
Low Complexity Synchronization for Offset
Tolerant DFT-Based BFSK Demodulator

Siavash Safapourhajari, André B. J. Kokkeler
University of Twente

Enschede, Netherlands
s.safapourhajari@utwente.nl, a.b.j.kokkeler@utwente.nl

Abstract—A DFT-based demodulator for BFSK is used for
applications where the received signal experiences a carrier
frequency offset (CFO) much larger than the data rate. It is
particularly interesting for emerging ultra-narrowband commu-
nications for wireless sensor networks and IoT. The drawback
is that the synchronization algorithm proposed for such a
demodulator involves calculating the DFT for a window sliding
over the whole preamble. This imposes a large computational
load which is not desired in low power applications. To overcome
CFO the sampling frequency should be larger than the signal
bandwidth. Thus, the spectral range of the DFT is larger than
the signal bandwidth. This means that only a subset of DFT bins
have information about the signal; however, due to unknown
CFO, the conventional synchronization algorithm needs all bins
of the DFT. In this work, a novel synchronization algorithm is
proposed which only needs a subset of DFT bins. Such algorithm
can simplify implementation because efficient Single Bin Sliding
DFT (SB-SDFT) algorithms can be used. Moreover, to be able
to use the SB-SDFT algorithm, it is modified to incorporate
zero-padding. The proposed algorithm and its implementation
using the modified SB-SDFT reduce the number of complex
multiplications, complex additions and memory usage by 28%,
64% and 81%, respectively, while achieving the same BER
performance for the demodulator.

Index Terms—BFSK, Frequency Offset, Sliding DFT, Ultra-
narrowband, Synchronization, Offset Tolerant Demodulator

I. INTRODUCTION

A DFT-based demodulator for BFSK has been proposed as a
solution to large carrier frequency offset (CFO) in low data rate
applications such as satellite communications [1]. CFO can
be a consequence of either the mismatch between oscillators
in the communication nodes or the Doppler shift resulting
from their relative movement. In the emerging area of ultra-
narrowband communications for wireless sensor nodes and
IoT, the CFO might be several times the signal bandwidth [2].
A modified version of the demodulator in [1] was proposed in
[3] for narrowband wireless sensor nodes. In these designs, the
signal passes through a low pass filter before the demodulator.
The filter bandwidth and the sampling frequency can be much
larger than the signal bandwidth so that the signal is captured
even in presence of large CFO. The samples belonging to
each symbol are selected by a rectangular window, padded
with zeros and their DFT is calculated. The detection is done
based on the magnitudes of the DFT bins for each symbol.

The main drawback of the demodulators in [1] and [3] is
the complexity of the window synchronization algorithm. The

most computationally intensive part of this algorithm (which
is elaborated later) includes calculating the DFT for a window
sliding over the whole preamble with one sample hop. In case
of a sliding window only one sample is different between the
updated set of DFT inputs and the previous set. Exploiting
this property, various methods have been proposed for efficient
implementation of the DFT with a sliding window [4]–[8]. In
[4], the Sliding FFT was introduced based on the Radix-2 FFT
structure. It stores and reuses all intermediate values in the
FFT algorithm. For an N -point FFT, only N−1 butterflies are
calculated to update outputs. Significant memory requirement
is the cost of this method. Another class of methods, that
can save a lot of complexity, focuses on calculating a Single
Bin Sliding DFT (SB-SDFT) using an IIR filter structure [5]–
[7]. However, there are two problems with using an SB-SDFT
method in a conventional demodulator. First, these methods
are more efficient than an SFFT only when a subset of DFT
bins is required [8] while conventional synchronization uses all
DFT bins. Second, the proposed structures for SB-SDFT can
not be utilized in presence of zero-padding, which is necessary
in a DFT-Based demodulator [1], [3].

