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Abstract. The Domain Name System (DNS) is a critical part of net-
work and Internet infrastructure; DNS lookups precede almost any user
request. DNS lookups may contain private information about the sites
and services a user contacts, which has spawned efforts to protect pri-
vacy of users, such as transport encryption through DNS-over-TLS or
DNS-over-HTTPS.

In this work, we provide a first look on the resolver-side technique of
query name minimization (qmin), which was standardized in March 2016
as RFC 7816. qmin aims to only send minimal information to authorita-
tive name servers, reducing the number of servers that full DNS query
names are exposed to. Using passive and active measurements, we show
a slow but steady adoption of qmin on the Internet, with a surprising
variety in implementations of the standard. Using controlled experiments
in a test-bed, we validate lookup behavior of various resolvers, and quan-
tify that qmin both increases the number of DNS lookups by up to 26%,
and also leads to up to 5% more failed lookups. We conclude our work
with a discussion of qmin’s risks and benefits, and give advice for future
use.
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1 Introduction

The Domain Name System (DNS) plays a crucial role on the Internet. It is
responsible for resolving domain names to IP addresses. The DNS is a hierar-
chical system where each so-called authoritative name server in the hierarchy
is responsible for a part of a domain name. Recursive caching name servers –
or ‘resolvers’ for short – query each level of authoritative name servers in turn
to obtain the final answer. Resolvers usually cache responses to improve lookup
speed.

On the Internet every domain resolution, given an empty cache, starts at the
root of the DNS, which has knowledge of the name servers that are responsible
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for all the Top-Level Domains (TLDs). Those name servers typically then refer
the recursive resolver on towards yet another name server. This can keep going
indefinitely, only limited by the maximum query name (qname) length, until
finally the authoritative name server for the requested qname is reached (in
practice the recursive resolver can give up earlier).

In the standard DNS resolution process, outlined in RFC 1034 [24], the recur-
sive resolver, unaware of zone cuts in which different parts of the domain are
under control of different authorities, sends the full qname to each of the authori-
tative name servers in this chain. Since the first two (root and TLD) name servers
in the recursion are very unlikely to be authoritative for the requested qname,
this particular aspect causes unnecessary exposure of potentially private infor-
mation [6]. E.g., exposing the qname of a website that is illegal in some countries
to more parties than necessary might put the querying end-user at serious risk.
A solution for this issue is proposed in RFC 7816 [7], which introduces query
name minimization (qmin), preventing recursive resolvers from sending the full
qname until the authoritative name server for that qname is reached [7].

End-users typically do not run a recursive resolver, but instead depend on
others, such as their ISP, to enable this privacy-preserving feature. From a user’s
perspective, qmin is difficult to detect, making it hard to judge adoption.

In this paper we study the adoption, performance, and security implications
of RFC 7816. Specifically, we: (1) develop novel methodology to detect whether
a resolver has qmin enabled, and quantify the adoption of qmin over time, both
with active measurements from the end-user perspective, and passive measure-
ments from the authoritative name server perspective, at a root and TLD server,
(2) develop an algorithm to fingerprint qmin implementations, and classify the
use of qmin algorithms in the Internet and, (3) provide insight into the impact
of qmin on performance and result quality for three resolver implementations.

In order to facilitate reproducibility we make our scripts and datasets avail-
able publicly [33].

2 Background and Related Work

When DNS was first introduced in the 1980s, there was no consideration for
security and privacy. These topics have now gained considerable importance,
leading to a plethora of RFCs that add security and privacy to the DNS. For
example, DNSSEC [28–30] introduces end-to-end authenticity and integrity, but
no privacy. More recently, DNS-over-TLS [21] and DNS-over-HTTPS [20] added
transport security. “Aggressive Use of DNSSEC-Validated Cache” [18], reduces
unnecessary leaks of non-existing domain names. Furthermore, running a local
copy of the root zone at a resolver avoids sending queries to root servers com-
pletely [19].

