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Abstract An extended classical nucleation approach is put forward with which aerosol formation from rapidly
cooled, supersaturated multispecies vapor mixtures can be predicted. The basis for this extension lies in the treatment
of the critical cluster that forms as part of the nucleation burst—a multispecies treatment of the thermodynamically
consistent approach is proposed that can be solved efficiently with a Newton iteration. Quantitative agreement
with Becker—Doring theory was established in case the equilibrium concentration of the critical clusters is properly
normalized. The effects of nucleation, condensation, evaporation, and coalescence are consolidated in the numerical
framework consisting of the Navier—Stokes equations with Euler—Euler one-way coupled vapor and liquid phases.
We present a complete numerical framework concerning generation and transport of aerosols from oversaturated
vapors and focus on numerical results for the aerosol formation. In particular, using adaptive time-stepping to capture
the wide range of time scales that lie between the nucleation burst and the slower condensation and coalescence, the
aerosol formation of a system of up to five alcohols in a carrier gas is studied. The effects of the temperature levels,
the cooling rate, and the composition of the vapor mixture under a constant temperature drop, on the formation and
properties of the aerosol are investigated. A striking nonuniform dependence of the asymptotic number concentration
of aerosol droplets on temperature levels was found. A decrease of the rate of cooling was shown to reduce the number
concentration of aerosol droplets which asymptotically leads to significantly larger droplets. The simplification of
the vapor mixture by removing the higher alcohols from the system was found to yield an increase in the asymptotic
size of the droplets of about 15%, while the number density was reduced accordingly.
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1 Introduction

The dynamics of an aerosol forming from a gaseous mixture of various chemical species is expressed by the detailed
interplay between nucleation, evaporation, and condensation, as well as coalescence, interacting with vapor concen-
tration, temperature, and velocity fields. We focus on an aerosol arising from nucleation in a supersaturated mixture
of alcohol gases that is subjected to very rapid cooling. The prediction of the composition and size distribution
of the droplets constituting the aerosol becomes particularly challenging when the number of species becomes
large. The cornerstone approach in this field is the Becker—Doring (BD) theory [1], presenting a microscopic basis
for the understanding of macroscopic properties of cluster formation in multispecies systems. However, in its full
generality, this approach is unpractical for more than just a few species, requiring significant computational effort,
even for steady-state cases, and the development of new solution methods [2] to reduce simulation costs. In this
paper, we present and illustrate a modeling approach that is computationally much less demanding. It is based on
an extension of classical nucleation theory, closely following [3,4], that allows approximating aerosol properties in
multispecies systems. The new formulation can handle systems containing tens to hundreds of species, as is shown
by determining the multispecies nucleation rate. This extends significantly the capability of classical aerosol model-
ing. The method will be illustrated for spatially homogeneous systems, for which a tailored adaptive time-stepping
method is put forward to handle the very rapid nucleation burst, followed by the much slower evolution due to
condensation and coalescence. We validate the new formulation by comparing full solutions of a ternary system
of alcohol vapors based on the numerical solution to the BD equations [5]. The capability of the new approach is
illustrated by studying aerosols from alcohol vapors containing up to five different species, for which the size distri-
bution of the aerosol droplets as well as the chemical composition is computed under different initial temperatures
and cooling rates at constant pressure drop.

Classical nucleation theory concentrates on the prediction of the so-called ‘critical cluster.” This term designates
a grouping of molecules from the gas phase that is large enough to stay coherent for long times with probability
of one half. It signifies the ‘border’ of transient molecular aggregates; on average, smaller clusters are likely to
disintegrate rather quickly into the gas phase, while larger clusters would likely grow on average. The critical cluster
is identified as the key nucleation core from which droplets would grow due to condensation of molecules from the
vapor. Virgin droplets that just nucleated are treated as if emerging with a certain start-up diameter. Subsequently,
the size can grow by several orders of magnitude, e.g., due to rapid cooling of the surrounding vapor inducing
condensation. In this process the composition of the droplets also changes in accordance with the molar volume
of the components and their saturation. This basic physical setting is presented in this paper, extending the ternary
formulation presented in [3,4] to an arbitrary number of components. The formulation requires a fast determination
of the properties of the critical cluster in order to start up the aerosol evolution. This problem will be addressed in
this paper.

A recent study based on Becker-Doring theory was presented in [5], considering the mixtures of alcohols in
particular. A specialized multigrid solver was developed in order to efficiently solve the composition of droplets
in n-component mixtures. The method was illustrated for up to five alcohols simultaneously, which constitutes the
state of the art for a computational approach based on the Becker—Doring approach. Here, we do not follow the
Becker-Doring methodology but rather consider a simpler theory, generalizing earlier work by Wilemski [4], in
which multispecies nucleation is treated including the interaction between the species. This approach can be used
for situations in which one of the components is dominant [6], but also for more complex nucleation problems with
several components taking part in the nucleation process. The composition of the critical cluster can be determined
on the basis of finding the root of the equation governing the molar fractions. Newton iteration was used to efficiently
solve the molar fractions problem, solving the problem with little computational overhead for many components.
We present the theory and illustrate the critical cluster properties for a number of characteristic situations.
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An important challenge for classical nucleation approaches of multispecies systems is the validation against
well-controlled physical experiments. A prominent example is the laminar flow diffusion chamber (LFDC) in
which an aerosol is formed due to rapid cooling under slow flow conditions. This requires the treatment of (a)
the multispecies aerosol formation and (b) the capturing of spatial variations and details of the geometry of the
experimental equipment. In this paper, we address the first element and focus on spatially homogeneous systems
in which aerosol forms from a supersaturated vapor mixture, obtained by very rapid external cooling. The element
of simultaneous laminar fluid flow will be integrated in later studies and is a subject of ongoing research. To allow
at this stage a cross-validation with fully resolved Becker—-Doring theory [5], the method is illustrated for a system
of alcohol vapors. Effects of (a) the temperature levels, (b) the cooling rate, and (c) the mixture composition will
be investigated, and the consequences for the droplet composition and sizes are determined using the new model.
Compared to full Becker—Doring theory, the approximate model is computationally inexpensive and applicable to
large numbers of species.

The intention of this paper is two-fold. First, we will provide a complete computational framework for multi-
species aerosol including its formation, evolution, and transport taking into account all explicitly stated assumptions.
Subsequently, the second part of this paper delivers detailed insight into the algorithm and accuracy of the presented
nucleation model in a spatially homogeneous formulation. Further investigations that include spatially inhomoge-
neous transport for the coupled conservation equations are subject of ongoing research (see [7]). The organization
of the paper is as follows. In Sect. 2, an extended model for nucleation of droplets from a supercritical vapor mixture
and their subsequent evolution due to evaporation and condensation is presented, capable of treating systems with
many chemical species. The formation of the critical clusters is at the root of the nucleation process and an algorithm
for their chemical composition is discussed in Sect. 3, next to a method for efficient adaptive time-stepping. The
dynamics of the aerosol that emerges from a mixture of alcohol vapors is simulated under various cooling conditions
and presented in Sect. 4. Concluding remarks are contained in Sect. 5.