Taking an integrated approach, this work contributes to
the implementation of an efficient DFT-based demodulator
through solving the two mentioned problems. First, a novel
synchronization algorithm which only requires a subset of
the DFT bins is proposed. It makes it possible to leverage
low complexity SB-SDFT algorithms. Second, a modified SB-
SDFT algorithm is derived to enable calculating DFTs in pres-
ence of zero-padding (which is required by the demodulator).

In the next section, the conventional synchronization algo-
rithm is briefly explained. The proposed algorithm is pre-
sented in Section III while Section IV elaborates on its
implementation by explicating the modified SB-SDFT and
analyzing complexity. Section V includes simulation results
and a complexity comparison. Finally, conclusions are drawn
in Section VI.

II. CONVENTIONAL SYNCHRONIZATION

A. The algorithm

The baseband equivalent of a DFT-based demodulator is
shown in Fig. 1 [1], [3]. To tolerate large frequency offset, the
lowpass filter might be much wider than the signal bandwidth.
Moreover, complying with the Nyquist criterion necessitates

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

978-1-5386-6528-2/19/$31.00 ©2019 IEEE

DFT

Calc.

Window &

Zero-Padding
Detection

Synchronization

LPF

Fig. 1. Baseband equivalent block diagram of DFT-based demodulator

a higher sampling frequency. After the filter, a proper set of
samples (all belonging to the same symbol) is selected by a
rectangular window, padded with zeros and sent to the DFT
calculation block. Zero-padding is necessary to increase the
DFT bin resolution and ensure the best performance of the
detection block [1]. To make sure that all samples in a set
belong to one symbol, the window needs to be aligned to sym-
bols. This is done by a fine synchronization algorithm which
is similar in both [1] and [3]. It uses a preamble of alternating
ones and zeros. Windows with different delay values (in term
of samples) are considered for each symbol. Fig. 2 illustrates
the first three symbols of the preamble and the windows in case
of four samples per symbol. It also shows how the spectrum
varies for different delays. The DFT magnitudes for each
symbol and all delay values are calculated. Then, for each
delay value, DFT magnitudes corresponding to odd (1) and
even (0) symbols are added together. In fact, along each row
of windows (corresponding to a certain ”Delay”) shown in
Fig. 2, the sum of the DFT magnitudes for solid windows
and the sum of those for dotted windows are calculated. To
synchronize the window the algorithm finds the delay value
for which Rm in the following equation is maximized [1], [3].

Rm = [Eme (fme)− Eme (fmo)] + [Emo (fmo)− Emo (fme)] (1)

where Eme and Emo are the accumulated DFT magnitudes cor-
responding to delay m for even and odd symbols, respectively.
fme and fmo are the bins with maximum magnitude in Eme
and Emo , respectively. Finding the maximum of (1) is simply
finding the delay value which maximizes the difference shown
by D in Fig. 2.

B. Complexity analysis

Considering the DFT calculation for all symbols of the
preamble and different delay values, it is, indeed, calculating
the DFT for a window sliding over a sequence of samples. As
mentioned before, when all bins of a sliding DFT are required,
an efficient implementation is achieved using the Sliding FFT
(SFFT) [4]. For complexity analysis, it is assumed that the
preamble length and the number of samples per symbol are
L and N , respectively. The zero-padding factor is denoted by
I which means after zero-padding the sequence of samples
has a length of NI for each symbol (N(I − 1) zeros are
added to the samples). Both N and I are powers of two
as required by the FFT. In the conventional synchronization
algorithm NI-point DFTs are used; therefore, for each update
of the SFFT output NI−1 butterflies are calculated [4]. Each
butterfly is composed of one complex multiplication and two
complex additions. Using the SFFT, first, an NI-point FFT
is calculated for the first set of N samples which involves

D
Delay=0

Delay=2

f0 f1

f0 f1

D

Delay=1

Delay=3

f0 f1

f0 f1

D

D

Delay=0

Delay=1

Delay=2

Delay=3

Odd Symbols () Even Symbols ()

Fig. 2. The first three symbols of a preamble, the windows of different delay
values for the first two symbols and an example of spectrum variation when
there are 4 samples per symbol. Solid and dotted lines show windows and
spectra of odd and even symbols, respectively.

