
Variance-Based Feature Importance
in Neural Networks

Cláudio Rebelo de Sá(B)

Data Science Research Group, University of Twente, Enschede, Netherlands
c.f.pinhorebelodesa@utwente.nl

Abstract. This paper proposes a new method to measure the relative
importance of features in Artificial Neural Networks (ANN) models. Its
underlying principle assumes that the more important a feature is, the
more the weights, connected to the respective input neuron, will change
during the training of the model. To capture this behavior, a running vari-
ance of every weight connected to the input layer is measured during train-
ing. For that, an adaptation of Welford’s online algorithm for computing
the online variance is proposed. When the training is finished, for each
input, the variances of the weights are combined with the final weights to
obtain the measure of relative importance for each feature. This method
was tested with shallow and deep neural network architectures on several
well-known classification and regression problems. The results obtained
confirmthat this approach ismakingmeaningfulmeasurements.Moreover,
results showed that the importance scores are highly correlated with the
variable importance method from Random Forests (RF).

1 Introduction

Effectively measuring the relevance of features in Artificial Neural Networks
(ANN) can foster its usage in new domains where some interpretability is
required. Current studies show that there has been some effort to bring more
interpretability to Artificial Neural Networks in the recent years [3,5]. However,
despite the various approaches available in the literature, there is a lack of simple,
and yet reliable, variable importance approaches for ANN.

The classic and most simple architecture of a feed-forward neural network is
composed by one input layer, one or more hidden layers and one output layer.
These layers are connected by weights and each is composed of a certain number
of neurons. Each neuron in the input layer represents one independent variable,
or feature, from the data. These neurons connect to the first hidden layer, which
in turn connects either to the next hidden layer (and so on) or to the output
layer. The neurons in this output layer represent the target variable.

During the training of ANN, the weights (which connect the neurons) are
constantly being changed for better fitting the data. This process occurs for
every batch of data, and it lasts until all the epochs are finished. Once this
process is finished, it is natural to assume that, the higher the absolute values of
the weights, the more important a variable would be [2]. However, on the other
c© Springer Nature Switzerland AG 2019
P. Kralj Novak et al. (Eds.): DS 2019, LNAI 11828, pp. 306–315, 2019.
https://doi.org/10.1007/978-3-030-33778-0_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33778-0_24&domain=pdf
http://orcid.org/0000-0003-3943-6322
https://doi.org/10.1007/978-3-030-33778-0_24

Variance-Based Feature Importance in Neural Networks 307

hand, we also know that regularization techniques force the weights to become
smaller (e.g., L1 and L2). Besides, the choice of the initialization of these weights
can also interfere with their final absolute value.

In this paper, a very simple method is proposed to measure the relative fea-
ture importance (or variable importance) of ANN models. Its underlying prin-
ciple assumes that the more important a feature is, the more the weights, con-
nected to the respective input neuron, will change during the training of the
model. This means that, it expects bigger changes in the weights connected to
more relevant variables, independently from their absolute value. Under this
assumption, by measuring the total variance of the weights connected to each
input node, one should be able to measure its relative importance.

Since the weights are being changed at every batch and neural networks could
easily take hundreds of epochs to be trained, it is not practical to store all the
values for later computing its variance. For this reason, the running variance of
each weight that is connected to the input layer is used instead. For that, an
adapted version of Welford’s online algorithm [9] is proposed. This algorithm
updates the mean and variance of the weights, connected to the input layer, at
an user defined step (e.g., per batch or per epoch).

Finally, the variances from all the weights connected to a feature are com-
bined into a single value, which are then used for assessing their relative impor-
tance. This contrasts with most of the approaches available in the literature,
because the variable importance is not measured on the absolute values of the
weights of the network, but on their variance during the training.

Some well-known regression and classification datasets were used to test the
proposed approach, which included one artificial dataset. Empirical results pre-
sented in this paper, using shallow and deep ANN, show that this approach holds
promise and can be used to effectively assess the relative importance of variables
in different datasets.

