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ABSTRACT
Interactive learning technologies, such as robots, increasingly find
their way into schools. However, more research is needed to see how
children might work with such systems in the future. This paper
presents the unsupervised, four month deployment of a Robot-
Extended Computer Assisted Learning (RECAL) system with 61
children working in their own classroom. Using automatically col-
lected quantitative data we discuss how their usage patterns and
self-regulated learning process developed throughout the study.

CCS CONCEPTS
• Applied computing → Interactive learning environments;
•Computer systems organization→ Robotics; •Human-centered
computing→ Field studies; • Social and professional topics→
Children; • Hardware → Sensors and actuators.
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1 INTRODUCTION
Robots increasingly find their way into classrooms. To support
long-term interactions they should be capable of offering learning
tasks that move and grow with the development of the child and
therefore can be accessed across recurring interactions while re-
maining relevant to the children, while the robot behaviour should
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stay relevant and engaging over time [6]. To understand the exact
design parameters it is important to gain insight into how children
interact with HRI systems, day-to-day in their own classrooms.
However, longitudinal in-the-wild studies with educational robots
are relatively scarce in comparison to the large number of short
term studies. A recent review on educational robots found 101 pa-
pers with 309 study results [2], but a survey on only longitudinal
interactions [24] reported a mere 8 studies. We discuss an additional
6 studies, but in a review on evaluation methods we also observed
a substantial lack of long term studies, among other things related
to practical challenges in long term classroom research and the
technological readiness of robotic systems [6]. The paucity of long
term studies is a real problem. It is not possible to say whether—and
how exactly—insights about CRI transfer from the lab to the real
world and to what extent lab studies have succeeded in capturing
the richness of interactions as they would develop over time [15].

To advance the field of educational HRI, more studies are needed
on how real users interact with robots and learning materials; unsu-
pervised, in-the-wild, and over extended periods of time. Yet, with
the current state of the art in HRI, we do not yet know well enough
whether it is feasible to run long term HRI experiments in the
classroom on the basis of a realistic behaviour and task repertoire.

In this paper we address the need for long term HRI studies.
We conducted a four-month study in which 61 children worked
unsupervised, in their classroom, on two learning tasks with an
autonomous Robot-Extended Computer Assisted Learning (RECAL)
system. Three different versions were deployed in three classes; one
with a robot and twowithout. Embedded sensors in the learning ma-
terials allowed our system to automatically guide the learning pro-
cess, while simultaneously recording children’s interactions with
the system. Through these logbooks we show how their learning
and their sustained interactions with the system developed through-
out the four months, as increasingly challenging learning content
unfolded. We examine the extent to which the children could self-
regulate this process. Finally, we also share our approach to ad-
dressing specific challenges that arose in practice during our study.

This study was part of the EU EASEL project. The same data col-
lection was used in a study on the effects of effort-related feedback
on children’s mindset in learning, to be reported elsewhere. Addi-
tionally, we conducted semi-structured interviews with the children
to capture their subjective experiences; here, we present illustrative
remarks from these while details will be presented elsewhere.
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2 BACKGROUND AND RELATEDWORK
There can be significant differences in the way a user interacts
with a robot for the first time, or after a habituation period [24].
Habituation effects are already seen in very young children when
presented with novel stimuli [13]. Tanaka et al. [37–39] have shown
that after a familiarisation period, children will have higher quality
interactions with a robot as they become accustomed to it; a recog-
nisable routine could play a role here [38]. In order to maintain a
child’s interest and engagement the robot should exhibit individual
adaptability [1, 16, 17, 24]. Yet, others reported that 24 months after
a disability unit at a school introduced robots in their curriculum,
focus groups showed that people still reported generally positive
about the Paro robot that has no adaptability whatsoever [34].

Different contexts require particular attention to the design of
the robot. In a comprehensive survey of 24 papers on long term stud-
ies, Leite et al. [24] found that real-world long-term HRI commonly
take place in work environments and public spaces, in health care
and therapy, in users’ homes, and in educational settings. Users gen-
erally accept robots and are willing to interact with them multiple
times over a period of time. The number of sessions in studies varied
considerably between 2-180 (m: 32, sd: 45); most studies reported be-
tween 5-20 sessions. Sessions were typically between 6-90 minutes
long (m: 38, sd: 30) and took place over a period of roughly several
weeks to several months (m: 11 weeks, sd: 8). Leite et al. [24] discuss
several longitudinal effects such as strengthened social interactions
and improved well-being of elderly; positive effects in autism ther-
apies; and their potential role in behaviour change support systems.
Over time, people may anthropomorphise the robot; they tend to
form mental models regarding its behaviour and they may change
their preferences regarding interaction and usage patterns. How-
ever, the robot did not always live up to users’ initial expectations
and during longer studies the importance of regular maintenance
became increasingly evident. Finally, Leite et al. [24] identified
guidelines for long-term studies regarding the robot’s appearance,
the continuity and incremental novelty of its behaviours, its em-
pathy and affective interactions, and its memory and adaptation.

In long term educational settings, the pioneering work by Kanda
et al. [16] investigated how Japanese children interacted with an
English speaking robot for two weeks. Their results showed a sharp
decrease in frequency of interactions after the first week. They
suggest that the robot may not have lived up to children’s initial
expectations. Similar effects were found by Leite et al. [25] in an
exploratory study on children playing chess with an iCat robot.
As time passed, children gave the robot lower social presence rat-
ings and looked at it less frequently. Building on such insights,
researchers explored ways in which the interaction could be sus-
tained beyond the novelty effects.

In a follow-up study Leite et al. [23] extended their chess-playing
iCat robot with a memory of past interactions and a model for em-
pathic responses. The empathic robot seemed to be better at main-
taining the interaction over multiple sessions, being able to sustain
high levels of perceived presence, engagement, helpfulness and chil-
dren’s self-validation throughout five interactions. Similarly, Kanda
et al. [17] investigated whether they could retain children’s interest
by extending their robot with capabilities aimed at building social
relationships. In particular, their robot incrementally expanded its

behaviour repertoire and confided personal matters to children
who interacted with it more frequently. Their results suggest that
children who saw the robot as a peer, interacted with it for the full
two-month period, forming a friendly relationship, while children
who saw it more as a tool, became bored after about five weeks.

More recent work has continued to explore how to keep chil-
dren engaged. For instance, Coninx et al. [7] described a system
that supports switching between multiple activities within single
sessions, while maintaining a consistent personalised behaviour
profile. Their results suggested that such a multi-activity approach
may be a promising way to sustain longer interactions.