2 Extended classical nucleation theory for many species mixtures

In this section, we present a general framework for multispecies aerosol formation and evolution, applicable to large
numbers of species at low computational effort. First, we introduce the transport equations in Sect. 2.1, following the
conventional ‘Euler—Euler’ setting. The source terms describing nucleation, condensation, and evaporation, as well
as coalescence of the aerosol will be presented in Sects. 2.2, 2.3, and 2.4. In order to develop this model, the single-
species aerosol formation was studied in detail in [6] standing as a base for further multispecies model extensions.
Multispecies representation requires the re-definition of the aerosol formation (nucleation) model, in which a novel
approach for the critical cluster composition and condensation rate was introduced. This applies also for the other
submodels, e.g., the condensation/evaporation model must also take into account the multispecies character of the
gas/liquid mixtures. The framework presented in this section serves as a complete source of information to build
an Eulerian two-moment multispecies aerosol physics approach coupled with the computational fluid dynamics
equations represented by the conservation laws. Furthermore, thermo-physical properties of several basic acyclic
alcohols, composing the aerosol formers for the nucleation model system studied in this paper, are discussed in
Sect. 2.5. The dynamic system that governs the evolution of the aerosol in a spatially homogeneous system is
summarized in Sect. 2.6.

2.1 Multispecies aerosol transport equations including phase transition
In this section, we formulate a general system of multiphase transport equations describing the evolution of a
multispecies aerosol. We consider the total system to be composed of dispersed droplets, next to a mixture of

carrier gas (e.g., air) and vapors that constitute the transporting medium and the source of chemical components,
respectively. We adopt an Euler—Euler formulation in which the gaseous ‘carrier phase’, i.e., carrier gas and aerosol-
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forming vapors, and the aerosol droplets are represented by continuous fields. We assume that the droplets are
sufficiently small in order to precisely follow the flow, i.e., the relative velocity with respect to the carrier phase can
be neglected. Likewise, the droplets are assumed to have immediate heat transfer with the carrier phase such that
the temperature of all phases may be treated as being the same.

The dynamics of a general multispecies aerosol can be formulated by incorporating conservation laws for
mass, momentum, enthalpy, gaseous, and liquid mass fractions of the various constituents and the droplet number
concentrations. Extending the formulation by Winkelmann et al. [6] to the general multispecies case, we may write
the dominant processes as

0o+ dj(puj) =0,
Or(pui) + dj(pujuj) = —dip+0;(uv;); i=1,...,3,

Dp
pcp(0;T +u;o;jT) =0;(K93;T) + 9j(uurtij) + Sp + Dr’

3 (pY) + 0j(pYiuj) = 0;(pD;id;(Y)) + 8] 7% i=1,....n,
0 (pZi) + 0 (pZiuj) = =S,
3 (N) +0;(Nuj) = S, (1)

where d; and 0; denote partial differentiation with respect to time ¢ and spatial coordinate x;, respectively, and
summation over j and k is implied, while no summation over i is adopted. The total mass density of the n-
species system is denoted by p, while the velocity and temperature fields of the carrier phase are given by u; and
T, respectively. The material derivative of the pressure Dp/Dt contributes directly to the changes in the local
temperature. The heat capacity at constant pressure is denoted by ¢, and approximated as a function of temperature
alone, implying that the system studied in this paper is mainly composed of carrier gas containing a relatively small
fraction of aerosol-forming vapors. For improved solution accuracy, all material properties (e.g., heat capacity,
viscosity, heat conductivity) should follow adequate mixture laws that for example can be found in [8].

Mass fraction equations for {Y;, Z;} in (1) describe the partitioning between gaseous and liquid aerosol phases
containing mass transfer source terms that will be introduced momentarily. The particle number density equation
for N gives further information concerning the characterization of the aerosol. Mass fraction equations must be
consistent with the global mass conservation equation that specifies the overall density of the considered mixture.
At the same time, the particle number density equation must be consistent with the liquid mass fraction equations to
account for the aerosol transport in the system. We assume a fixed log-normal aerosol size distribution in the system,
as is commonly done in moment equation models. Transport of liquid mass fractions together with the evolving
particle number density provides information about the average aerosol droplet size. This may vary depending on
the mass transfer (condensation/evaporation) and transport (convection and coalescence) processes in the system.
Nucleation of aerosol affects both mass and particle number density. The assumed log-normal distribution excludes
a closer connection to possible multi-modal corrections as observed in some model studies [9]. In this paper, we
focus on the accuracy of model predictions as governed by the temporal integration method, resolving very fast
nucleation scales as well as much slower condensation and evaporation. The same log-normal approach implies
that aerosol polydispersity will only influence the average diameter of the droplets and not the fluctuations. Finally,
we assume a homogeneous temperature equilibration between the phases in which effects of phase changes are
represented by the enthalpy of vaporization. More involved formulations that assign different temperatures to the
gas phase and the liquid phase are not pursued here.

Soret and Dufour effects were discarded for the present studies. The rate of strain tensor is given by

2
Tij = Ojuj + Oju; —gakukcs,'j, 2)

where §;; denotes the Kronecker delta. We also introduced the heat conductivity K to characterize the diffusive
transport of heat.
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The multispecies aerosol is characterized in terms of the mass fractions of the components i in the gas phase
(Y;) and in the droplet phase (Z;). These mass fractions are such that pY; and pZ; yield the partial densities of
component i in the gas and droplet phase, respectively. For a system with n species, either in vapor or in liquid
form, these fractions fulfill the following constraint:

Z(Yi+Zi)= 1. 3)

i=1

This property is guaranteed by the sum of mass conservation equations for each species. Special numerical care
must be taken concerning the consistency of those equations with the total mass conservation as the full system of
Eq. (1) is mathematically over-constrained in this representation.

We also introduced diffusive transport of the vapor of species i through Fick diffusion with binary diffusion
coefficients D; of species i in the carrier gas. The values of these diffusion coefficients can be computed following
[10,11]. We adopt Fuller’s method [12] to approximate the coefficients for diffusive transport of a vapor of alcohol
species i in a surrounding consisting mainly of carrier gas. We return to this momentarily in Sect. 2.5. The system
pressure may be expressed as

n
Y.
p=>_pl pl= PRT—, )

i=1 !

in terms of the partial vapor pressures p; of the components i. These can be computed using Dalton’s law and
the ideal gas law in case the volume fraction of the droplets is sufficiently small. Here k denotes Boltzmann’s
constant and m; is the molecular mass of species i, i.e., the mass of one molecule of species i. Diffusion of liquid
droplets is not included because the diffusion coefficient of droplets is orders of magnitude smaller than that of
the corresponding vapor. In addition, we track the number concentration of the droplets, N, allowing to assess also
information about the size of the aerosol droplets.