Typically, resolvers send the full qname to each authoritative name server
involved in a lookup. Consequently, root servers receive the same query as the
final authoritative name server. Since the IETF states that Internet protocols
should minimize the data used to what is necessary to perform a task [12],
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qmin was introduced to bring an end to this. Resolvers that implement qmin
only query name servers with a name stripped to one label more than what
that name server is known to be authoritative for. E.g., when querying for
a.b.domain.example, the resolver will first query the root for .example, instead
of a.b.domain.example. The reference algorithm for qmin also hides the original
query type by using the NS type instead of the original until the last query. In
Table 1 we show what queries are performed for both standard DNS and the
qmin reference implementation.

This reference algorithm, however, faces two challenges on the real Internet:
First, it does not handle configuration errors in the DNS well [26]. E.g., in case
b.domain.example does not have any RRs but a.b.domain.example does, a name
server should respond with NOERROR for a query to b.domain.example [8], but
in fact often responds with NXDOMAIN, or another invalid RCODE. This would
force resolvers that conform to the standard to stop querying and thereby not
successfully resolve the query. Also, operators report other issues, such as name
servers that do not respond to NS queries, which would break qmin as well [25].

Table 1. DNS queries and responses without (left) and with (right) qmin.

Standard DNS resolution qmin Reference (RFC7816)

a.b.example.com. A → . com. NS → .
com. NS ← . com. NS ← .

a.b.example.com A → com. example.com NS → com.
example.com NS ← com. example.com NS ← com.

a.b.example.com A → example.com. b.example.com NS → example.com.
a.b.example.com A ← example.com. b.example.com NS ← example.com

a.b.example.com NS → example.com.
a.b.example.com NS ← example.com

a.b.example.com A → example.com.
a.b.example.com A example.com

Second, qmin can lead to a large number of queries. For example, a name with
20 labels would make the resolver issue 21 queries to authoritative name servers,
causing excessive load at the resolver and authoritative. Attackers can abuse this
for DoS attacks by querying excessively long names for victim domains. Both of
these issues led resolver implementors to modify their qmin implementations, as
well as adding so called “strict” and “relaxed” modes, which we investigate in
Subsect. 3.2 and Sect. 5.

As of October 2018, three major DNS resolvers support qmin. Unbound
supports qmin since late 2015 and turned relaxed qmin on by default in May
2018 [25]. Knot resolver uses relaxed qmin since its initial release in May 2016
[13], and the recursive resolver of BIND supports qmin and turned the relaxed
mode on by default in July 2018 [23]. Another frequently used resolver, Pow-
erDNS Recursor, does not support qmin yet [9].
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Related Work: Hardaker et al. [19] showed that root servers receive a
considerable amount of privacy-sensitive query names, and propose using local
instances of root servers to alleviate this issue. Imana et al. [22] study this
aspect from a broader perspective, covering all name servers above the recursive
resolver, and report similar privacy issues.

Schmitt et al. [32] propose Oblivious DNS, an obfuscation method introduc-
ing an additional intermediate resolver between recursive resolver and authorita-
tive name servers. Oblivious DNS prevents the additional resolver from learning
the user’s IP address and the recursive resolver from learning the query name.

Recent work [34] has also shown that qmin increases the number of queries
per lookup, increasing the load on authoritative name servers. They provide a
technique called NXDOMAIN optimization that reduces the number of queries in
case the resolver encounters an NXDOMAIN. We extend this by providing longitu-
dinal measurements, showing various implementations of qmin algorithms and
quantifying the increase in queries per resolver implementation.

3 Active Internet-Wide Measurements

We conduct active Internet-wide measurements using two methods. First, we use
RIPE Atlas probes to query a domain under our control. Second, we query open
resolvers for the same domain. RIPE Atlas is a global measurement network with
over 10,000 small devices called probes, and 370 larger probes, called anchors.
In this section, we measure qmin adoption over time, classify the various qmin
implementations in use, and shed light on qmin use by open resolvers.

3.1 Resolver Adoption over Time

We detect qmin support by relying on the fact that a non-qmin resolver will miss
any delegation that happens in one of the labels before the terminal label. So, if
we delegate to a different name server, with a different record for the terminal
label in one of the labels before the terminal label, qmin resolvers will find a
different answer than non-qmin resolvers.