2 Variable Importance in FNN

Most approaches assess the feature importance based on the final weights of
the trained neural networks [2,4,5]. One of the most well-known was proposed
in 1991 by Garson [2] and it is still being used [3,8]. It basically consist in
adding up the absolute values of the weights between each input node and the
response variables. In other words, all the weights connecting a given input
node, including the hidden layers, to a specific response variable will contribute
to measure feature importance. Finally, the total score of the input nodes is
scaled relatively to all other inputs.

However, we know that during the training phase, the weights of a neural
network are being modified. These updates of the weight are repeated until the
model reaches its final state. Therefore, we propose to measure the variance of
these weights in order to get the relative variable importance based for ANN.

In [6], the authors observed that the difference between quartiles of the dis-
tributions seemed to be related with their relative importance. In this work,

308 C. R. de Sá

a similar approach is taken, however the focus is in the variance instead of the
interquartile range.

Considering the size of current ANN and the high number of epochs to train
them, storing the values of the all the weights to compute the variance would be
computationally expensive. However, a method proposed by Welford in 1962 [9]
(See Sect. 2.1) allows one to compute and update the variance as the measure-
ments are given, one at a time. This has the advantage that, the values do not
need to be saved to compute the variance in the end.

A simple adaptation of Welford’s online variance, proposed here, makes this
approach much simpler to implement. It is similar to the method in [9], except
that this was adapted to deal with matrices. These matrices represent the weights
connecting the input layer with the first hidden layer.

2.1 Welford’s Online Variance

The variance of a sample of size n is defined as:

S2
n =

SSn

n − 1
=

n∑

i=1

(xi − xn)2

n − 1
(1)

where the corrected sum of squares SSn is:

SSn =
n∑

i=1

(xi − xn)2 (2)

and the mean, xn, is defined as:

xn =
n∑

i=1

xi

n
(3)

However, we can write the corrected sum of squares SSn as:

SSn = SSn−1 +
(
n − 1
n

)
(xn − xn−1)

2

This way, if we replace this in Eq. 1, we can update the variance of a sample,
originally with size n−1, by adding one more measurement to the sample, xn [9].
This can be represented as:

V ar (xn) =
SSn−1

n − 1
+

(xn − xn−1)
n

(4)

where n represents the total number of updates. This computes the online vari-
ance of the weights (also known as running variance).

Variance-Based Feature Importance in Neural Networks 309

2.2 Online Variance of the Weights

Let us define a dataset D = {〈vi〉}, i = 1, . . . , z with z instances, where vi
is a vector containing the values vji , j = 1, . . . ,m of m independent variables,
{A1, . . . ,Am}, describing instance i.

To represent the weights between layers in ANN, we define wa,b as the weight
connecting node a to node b. As mentioned before, m represents the number of
input variables and q the number of neurons in the first hidden layer. Now we can
represent the Variance-based feature Importance of Artificial Neural Networks
(VIANN) score of the weights as:

VIANN (As) =
q∑

k=1

V ar (ws,k) × |ws,k| (5)

where t represents the total number of updates and ws,k the weights of the first
hidden layer connected to the input As. This means that the final score will
depend on both the final weights and the variance of the weights during the
training.

We will use the variance as in Eq. 5, to score the importance of the features.
The assumption is that, the more the wa,b varies in the training phase, the
higher the relevance of the nodes a to the prediction. When using VIANN we
need to define at which steps of the training we update the variance. Several
options can be considered, per iteration (after every batch), per epoch or with
an user defined interval. For simplicity, in this work we update the variance of
the weights at each epoch.

3 Experimental Setup and Results

In this section we explain how we setep the experiments and describe the archi-
tecture of the neural networks tested. We also present the results obtained by the
proposed approach and compare with the most used algorithm to measure fea-
ture importance in Neural Networks, the Garson’s algorithm. We also describe
the datasets which were selected for this study.