A different approach was taken by Jacq et al. [14], who explored
improving children’s handwriting through the use of a teachable
robot that learned from demonstrations and corrections from the
child. Children successfully took on this teaching role and built
an affective bond with the robot, being engaged with this teach-
ing process and motivated to focus on the task and pay attention
throughout multiple lengthy sessions. Chandra et al. [5] found that
children’s perception of the robot’s ability to learn was formed over
time, and suggest that such perceptions may affect the child’s own
learning: children showed more improvements in their handwriting
when tutoring a robot actually capable of learning.

Robots as tutors can also more directly instruct the child. Serholt
and Barendregt [33] investigated how children’s engagement with
such a robot developed over time, looking at moments in the interac-
tion where it initiated a social cue that was outside the scope of the
current task. Overall, children seemed to be socially engaged with
the robot during such cues. The robot consistently elicited gazes,
facial expressions, and verbal responses when greeting or asking
questions; indications were found that children were affected by
the robot’s praise. However, these patterns seemed to decrease over
the course of several interactions, potentially also due to some dis-
appointment in the robot’s limited interaction capabilities. Gordon
et al. [12] describe a platform aimed at personalising the robot’s
tutoring behaviours to the affective state of the child in a second
language learning task. Overall, children learned new foreign words
after several interactions; and they generally responded with more
positive valence when working with the robot that offered person-
alised responses.

Some longer term studies with robots involved younger children.
Tanaka et al. [37] looked at social interactions between toddlers and
a humanoid robot. They show that, over time, children developed
care-taking behaviours towards the robot, progressively treating it
more as a peer than as a toy. Kozima et al. [22] found that preschool
children displayed similar care-giving behaviours towards a robot
with a more minimalistic design. Children were initially shy around
the robot during the first sessions; in subsequent sessions many
children continued interacting with the robot throughout the study
and would often play with it together in groups.

These papers show beneficial effects of repeated interactions
with educational robots, but most studies report that engagement
declines considerably over time. To counter this, it is often sug-
gested that the system should gradually show novel behaviours or
increasingly varied interactions, but Kennedy et al. [18] showed
that increased variations in social behaviours could be detrimen-
tal to the core learning process. We explored one aspect of this
balancing act by investigating how children progress through two
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Figure 1: The system with the balance scale task as it was
deployed in one of the participating classrooms.

different consecutive learning tasks, while working with an inter-
active system that displays the same consistent set of behaviours
throughout. We try to get a first feeling for the quantity and varia-
tion of learning content that is required for sustaining engagement
for prolonged periods, and thus for the feasibility of performing
long term HRI studies that may yet win past the novelty effect.

3 METHODS AND APPROACH
We aimed to analyse the emergent child-robot interaction in a long
term unsupervised deployment of our RECAL system, and to share
lessons learned from this deployment study. The study involved
61 children in three classrooms in different schools and took place
over a duration of approximately four months.

Although a comparative study between robot and non-robot
conditions was not our aim, we were still interested in first insights
regarding whether the robot was helpful, damaging, or neither to
the long term interaction. We know that robots in this kind of task
setting can provide real value, transforming the way the children
learn [42]. But we do not know whether in the longer run the robot
is still helpful, or might in fact detract from the experience once
the novelty of the robot wears off and disenchantment sets in.

Therefore, three variants were deployed in the three classrooms:
1) without robot, a baseline version that offered interactive task
instructions and feedback, 2) without robot, a version that addition-
ally offered personalised praise, and 3) a version where instructions,
feedback, and personalised praise were delivered through a robot.

We consider the similarities and differences in usage patterns
across the three versions. We also offer broader insights into how
children’s interactions with the setup developed over the course of
the study by analysing the aggregated data set.

3.1 Materials and System Overview
The technical setup was developed to offer a realistic interaction
that wasmeaningful in the learning context of the particular schools
and could be accessed without supervision. The setup was based
on earlier work [8, 30] and consisted of several key components:
two tangible learning tasks with embedded Arduinos and sensors, a

tablet interface, a robot, and a desktop machine running the RECAL
system that orchestrated the fully autonomous interaction with the
children in the learning task, as shown in Figure 1. Our robotwas the
Zeno R25 from Robokind1, an approximately 50cm tall humanoid
robot with expressive facial capabilities. Audio was played through
headphones, to not disturb other children working in the classroom.

3.1.1 Learning Tasks. The learning tasks were constructed accord-
ing to principles of inquiry learning to support a scientific process
of discovery [19, 20]. In the first task, adapted from our earlier
work [9, 42], children used a balance scale to explore the moment
of force. They placed combinations of three differently weighted
pots on three distances from a central fulcrum to discover how
those variables affected the tilt of the balance. The second task,
newly developed for this study, consisted of two sloped ramps from
which children could race balls to explore potential energy and
rolling resistance, while the angle of each slope could be adjusted
to a low or high position. The children could select balls from a
combination of materials, weights, and densities: small marbles;
medium pingpong balls, wooden balls, and rubber balls; and large
styrofoam balls and marbles. By racing them head-to-head, they
discovered how their speed was influenced by these variables.

3.1.2 Feedback and Instructions: Navigating the Difficulty Levels.
The tasks had assignments for 8 or 9 levels of difficulty, through
which children could progress at their own pace. As they did so,
the system offered verbal task-related instructions. In the lower
levels, children were given precise preparatory instructions and
were asked for their prediction regarding the outcome (e.g. “place
a yellow pot on location 1 and a red pot on location 5, which way
do you think it will tilt?”). Higher level assignments were more
open-ended (e.g. “find all the balls that are faster than a pingpong
ball”). The system offered personalised feedback and praise based
on the child’s progress, whether or not they gave a correct answer,
and at what level they were doing the task.

To offer appropriate feedback, and to gather more insights into
the children’s self reported perception of the task and of their own
performance, the system also regularly asked the children (through
an app) to comment on their own effort and performance (how
hard they worked and whether they thought they gave the right
answers), the perceived difficulty of the task, and the desired next
assignment difficulty, through in-task multiple-choice questions.

The difficulty levels, feedback, praise, and children’s subjective
self-reporting were designed to facilitate children’s self-regulation
of their progress through the difficulty levels, making the tasks
build up nicely over time to facilitate longer term use.

3.1.3 Modules for Data Gathering. Data was gathered to carry out
the task in an unsupervised way. To detect physical manipulations of
the learning materials, they were enriched with embedded sensors.
The sensors in the balance scale could detect the tilt of the scale,
the placement of pots, and whether the supporting blocks had been
removed. The sensors in the rolling ball ramp could detect the angle
of each slope, when to release the balls after pressing a button, and
the time that it took each ball to reach the finish after release. To
get direct input from the children, the system used a tablet with
Android 7 running our custom educational app. Besides displaying
1Robokind: https://www.robokind.com
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multi-modal task instructions, this app gathered children’s answers
to exercises, as well as their responses about self reported difficulty
and effort (see above). To identify which child was interacting with
the setup, children could scan their RFID card. Additionally, for
sensing the presence and location of the child (e.g., for robot gaze)
we used a Microsoft Kinect One with SceneAnalyzer software [44].