We scheduled a RIPE Atlas measurement for all probes to perform a lookup
with all the probe’s resolvers for “a.b.qnamemin-test.domain.example” with type
TXT [1], repeating every hour. Each probe uses its own list of resolvers, typically
obtained via DHCP, and assumed typical for the network that hosts the probe.

A non-qmin resolver will send a query for the full qname to the authoritative
name server for “qnamemin-test.domain.example”, and will end up with a TXT
reply containing the text: “qmin NOT enabled.” A qmin resolver will send a
query for just the second-to-last label, “b.qnamemin-test.domain.example”, to
the authoritative name server for “qnamemin-test.domain.example”. For this
minimized query, it will receive a delegation to a different name server, which
will return a TXT record containing the text: “qmin enabled.”

This measurement runs since April 2017, and allows us to see the long term
adoption of qmin. Figure 1b shows the overall adoption of qmin as seen from all
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RIPE Atlas probes. We count both probes and probe/resolver combinations, as
a significant number of probes uses multiple resolvers. Adoption grew from 0.7%
(116 of 17,663) of probe/resolver pairs in April 2017 to 8.8% (1,662 of 18,885) in
October 2018. Also in April 2017, 0.9% (82 of 9,611) of RIPE Atlas probes had
at least one qmin resolver, growing to 11.7% (1,175 of 10,020) in October 2018.

Fig. 1. Adoption over time

In Fig. 1a only probe/resolver pairs supporting qmin are shown. We see a
steep rise of qmin resolvers in April 2018. Figure 1a also shows probes that have
at least one qmin resolver as well as at least one resolver that does not do qmin.
It is noteworthy that at the last measurement (October 15, 2018) at least 31%
of probes that have a qmin resolver, also have at least one non-qmin resolver.

Alongside the qmin measurement, we run measurements that return the IP
address of the resolver as seen from an authoritative name server [2,3,5]. By
identifying the Autonomous System Numbers (ASNs) associated with the IP
addresses seen at the authoritative name server we gain insight in the orga-
nizations providing the qmin resolvers. From this we learn that the adoption
of Cloudflare (1.1.1.1) is responsible for the fast rise of qmin resolvers in
April 2018.

We also found some public resolvers, such as Google Public DNS, that in
some cases appear to support qmin according to our test, but in fact do not.
This is likely caused by a qmin-enabled forwarding resolver, which forwards to, in
Google’s case, 8.8.8.8. Additionally, the non-qmin resolver successively caches
the authoritative for the second-last label and will appear to support qmin for
the TTL of the delegation (10 s in our test). We have developed an improved test
without these issues in the course of this research, but this corrected test did
not yet exist during scheduling of the RIPE Atlas measurement in April 2017.

The improved test, “a.b.random-element.domain.example. TXT”, uses a ran-
dom pattern as the third-last label which is uniquely chosen for each query, pre-
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venting other measurement queries to find a cached delegation for the second-last
label. This improved test is used in measuring the adoption by open resolvers in
Subsect. 3.3, removing false positives from that measurement.

We argue that this flaw had little impact on our results, as (i), RIPE Atlas
measurements are spread out over an hour, whereas our test record has a small
TTL, reducing this risk and (ii) the overall trend over time is still indicative.

The ASNs seen at the authoritative were further used to classify resolvers
in three categories: (1) Internal resolvers have the same ASN for the probe
and the observed resolver IP, (2) External resolvers for which the ASN of the
resolver IP configured on the probe matches the ASN for the IP observed on
the authoritative, but differs from the ASN in which the probe resides, (3)
Forwarding resolvers, for which the ASN seen on the authoritative differs from
both the ASN associated with the resolver IP configured on the probe and the
ASN the probe resides in.

Fig. 2. Internal, Forwarding and External resolvers supporting qmin

Figure 2 shows that both External and Forwarding probe/resolver pairs sup-
porting qmin are on the rise, which is mainly due to adoption of the Cloudflare
resolver in April 2018. We can also see that qmin support is steadily growing
with Internal resolvers, which do not include the larger public resolvers.