3.1 Experimental Setup

In this experimental setup, many parameters could have been modified and stud-
ied. However, as proof of concept, we tried to make some simple and reasonable
choices for the design of the architectures and its parameters.

Since we are testing both regression and classification tasks, the neural net-
works were built in such a way that the last layer (the output layer) can change
to classification or regression mode. When the task is classification, the last layer
will have the same number of neurons as the number of classes and an activa-
tion function softmax. The loss, in this case is categorical cross-entropy. On the
other hand, when the task is regression, the last layer has one neuron and the
activation is linear. The loss function in this case is the Mean Squared Error.

310 C. R. de Sá

Besides that, two types of activation functions are tested in the remaining
layers. One neural network has a linear activation function (NN1) and the other
has the RELU (NN2). Both NN1 and NN2 have 3 hidden layer, one with 50
neurons, other with 100 and the last hidden layer with 50. Besides NN1 and
NN2, we also tested the approach in a deeper neural network, DeepNN. The
dimensions of the three neural networks are:

NN1: input, 50, 100, 50, output
NN2: input, 50, 100, 50, output
DeepNN: input, 500, 1024, 2048, 4096, 2048, 1024, 500, output

We note that the input and output layers are adapted according to the size of
the number of features and number of classes per dataset, respectively.

In previous experiments, we observed that the final accuracy of the model,
strongly affects the scoring of the most relevant features. This means that, if the
accuracy is low, the importance scores tend to be misleading. For this reason, a
simple procedure was used to find a more appropriate number of training epochs
per dataset. An early stopping function monitored the validation accuracy in the
classification datasets during training. When the validation accuracy is >95%
the training stops. The maximum number of epochs was set to 1000 and the
minimum to 5. In the regression datasets, the number of epochs was fixed to 100
epochs.

The optimizer used in the experiments was set to the default parameters
of the Stochastic Gradient Descent (SGD) optimizer from the python package
Keras. Due to the different dataset sizes, the batch size was adapted for each
dataset. It was defined as the rounded number obtained from the division of the
number of instances in the dataset by 7.

We compare the obtained scores of the variables with other approaches such
as Random Forests (RF) [1] and Garson’s algorithm (GA) [2]1. We also measured
the loss of the models when each feature was removed (replaced with zeros)
which is the same as the Leave-One-Feature-Out (LOFO) approach. Then, the
features, which after being removed, resulted in the highest loss, are considered
more important. Finally, to compare the orders between the different techniques,
we use the Kendall’s tau correlation coefficient.

3.2 Datasets

In the experiments several classification and regression datasets from the scikit
learn python package [7] were used (Table 1). These particular datasets were
chosen to illustrate the effectiveness of this approach. All the features of the
dataset were normalized to zero mean and standard deviation 1.

1 All the results presented in this paper can be replicated using the python file in
https://github.com/rebelosa/feature-importance-neural-networks.

https://github.com/rebelosa/feature-importance-neural-networks

Variance-Based Feature Importance in Neural Networks 311

Table 1. Datasets used in the experiments

Name #Features #Instances Type #Classes

Breast cancer 30 569 Class 2

Digits 64 1797 Class 10

Iris 4 150 Class 3

Wine 13 178 Class 3

Boston 12 506 Regr. -

Diabetes 10 442 Regr. -

3.3 Testing the Feature Importance

In this experimental part, we compare the ranking of the features obtained
with VIANN, for NN1 and NN2. As previously mentioned, there are several
approaches to measure the relative variable importance in datasets. Besides
comparing with the RF variable importance measure, we also compare with
the Leave-One-Feature-Out (LOFO) approach. By measuring the loss difference
after removing each variable, we can sort the variables by the ones which have
a greater impact.

The presented in Table 2 show the Kendall tau correlation between the dif-
ferent variable rankings when using the neural network with linear activation
function, NN1. We can see that VIANN obtains a higher correlation than the
Garson technique, as compared with the LOFO. Besides, the relative order of
the variables seems to fluctuate much more when obtained with the Garson
approach.