Using these sources of data, the system automatically measured
for every child how often, how long, and at which level each child
worked on the task. Together with the various self reported sub-
jective data regarding difficulty and effort, this delivered a lot of
insight in how children navigated the difficulty levels of the tasks.

3.1.4 Robust Interaction Management. All devices were connected
to a small desktop Windows 10 PC, hidden out of view, running
the RECAL system which orchestrated the interaction based on the
various inputs described above. The interaction manager (IM) was
based on Flipper, a rule-based information state dialogue engine
[27, 40]. The states weremodelled around the progression of inquiry
phases of each assignment, including error states (used when the
child did not follow the proper steps), success states (when a phase
was finished and the exercise could proceed to the next phase), and
states for the subsequent steps within each phase (explanation by
the system; actions by the children). A detailed explanation of this
IM can be found in [42]. Once an exercise was finished and the child
wanted to perform another one, the IM would select the (difficulty
of the) next exercise based on the child’s preference.

We designed our IM for robust multi-modal interaction to enable
our system to operate autonomously in a real classroom environ-
ment. Rather than capturing crucial user input through state-of-the-
art perception and reasoning models, which are often susceptible
to environmental and human factors, we designed our core interac-
tions around the tablet interface. Whenever the IM expected input
from the child it would display multiple-choice buttons or would
display instructions for operating the learning materials. When no
actions or responses were detected, the system used timers to repeat
instructions or offer additional help. Additionally, the system dealt
with various contingencies in the interaction (e.g. user walking
away mid-task). Core interactions were extended with more elabo-
rate behaviours to further enrich the learning experience. Through
progressive enhancement and graceful degradation2 techniques
we designed additional dynamic behaviours, such as reactive and
deictic gaze, depending on whether the system’s more advanced
sensors were available and were returning reliable values. The core
system would continue to operate as best as possible in the event
of a malfunctioning module, which would then be automatically
restarted at an appropriate point in the interaction.

3.1.5 Robot Behaviour Realisation. The IM requested spoken ut-
terances, robot movement, and tablet interface updates, specified
in the Behaviour Markup Language (BML) [3, 21]. The robot could
display facial expressions (happiness, surprise), lip synchronisation
to speech, interactive gaze (to the child, tablet, or learning materi-
als), and life-like behaviours (blinking). The exact behaviour design
of the robot was informed by design guidelines emerging from an
extensive contextual analysis of inquiry learning tasks with our

2The terms graceful degradation and progressive enhancement have long been used in
different fields, like web development [41].

Age
Mean (SD)

Nr. of participants
Total (girls/boys)

Freinet - Class 1 8.8 (0.73) 17 (12/5)
Montessori - Class 2 7.1 (0.83) 24 (10/14)
Montessori - Class 3 7 (0.82) 20 (8/12)

Table 1: Participant demographics

target user group [9]. The generated BML was sent to ASAPReal-
izer [31], which further orchestrated the scheduling, planning, and
execution of the behaviours; the system’s speech was generated
using the Fluency3 text-to-speech (TTS) engine.

3.2 Participants
The three versions of the system were deployed in parallel in two
district locations of the same Montessori school and one classroom
of a Freinet school, all located in similar suburbs of the same city. In
the Montessori and Freinet educational systems children of mixed
age groups learn together in the same classroom. There were 61 par-
ticipating children between 6-10 years old, as described in Table 1.

Ethical approval was obtained from the ethical board of the Uni-
versity of Twente and parents signed an informed consent letter
at the start of the study. Prior to this study it was agreed with
the school directors that the learning tasks would fall under the
school’s regular science education curriculum. Children who did
not obtain consent from their parents still had the option to work
with the learning tasks in order to benefit from the educational
content. However, in such cases our system collected no data and
we conducted no interviews with these children.

3.3 Procedure
The technological setups were installed in each classroom outside
of school hours. The next morning, a researcher was briefly present
to give an introduction of the system to highlight the various com-
ponents and illustrate how to initiate a session. Children could
work individually with the task on their own initiative and without
supervision. All children started on level 3 of 8. The system greeted
each child personally by name, after which the tablet displayed
textual and visual instructions for completing the assignment. Chil-
dren could press a “read aloud” button to have the system read the
instructions out loud. After each completed assignment, the system
asked them whether or not they got the correct answer and if they
thought the task was “easy”, “ok”, or “hard”. The system then asked
the child if they wanted to continue and whether they wanted to do
an easier, equally difficult, or harder assignment. It then loaded a
next assignment level according to their selected choice. The system
would end the session after four completed assignments. The first
task was removed by experimenters after approximately 6-7 weeks.

Two classes had a holiday just after the first task; after that,
the experimenters installed and introduced the second task in each
class. Now, all children started on level 1 of 9. Although the learning
content of this task was different than the first, the interaction pro-
cedure and system behaviours were identical. After approximately
8-10 weeks the materials were removed and the study was ended.

3Fluency text-to-speech engine for Dutch speech: https://www.fluency.nl/tts/
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3.4 Measurements
Measurements were collected automatically on all weekdays, as de-
scribed in Section 3.1.3. This included the quantitative information
on how our setups were used in practice as well as the children’s
self-reported task performance, subjective assignment difficulty,
and their preferred next assignment difficulty. The data was anal-
ysed to gain insights on how their usage patterns evolved over time,
how they progressed through the available assignment levels, and
how well they were able to self-regulate this process.

4 LONGITUDINAL DEPLOYMENT IN
PRACTICE: RESULTS

Overall usage statistics per task for each class are shown in Table 2.
The first learning task, in which children explored the moment of
force with a balance scale, was in classes for around 6 to 7 weeks.
During that time the 61 children completed a total of 1131 assign-
ments during 371 interaction sessions and worked with the system
for an average of 6 minutes per session (sd = 3:03). The majority of
children interacted 6 times or more, with several outliers of up to 17
interaction sessions (m = 6, sd = 4). To compare differences between
classes we conducted pairwise Wilcoxon rank sum tests with Bon-
ferroni correction (alpha = 0.0083). All tests were two tailed. We
found that children in class 3 (with robot and praise) initiated signifi-
cantly more sessions (m = 7.9, sd = 4.5) than children in class 2 (with-
out robot, with praise) (m = 4.5, sd = 4.2) (W = 386, p = 0.0062). No
significant differences were found between class 1 (without robot
and praise) (m = 6, sd = 2.3) and class 2 (W = 137, p = 0.017) nor be-
tween class 1 and class 3 (W = 243, p = 0.24). Figure 2 shows a break-
down of sessions and unique users per week for all classes combined.
The system was used most frequently during the first weeks, with
some individual children even interacting multiple times per week.
Overall usage generally declined towards the end; yet we saw that
a small number of unique children continued to interact with the
system each week. For class 2 and class 3 this decline occurred after
roughly 3-4 weeks. However, class 1 had a holiday in the fourth
week, during which there were no interactions. The system was
deployed in this class for one week longer as compensation; after
the holiday we saw a somewhat sustained usage towards the end.