Looking more closely at the Internal resolvers we have identified, we see
that several ISPs started supporting qmin over the past 1.5 years. Most notably
“Versatel Deutschland GmbH” started supporting qmin on November 9th, 2017;
“Init Seven AG” on August 2nd, 2017; “OVH Systems” on February 1st, 2018;
and “M-Net Telekommunikations GmbH, Germany” on May 1st, 2018. Note that
these do not necessarily cause a visible change in Fig. 2.

3.2 Fingerprinting Resolver Algorithms

As described in Sect. 2, the RFC [7] provides a reference algorithm for qmin.
This is an aggressive algorithm in the sense that it maximizes potential privacy
gains at the cost of performance. It iteratively increases the name length by one
label, querying for the NS type, until it reaches the full name. Then, it switches
to the original query type, thus also this type from all but the final name server.
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While this algorithm is good for privacy, it can significantly impact perfor-
mance, security, and result quality (see Sect. 5). Since the reference algorithm is
merely a suggestion, resolver implementors are free to write their own algorithm.

Using RIPE Atlas measurements, we explore qmin algorithms implemented
in practice. To measure this, we performed a one-off DNS measurement [4] from
all RIPE Atlas probes able to resolve A records correctly (9,410 probes). We con-
trol the authoritative name server for the queried name, permitting us to identify
query behavior. The queried name consists of 24 labels, including random val-
ues and the probe ID to permit mapping inbound DNS queries to originating
probes. We see inbound queries from 8,894 unique probes (out of 9,410) from
8,179 unique resolvers. Most probes have at least two resolvers configured, many
overlapping with those of other probes, resulting in 20,716 total inbound queries.

Assigning Signatures: To group resolver behavior, we map the incoming
query behavior observed at our authoritative name server to signatures, con-
taining length, order, and type of inbound queries. Our test domain is at the
second label depth, so we observe queries starting from the third label depth.
For example, an algorithm asking for NS at the 3rd label, then for NS at the 4th
label, and then for A at the final, 24th, label, will be mapped to the signature
3NS-4NS-24A.

Signatures of BIND, Knot and Unbound: To have a basis for compar-
ison, we run our domain through each of these three resolvers, which are known
to implement qmin, and determine each of their qmin signatures. BIND and
Unbound also support an additional strict mode, however, this has no effect on
the signature and is related to how NXDOMAIN responses are handled. The result-
ing signatures, and the reference algorithm signature, are shown in Table 2.

Table 2. Top 6 signatures seen at Authoritative Resolvers, mapped to resolver imple-
mentations. Reference implementation not observed.

Type Signature Implementation Count

1 24A 13,892

2 3NS-24A Knot 3.0.0 784

3 3A-4A-5A-8A-11A-14A-17A-21A-24A 239

3 3A-4A-5A-6A-9A-12A-15A-18A-22A-24A 193

3 3A-4A-7A-10A-13A-16A-20A-24A Unbound 1.8.0 16

4 3NS-4NS-5NS-24A BIND 9.13.3 11

3NS-4NS-5NS-6NS-7NS-...-24NS-24A Reference 0

Signatures in the Wild: We identify four types of signatures, with some
types having multiple variations, see Table 2. The first, most common type (#1 )
applies no qmin. These resolvers directly query the full length DNS name. The
second type (#2 ) is a minimalistic qmin approach. After a no-delegation check
below the base domain, the full query name is sent. This is used by the Knot
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resolver, and, for example, by Cloudflare’s public DNS resolver. The third type,
with variations (#3 ), is closer to the reference algorithm, but displays various
ways of skipping labels, as well as always using the A query type instead of the NS
type as suggested by the reference algorithm. Unbound is known to have a similar
implementation [16], confirmed in our experiments. The final signature, (#4 )
uses the NS query type, and jumps to querying for the full name after not finding
a zone cut for three labels. This is consistent with the BIND implementation.

Besides the specific signatures seen in Table 2, there are many variations of
type #3. This indicates that not only do different resolvers implement different
algorithms, but they also appear to be configurable or change over time (e.g. a
new version changes the behavior). In total we see 20 different signatures, many
of which only from one specific resolver. Interestingly, we did not observe the
reference algorithm from any resolver.