(NI/2) log2(NI) butterflies. Afterwards, L×N − 1 updates
are required for sliding over the whole preamble. So the total
numbers of complex additions (CA) and multiplications (CM)
for the conventional synchronization algorithm implemented
by the SFFT are as follows.

CASFFT = NI log2(NI) + 2(LN − 1)(NI − 1) (2)

CMSFFT = (NI/2) log2(NI) + (LN − 1)(NI − 1) (3)

To calculate the memory usage, two prominent storage require-
ments are considered. First, the memory needed to calculate
the DFT for each window (MCalc) and, second, the memory
needed to store Eme and Emo (MAcc). The memory for storing
twiddle factors is ignored as they are common in the conven-
tional and the proposed methods. In case of the SFFT, for
the outputs of each butterfly (two outputs) in the FFT which
is not calculated during an SFFT update, two memories are
needed to store their value from the previous window [4].
Besides, as a consequence of zero-padding, at the sth stage
(s = 1, ..., log2 I) of the Radix-2 FFT structure (which is the
basis for SFFT) there are only N2(s−1) non-zero butterfly
outputs. For the rest of the stages (s = log2 I+1, ..., log2(NI))
all NI/2 butterflies have non-zero outputs. These values are
complex and need two memories each. Hence, MCalc for the
SFFT is:

MSFFT
Calc =

log2 I∑
s=1

4(N2s−1−1)+

log2(NI)∑
s=log2 I+1

4(NI/2−1) (4)

To compute MSFFT
Acc , it should be noticed that for each

delay value two sets of memories are used to store the
accumulated DFT bins magnitudes for odd and even symbols.
For the conventional algorithm, each DFT has NI bins. So,
considering N delay values, MSFFT

Acc = 2IN2.

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

III. PROPOSED SYNCHRONIZATION ALGORITHM

As said previously, only a limited number of bins which
are in the vicinity of the signal center frequency, fc =
(f0 + f1)/2 + CFO (fc = CFO in the baseband signal),
are interesting for synchronization and detection. This set of
bins which the proposed method tries to find is called the Bins
of Interest (BoI) hereafter. Notice that the BoI is not known
due to frequency offset. Fig. 3 depicts the block diagram of
the proposed synchronization. Signal samples x[n] (top left)
pass through a sliding rectangular window which selects sets
of N samples (where N is the number of samples per symbol).
These sample sets are used in the synchronization procedure.
As can be seen, this procedure is split into two stages; zoom
and window alignment. First, the BoI of an NI-point DFT is
detected through step-by-step zooming. In the second stage,
a proper window delay is obtained based on the magnitude
of the DFT for bins in the BoI. Before elaborating on each
stage in Fig. 3, let us mention that T is symbol period and
Ts = T/N is the sampling time; I = 2Γ denotes the zero-
padding factor and N is considered to be a power of two
(the same as in [1], [3]). Moreover, the frequency deviation of
the BFSK modulation is assumed to be equal to the data rate
(f1 = fc + 1/2T and f0 = fc − 1/2T). This is the value that
ensures the best BER performance while keeping the minimum
bandwidth [1], [3]. To find the BoI of an NI-point DFT which
covers the frequencies of the BFSK modulation (f1and f0), the
zoom stage aims at searching for the center bin, kc, in an NI-
point DFT which is closest to the center frequency (fc) of the
signal. This stage includes Γ + 1 steps while the zero-padding
factor at step γ is equal to 2γ (γ = 0, ...,Γ). At step γ, the bin
kγc of an N2γ-point DFT which is closest to fc is detected.
Using this bin, the BoI calculator block estimates the next
step center bin (k̂γ+1