The second learning task, in which children used a ramp to
discover potential energy and rolling resistance, was in classes for
around 8-10 weeks. Children completed a total of 785 assignments
during 274 sessions, with an average session length of 6:44 minutes
per session (sd = 3:02 minutes). The majority of children initiated
four or more sessions (m = 4.5, sd = 2.9). Similar to the first task, we
found that children in class 3 initiated significantly more sessions
(m = 5.8, sd = 3.3) than children in class 2 (m = 3.1, sd = 2.6) (W = 346,
p = 0.0047). Again, no significant differences were found between
class 1 (m = 4.4, sd = 1.8) and class 2 (W = 93, p = 0.01) nor between
class 1 and class 3 (W = 260, p = 0.17). The second task was deployed
in the schools longer than the first task because several disruptive
events took place. Most notable was a two-week holiday, which
took place in week 2-3 for class 1, week 5-6 for class 2, and week
6-7 for class 3. Furthermore, towards the end of the school year
children were often busy studying and taking exams and finishing
other school assignments. Additionally, class 3 was away practising
for a musical in the week before their holiday. We found similar

weekly interaction patterns as during the first task; it was popular
at the beginning and the number of interactions declined towards
the end, although we saw no full abandonment during the study.
However, it seems that the decline occurred sooner, after around
2-3 weeks. In week 6, 7, and 8 we saw a slight increase after children
returned to school from their holidays. In both tasks we found that
class 3 had more than double the number of stopped sessions.

The other measurements regarding self-reported measures and
self-regulated pacing revealed no significant differences. We discuss
these remaining results using the aggregated data from all children.

In their first interaction with task 1, all children started at level 3.
Although children occasionally opted for lower levels, they typi-
cally progressed to higher levels as they repeatedly interacted with
the system. The number of assignments that were completed were
not uniformly distributed across the 8 available levels (mean = 141
assignments per level, sd = 108). This suggests that there may have
been a ceiling effect. We found that the highest level was reached
by 38 children and was, by far, used most frequently; around 20%
of all assignments were completed at this level. Closer investiga-
tion reveals that this ceiling effect probably surfaced at around 4-6
interaction sessions, as shown in Figure 3.

In the second task children started at level 1, after which they
progressed at their own pace in subsequent interactions. In contrast
to the first task, the number of assignments completed at each level
wasmore uniformly distributed (mean = 87 assignments per level, sd
= 16). This suggests that the ceiling effect was less pronounced and
seemed to occur later after around 6-7 sessions, as shown in Figure 3.
This may be due to the fewer number of repeated interactions that
took place. Many children didn’t interact frequently enough to
exhaust all available levels; only 16 children reached the highest
level. It may also be due to the more open nature of the higher
levels, where children could repeat the experiment many times in
different combinations before arriving at a correct answer.

Regarding self-reported measures, we found no significant differ-
ences between the two tasks or the levels. Overall, children reported
73% of their answers to be correct. Similarly, we found no signifi-
cant differences between the various levels regarding self-reported
subjective difficulty, although the higher levels tended to be rated
as “hard” slightly more often than the lower levels. However, we
found that children seemed to rate assignments that they had cor-
rect as being easier. In those cases, they rated 66% as “easy”, 22%
as “ok”, and 12% as “hard”. Assignments they got wrong, on the
other hand, were rated 22% as “easy”, 48% as “ok”, and 30% as “hard”.
Furthermore, after getting an assignment wrong, children seemed
to be more inclined to select a lower level or stick to the same level
for their next assignment (39%), compared to when they got the
assignment right (26%). These results suggest that the consecutive
levels of the tasks were appropriately challenging and that children
were able to effectively regulate their own progression.

In semi-structured interviews we asked children to reflect on
their experience with the system. Regarding the learning tasks, chil-
dren enjoyed doing everything by themselves, like formulating and
testing predictions and selecting their own difficulty level. When
asked about the tablet, they said that they could press buttons to
select their answers, that it displayed instructions, helped them by
reading assignments out loud, and could recognise their actions
and their answers. Additionally, children who worked with the
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System version Total Total Total Completed Stopped Abandoned
Robot Praise weekdays assignments sessions sessions sessions sessions

Task 1 - Balance scale
Class 1 no no 37 375 111 73 38 0
Class 2 no yes 30 311 103 56 35 12
Class 3 yes yes 29 445 157 60 87 10

Task 2 - Ramp
Class 1 no no 39 235 79 33 29 17
Class 2 no yes 42 192 62 29 9 24
Class 3 yes yes 47 358 133 33 63 37

Table 2: Number of weekdays and total number of assignments and sessions in each of the classes. A session was considered
completed if the child had finished four assignments. A session was considered stopped when a child indicated to the system
they did not wish to continue after completing an assignment. A session was considered abandoned if a child walked away in
the middle of a assignment.
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Figure 2: A breakdown of the total number of sessions and unique visitors that interacted with the system per week for each
of the tasks.
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Figure 3: A breakdown of the number of assignments that were completed at a certain level during the first 8 sessions for each
of the tasks. Note that in the first task children started at level 3 of 8. In the second task children started at level 1 of 9.
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robot remarked about its appearance (e.g. “it’s a boy” or “he has
funny hair”) and its behaviours (e.g. “he was blinking” or “he looked
at me”). When talking with teachers afterwards, they stated that
they enjoyed having the system in their class and that children
had enjoyed working on the learning tasks. Although the teach-
ers had a rough understanding of the learning tasks, they did not
structurally incorporate them in their regular lessons and had not
helped children with the tasks. Additionally, it appeared that none
of the teachers had actually interacted with the system themselves.

5 DISCUSSION
5.1 From First Encounters to Sustained Use
During the first weeks we found indications of a novelty effect,
characterised by a high frequency of use by many different chil-
dren. This was corroborated during interviews; children mentioned
that there was often a queue of classmates who wanted to work
with the system. Such novelty effects have long been reported in
similar studies, tapering off after a few weeks (e.g., Fernaeus et al.
[11], Kanda et al. [16], Sung et al. [35]). De Graaf et al. [10] showed
that during the novelty phase users rated their robot less favourably
than after they gained some experience with it. They argue that
this could be due to the complexity and unfamiliarity of such a
novel interaction, which negatively influences the perceived joy
and likeability of the interaction. Serholt [32] found similar indica-
tions that an overload of information during initial sessions may
result in breakdowns in the interaction. To minimise complexity,
our learning tasks were carefully designed to be familiar and ac-
cessible for children in our target group. When interviewing the
children and analysing the results we found no indications that
they encountered particular issues in understanding the system
during initial or subsequent interactions.