3.3 Adoption by Open Resolvers

Aside from resolvers that can be reached from inside networks, such as those
offered by ISPs, there are also a large number of open resolvers on the Internet.
These can range from unsecured corporate DNS resolvers, to large scale public
DNS services, such as those run by Google, OpenDNS, Quad9 and Cloudflare.

Rapid7 provides a list of servers that are responsive on UDP port 53, which
are typically DNS servers. We query each such server using the method out-
lined in Subsect. 3.1. The list contains a total of 8M IPv4 addresses, we receive
a response from 64% of these. Of those responding, 32% respond with a NOER-
ROR reply, of which only 72% (≈1.2M) provide a correct reply.

Of those 1.2M, only 19,717 (1.6%) resolvers support qmin. On the authori-
tative side, we only observe 110k unique source IPs, which suggests that many
of the queried resolvers are in fact forwarders. Of the resolvers that implement
qmin, 10,338 send queries from a Cloudflare IP, 2,147 from an OVH IP, and 1,616
from a TV Cabo Angola IP address. This shows that most qmin-supporting open
resolvers simply forward to larger public DNS resolvers that implement qmin.

For qmin-enabled resolvers, we compare the ASN of the IP we send our query
to with the ASN of the IP seen at the authoritative for that same query. We find
11.5k resolvers to resolve externally, and 8.2k resolvers to resolve internally.

The takeaway is that many open resolvers on the Internet use centralized
public DNS services. Thus, efforts to drive adoption of qmin should focus on
large public DNS providers (e.g. Google, which does not support qmin yet).

4 Passive Measurements at Authoritative Name Servers

As qmin limits the visible information of a query at authoritative name servers,
adoption of qmin likely changes the query profile of resolvers as observed on
the authoritative side. We measure the impact and adoption of qmin with query
data collected at the authoritative name servers of the ccTLD .nl and of K-Root.
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Name servers of .nl are authoritative for the delegation of 5.8 million domain
names. If they receive queries for a .nl domain name with 2 or more labels then
they almost always (except for DS records) respond with a set of name servers
that are actually responsible for the queried domain name. Thus, a query for the
NS record of a second level domain name is sufficient for the .nl name servers to
answer the query. Similarly, the root servers are authoritative for the 1.5k TLDs
as of October 9, 2018, and a query for just the TLD is sufficient in most cases.

We cannot be certain whether resolvers send minimized queries to the author-
itative name servers, but we can count the queries that follow the expected pat-
terns if resolvers were to send minimized queries. For the rest of this section,
and following the observations made in Sect. 3, we count queries as minimized if
the query contains only 2 labels (at .nl) or 1 label (at K-Root). With increasing
qmin adoption, we expect to see an increase in queries that follow these criteria.

Identifying qmin. First, we measure how query patterns seen at the authorita-
tive name servers differ when resolvers implement qmin. We use the list of open
resolvers from Subsect. 3.3 of which we know whether they have qmin enabled.
Then, we count how many queries these resolvers send to the authoritative name
servers of .nl for names with just two labels on 2018-10-11. In total, we observe
1,918 resolvers that do and 27,251 resolvers that do not support qmin.

In Fig. 3 we see that qmin-enabled resolvers send a median of 97% of queries
classified as minimized, whereas resolvers that have not enabled this feature send
only 12% of their queries classified as minimized. This confirms that qmin has
an observable impact at authoritative name servers.

Fig. 3. Minimized queries to
.nl. Whiskers at 0.05 and 0.95.

Fig. 4. Share of minimized queries sent to
.nl and K-Root

Resolver Adoption Over Time. Based on the results of the previous section
we expect a visible impact from increasing adoption of qmin at authoritative
name servers. To verify this expectation we count how many queries overall
are sent for 2nd level domain names and TLDs respectively. We analyze .nl
data collected from 2017-06-01 to 2018-09-30 at 2 of the 4 authoritative name
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servers [35] and rely on the “Day In The Life of the Internet” (DITL) data sets of
K-Root on 2017-04-11 and 2018-04-10 collected by DNS-OARC [15]. We observe
more than 400B queries from 2017-06-01 to 2018-09-30 at .nl and 12B queries
on the two days of the DITL data sets. Figure 4 shows the fraction of minimized
queries.