To complete the basic model (1) three source terms need to be specified:

(i) Mass transfer between the liquid and the vapor of species i, denoted by S ll V. This contains two contributions:
the nucleation mass flow rate S}, characterizing vapor changing into liquid, and the mass flow rate due to
evaporation of vapor from already formed droplets minus that due to condensation onto these droplets, S; ™,
such that

Sv = —gme 4 gee, Q)

(i) The heat flow rate due to phase change, denoted by Sy,. This can be computed by summing the products of
Sl? ~V of species i with the heat of evaporation of that species Ah;’ap :
n
Sh=—Y ARSI, (6)
i=1
(iii) The rate of change of the number concentration of droplets

SN =JIN—Je — Jov, (7)

in which we distinguish the nucleation rate Jy, the coalescence rate J., and the rate of complete droplet
evaporation Je,. Complete evaporation in an Eulerian aerosol model is a subject in its own right. In this
paper, we will not address this issue and concentrate on situations in which droplets, once formed, undergo
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size changes through condensation and evaporation, but are assumed to never fully disappear because of
evaporation. This assumption is well satisfied, e.g., in situations in which only cooling of a freshly nucleated
aerosol would take place, a process dominated by condensation. We consider J., = 0 in this paper. Coalescence
is often negligible during fast nucleation bursts. It does play a role in the much slower dynamics of aerosol
evolution on longer time scales. In this paper, we include a simple model for J as specified in Sect. 2.4.

In the next three sections, we will specify the various source terms and include nucleation, evaporation and con-
densation, and coalescence, respectively.

2.2 Nucleation of aerosol

In this section, we present a generalization of classical multi-component theory for homogeneous nucleation, starting
from work on ternary nucleation by Arstila et al. [3]. This theory is applicable both to situations in which one of
the components is dominant in super saturation as well as to situations in which a number of species engage in
the nucleation simultaneously. In situations where only one component dominates in saturation, one might also
adopt homogeneous nucleation theory for that species [6] to a good approximation. The more complete situation in
which several species contribute to the nucleation process requires that one accounts for the coupling between the
nucleating species as well, e.g., expressed by ‘competition’ for energy. For example, energy that is released by the
nucleation of a particular species, will affect the local temperature and thereby the nucleation rates of other species
as well. It is not easy to determine whether one component is dominant in saturation or not. In fact, two components
with very different partial vapor pressures and very different saturation vapor pressures can have similar saturations
(also called activities’ in some literature [5] in case a mixture of species is concerned). Therefore, a general classical
multispecies nucleation theory is formulated here.

The specification of the nucleation rate Jy and the corresponding nucleation mass flow rates of the species S
is presented in four steps. These are specified next.

1. The first element in the nucleation model concerns the formation of the virgin core from which aerosol droplets
will form later. The composition of the so-called ‘critical cluster’ is described next, i.e., the cluster whose size
is such that it has an equal probability to subsequently grow or shrink due to evaporation and condensation
to and from the surrounding vapors. For that purpose, we introduce [4] the actual vapor pressure of species
i, denoted by p;, and the corresponding saturation vapor pressure of species 7 in the current mixture, pl”‘:;‘t

In addition, we denote the partial molar volume by v;. Formally extending the thermodynamically consistent

classical nucleation theory [3] to an arbitrary number of species suggests that the composition of the critical

cluster is such that

1 i
f]:fz:fg:...:fn, Where ﬁ:—ln {)nix . (8)

Vi i,sat

The commonly used saturation pressure of the pure component i, which arises above a surface of the pure liquid
of that component held at temperature 7', denoted by p?at, can now be used to define the saturation of species
i,ie., S; > 0, and the mole fraction of species i in the critical cluster, i.e., 0 < w; < 1 as

pi = Sipi™s pitsa = wipi™. ©)

This relation applies if Raoult’s law holds [11]. With these definitions we may express the conditions from
which the composition of the critical cluster in the n-component mixture can be obtained as

1 S;
ﬁ-:—ln(—l)za; =12, (10)

Vi wi
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where « is a priori unknown and specified by the auxiliary condition that

n

Zwi:l; w; > 0. (11)
i=1

Combined, the system of equations (10) and (11) constitute n + 1 equations for the n + 1 unknowns
{o, wy, ..., wy}. The mole fractions in the critical cluster can be obtained once the saturations of all species S;
and their partial molar volumes v; are specified. We may extract the mole fraction of species i from (10) as

w; = S; exp(—av;). (12)

Since we require the solution to be also a partition of unity, we obtain a consistency relation for o:

flo) = (Z S; exp(—otvi)) —1=0. (13)

i=1

This is also referred to as the mole fraction equation. We may solve this problem for « iteratively as shown
and analyzed in Sect. 3 in which we also consider the dependence of the composition on the saturation and the
partial molar volume.

2. The second step in the determination of the nucleation rate is the calculation of the equilibrium concentration
of critical clusters, denoted by ceq. We adopt an ideal mixture approximation in which the surface tension o of
the critical cluster may be written as

n
o= wioi, (14)

i=1

in which o; denotes the surface tension of component i. These quantities depend on temperature, for which
accurate approximations are available in literature for a wide range of components [13]. The specification of the
thermo-physical properties of a range of the smaller acyclic alcohols is postponed until Sect. 2.5. The radius of
the critical cluster r can be calculated from [3]

. 200 B 20 -
kT Yo wi In(S;/wy) T kTa’

r

in which we introduced the average molecular volume v through an ideal mixture law v = Y | w;v;.
After these preparations, the Gibbs free energy barrier AG of the critical cluster, measuring the energy needed
for the formation of a critical cluster with radius r and a surface tension o, can be expressed as

4 2
AG = gnr o. (16)
This allows calculating the equilibrium concentration ceq of critical clusters. In fact, from statistical mechanics,
Ceq ~ €xp(—AG/kT) with normalization still to be specified. The correct normalization is subject of much dis-
cussion in literature [14]. We consider two options for completing the expression for ceq. A crude approximation,
based on the partial vapor pressures of the species involved in the nucleation can be written as

AG\ < H(w;)p!
Ceq = €XP <——) Z#, 17)
1
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where H denotes Heaviside’s function H(z) = 1 if z > 0 and O otherwise. In this expression only the species
actually contained in the critical cluster, i.e., with w; > 0, contribute a factor p;/kT and the total represents a
sum over monomer concentrations [3]. This normalization is know to be physically inconsistent in some limiting
cases [5]. A refinement for the determination of the equilibrium concentration ceq is obtained by adopting a
so-called ‘self-consistent’ normalization [14], which is mathematically consistent in the limits of single-species
conditions [2]. In fact, introducing the single species, or ‘monomer,” surface area

smon — (367) /3 02, (18)

the equilibrium concentration is expressed as

AG\ 1 ( PP(T) s\ \
= _27 , 19
Ceq exP( kT)H( kT exP( kT )) (1)

i=

in terms of the species saturation pressure p$.