Furthermore, we found indications for a second novelty effect
directly after introducing the second learning task. These results
are in line with related work showing how having multiple avail-
able activities (e.g. [7]) may help to keep children engaged. In our
study, although the core interaction with the system, and especially
the dialog with the robot remained the same as before, children
likely wanted to explore the novel learning content. Other research
has shown the merits of gradually introducing novel robot’s ca-
pabilities (e.g. [17]); yet in our study we saw sustained, recurring,
voluntary interactions triggered by novel learning content without
the introduction of novel social and behavioural content.

To ensure availability of a wide variety of learning content and
accommodate children’s development over time we implemented
several levels in each task. Our results show that children were
able to successfully self-regulate the pace at which they progressed
through the various levels. Surprisingly, in the first task many
children continued interacting with the system for several more
sessions after reaching that point, even though there was only a
limited set of unique assignments available at that level. This may
be an indication that these children were still engaged with the
system even without new content. However, during the second task
we found that many children didn’t interact with the system often
enough to reach the highest level, and more frequently walked
away and abandoned an interaction during a session. Still, we saw
no complete abandonment even in the second task.

We found many similarities in usage patterns across our three
versions; children progressed at a similar pace, rated the levels
similarly, and reported similar performance. This suggests that
such factors may not necessarily be greatly influenced (in either
direction) by merely having a robot present.

5.2 Content and Variation: Was it Enough?
Deploying a robot in a classroom for an extended period requires
sufficient variation in interactional content [24]. To maintain en-
gagement, tasks may offer richness, depth, breadth, and variation.
Although implementing such content is not trivial, it appeared man-
ageable and worthwhile. Interest in the system naturally declined
over time and resurged after introducing new learning content, but
the system continued to attract unique recurring visitors until the
end. With this unsupervised deployment study we have gained a
first intuition about the extent of the variation that is needed to sup-
port a long-term interaction. Our two tasks with each 8-9 levels that
adapted to the children’s progress, guided by an interactive system
with a limited set of speech phrases and behaviour variations, were
sufficient to keep them engaged for multiple interactions during
roughly four months on a voluntary basis. We feel this is an order
of magnitude that is a good starting point for studying longitudinal
educational interactions that extend beyond initial novelty effects.

5.3 Practical Considerations
Our system was set in a familiar environment for the children:
their own classroom during regular school hours. To make this
possible we closely collaborated with the school management and
the teachers involved. Although teachers were interested in having
the learning task in their class, they expressed not having time to
operate it, oversee and coordinate its use, nor help children interact
with it. During the course of the study, however, teachers would
occasionally get involved with the system. For example, they would
make passing references to it during their lessons or they would
regulate when children were allowed to use it (e.g. covering it up
with a blanket when children were supposed to work on something
else). Another important point raised by teachers was that any
child interacting with the system should not interfere with regular
lessons. In our system this was addressed by using headphones
to play audio. However, especially in the first weeks we found
that there were often several bystanders present. Additionally, we
needed to be flexible when going to the school to accommodate
the classes’ schedules. In some cases this meant that maintenance
was delayed and that interviews were performed at moments when
children were not busy with regular school tasks.

Differences between individual teacher’s lesson plans will likely
have played a role in the frequency of use. When talking with teach-
ers after the study, all three indicated that they had not included the
system in regular lesson schedules. However, teachers had on occa-
sion reminded children that they could play with it at certain times
or had prevented them from using it at other times. One teacher
had encouraged children to play with it just before the experiment
ended, reminding them that it may be their last chance.

Communication with parents was very important. We organ-
ised an information evening to gather their input and discuss any
concerns. Feedback was used to improve our information leaflet
and consent form. Although most parents were enthusiastic, some
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raised concerns regarding the educational value. This could be re-
solved in discussions with school management, who agreed that
our learning tasks fit as parts within the regular curriculum.

Generally speaking, stakeholders often have similar require-
ments or constraints, or (unrealistic) expectations regarding the use
and deployment of technology. Additionally, users have habits and
schedules that must to be taken into consideration when designing
the interaction. Such issues can be uncovered and addressed at vari-
ous moments, for example, by organising information events, focus
group sessions, or co-design workshops for users and stakeholders.

5.4 Maintenance
Once a system is deployed for an extended amount of time, regular
maintenance will likely be necessary [11, 36]. This may involve
charging, cleaning and tidying, correcting (technical) failures, or
replacing broken or stolen hardware. During our study, most time-
consuming maintenance was related to hardware failures (e.g., re-
placing motors in the robot and sensors in our learning task). In
some cases the children and teacher invented a story to explain
away such events. For instance, at one point the robot’s eyelids
had become stuck. Later, children mentioned that the robot was
squinting because it had gotten an eye infection. At other times,
the robot’s motor sounds would interrupt the teacher. Some chil-
dren mentioned that it was looking for attention or said it was
being rude and rebellious. Other common failures were related to
disconnected headphones, USB cables, and power cables, caused
by cleaning personnel who would occasionally unplug and move
components of the system and forget to plug them back in. Un-
fortunately, we also encountered instances of missing equipment
and theft: relatively harmless, like children taking marbles from the
ramp task, or less so. Once, someone entered the school and stole
one of the tablets, which made quite an impact on the children and
was often mentioned during interviews (afterwards, the teacher
took care of locking away valuable equipment at night).

In our study the researchers doing the maintenance were also
involved in recruitment and interviews. Their involvement had
therefore to remain concealed so as not to bias children’s responses.
To address this we scheduled setup and maintenance at moments
after school time with no children present. As a consequence, how-
ever, unrecoverable technical errors remained unresolved till the
next maintenance window. In general, we recommend that other re-
searchers should think about such auxiliary planning issues and con-
sider the trade offs that are acceptable in their specific study design.

6 CONCLUSION
This paper addressed the need for more long term studies in HRI.
We identified several challenges, including the robustness of the
technical system and interaction design, problems of logistics and
organisation, novelty effects, the need for having a sufficient yet
feasible amount of learning material to accommodate children’s de-
velopment over time, and the need for sufficiently varied, but not un-
necessarily distractive dialog content in the child-robot interactions.

By developing a technical setup and deploying it long term, unsu-
pervised, in the wild, we investigated the feasibility of such studies
as well as explore some parameters pertaining to these. In our study,

children interacted with the robot and embodied educational ma-
terials in the familiar context of their classroom while the system
guided them through two consecutive inquiry learning tasks; we
analysed their usage patterns over time and compared between
variants of the system (with a robot, and without).