c) for an N2γ+1-point DFT and finds a
subset of the bins, BoIγ+1, around k̂γ+1

c . In step γ + 1, the
actual center bin kγ+1

c is detected by calculating DFT only for
bins in the BoIγ+1. The zoom stage starts with the first step,
γ = 0, which uses an N -point DFT i.e. with zero-padding
factor of one (or no zeros). Assume that the BoI at step γ
(BoIγ) is obtained from the previous step (γ − 1). At step γ,
the window slides over the received sequence of samples for
two symbols (an example of the windows for N = 4 and how
the spectrum changes can be seen in Fig. 2). For each hop of
the window, only the bins of an N2γ-point DFT inside BoIγ
are calculated. So there will be 2N DFTs for which the bin
with maximum magnitude is changing from f1 to f0 (see Fig.
2). If the magnitudes of all these DFTs for each bin are added,
the bin for which the sum is maximum is the closest to the
center frequency kγc (this is shown later).

X γk =
2N−1∑
m=0

|Xγ
k,m|

2, and kγc = max
k∈BOIγ

X γk , (5)

where Xγ
k,m is the DFT for kth bin and delay m = 0, ..., 2N−

1 in step γ. Since the zero-padding factor is doubled between
two consecutive steps, the center bin for step γ + 1 can be
estimated as k̂γ+1

c = 2kγc . Then, k̂γ+1
c is used to determine

NI-point DFT

Xk

 Final

Sliding

Window

Window

Alignment

2 -point DFT

Xk,m

 0 m 2N-1

Zoom Stage (0)

Window Alignment Stage

Delay
2(+1) T

Final

Timing

x[n]

{x[n-N],...,x[n-1]}

k0, k1

BoI Calc.

+1

kc Calc.

Fig. 3. The block diagram of the proposed synchronization algorithm; BoI
stands for Bins of Interest

BoIγ+1 for searching the center bin during next step, γ + 1.
Notice that fc might not be matched to a bin due to the arbi-
trary CFO. In this case two adjacent bins close to the fc have
the largest magnitudes among all (the magnitudes are exactly
the same if fc is exactly in the middle of two bins). In such
cases a noisy received signal and leakage can cause wrong
estimation of kγ+1

c . That is why the center frequency should
be detected step-by-step so that the final center frequency bin
in the NI-point DFT is selected correctly. To account for any
erroneous detection due to leakage and noise, BoIγ+1 includes
N bins around k̂γ+1

c . Assume a = (k̂γ+1
c −N/2)mod(N2γ+1)

and b = (k̂γ+1
c +N/2−1)mod(N2γ+1) where mod is modulo

operator. The modulo operator is used to map values that are
outside the range of bin numbers of an N2γ+1-point DFT in
step γ + 1 to the valid set i.e. k ∈ {0, ..., N2γ+1 − 1}. The
BoIγ+1 is:

BoIγ+1 = {k|k ∈ [min(a, b),max(a, b)]} (6)

The same step is repeated until the center bin of the NI-point
DFT (kc,F inal) is detected. In this step, the final BoI used for
the window alignment stage (BoIFinal) is selected. BoIFinal
should include the frequency bins corresponding to symbol 1
and 0 of BFSK (k1 and k0, respectively). Since the frequency
deviation of BFSK is equal to the data rate, when the zero-
padding factor is I and the sampling frequency is N/T , there
are I − 1 bins between k1 and k0. To reduce the effect of
noise, BoIFinal is determined as follows.

BoIFinal = {k|k ∈ [min(d, e),max(d, e)]} (7)

where d = (kc,F inal − I)mod(NI) and e = (kc,F inal + I −
1)mod(NI). The size of BoIFinal is optimized to achieve the
best BER performance using simulations; however, the results
of these simulations are not included for sake of brevity. The
BoIFinal is, then, sent to the next stage of synchronization
which aligns the window and determines k0 and k1 [3]. This
stage is exactly the same as the conventional algorithm, with
the only difference that the DFT is only calculated for the bins
in BoIFinal. There is a delay of 2(Γ + 1)T at the beginning
of the alignment stage. This is the time needed to receive all
symbols required by zoom stage. By considering this delay the
samples can be reused for window alignment when the BoI is
determined. This eliminates the need for a longer preamble.