3. The third step leading toward the completion of the nucleation rate is the specification of the Zeldovich factor,
which characterizes the contribution of Brownian motion to the formation of the critical cluster [ 15]. As proposed
in [3] this factor can be approximated as

2 1—Vlnuc/z
ov
7= (m) * 20

in terms of the number of components that is actually involved in the nucleation, n,,¢. The latter can conveniently
be expressed as

Nnuc ZZH(wi)o 21

i=1

4. The fourth and final preparation step toward an expression for the nucleation rate concerns the determination
of the average growth rate. The total number of molecules in the critical cluster can be expressed as Ny =
4/ 3)71r3 /v, which allows to compute the number of molecules of component i in such a cluster as N; = Ny w;,
and the total mass of the cluster as m = ) | N;m;. Under the assumption that cluster—luster collisions can
be neglected, i.e., in the sufficiently dilute state, the condensation rate K;; of component i can be found from

(3]

1/3 13 2
pY 3\/® (1 N m 47
K=+ — 6kT — + — — — . 22
ii <kT> <47T> ( ) mi+m pl! + 3 r ( )

Extending the ternary expression for the average growth rate R,y as proposed in [3] to a general system of n
components, we formally arrive at

— er'l:l Ni2 — Z?:l w12
i N,'Q/Kii i wiz/Kii

(23)

av
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After these four preparatory steps, we may summarize the nucleation rate Jy as
IN = RavZceg. (24)
The nucleation mass flow S7"“° for component i can be written as
SMC = 2JNNim;, (25

where the freshly nucleated droplet is given a mass equal to twice that of the critical cluster, thereby expressing that
these virgin droplets are likely to grow after nucleation, while the critical clusters are by definition such that they
have equal probability to grow or shrink after nucleation.

The expression for the nucleation rate Jy is typical for currently adopted classical nucleation theory in the
sense that it rests largely on phenomenological physics and scaling arguments clarifying the main dependencies
and mechanisms and capturing the expected order of magnitudes. In all this, the normalization of the equilibrium
concentration ceq is very important to the final level of quantitative agreement with physical reality that is achieved.
A key point of reference for gaging the phenomenological expression for Jy is the seminal Becker—Doring theory
[1,16], which constitutes a fundamental microscopic treatment of the nucleation process. It is computationally
rather expensive for systems with many species but in some cases the n-component Becker—Doring equations can
be solved in full detail [2], thereby allowing to cross-validate the developed model for the nucleation rate Jx with
the full numerical solution. We return to this cross-validation and motivation of the appropriate normalization of
Ceq in Sect. 3.1.

2.3 Evolution of aerosol by evaporation and condensation

Evaporation and condensation are two sides of one mechanism—that of gas—liquid mass transfer. While evaporation
relates to net mass transfer from the liquid droplets to the gas phase, condensation is net mass transfer from the gas
phase to the droplet phase. Evaporation (or condensation) will make the droplets shrink (or grow), but it will not
change the number of droplets. For multispecies evaporation and condensation in the dilute regime, as considered
here, one may treat all components independently as proposed by Friedlander [17], Wilck and Stratmann [18]. A
more elaborate treatment including full coupling between the various species as proposed in [19] is not used here.

In order to derive an expression for the evaporation and condensation mass flow rate ST~ of component i,
we need to collect expressions of a number of constituting factors. The desired mass flow rate is proportional to
the number density of droplets N and should be sensitive to whether the saturation is larger or smaller than the
equilibrium saturation. In addition, specific transport properties such as diffusion should be incorporated to quantify
S77°. We specify the various elements next.

We may characterize the droplet phase by its overall density

. Yic1 Zi

=== , (26)
Zizl Zi/P,!

in terms of the mass density of the liquid of component i denoted by ,o}. On this basis, we may compute the so-called
diameter of average mass dy, of the polydisperse aerosol

1/3
6p37_ ZN\Y? [(6p>, Zi/p!
dm:<pz;l) :<M ) (27)

o N TN

For computing the evaporation and condensation rate, the ‘count mean diameter’ d is required. Assuming a log-
normal distribution of the droplet size with geometric standard deviation s; we may relate d to dn, through the
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Hatch—Choate conversion equation [20]:

d=dny exp ( — lnz(sg)>. (28)

The equilibrium saturation of component E; is not equal to unity in view of the Kelvin effect. In fact, as given by
(18]

4 .
Ei =exp ( ‘;’i) : (29)

where the surface tension of the composite droplet is taken as

n
o = Z WiUi, (30)
i=1

expressed using the surface tension of droplets o; of pure component i and the mole fraction in the droplet’s phase

Zi/mj

W = =M
Y Zj/my

(€29

where m ; denotes the molecular mass of component j. The saturation mole fraction X} of component i in the gas
phase over the droplets can be obtained from Raoult’s law as

N
‘(T
xs = w2 (32)
P

where for the saturation pressure p?(7') an appropriate empirical law is assumed. The corresponding saturation
mass fraction Y* can now be computed as

XPm;
VP =5 : P 33)
Xim; + (1 = X?)mg
with the average molecular mass of the gas phase given by
n
Y,
me = —;—1 —. (34)
Zi:1 Yi/m;

To complete the phenomenological theory for the mass flow rate S it is common to introduce the Fuchs factor
f, also called Knudsen correction [20], which may be written as

B 1+2(/d)
1453300 /d)? +3.42(0/d)’

f (35)

in terms of the mean free path A given by

12
- (8"_T> (4_“) . (36)
Tmg 5p
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The final shape for the mass flow rate due to evaporation and condensation is expressed as

S§7¢ =2 DidpYS f(d, 1) <Ei — %) N. (37)
L

This expression contains evaporation provided E; — S;/W; > 0 and condensation if E; — S;/W; < 0, and it

is proportional to the number concentration of droplet N as anticipated earlier when starting the specification of

S§77¢. The saturation mass fraction Y}’ is approximated by its value over a flat surface, as suggested by [18], while

a ‘Kelvin correction’ accounting for the curvature of aerosol droplet surfaces is included through (E; — S;/ W;).

Such a Kelvin correction might also be motivated for the evaluation of Y} itself by selecting

S
(T

xs = wg /D (38)
p

This proposal would, however, not correspond to the original suggestion of [18] and will not be incorporated here.
Additional simulations based on such ‘double Kelvin correction’ showed largely similar results with, e.g., up to
about 10% lower values for N for the cases considered.

2.4 Coalescence effects in aerosol dynamics

The coalescence rate J. of droplets can be calculated based on the theory for polydisperse aerosols as put forward
in [21]. First, the coalescence coefficients for the asymptotic regimes of large droplets, K], and of small droplets
K are required. In the large droplets regime, the coalescence coefficient is approximated by

24T

K = % (1 + exp (lnz(sg)) + 2':;3)» [exp (2 ln2(sg)) + exp (4 lnz(sg))]> , 39)

while in the small droplets regime we adopt

|3kT iy, 1\ /2 9 , 1, 5,
Ki= | —— <1 + —) |:exp (— In (sg)> + 2exp <—— In (sg)> + exp <—— In (sg)>] . (40)
Pl Sg 8 8 8

These two regimes are crudely combined into an effective coalescence coefficient K by averaging in the following
way

— -1/2

K=(k2+K72) " (1)
The coalescence rate J. may then be computed as

Je = KN2. (42)

This expression approximates the coalescence process in a simplified manner and mainly expresses proportionality
with N2, motivated by binary collisions as dominant coalescence mechanism. We will mainly be concerned with
systems for which coalescence is a rather small effect, which implies that it mainly influences the long-term evolution
of N, while being less important during the rapid burst of nucleation and subsequent condensation that characterizes
a virgin aerosol.
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Table 1 Parameters defining thermo-physical properties of the several acyclic alcohols C;H»;41OH considered in this paper: ethanol
(i =2), propanol (i = 3), butanol (i = 4), pentanol (i = 5), and hexanol (i = 6)

i ‘;)(L)(; i Bi Vi di Tc.i A; B; 103q; 103b;
2 6.13 —8.69 1.18 —4.88 —1.59 513.92 1060.6 0.96 24.05 0.083
3 5.17 —8.54 1.96 —7.69 —-2.95 536.78 1050.1 0.85 25.26 0.078
4 4.42 —8.41 2.23 —8.25 —0.71 563.05 1050.3 0.88 27.18 0.090
5 3.91 —8.98 3.92 —-9.91 -2.19 588.15 1049.8 0.79 27.54 0.087
6 3.47 —9.49 5.13 —10.58 —5.15 610.70 1044.1 0.77 26.44 0.087