Our platform of a robot with limited interaction variation, a
tablet interface, and a modest selection of assignments with several
sensorised learning materials, seems to be a good starting point
for further research. We have shown that this setup is sufficient
to sustain recurring, unsupervised and voluntary interactions over
extended periods of time (four months). We also showed some lim-
its to this, not completely getting rid of novelty effects, but clearly
carrying our study far beyond the typical duration expected for
initial novelty effects. There is a clear tapering off of the children’s
interest in staying involved, even if most kids stuck around till the
end. This provides a starting point for future long term HRI studies.

Furthermore, it is feasible to automatically gather objective as
well as self-report subjective data in an unsupervised way, at suffi-
cient scale to follow individual children over time and run long term
comparative experimental studies. Together with an occasional in-
terview this fine-grained task-by-task data can offer rich insights
into the development of children’s interactions with an HRI system.

We showed that, supported by the RECAL system, children could
effectively self-navigate the available difficulty levels, consistently
progressing from easier to harder assignments. This offers a starting
point for more nuanced and personalised guidance in such systems.

Finally, if we want to show the real potential of robots in daily
life, we need to be able to do long term comparative studies which
we compare the robot to a non-robot condition, in relatively com-
parable settings. This is not trivial, but we showed that it is feasible
to pursue this: with our still fairly limited robot, the robot and non-
robot variants performed somewhat comparably and both managed
to “carry children along till the end of the study”. Knowing that,
we can now start working towards other long term studies where
we attempt to tease out the actual benefits of (aspects of) robots.
Many variables are potentially important to the effect of robots in
class. Now we have shown the feasibility of carrying out long term
studies, we should explore the details: how does the presentation
of the robot, its physical embodiment [26, 29], its social gaze [43],
its appearance, its facial expressions [4], its personality, its life-like
behaviour, its background story [28], and so forth, affect children’s
involvement with the task and robot in longer term deployments?
This need not necessarily be the same as in short term and/or lab
studies – so we need to start carrying out more long term in the wild
studies to start exploring this next level of interesting questions, as
has been so well argued by Jung and Hinds [15].

ACKNOWLEDGMENTS
This research has been funded by the European Union 7th Frame-
work Program (FP7-ICT-2013-10) under the grant agreement No
611971 (EASEL). We thank the participating schools and teachers
for the pleasant collaboration, the children for their enthusiasm
and motivation during the activities, and Andrea Papenmeier and
Emiel Harmsen for developing the sensorised learning materials.

Day 1 Session 2: Robots in the Real World & Longitudinal HRI  HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

70



REFERENCES
[1] P. Baxter, T. Belpaeme, L. Canamero, P. Cosi, Y. Demiris, and V. Enescu. 2011.

Long-term human-robot interaction with young users. IEEE/ACM Human-Robot
Interaction 2011 Conference (Robots with Children Workshop), 1-4 (2011).

[2] Tony Belpaeme, James Kennedy, Aditi Ramachandran, Brian Scassellati, and
Fumihide Tanaka. 2018. Social robots for education: A review. Science Robotics 3,
21 (aug 2018). https://doi.org/10.1126/scirobotics.aat5954

[3] BML. accessed 9 Dec. 2019. Behaviour Markup Language Specification v1.0.
http://www.mindmakers.org/projects/bml-1-0/wiki

[4] Cynthia Breazeal. 2003. Emotion and sociable humanoid robots. International
Journal of Human-Computer Studies 59, 1 (2003), 119–155.

[5] Shruti Chandra, Raul Paradeda, Hang Yin, Pierre Dillenbourg, Rui Prada, and
Ana Paiva. 2018. Do Children Perceive Whether a Robotic Peer is Learning or
Not?. In Proceedings of the 2018 ACM/IEEE International Conference on Human-
Robot Interaction - HRI ’18. ACM Press, New York, New York, USA, 41–49. https:
//doi.org/10.1145/3171221.3171274

[6] Vasiliki Charisi, Daniel Patrick Davison, Dennis Reidsma, and Vanessa Evers. 2016.
Evaluation Methods for User-Centered Child-Robot Interaction. In Proceedings of
the 25th IEEE International Symposium on Robot and Human Interactive Commu-
nication, RO-MAN 2016 (Proceedings IEEE International Symposium on Robot and
Human Interactive Communication, RO-MAN). IEEE ROBOTICS AND AUTOMA-
TION SOCIETY, MoA3.4. https://doi.org/10.1109/ROMAN.2016.7745171

[7] Alexandre Coninx, Paul Baxter, Elettra Oleari, Sara Bellini, Bert Bierman, Olivier
Blanson Henkemans, Lola Cañamero, Piero Cosi, Valentin Enescu, Raquel Ros
Espinoza, Antoine Hiolle, Rémi Humbert, Bernd Kiefer, Ivana Kruijff-Korbayovà,
Rosmarijn Looije, Marco Mosconi, Mark Neerincx, Giulio Paci, Georgios Pat-
sis, Clara Pozzi, Francesca Sacchitelli, Hichem Sahli, Alberto Sanna, Giacomo
Sommavilla, Fabio Tesser, Yiannis Demiris, and Tony Belpaeme. 2015. Towards
Long-Term Social Child-Robot Interaction: Using Multi-Activity Switching to
Engage Young Users. Journal of Human-Robot Interaction 5, 1 (aug 2015), 32.
https://doi.org/10.5898/JHRI.5.1.Coninx

[8] Daniel Patrick Davison, Vasiliki Charisi, Frances Martine Wijnen, Andrea Pa-
penmeier, Jan van der Meij, Dennis Reidsma, and Vanessa Evers. 2016. Design
challenges for long-term interaction with a robot in a science classroom. In
Proceedings of the RO-MAN2016 Workshop on Long-term Child-robot Interaction.
IEEE ROBOTICS AND AUTOMATION SOCIETY.

[9] Daniel Patrick Davison, Frances Martine Wijnen, Jan van der Meij, Dennis Rei-
dsma, and Vanessa Evers. 2019. Designing a Social Robot to Support Children’s
Inquiry Learning: A Contextual Analysis of ChildrenWorking Together at School.
International Journal of Social Robotics 11, 3 (2019). https://doi.org/10.1007/s12369-
019-00555-6

[10] Maartje M.A. de Graaf, Somaya Ben Allouch, and Jan A.G.M. van Dijk. 2016.
Long-term evaluation of a social robot in real homes. Interaction Studies. Social
Behaviour and Communication in Biological and Artificial Systems 17, 3 (dec 2016),
461–490. https://doi.org/10.1075/is.17.3.08deg

[11] Ylva Fernaeus, Maria Håkansson, Mattias Jacobsson, and Sara Ljungblad. 2010.
How do you play with a robotic toy animal? A long-term study of Pleo. Proceed-
ings of the 9th International Conference on Interaction Design and Children - IDC
’10 (2010), 39–48. https://doi.org/10.1145/1810543.1810549

[12] Goren Gordon, Samuel Spaulding, Jacqueline Kory Westlund, Jin Joo Lee, Luke
Plummer, Marayna Martinez, Madhurima Das, and Cynthia Breazeal. 2016. Af-
fective Personalization of a Social Robot Tutor for Children’s Second Language
Skills. Thirtieth AAAI Conference on Artificial Intelligence (mar 2016), 3951–3967.