Table 2. Kendall tau correlation between the different variable importance techniques
using the NN1 (linear activation function)

Dataset VIANN-LOFO VIANN-RF Garson-LOFO Garson-VIANN

Breast cancer 0.43 0.85 0.17 0.20

Digits 0.96 0.66 0.90 0.87

Iris 0.99 0.88 0.73 0.62

Wine 0.93 0.64 0.91 0.85

Boston 0.95 0.79 0.84 0.80

Diabetes 0.86 0.68 0.85 0.79

In Table 3 we observe a very similar behavior of the one observed in Table 2.
In this case the neural network NN2 is exactly the same as before, except that
it has a RELU activation function instead of linear. In general, we observe that
the correlation VIANN-LOFO is worst when using the RELU, specially for the
classification datasets.

312 C. R. de Sá

Table 3. Kendall tau correlation between the variable importance technique VIANN
and other approaches with the NN2 (RELU activation function)

Dataset VIANN-LOFO VIANN-RF Garson-LOFO Garson-VIANN

Breast cancer 0.78 0.76 0.43 0.61

Digits 0.94 0.76 0.92 0.84

Iris 0.92 0.87 0.97 0.81

Wine 0.88 0.50 0.95 0.93

Boston 0.96 0.81 0.76 0.60

Diabetes 0.98 0.90 0.64 0.60

Fig. 1. Plot of the feature importance scores obtained with the NN2 using VIANN (x
axis) and LOFO (y axis) in the Digits dataset.

In Fig. 1 we can see how the LOFO and VIANN relate in terms of feature
importance scores. It seams that the variance of the weights combined with the
final weights has a linear relation with the increase in the loss of the model.

3.4 Deep Neural Network

Finally, despite the small size of the dataset, we wanted to test the approach
in the deep learning context. For this reason, we used a deeper network, which
we refer as DeepNN. The results obtained are presented in Table 4. In this case,
we observe that VIANN is still better at giving a more meaningful score of the
variables. The exception is the Wine dataset where the correlation is not so high.

We observe in Fig. 2, how the scores of VIANN with the DeppNN are related
with the variable importance scores of RF. Even though the two models have
different biases, the importance of the variables is only slightly changed, which
intuitively makes sense.

Variance-Based Feature Importance in Neural Networks 313

Table 4. Kendall tau correlation between the variable importance technique VIANN
and other approaches with the DeepNN (RELU activation function)

Dataset VIANN-LOFO VIANN-RF Garson-LOFO Garson-VIANN

Breast cancer 0.60 0.45 0.22 0.37

Digits 0.83 0.80 0.60 0.46

Iris 0.90 0.98 0.73 0.49

Wine 0.41 0.43 0.74 0.51

Boston 0.76 0.86 0.76 0.79

Diabetes 0.86 0.88 0.64 0.80

Fig. 2. Plot of the feature importance scores obtained with the DeepNN using VIANN
(x axis) and RF (y axis) in the Digits dataset.

In general, we observe that the feature importance scores are better than
the Garson’s technique, which shows that VIANN has potential as a measure
of importance of features in shallow and deep networks. Even considering that
different features can be more or less important for different models, it does
not seem likely that the features will have completely distinct relevance for each
model. Therefore, we believe that VIANN is measuring some phenomenon that
is closely related with the importance of the features.

3.5 Evolution of Weights During Training

Since the motivation was to use the variance to measure the feature importance,
we wanted to understand if the behavior of the weights of the most relevant fea-
tures was actually changing more than the others. Therefore, in this experiment
we trained the NN2 and captured the weights in every iteration between the
input layer and the first hidden layer during the training phase.

314 C. R. de Sá

The result can be seen in Fig. 3, where the subplots are sorted by the relative
importance of the respective inputs (higher to lower), obtained with the LOFO
approach. One pattern that can be observed, is that, in fact, the weights seem to
change more in the first inputs (e.g. input 12,0 and 9). On the other hand, the
weights which affect less the loss, are mostly constant during the entire training.
Besides that, the absolute value of the weights seems to also be higher in more
important features. These observations support the motivation of this paper
(Eq. 5).