The parameters are represented in terms of Pa (pc;), K (T¢,i), kg m73 (A, kg m3K~V(B;), Nm™! (¢;), and Nm~' K~ (b;)

2.5 Thermo-physical properties of acyclic alcohols

In order to achieve an accurate representation of the aerosol dynamics of an alcohol mixture, the thermo-physical
properties of the individual species need to be specified. In particular, the temperature dependence of the saturation
pressure pg, the liquid density pj, and the surface tension o need to be specified. In addition, the molecular mass
m; and the diffusion characteristics of the species in carrier gas are required. Closely following [5], we express
(ps.i» pri,oi)fori =2,...,nas

32 5.2 5
it + Bt T+ it T 46T
ps,,-(T>=pc,iexp( Riinailhi - il ’ ) 43)
r,i
pi(T) = A; — B;T, (44)
0i(T) = a;j — bj (T — Tret), (45)

where we introduced for each species i the following variables: (i) species-specific pressure pc;, (i) 7, = 1 — Tr;,
with (iii) reduced temperature 7. ; = 7'/ T¢ ; interms of the species-specific temperature 7 ;. This phenomenological
description is characterized by 10 parameters for each of the species, i.e., (pc;, i, Bi, Vi, 6i, Ic.i, Ai, Bi, a;, b;),
and a reference temperature taken here as Trer = 273.15 K. The parameters are collected in Table 1. The i = 1
species represents the dominant carrier gas component (Argon in this paper).

To complete the specification of the material parameters, the molecular masses and the diffusion coefficients are
required. The molecular weights are found from the molar weight, divided by Avogadro’s number. For the molar
weights M; we collected (in kg): 0.04607, 0.06009, 0.07412, 0.08815, and 0.1022 for ethanol, propanol, butanol,
pentanol, and hexanol. For the diffusion coefficients D; of species i diffusing in carrier gas, we use Fuller’s method.
In fact, binary diffusion of species i in carrier gas at temperature 7' and pressure p is approximated by

12
T”S) [Mc_gl + Mi_l]

_ : 2
r <(Vcc3g1ff)1/3 T (Vid1ff)1/3)

D; = 1.013 x 1072 < (46)

where M., and M; denote the molar weights of Na molecules of carrier gas and species i, and the so-called diffusion
volume for carrier gas Vcdgilcf is taken as that of Argon, i.e., 16.2. For the diffusion volumes of the various alcohol
species, we adopt Fuller’s method which takes the chemical formulae of the species and for every atom in the
formula uses a contributing factor. For the acyclic alcohols we have as formula C;H»; 1 OH, which leads to

VAT — Ai 4+ BQi +2) +C, 47)

with A = 15.9, B = 2.31, and C = 6.11 denoting the molecular diffusion volumes for C, H, and O, respectively.
Fuller’s method of approximating the binary diffusion coefficient is estimated to yield not more than 4% error
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[22], which appears suitable for the current dilute system. A more complete solution involving the Maxwell-Stefan
diffusion formalism for the diffusion coefficients is not pursued here (see [23] and references therein).

2.6 Dynamic model for multispecies aerosol evolution

In order to study the effects of nucleation and evolution through evaporation and condensation of a mixture of
alcohols, we consider a spatially homogeneous system. The simplified model with which nucleation bursts can
be studied is extracted from (1) by formally setting the transporting velocity equal to zero and taking the mass
density p constant. Moreover, instead of solving the evolution equation for the temperature, we externally impose
a time-dependent T to represent cooling of a supercritical vapor mixture in carrier gas. The remaining system of
ordinary differential equations governs the mass fractions of gas and liquid ¥; and Z;, and the number concentration
N. This yields a system of 2n + 1 differential equations for (¥;, Z;, N) given by

le —1 gl—v dZi —1 gl—>v dN
— = oo, 2o _prlgler = - 48
ar P i dr P i dr N c (48)

where S} 7V = —SM° + §77¢ with
Slpuc =2JNNim;, (49)
_ _ S:
S~ = 2x DidpY? f(d, A)(E,- - W>N (50)
i

and the nucleation and coalescence rates are given by
IN = RuZceq; Jo = KN (51)
This model system captures the main nucleation dynamics and will be specified for the simulation of the dynamics

of a supercritical alcohol mixture. Nucleation is induced in this case by external cooling at temperature drop
AT =Ty — T» (Tret < T> < T7) for which we impose an external temperature given by a linear ramp

— -t = .
I'=s\hg=+hhy=: n=t=n, (52)
Ty; n <t

In order to start the simulation of a cooling experiment, an initial condition needs to be specified. Taking temperature
T = T asinitial condition we may specify the mole fractions of the different species based on Dalton’s law. In fact, if

the individual species have saturations (or ‘activities’) collected in a vector S = [S2, .. ., Sy, ] then the mole fractions
of the alcohol components at system pressure p follow from Xf‘)lc = (ps(T1)/ p)S. To complete the mole fractions
and represent the ambient air, we use normalization of X such that Xo = [1 — Y "_, X(%]?, X glcz, X Slg, e Xglfl].

The corresponding mass fractions are found from

Yo = g U o)
> j=1mjXo,j
The initial condition is completed by assuming that at ¢+ = 0 there are no aerosol droplets and all components are
in the vapor state, i.e., Z; o = 0 and No = 0.
The composition of the critical cluster is a key element in the description of a nucleation burst. In the next
section, we turn to this problem and illustrate the effects of changing the saturation of the various components on
the composition of the cluster.
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3 Numerical methods for efficient time-stepping and critical cluster computations

In this section, we present and illustrate the method used to compute the critical cluster composition (Sect. 3.1) and
discuss the adaptive time-stepping method used for efficient simulation of the multiscale problem that includes a
rapid nucleation burst next to evaporation and condensation, as well as much slower coalescence effects (Sect. 3.2).