[13] Carmel Houston-Price and Satsuki Nakai. 2004. Distinguishing novelty and
familiarity effects in infant preference procedures. Infant and Child Development
13, 4 (dec 2004), 341–348. https://doi.org/10.1002/icd.364

[14] Alexis Jacq, Séverin Lemaignan, Fernando Garcia, Pierre Dillenbourg, and Ana
Paiva. 2016. Building successful long child-robot interactions in a learning context.
In ACM/IEEE International Conference on Human-Robot Interaction, Vol. 2016-
April. IEEE, 239–246. https://doi.org/10.1109/HRI.2016.7451758

[15] Malte Jung and Pamela Hinds. 2018. Robots in the Wild: A Time for More Robust
Theories of Human-Robot Interaction. ACM Trans. Hum.-Robot Interact. 7, 1,
Article 2 (May 2018), 5 pages. https://doi.org/10.1145/3208975

[16] Takayuki Kanda, Takayuki Hirano, Daniel Eaton, and Hiroshi Ishiguro. 2004.
Interactive Robots as Social Partners and Peer Tutors for Children: A Field Trial.
Human-Computer Interaction 19, 1 (jun 2004), 61–84.

[17] T. Kanda, R. Sato, N. Saiwaki, and H. Ishiguro. 2007. A Two-Month Field Trial
in an Elementary School for Long-Term HumanâĂŞRobot Interaction. IEEE
Transactions on Robotics 23, 5 (oct 2007), 962–971. https://doi.org/10.1109/TRO.
2007.904904

[18] James Kennedy, Paul Baxter, and Tony Belpaeme. 2015. The Robot Who Tried
Too Hard. In Proceedings of the Tenth Annual ACM/IEEE International Conference
on Human-Robot Interaction - HRI ’15. ACM Press, New York, New York, USA,
67–74. https://doi.org/10.1145/2696454.2696457

[19] David Klahr. 2000. Exploring Science: The Cognition and Development of Discovery
Processes. The MIT Press, Cambridge.

[20] David Klahr and Kevin Dunbar. 1988. Dual Space Search During Scientific
Reasoning. Cognitive Science 12, 1 (jan 1988), 1–48.

[21] Stefan Kopp, Brigitte Krenn, Stacy Marsella, Andrew N. Marshall, Catherine
Pelachaud, Hannes Pirker, Kristinn R. Thórisson, and Hannes Vilhjálmsson.
2006. Towards a Common Framework for Multimodal Generation: The Behavior
Markup Language. In International Conference on Intelligent Virtual Agents, IVA
2006, Vol. 4133. Springer, Berlin, Heidelberg, 205–217. https://doi.org/10.1007/
11821830

[22] Hideki Kozima, Marek P. Michalowski, and Cocoro Nakagawa. 2009. Keepon: A
playful robot for research, therapy, and entertainment. International Journal of
Social Robotics 1, 1 (jan 2009), 3–18. https://doi.org/10.1007/s12369-008-0009-8

[23] Iolanda Leite, Ginevra Castellano, André Pereira, Carlos Martinho, and Ana Paiva.
2014. Empathic Robots for Long-term Interaction: Evaluating Social Presence,
Engagement and Perceived Support in Children. International Journal of Social
Robotics 6, 3 (aug 2014), 329–341. https://doi.org/10.1007/s12369-014-0227-1

[24] Iolanda Leite, Carlos Martinho, and Ana Paiva. 2013. Social Robots for Long-Term
Interaction: A Survey. International Journal of Social Robotics 5, 2 (jan 2013),
291–308. https://doi.org/10.1007/s12369-013-0178-y

[25] Iolanda Leite, Carlos Martinho, Andre Pereira, and Ana Paiva. 2009. As Time goes
by: Long-term evaluation of social presence in robotic companions. In RO-MAN
2009 - The 18th IEEE International Symposium on Robot and Human Interactive
Communication. IEEE, 669–674. https://doi.org/10.1109/ROMAN.2009.5326256

[26] Daniel Leyzberg, Samuel Spaulding, Mariya Toneva, and Brian Scassellati. 2012.
The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains. In
Proceedings of the Annual Meeting of the Cognitive Science Society, Vol. 34.

[27] Ter Mark Maat and Dirk Heylen. 2011. Flipper: An Information State Compo-
nent for Spoken Dialogue Systems. In Intelligent Virtual Agents. Springer Verlag,
Reykjavik, 470–472.

[28] Aaron Powers, Adam D.I. Kramer, Shirlene Lim, Jean Kuo, Sau Lai Lee, and Sara
Kiesler. 2005. Eliciting information from people with a gendered humanoid robot.
In Proceedings - IEEE International Workshop on Robot and Human Interactive
Communication, Vol. 2005. IEEE, 158–163. https://doi.org/10.1109/ROMAN.2005.
1513773

[29] Aditi Ramachandran, Chien-Ming Huang, Edward Gartland, and Brian Scassellati.
2018. Thinking Aloud with a Tutoring Robot to Enhance Learning. In Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot Interaction - HRI
’18. ACM Press, New York, New York, USA, 59–68. https://doi.org/10.1145/
3171221.3171250

[30] Dennis Reidsma, Vicky Charisi, Daniel Patrick Davison, Frances Martine Wijnen,
Jan van der Meij, Vanessa Evers, David Cameron, Samuel Fernando, Roger Moore,
Tony Prescott, Daniele Mazzei, Michael Pieroni, Lorenzo Cominelli, Roberto
Garofalo, Danilo de Rossi, Vasiliki Vouloutsi, Riccardo Zucca, Klaudia Grechuta,
Maria Blancas, and Paul Verschure. 2016. The EASEL project: Towards educa-
tional human-robot symbiotic interaction. In Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), Vol. 9793. Springer, Cham, 297–306. https://doi.org/1

[31] Dennis Reidsma and Herwin van Welbergen. 2013. AsapRealizer in practice - A
modular and extensible architecture for a BML Realizer. Entertainment Computing
4, 3 (aug 2013), 157–169. https://doi.org/10.1016/j.entcom.2013.05.001

[32] Sofia Serholt. 2018. Breakdowns in children’s interactions with a robotic tutor:
A longitudinal study. Computers in Human Behavior 81 (apr 2018), 250–264.
https://doi.org/10.1016/j.chb.2017.12.030

[33] Sofia Serholt and Wolmet Barendregt. 2016. Robots Tutoring Children: Longitu-
dinal Evaluation of Social Engagement in Child-Robot Interaction. In Proceedings
of the 9th Nordic Conference on Human-Computer Interaction - NordiCHI ’16. ACM
Press, New York, New York, USA, 1–10. https://doi.org/10.1145/2971485.2971536