Fig. 3. Evolution of the weights (coloured lines) of the NN2, per iteration, between the
input layer and the first hidden layer trained in the Wine dataset (x-axis: iterations;
y-axis: weights)

4 Conclusions

In this work we compare the performance of a feature importance technique
which is based on the variance of the weights during the training of neural
networks. We compare our results with one of the most widely used variable
importance techniques in ANN, Garson’s algorithm. The results showed that
this approach is more reliable in identifying the order of the variables which
have a greater influence in the loss. In comparison to Garson’s method it has
the advantage that it does not require that the first and last hidden layers have
the same number of neurons.

We also observed that, when the validation accuracy is low, the scores of
the features can be misleading. Some tests, which are not reported in this paper,
indicated that without proper regularization techniques, the variable importance
scores also do not make sense.

Considering the results obtained, this approach holds promise to effectively
measure the relevance of features (or even just any neuron). That is, the simplic-
ity of VIANN makes it straightforward to measure the relevance of every node

Variance-Based Feature Importance in Neural Networks 315

and not only the input layer. Moreover, it can be easily extended to other neural
network layers, such as recurrent or convolutional.

Since this work is only a preliminary study, it does not provide a comprehen-
sive overview of feature importance for ANN. However, as future work we would
like to study if VIANN can be used to obtain the importance of the variables on
distinct ANN architectures. A thorough experimental study should be made in
the future to fully understand the advantages and limitations of this approach.

Acknowledgments. I gratefully acknowledge the support of NVIDIA Corporation
with the donation of the Titan X Pascal GPU used for this research.

References

1. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
2. David Garson, G.: Interpreting neural-network connection weights. AI Expert 6(4),

46–51 (1991)
3. Heaton, J., McElwee, S., Fraley, J.B., Cannady, J.: Early stabilizing feature impor-

tance for tensorflow deep neural networks. In: 2017 International Joint Conference
on Neural Networks, IJCNN 2017, Anchorage, AK, USA, 14–19 May, 2017, pp.
4618–4624 (2017)

4. Mart́ınez, A., Castellanos, J., Hernández, C., de Mingo López, L.F.: Study of weight
importance in neural networks working with colineal variables in regression prob-
lems. In: Multiple Approaches to Intelligent Systems, 12th International Conference
on Industrial and Engineering Applications of Artificial Intelligence and Expert Sys-
tems, IEA/AIE-99, Cairo, Egypt, May 31 – June 3, 1999, Proceedings, pp. 101–110
(1999)

5. Olden, J.D., Jackson, D.A.: Illuminating the “black box”: a randomization approach
for understanding variable contributions in artificial neural networks. Ecol. Model.
154(1), 135–150 (2002)

6. Paliwal, M., Kumar, U.A.: Assessing the contribution of variables in feed forward
neural network. Appl. Soft Comput. 11(4), 3690–3696 (2011)

7. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res.
12, 2825–2830 (2011)

8. Shavitt, I., Segal, E.: Regularization learning networks: deep learning for tabular
datasets. In: Advances in Neural Information Processing Systems 31: Annual Con-
ference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 Decem-
ber 2018, Montréal, Canada, pp. 1386–1396 (2018)

9. Welford, B.P.: Note on a method for calculating corrected sums of squares and
products. Technometrics 4(3), 419–420 (1962)

	Variance-Based Feature Importance in Neural Networks
	1 Introduction
	2 Variable Importance in FNN
	2.1 Welford's Online Variance
	2.2 Online Variance of the Weights

	3 Experimental Setup and Results
	3.1 Experimental Setup
	3.2 Datasets
	3.3 Testing the Feature Importance
	3.4 Deep Neural Network
	3.5 Evolution of Weights During Training

	4 Conclusions
	References