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

As mentioned earlier, the algorithm is based on the fact
that the bin which maximizes the sum in (5) is the closest
one to the center frequency. This is shown in the follow-
ing. The DFT calculated over N samples with zero-padding
factor I , actually consists of the values X(Ω) of Discrete
Time Fourier Transform (DTFT) for N samples, sampled at
Ω = 2πFsk/NI where Fs is the sampling frequency [9]. So
to show (5) for the general case of all zero-padding factors,
the DTFT is considered. The input signal is x[n] = ejωinTs

where ωi = 2πfi and fi is either f0 or f1 of the BFSK. The
DTFT of x[n] over N samples is as follows.

X(Ω) =
N−1∑
n=0

x[n]e−jΩn (8)

Let us consider a pair of windows in the summation of (5)
with delay d of the odd symbol (with f1) and the same delay
for the next even symbol (f0) (i.e. m = d and m = d + N
in (5)). In Fig. 2 these are two consecutive windows of the
same delay value. The DTFT for each window is calculated
as follows.

Xd(Ω) =
N−d−1∑
n=0

ej(ω1Ts(n+d)−Ωn)+
N−1∑

n=N−d
ej(ω0Ts(n+d)−Ωn)

(9)

Xd+N (Ω) =

N−d−1∑
n=0

ej(ω0Ts(n+d+N)−Ωn)

+
N−1∑

n=N−d
ej(ω1Ts(n+d+N)−Ωn) (10)

where ω1 and ω0 are 2πf1 and 2πf0, respectively. Now, let
us assume that Ω = ωcTs + α and calculate |Xd(α)|2 and
|Xd+N (α)|2 based on (9) and (10) as follows.

|Xd(α)|2 =

N−d−1∑
n,p=0

ej(
π
N−α)(n−p) +

d−1∑
n,p=0

e−j(
π
N +α)(n−p)

+2
N−d−1∑
n=0

N−1∑
p=N−d

cos(
π(2d+ n+ p)

N
− α(n− p)) (11)

|Xd+N (α)|2 =
N−d−1∑
n,p=0

e−j(
π
N +α)(n−p) +

d−1∑
n,p=0

ej(
π
N−α)(n−p)

+2
N−d−1∑
n=0

N−1∑
p=N−d

cos(− π
N

(2d+ n+ p)− α(n− p)) (12)

To derive (11) and (12), ω1Ts and ω0Ts are replaced with
ωcTs± π

N while Ts/T = 1/N . In the second term of (11) and
the first term of (12) the summation indexes are interchanged
so that the negative sign in power can be removed. Considering
this and using cos(x) = cos(−x) for the third term of (12), it
is easy to show that (11) and (12) are in the form of Fd(α)
and Fd(−α). Thus, for Gd(α) = |Xd(α)|2 + |XN+d(α)|2 the
first and the second derivatives are as follows.

d

dα
G(α) =

d

dα
F (α)− d

dα
F (−α) (13)

d2

dα2
G(α) =

d2

dα2
F (α) +

d2

dα2
F (−α) (14)

z
-N

WM

-kN
WM

k

-

z
-1

x[n] Xk(n)

Fig. 4. The modified SB-SDFT filter

For α = 0 the right side of (13) is zero for any d (statement
I). Moreover, both Fd(α) and Fd(−α) have a maximum in
−π/N ≤ α ≤ π/N (see spectra in Fig. 2) which means
both have a negative second derivative at α = 0. As a result,
d2

dα2G(α) is negative at α = 0 for any d (statement II). From
(I) and (II) it is concluded that the Gd(α) has a maximum at
α = 0. Considering the DTFT instead of DFT, the sum in (5)
is the sum of Gd(α) for d = 0, ..., N − 1. So, this sum has a
maximum at α = 0 which corresponds to Ω = ωcTs or center
frequency.