3.1 Critical cluster composition

The composition of the critical cluster can be computed following the discussion presented in Sect. 2.2. The mole
fractions of the various species in the critical clusters {w;} are given in terms of saturation S; and partial molar
volume v; by

w; = S; exp(—av;), (54)

subject to the condition that

fla) = <Z S; exp(—(xv,-)) -1=0, (55)
i=1

for the parameter «. This condition guarantees that {w;} is a proper partition of unity, and requires a root of f to be
found.
For technical convenience we rewrite (55) by introducing the dimensionless variable

§ =avy, (56)

which has the benefit that it is expected to be of order unity, while « by itself is likely to be a very large reciprocal
volume, to compensate for the very small numerical values of v;. In addition, we use the dimensionless system
parameters

Gi=—t i=1,....n (57)
V|

which represent the ratios between partial molar volumes. This notation allows to write
n
f& = (Z S; exp(—s@)) —1=0. (58)
i=1

An effective algorithm for determining & from (58) is Newton iteration for which we construct a sequence

J(&x)
=& — ; k=0, 59
r+1 = &k &) > (59)
in which, explicitly
&) == ¢iSiexp(—&dy). (60)

i=1
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The iteration can be continued until an appropriate level of convergence is achieved, e.g., when |&§,+1 — &| < &,
for some appropriate tolerance ¢ > 0. Since |w;| < 1, |v;| < 1 for all species i, and Y !_, w; = 1, the Newton
iteration is converging as it can be shown that f"(«) < 1 for f’(e) = — >, viw;, which is equivalent to the Eq.
(60). To start the process a suitable initial condition should be selected. For a single-species system we may write

f&) = Siexp(=§) —1=0, (61)
which can be explicitly solved to yield
£=—In(S;h. (62)

This can be taken to start the iteration process for multispecies systems and is expected to be not too far from the
actual value in cases in which one of the species is dominant in the nucleation process. We may generalize this
initial condition to

§=— max (1n(5;1)), (63)

.....

to cover cases where the dominant species is not the species labeled number one.

We illustrate the performance of the Newton iteration to determine the composition of the critical cluster. We
construct some characteristic cases that show the general change in composition in case saturations and molar
volume ratios is systematically varied. First, we turn attention to a two-species situation in which one species
dominates in terms of saturation, taking S| = 1+ g and S, = 1 — 8 with 0 < B < 1. We consider these two
species to have molar volumes given by ¢» = y. In Fig. 1, we show the dependence of {w;, w»} on the parameter
characterizing the saturation dominance f, at a number of molar volume ratios y. The Newton iteration was found
to converge to machine accuracy within 5-8 iterations for this case, leading to only a very small computational cost

0 i Al =X S SIS GRS

vvvvvv

0 0.2 0.4 0.6 0.8 1

Fig. 1 Variation of composition of the critical cluster for a two-species mixture, showing the mole fractions of the two components as
function of B characterizing the saturation S| = 1 4+ 8 and S, = 1 — 8. We show results at different molar volume ratios y = vy /v.
Results for the mole fraction w are shown with solid lines and/or circles (open circle, filled circle), while the mole fraction w, is shown
using dashed lines and/or diamonds (open diamond, filled diamond). In addition, markers label the following: y = 10 (solid marker:
filled circle, filled diamond), y = 1 (no marker), y = 0.1 (open marker: open circle, open diamond)
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Fig. 2 Mole fractions {w;} in the critical cluster as a function of the number of species included in the gas phase. From fop to bottom
wj is shown fori = 2j — 1 (solid) and i = 2j (dashed) for j = 1,2, ....In a one species is dominant with S; = 2 and the saturation of
the sub-dominant species is given by S; = 2~ with 8 = 5. In b the saturation of the sub-dominant species is given by S; = 8/(2i),
fori =2, .... All molar volumes are considered equal, i.e., ¢; = 1

for determining the constitution of the critical cluster. In case y = 1 we observe that as 8 — 0, both species are
present with equal mole fraction w; = wy — 1/2, as was to be expected. Increasing § in this case, i.e., increasing
the saturation of component ‘1°, §1 > 1 > 5, leads to a linear increase (decrease) of the mole fraction wy (wy)
with 8. As B — 1 component ‘2’ becomes negligible in the critical cluster and we enter the single-species limit
with clusters consisting entirely of component ‘1°. Changing the ratio of the molar volume y has a marked effect
on the composition. We notice that an increase in y > 1, i.e., in case the molar volume of component ‘2’ is larger
than that of component ‘1, further increases the presence of the dominant species in the critical cluster. The reverse
arises in case ¥ < 1 and we observe that even though S; > S> the small molar volume of component ‘2’ favors
this component over ‘1’ in the critical cluster.

The Newton iteration can also be adopted to solve the critical cluster equation in cases in which many species
make up the gas phase. There are many possible situations that one can use to illustrate the current formulation. We
restrict ourselves to a situation in which ¢; = 1, denoting systems for which the molar volume v; does not depend
on the index. We consider two situations in which species ‘1’ is dominant and supersaturated, e.g., S = 2 and
consider sub-dominant species with (a) S; = 827" and (b) S; = 8/(2i) fori > 2, with 8 = 5. In Fig. 2, we show the
mole fractions {w; } for these two situations as function of the number of species included in the formulation. In both
situations, the Newton iteration was found to converge very rapidly. We notice that in case (a), the sub-dominant
contributions for n 2 10 can effectively be neglected and a good representation of the critical cluster appears not to
require more species in the model. In case (b), the sub-dominant species do not reduce in saturation as rapidly and
the composition of the critical cluster is much richer and many more species need to be included before an accurate
prediction of the composition can be achieved.

The key step of computing the composition of the critical cluster on the basis of Newton iteration was found
to be possible even for large numbers of species. This makes it possible to study the extended classical nucleation
theory for many species in a dynamic setting, including also evolution of the nucleating aerosol due to evaporation
and condensation.

3.2 Adaptive time-stepping for rapid nucleation bursts and slow coalescence

In order to efficiently simulate the evolution of the aerosol subject to rapid nucleation during the initial stages as
well as to the long term much slower coalescence, it is natural to adopt a time-stepping method that adapts to the
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actual instantaneous time scale. We maintain control over the time-accuracy by keeping the size of the time-step
appropriately small during the rapid nucleation stages, while increasing the size of the time-step in case the dynamics
so allows.

The structure of the adaptive time-integration method allows to increase the size of the time-step as well as to
decrease it. Specifically, at some point during the time integration we have obtained the numerical solution u(#,) at
time 7, and the time-step has size 6z. We then proceed as follows:

— Using the basic propagation algorithm for performing an explicit time-step we may compute the numerical
solution in the next two instants of time, i.e., us; (f,+1) and us; (t,+2) with t,41 = t,, + 8¢ and t,,4 9 = t,, + 26¢.
Here, we added the subscript 67 to indicate that the numerical solution was obtained using time-step &z.

— The solution at #,4> may also be approximated using one time-step of size 26¢, denoted by uas; (f,+42).

— Likewise, we may approximate the solution at 7,4 > by taking four time-steps of size §7 /2, denoted by w5, /2 (t442).

— We determine the relative differences exs5; = luzs (tn42) — usi(tn2)|l/I1u(0)|| and €5;2 = |usij2(ths2) —
ust (th2) I/ lu(0)||. Specifically, we concentrate on the ethanol component in our model system to monitor the
accuracy of the time integration, i.e., we take u = Y7 in this paper.

Based on the relative differences €25, and €5, 2, we may proceed with updating the size of the time-step. If €25, < €01
then the size of the time-step is increased by a factor a > 1, i.e., 6t — adt. Conversely, if €5,/2 > €1 then the
time-step is decreased by the same factor, i.e., 8t — &t /a. Finally, if €25, > €01 and €5,/2 < €] then the time-step
is left unchanged.