In the beginning of our measurement, roughly 33% of the queries to .nl where
minimized. A year later, at least 40% of queries were minimized. A peak around
May 2018 correlates with the date on which Unbound enabled qmin by default.
This peak, however, is followed by a steep decline shortly after, which means we
cannot confirm if Unbound enabling qmin by default caused this peak.

At K-Root we also observe an increase from 44% to 48% in queries for domain
names with only one label. Note that query patterns at the root may strongly
vary from one day to another and that many queries are sent to non existing
domain names which can influence our results [10].

5 Controlled Experiments: Impact on Resolver
Performance and Result Quality

As qmin is deployed at the recursive resolver, we explore how qmin impacts
the performance and the result quality of such a recursive resolver. We compare
three popular qmin-enabled resolvers in their most recent version: Unbound
1.8.0, Knot 3.0.0, and BIND 9.13.3. We use all three resolvers with their default
options, only adjusting to an equal cache size of 4GB and turning DNSSEC
validation off1. We cycle through all configurable qmin behaviors for Unbound
and BIND; Knot has relaxed qmin hardcoded. As target domains, we use the
Cisco Umbrella Top 1M [11] list as a sample of popular domain names, and
aggregate all domains names for a 2-week period to avoid daily fluctuations
and weekly patterns [31], resulting in 1.56M domain names. To even out caching
effects, we sort our target domain names in 4 different orders. We conduct several
iterations of these measurements from October 1 through October 15, 2018,
starting each measurement with an empty cache. We report means from all
measurement runs, and find little variation in all numbers, typically one standard
deviation σ is smaller than 2% of the mean μ. Table 3 gives an overview of our
results.

Performance: qmin shows a clear impact on the number of packets sent to
resolve our 1.56M domains. For Unbound, the 5.7M packets without qmin require
6.82M (relaxed) and 6.71M (strict) packets with qmin, a 17–19% increase. For
BIND, the increase is 15–26%. It is to be expected that the strict mode requires
fewer packets, as it will give up on receiving an error, whereas relaxed modes
continue through SERVFAIL or NXDOMAIN error codes. This increase in packet
count is not offset by smaller packets, across resolvers we see average packet
sizes only decrease by 5% or less with qmin enabled.
1 We turn DNSSEC validation off to achieve comparable behavior (validating DNSSEC

requires more queries to be sent); we also note that the combination of qmin and
DNSSEC may induce further complexities beyond the scope of this work.
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Table 3. Performance and result quality across qmin modes and resolvers. Results are
mean (μ) across all runs, with all standard deviations σ < 2%μ. We also show the qmin
algorithm signature per resolver for the qmin-enabled case (signature without qmin is
always 24A).

Unbound 1.8.0 Knot 3.0.0 Bind 13.3.2

qmin Signature 3A-4A-7A-...-24A 3NS-24A 3NS-4NS-5NS-24A

qmin mode Off Relaxed Strict Relaxed Off Relaxed Strict

# packets 5.70M 6.82M 6.71M 5.94M 5.07M 6.39M 5.84M

Errors 12.6% 12.6% 15.9% 13.5% 16.6% 17.1% 21.6%

This confirms that qmin in its current form does come with a perfor-
mance penalty of up to 26%. We argue that the full cache in a produc-
tion resolver will soften that overhead. Please note that a comparison of
packet counts between different resolvers implicitly compares many other details
such as caching strategies, which is why comparison between resolvers should
be conducted very carefully. While it may seem intuitive that Unbound’s
3A-4A-7A-10A-13A-16A-20A-24A qmin approach requires more packets than
Knot’s 3NS-24A and BIND’s 3NS-4NS-5NS-24A approaches (cf. Subsect. 3.2),
a comparison of the number of packets between resolvers would require a much
deeper exploration of root causes of packets sent, such as caching and time-out
strategies.