IV. IMPLEMENTATION

A. Modified SB-SDFT

Aforementioned implementations for SB-SDFT do not take
the zero-padding into account. For the proposed synchro-
nization algorithm, a new SB-SDFT algorithm is needed to
include the zero-padding effect. A procedure similar to the
conventional SB-SDFT derivation [5]–[7] is followed. The
kth bin of an M -point DFT over a set of N samples,
Xn = {x(n−N+1), ..., x(n)}, which are padded with M−N
zeros is as follows.

Xk(n) =
N−1∑
i=0

x(n−N + i+ 1)W−kiM , (15)

where WM = ej
2π
M and the last M − N terms are ignored

as they are equal to zero. The kth DFT bin in (15) can be
obtained by using the kth DFT bin for sample set Xn−1 =
{x(n−N), ..., x(n− 1)} as follows.

Xk(n) = Xk(n− 1)W k
M − x(n−N)W k

M + x(n)W
−(N−1)k
M

(16)
where Xk(n−1) is the kth DFT bin for Xn−1. When there is
no zero-padding N = M , and W−(N−1)k

M in the last term of
(15) can be simplified to W k

M leading to the known SB-SDFT
equation [5]; however, in case of zero-padding, N 6= M and
(16) can be written as follows.

Xk(n) = W k
M (Xk(n− 1)− x(n−N) + x(n)W−NkM) (17)

Equation (17) can be seen as a filter taking samples of x and
generating the kth DFT bin while sliding the window by one
sample. The block diagram of such a filter is depicted in Fig.
4. The SB-SDFT with zero-padding has an extra multiplication
in the samples path compared to SB-SDFT in [5].

B. Complexity analysis

The zoom stage has Γ + 1 steps (Γ = log2 I). For each
step, 3N iterations of the filter shown in Fig. 4 are required to
generate 2N DFT values of each bin. Notice that N iterations
are required from the initial state of zero to generate the DFT

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

value for the first window. Each iteration needs two complex
additions and two complex multiplications. For each step, N
bins are required. Therefore, the number of complex additions
and multiplications for the zoom stage are as follows.

CAZoom = CMZoom = 6(log2 I + 1)N2 (18)

In the window alignment stage, a window of length N slides
over a preamble of length L and DFT values are calculated for
2I bins. So, for each bin (L+1)N iterations of the SB-SDFT
filter are required. Thus, the number of complex additions and
multiplications for the window alignment stage are as follows.

CAAlign = CMAlign = 4IN(L+ 1) (19)

Similar to Section II, MSDFT
Calc and MSDFT

Acc are derived for
the proposed algorithm to evaluate memory usage. For the
SB-SDFT each filter needs a memory of N for samples and
a delay of one for the previous DFT value (See Fig. 4). The
first stage of the memory can be shared between all 2I bins
and the second is unique for each bin. Moreover, the delay
block in Fig. 3 requires storing 2N(Γ + 1) samples.

MSDFT
Calc = 2(N + 2I + 2N(Γ + 1)) (20)

The proposed method only needs to store accumulation of the
DFT magnitudes for 2I bins which leads to MSDFT

Acc = 2IN .
This considerable decrease in MAcc is another advantage of
using a subset of DFT bins (BoI).

V. RESULTS AND DISCUSSION

The synchronization algorithm is applied to a DFT-based
demodulator with parameters similar to [3]. The sampling
frequency is 8RB where RB is data rate while N = I = 8.
The total system is simulated in an AWGN channel. It is
assumed that the samples are the output of an ideal lowpass
filter so the noise samples are uncorrelated and independent.
The BER performance of a DFT based demodulator using the
proposed and conventional synchronization [3] algorithms are
depicted in Fig. 5. As can be seen, the performance of the
proposed method is only slightly worse at high BER values;
however, for practical BER values in order of 10−3 or smaller
it performs the same as the conventional method. The small
increase in BER at low SNR is due to a slight increase of
error caused by using a small set of bins.