We adopted Euler forward time-stepping as basic propagation algorithm in the simulations. Obviously, this is not
a strict requirement and the same general approach can be combined with other, higher-order explicit time-stepping
methods. In the simulations we use a time-step stretching factor of a = 1.2 when increasing or decreasing the
time-step size. We limit the time-step to §fmax such that the solution remains stable and time-accurate even for the
slowest time scales. The initial size of the time-step is taken sufficiently small to capture the brief nucleation burst
that occurs during the sharp cooling ramp. Finally, the value of the tolerance needs to be specified to control the
adaptation of the time-step. How precisely to specify these numerical parameters is a matter of some experimentation
in actual examples. We turn to the evolution of the aerosol emanating from a mixture of alcohol vapors in the next
section and illustrate the specification of the numerical control parameters.

4 Dynamics of aerosol formation from rapidly cooled alcohol vapors

In this section, we first specify the computational model with which the aerosol evolution under rapid cooling of
a mixture of alcohol vapors can be simulated; we will address the connection with the Becker—-Doring theory by
exploiting the detailed numerical solution as presented by Van Putten et al. [2], and quantify the relevance of the
Wilemski normalization for this situation (Sect. 4.1). The resulting computational model is subsequently applied
to analyze the aerosol dynamics of the multispecies alcohol vapors under different cooling rates and temperature
levels, focusing on droplet sizes and their number density (Sect. 4.2).

4.1 Numerical model for aerosol formation from alcohol vapors

The formation of an aerosol from a multispecies alcohol vapor mixture due to rapid cooling can be simulated with
the extended classical nucleation theory as presented in Sect. 2. Here, we focus on the nucleation and subsequent
evaporation/condensation and coalescence in the absence of fluid motion, i.e., we concentrate on the model system
(48). We focus on the mixture of alcohol vapors as this is a well-established model system that was considered by
various sources in literature [5]. It serves to illustrate the capability of the approach and can be extended to other
applications by specifying the appropriate thermo-physical properties of the constituents.

A key element in the aerosol formation is the nucleation rate JN. As discussed earlier, the normalization of the
equilibrium concentration of critical clusters ceq is subject to discussion in literature. In order to find out the accuracy
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Fig. 3 Comparison of 30
nucleation rate Jy (in
m~3s~1) as obtained by the
full Becker—Doring theory
(solid triangles),
steady-state classical
nucleation theory based on
Reiss [24] as used in [5]
(solid line), extended
classical nucleation theory
following Stauffer et al.
[25], with normalization
(17) (open triangles), and
with self-consistent
normalization (19) (open 157
circles). Results are shown

at three different

temperature levels, i.e., 240,
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of the proposed models, we compare (17) and (19) with the reference Becker—Déring result for a ternary system
of ethanol, propanol, and hexanol in air, as obtained in [2]. In Fig. 3, we show the predicted Jy at three different
temperatures. To obtain this result, we closely follow [5] and consider a system at pressure p = 66.76 kPa. We
vary the saturation of the species while keeping their ratios unchanged, i.€., Spropanol/ Sethanol and Shexanol / Sethanol
are kept constant at 1.2 and 4, respectively. The mass fractions follow from (53), using Dalton’s law. We plot Jy as

a function of |S| = \/ Sgthanol + Sgropanol + Sﬁexanol'

All models included display quite similar trends but there is a significant underestimation of Jy in case the
normalization as presented in Eq. (17) is adopted. As the classical nucleation approach is not a ‘first-principle’
theory but largely a phenomenological model, various corrections/normalizations are applied to it that better suit
the validation purposes for certain chemical compounds or that are mathematically appealing in an asymptotic
limit. For example, the underestimation of two to three orders of magnitude of nucleation rate is almost completely
corrected when Eq. (19) is adopted. The corresponding predictions correspond quite closely with the numerical
solution to the full Becker—Doring theory as obtained in [2]. The current extended classical nucleation theory
with normalization as in Eq. (19) yields an accurate agreement with the full Becker—Doring approach, at very low
computational cost in contrast to the full n-component Becker—Doring (NBD) equations [5], for which comparative
results were obtained at a substantial computational cost using multigrid methods. We notice that the steady-state
classical nucleation theory based on Reiss [24] almost coincides with our prediction for Jn, which is based on earlier
work of Stauffer et al. [25], establishing that both the Reiss and Stauffer approaches yield quite similar results for
IN.

We next turn to the actual simulation of a reference cooling experiment and specify in further detail the numerical
parameters as required in the adaptive time-stepping method. We consider the system to be initially at a temperature
T1 = 275 K and allow it to cool to 7> = 200 K in a time interval of 0.01 s, choosing r, = 0.01 sand #t; = 0's. The
nucleation burst and subsequent condensation and afterwards coalescence are simulated until # = 0.05 s, at which
time the dominant remaining mechanism is that of slow coalescence. In order to track the rapid initial behavior
and also integrate for sufficiently long times, we put 8f9p = (2 — #1)/10"" and limit the maximal time- step to
Stmax = 10™% — 1073, which was found to be close to the stability time-step in the selected settings. The tolerance
€101 controls the adaptation of the time-step size. We put it to €] = 107" and investigate the role of ns; and ny)
in relation to the accuracy of the simulations.
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Fig. 4 Dependence of the number density N (per m?3) of aerosol droplets on time-integration step: in a we show N (¢) for the reference
case when changing the initial time-step size d8f: 1073 (dash), 10~ (dash-dot), 10~7 (dot), 10719 (solid), and in b the behavior of
the error in the final number density € with decreasing 8t is shown. We set the adaptation threshold €, = 10~ and use a time-step
stretching factor a = 1.2

In Fig. 4a, we show the evolution of the number density N during the nucleation burst. The initial time-step was
varied from 8ty = 10710 s to 819 = 107 s. We observe a rapid increase in the number of droplets in the system
as a result of the very strong nucleation burst in the selected reference case. This behavior is well captured by the
adaptive time-stepping method in case the size of the initial time-step is sufficiently small. The convergence of this
numerical process is shown in Fig. 4b. Here, we show the difference € between N at + = 10™* s as obtained at
the indicated initial time-step size and the highly resolved case at §¢p = 10710 je., e = IN(7: 8t9) — N(T, 10_10)|
where the monitoring moment is chosen in the asymptotic range at7 = 10~* s. This clearly illustrates the first-order
convergence of the global error. Moreover, it establishes the relevance of capturing the very early stages of the
nucleation burst with high precision, in order to compute the total number density of aerosol droplets that results.
From these simulations it appears safe to set 8tg = 10710 s as this is certainly small enough to capture the nucleation
burst under the selected circumstances while not adding much to the overall simulation time in view of the geometric
stretching of ¢ in the adaptation strategy.