[34] D. Silvera-Tawil and C. R. Yates. 2018. Socially-Assistive Robots to Enhance Learn-
ing for Secondary Students with Intellectual Disabilities and Autism. In 2018 27th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN). 838–843. https://doi.org/10.1109/ROMAN.2018.8525743

[35] JaYoung Sung, Henrik I. Christensen, and Rebecca E. Grinter. 2009. Robots
in the wild: understanding long-term use. In Proceedings of the 4th ACM/IEEE
international conference on Human robot interaction - HRI ’09. ACM Press, New
York, New York, USA, 45–52. https://doi.org/10.1145/1514095.1514106

[36] Ja Young Sung, Rebecca E. Grinter, and Henrik I. Christensen. 2010. Domestic
robot ecology: An initial framework to unpack long-term acceptance of robots at
home. International Journal of Social Robotics 2, 4 (dec 2010), 417–429. https:
//doi.org/10.1007/s12369-010-0065-8

[37] Fumihide Tanaka, Aaron Cicourel, and Javier R Movellan. 2007. Socialization
between toddlers and robots at an early childhood education center. Proceedings
of the National Academy of Sciences of the United States of America 104, 46 (nov
2007), 17954–8. https://doi.org/10.1073/pnas.0707769104

[38] F. Tanaka and J.R. Movellan. 2006. Behavior Analysis of Children’s Touch on
a Small Humanoid Robot: Long-term Observation at a Daily Classroom over
Three Months. In ROMAN 2006 - The 15th IEEE International Symposium on Robot
and Human Interactive Communication. IEEE, 753–756. https://doi.org/10.1109/
ROMAN.2006.314491

Day 1 Session 2: Robots in the Real World & Longitudinal HRI  HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

71

https://doi.org/10.1126/scirobotics.aat5954
http://www.mindmakers.org/projects/bml-1-0/wiki
https://doi.org/10.1145/3171221.3171274
https://doi.org/10.1145/3171221.3171274
https://doi.org/10.1109/ROMAN.2016.7745171
https://doi.org/10.5898/JHRI.5.1.Coninx
https://doi.org/10.1007/s12369-019-00555-6
https://doi.org/10.1007/s12369-019-00555-6
https://doi.org/10.1075/is.17.3.08deg
https://doi.org/10.1145/1810543.1810549
https://doi.org/10.1002/icd.364
https://doi.org/10.1109/HRI.2016.7451758
https://doi.org/10.1145/3208975
https://doi.org/10.1109/TRO.2007.904904
https://doi.org/10.1109/TRO.2007.904904
https://doi.org/10.1145/2696454.2696457
https://doi.org/10.1007/11821830
https://doi.org/10.1007/11821830
https://doi.org/10.1007/s12369-008-0009-8
https://doi.org/10.1007/s12369-014-0227-1
https://doi.org/10.1007/s12369-013-0178-y
https://doi.org/10.1109/ROMAN.2009.5326256
https://doi.org/10.1109/ROMAN.2005.1513773
https://doi.org/10.1109/ROMAN.2005.1513773
https://doi.org/10.1145/3171221.3171250
https://doi.org/10.1145/3171221.3171250
https://doi.org/1
https://doi.org/10.1016/j.entcom.2013.05.001
https://doi.org/10.1016/j.chb.2017.12.030
https://doi.org/10.1145/2971485.2971536
https://doi.org/10.1109/ROMAN.2018.8525743
https://doi.org/10.1145/1514095.1514106
https://doi.org/10.1007/s12369-010-0065-8
https://doi.org/10.1007/s12369-010-0065-8
https://doi.org/10.1073/pnas.0707769104
https://doi.org/10.1109/ROMAN.2006.314491
https://doi.org/10.1109/ROMAN.2006.314491


[39] Fumihide Tanaka, Javier R. Movellan, Bret Fortenberry, and Kazuki Aisaka. 2006.
Daily HRI evaluation at a classroom environment. In Proceeding of the 1st ACM
SIGCHI/SIGART conference on Human-robot interaction - HRI ’06. ACM Press, New
York, New York, USA, 3–9. https://doi.org/10.1145/1121241.1121245

[40] Jelte van Waterschoot, Merijn Bruijnes, Jan Flokstra, Dennis Reidsma, Daniel
Davison, Mariët Theune, and Dirk Heylen. 2018. Flipper 2.0: A pragmatic dialogue
engine for embodied conversational agents. In Proceedings of the 18th International
Conference on Intelligent Virtual Agents. ACM Press, Sydney, Australia, 43–50.

[41] W3C. accessed 9 Dec. 2019. W3C Wiki Entry Concerning Graceful Degradation
and Progressive Enhancement. https://www.w3.org/wiki/Graceful_degradation_
versus_progressive_enhancement

[42] Frances Martine Wijnen, Daniel Patrick Davison, Dennis Reidsma, Jan van der
Meij, Vicky Charisi, and Vanessa Evers. In press. Now we’re talking: Learning by
explaining your reasoning to a social robot. ACM Transactions on Human Robot
Interaction (In press).

[43] Cristina Zaga, Roelof AJ de Vries, Jamy Li, Khiet P Truong, and Vanessa Evers.
2017. A Simple Nod of the Head: The Effect of Minimal Robot Movements on
Children’s Perception of a Low-Anthropomorphic Robot. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems. ACM, 336–341.

[44] Abolfazl Zaraki, Daniele Mazzei, Manuel Giuliani, and Danilo De Rossi. 2014.
Designing and Evaluating a Social Gaze-Control System for a Humanoid Robot.
IEEE Transactions on Human-Machine Systems 44, 2 (apr 2014), 157–168. https:
//doi.org/10.1109/THMS.2014.2303083

Day 1 Session 2: Robots in the Real World & Longitudinal HRI  HRI ’20, March 23–26, 2020, Cambridge, United Kingdom

72

https://doi.org/10.1145/1121241.1121245
https://www.w3.org/wiki/Graceful_degradation_versus_progressive_enhancement
https://www.w3.org/wiki/Graceful_degradation_versus_progressive_enhancement
https://doi.org/10.1109/THMS.2014.2303083
https://doi.org/10.1109/THMS.2014.2303083

	Abstract
	1 Introduction
	2 Background and related work
	3 Methods and approach
	3.1 Materials and System Overview
	3.2 Participants
	3.3 Procedure
	3.4 Measurements

	4 Longitudinal deployment in practice: Results
	5 Discussion
	5.1 From First Encounters to Sustained Use
	5.2 Content and Variation: Was it Enough?
	5.3 Practical Considerations
	5.4 Maintenance

	6 Conclusion
	Acknowledgments
	References