Result Quality: Another critical aspect of resolver performance is the result
quality: Will a resolver be able to work through numerous edge cases and miscon-
figurations to deliver a response, or will it hang up on certain errors? To answer
this question, we compare the amount of errors (NXDOMAIN or SERVFAIL)
in our resolution results between different resolver and qmin approaches. Across
resolvers, we see a significantly higher share of errors with strict qmin enabled.
For example, the 3.3% increase for Unbound translates to ≈50k domains, a sig-
nificant share of these popular DNS domain names. The difference in resolvers
corresponds to our observations on resolver behavior: As reported in Sect. 2, a
portion of authoritative name servers fails to respond to NS queries. As Unbound
uses type A queries to discover zone boundaries, and Knot and BIND use NS
queries (as suggested by RFC 7816), higher error rates are expected for Knot
and BIND. The surprisingly high baseline of non-resolving domains of 12–16%
is a characteristic of the Umbrella Top 1M list recently discussed in [31].

These findings show that qmin comes with two drawbacks: Packets and bytes
transferred increase, and, depending on the detailed algorithm, also a significant
share of popular DNS names fails to resolve.

6 Discussion and Conclusions

Our study covered qmin from various angles: we performed (1) controlled exper-
iments that confirm that qmin can have negative performance and result quality
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implications, and (2) active and passive measurements in the Internet that con-
firm from both the client and authoritative server side that qmin adoption is
rising. We also explored the various problems and workarounds that have been
deployed, and want to conclude and discuss further aspects:

qmin Is Complex: Like many DNS mechanisms, qmin sounds simple, but
broken deployments make it difficult to implement without collateral damage.
Resolvers’ iterations towards a relaxed qmin algorithm reflect this, and impor-
tant take-aways are: (i) Using NS queries to detect zone cuts results in a consider-
able number of failures; using A queries instead seems reasonable. (ii) responding
to SERVFAIL/NXDOMAIN by sending the full name (i.e., disabling qmin for
this query) is currently a necessity to avoid significant error rates.

qmin Can Be a Security Risk: Having a resolver step through many
iterations for a name with an excessive number of labels is a DoS attack vector.
All implementations we encountered mitigate this. Unbound jumps over labels
to decrease the number of queries to some maximum, considerably saving on
query count. Knot’s (3NS-24A) and BIND’s (3NS-4NS-5NS-24A) approaches go
further: Knot stops qmin if it encounters a label that has not been delegated
(except for some exceptions, such as .co.uk). BIND has both a limit on the
maximum number of labels (default 9), in addition to having a maximum number
of undelegated labels (default 3). We consider these approaches good, as they
mitigate security risks while still providing qmin privacy against the top levels
in the DNS hierarchy.

qmin Can Impact Resolver Performance and Result Quality: Cur-
rently, qmin comes with a 15%+ performance penalty, and unless implemented
very carefully, will also impair result quality. Please note that, as qmin queries
are sent sequentially, the measured increase in query volume will correlate to
latency.

Recommendations: Based on the insights collected in this paper, we con-
clude with the following recommendations: (i), despite its performance and
quality caveats, qmin improves privacy and should be universally deployed. (ii)
qmin deployment must be conducted carefully: We recommend an algorithm that
combines Unbound’s and BIND’s algorithms, i.e., conducts fallback upon error,
replaces NS (and other) query types by A queries, and stops qmin after a con-
figurable number of labels. (iii) over time, heuristics may be added to alleviate
certain cases where qmin will unlikely add privacy. For example, DANE-TLSA
labels such as 443. tcp could be exempt from qmin.

Conclusion: The currently still rather low qmin adoption already causes a
significant positive effect for query privacy at both Root and TLD authorita-
tive name servers. While there are legitimate performance, result quality, and
security concerns, we already see resolver implementers tackle these, and are
confident that these negative implications will be further reduced, assisted by
the quantitative evidence and tangible recommendations in this study. We fully
expect more and more DNS operators to enable qmin to further improve privacy
of end-users on the Internet.
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