neural network can be time consuming.
This is made worse by the adversarial loss which, despite good
results, introduces instability to the training process. In our
implementation a combination of low learning rates, instance
noise, and spectral normalization provided the required stabil-
ization, but we expect advances in GAN training to solve this
problem.

6. CONCLUSIONS

We have shown that a 3D point cloud inpainting system can
be implemented as two neural networks with identical archi-
tectures trained on a large scan. Notably, the training does not
require corrupted data, as it is done by artificially corrupting
this single large scan. The scan is incrementally processed in
small circular surface patches, making it possible to extract a
large number of training samples. Given oriented normals, the
method is local and can be parallelized.

The patch-based formulation of the inpainting problem allows
us to leverage well-known deep learning methods, and results in
visually plausible results. The proposed method is likely to be
useful in 3D reconstruction, where the problem of missing data
is encountered often. Unfortunately our formulation also limits
the context available to the network. The limitations become
apparent when the patch contains points from multiple distinct
classes, which result in blurred colors and incorrect geometry.
Future work may explore remedying these shortcomings with a
more accurate point classification pass and more diverse train-
ing data.
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