Table I lists the required complex additions, complex mul-
tiplications and memory when L = 16 and N = I = 8 (pa-
rameters in [3]) for the proposed and conventional algorithms.
Compared to the efficient implementation of the conventional
method using the SFFT, the proposed method achieves 64%,
28% and 81% saving in the number of complex additions,
complex multiplications and memory, respectively.

VI. CONCLUSION

The offset tolerant DFT-based demodulator is an interesting
solution for low data rate applications including emerging
ultra-narrowband communications for wireless sensor nodes.
However, the existing synchronization algorithm for this de-
modulator is complex as it involves calculating the DFT
of a sliding window. In this work, a new synchronization

4 6 8 10 12
10−5

10−4

10−3

10−2

10−1

100

Eb/N0[dB]

B
E
R

Conventional Sync. [3]
Proposed Sync.

Non-Coherent BFSK

Fig. 5. The BER curves for the demodulator in [3] with the proposed and
the conventional synchronization

TABLE I
COMPLEXITY COMPARISON

Synchronization CA (×103) CM (×103) Memory (×103)
Conventional [3] 16.386 8.193 1.608

Proposed 5.888 5.888 0.304

algorithm is proposed to decrease complexity. Using a step-by-
step zooming technique, the proposed algorithm only requires
a subset of the DFT bins. Consequently, efficient Single
Bin Sliding DFT (SB-SDFT) implementations can be used.
Besides, a modified version of SB-SDFT was introduced to
incorporate zero padding which is part of the demodulator. The
proposed algorithm and its implementation using the modified
Sliding DFT, obtains 64%, 28%, 81% saving in the number
of complex additions, complex multiplications and memory
usage while achieving the same BER performance.

REFERENCES

[1] S. Hara, A. Wannasarnmaytha, Y. Tsuchida, and N. Morinaga, “A
novel FSK demodulation method using short-time DFT analysis for
LEO satellite communication systems,” IEEE Transactions on Vehicular
Technology, vol. 46, no. 3, pp. 625–633, Aug 1997.

[2] D. Lachartre, F. Dehmas, C. Bernier, C. Fourtet, L. Ouvry, F. Lepin,
E. Mercier, S. Hamard, L. Zirphile, S. Thuries, and F. Chaix, “7.5 a
TCXO-less 100Hz-minimum-bandwidth transceiver for ultra-narrow-band
sub-GHz IoT cellular networks,” in 2017 IEEE International Solid-State
Circuits Conference (ISSCC), Feb 2017, pp. 134–135.

[3] S. Safapourhajari and A. B. J. Kokkeler, “Frequency offset tolerant
demodulation for low data rate and narrowband wireless sensor node,” in
2017 11th International Conference on Signal Processing and Commu-
nication Systems (ICSPCS), Dec 2017, pp. 1–8.

[4] B. Farhang-Boroujeny and S. Gazor, “Generalized sliding FFT and its
application to implementation of block LMS adaptive filters,” IEEE
Transactions on Signal Processing, vol. 42, no. 3, pp. 532–538, March
1994.

[5] E. Jacobsen and R. Lyons, “The sliding DFT,” IEEE Signal Processing
Magazine, vol. 20, no. 2, pp. 74–80, March 2003.

[6] K. Duda, “Accurate, guaranteed stable, sliding discrete Fourier trans-
form,” IEEE Signal Processing Magazine, vol. 27, no. 6, pp. 124–127,
Nov 2010.

[7] C. Park, “Fast, accurate, and guaranteed stable sliding discrete Fourier
transform,” IEEE Signal Processing Magazine, vol. 32, no. 4, pp. 145–
156, July 2015.

[8] ——, “Guaranteed-stable sliding DFT algorithm with minimal computa-
tional requirements,” IEEE Transactions on Signal Processing, vol. 65,
no. 20, pp. 5281–5288, Oct 2017.

[9] J. Proakis and D. Manolakis, Digital Signal Processing. Pearson Prentice
Hall, 2007.

2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