InFig. 5a, we present the dependence of the number density N on the adaptation threshold €;,]. We observe a close
agreement in capturing the initial transient up to 7 & 2 x 107 s as the time-step is still sufficiently small in this part
of the evolution. As the nucleation burst draws to an end and the number density approaches its asymptotic value for
t > 5 x 1073 s we notice still quite some dependency on the adaptive time-stepping strategy. The asymptotic value
N (00) is seen to vary about 3% when changing the threshold from €, = 103 at which a ‘converged” solution
is attained to €,,] = 107>, The variation of the time-step in the course of a simulation is shown in Fig. 5b. We
observe a distinctive rapid increase in ¢ during the very first part of the evolution. At all values of €, the time-step
simply increases according to the time-step stretching factor a that is adopted. Subsequently, the time-step displays
a characteristic dependence on time, reflecting the passing of the strict nucleation burst and the transitioning to the
phase influenced more by condensation. If € < 1074 a striking similarity is observed in §¢ for all €, in which
8t varies roughly by a factor 10 — 50 upon decreasing €, from 10~* to 1078, This increase in accuracy, however,
comes at the same factor of 10 — 50 increase in computational effort. Since the variation of N with, e.g., temperature
level and/or cooling rate, is much more than a few percent, it is sufficient to require a ‘fair’ overall accuracy of better
than, say, 5%, which implies to use €] = 107> in the sequel. This also yields much more acceptable computing
times than in case of requiring a fully time-step independent solution.

We complete the investigation of the time-stepping approach by considering the effect of the time-step stretching
factor a. For that purpose we set €5 = 1073 and use 8tp = 10719 5. In Fig. 6a, we show the direct effect of the
stretching a on the evolution of N. We observe that an increase in the stretching factor, i.e., adaptation leading to
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Fig. 5 Evolution of the number density N (per m3) of aerosol droplets at various adaptation thresholds € (a) and variation of the
time-step ¢ in the course of the nucleation and evaporation/condensation processes (b). Curves are labeled with the value of € as
follows: open circle (10~2), open triangle (10=3), dot (filled circle) (10~%), solid (10~%), dash (10~9), dash-dot (10~7), and solid with
dot (filled circle) (1078). We set 8t0 = 10710 in these simulations and use a time-step stretching factor a = 1.2
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Fig. 6 Evolution of the number density N (per m>) of aerosol droplets at various time-stretch factors (a) and variation of the time-step
8t in the course of the nucleation and evaporation/condensation processes (b). Curves are labeled with the value of a as follows: circle o
(a = 4), triangle open triangle (a = 2), solid with dot filled circle (a = 1.5), solid (a = 1.2). We set 8tg = 10719 in these simulations
and use €] = 107

very rapid growth and reduction of the time-step, yields an overestimation of the asymptotic value of N by 35%
in case a = 4. This is reminiscent of the effect of a relatively high value of ¢, as shown in Fig. 5. The time-step
variations in the course of time are shown in Fig. 6b. We observe that a large value of a not always implies highest
ot. Rather, the variations are highest as is the increase in §¢ initially. The algorithm can also yield rapidly oscillating
behavior in &7, as observed in case a = 2. Although this is not diminishing the overall accuracy in case the Euler
forward scheme is used, it could lead to unwanted numerical errors when higher-order methods would be adopted.
Adhering to an overall accuracy level in the asymptotic value of N of better than about 5% we select as stretching
factor a = 1.2 in the sequel.

After these exploratory investigations of the numerical treatment of the nucleation burst, we proceed by inves-
tigating the physical implications of changing the temperature level and the cooling rate on the vapor and liquid
phases as well as on the aerosol droplet properties such as number density and size.
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4.2 Aerosol dynamics in multispecies alcohol vapor mixtures

In order to illustrate the capability of the proposed model to deal with nucleation, condensation, and coalescence
of multiple species under different process conditions, we collect several characteristic illustrations in this section.
First the effect of the overall temperature level is investigated, keeping the cooling rate fixed. Subsequently, the
effect of cooling rate on the aerosol size distribution and chemical composition of the droplets is considered. Finally,
we present an example in which we compare aerosol properties arising in alcohol mixtures containing different
numbers of species.

Next to the system pressure, the temperature and the rate of cooling are decisive of the response of the system.
Throughout, the system pressure is kept constant at 66.75 kPa. We are interested in the effect of rapid cooling
of a vapor mixture, leading to supersaturation and the formation of an aerosol following a rapid nucleation burst.
For this purpose, we consider a reference case in which we decrease the temperature by AT = 75 K within
0.01 s. The properties of an aerosol that forms strongly depend on the thermodynamic state and properties of the
system. For example, results obtained at various cooling rates show a significantly different temporal behavior in
formation of the liquid phase (droplets) due to nonlinearity of the nucleation process. Figures are presented in
a way that we feel gives the best illustration of the nonlinear behavior and shows the sensitivity to the chosen
conditions.

In the first set of numerical experiments, we consider the effect of changing the overall temperature level
for the ternary alcohol mixture, which was used in [2] with saturations given by S = [1, 1.2, 0, 0, 4] indicat-
ing the presence of ethanol, propanol, and hexanol, respectively, in our model system. In Fig. 7, we show the
evolution of the number density of droplets and the ethanol vapor concentration. The number concentration of
droplets is seen to undergo rapid algebraic growth for short times on the order of 10™* to 1073 s after which a
strong short-lived increase in this growth is observed, which we identify with the nucleation burst. This increased
growth rate in N is strongest in case the initial temperature is sufficiently low. Subsequently, the number den-
sity settles down to a characteristic value, marking the end of the nucleation burst around 1072 s. The depen-
dence on the temperature level is striking. A reduction in the temperature leads to a strong reduction in the
initial number of droplets in the system, before the dominant burst. The behavior of the vapors in the system
shown in Fig. 7b displays a similar rapid decrease leading to almost complete depletion of the ethanol content
around 1 = 1072 s. We notice that at lower initial temperatures the vapor initially does not decrease significantly,
but a rapid decrease takes place as the nucleation burst sets in from the moment the vapor mixture becomes
supersaturated. We observe that at 71 = 275 K the nucleation starts directly from ¢ = 0, while at lower ini-
tial temperatures, leading also to lower initial vapor concentrations of ethanol etc., further cooling is needed
to generate the triggering supersaturated condition. This behavior is also clearly expressed in the behavior of
propanol and hexanol in Fig. 7c and d, respectively, albeit at much lower concentrations and even faster time
scales.

The approach developed in this paper can also be adopted to investigate the effect of the cooling rate on the
developing multispecies aerosol. For this purpose, we set the initial temperature to 77 = 255K and traverse the
temperature drop within a time interval of 0.02, 0.04, 0.08, and 0.16 seconds. We observe in Fig. 8a that, with
decreasing cooling rate the number concentration of aerosol droplets also strongly decreases. Simultaneously, we
notice that the onset of nucleation is also delayed somewhat with decreasing cooling rate. This behavior is similarly
observed in the evolution of the vapor concentrations, e.g., shown by the decay of ethanol in Fig. 8b, in which a
slightly delayed nucleation can be observed as well at lower cooling rates. Moreover, we notice that decreasing the
cooling rate leads to a slowing down of the consumption of the alcohol vapors in the aerosol formation. The total
process appears to slow down proportionally to the size of the time interval during which the temperature drop takes
place.

The total amount of vapor that is consumed during nucleation and subsequent condensation remains virtually
identical—at lower cooling rate it only takes longer for the vapors to be transferred to the liquid droplets. Moreover,
in the current setting we observe that virtually all vapor is consumed in the aerosol formation—only a small residual
vapor concentration remains at the end of the cooling ramp. Combined with Fig. 8a showing a strong reduction of
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Fig. 7 Evolution of the number density N (per m3) of aerosol droplets (a) and ethanol: Y, (b), propanol: Y3 (¢) and hexanol: Y¢ (d)
vapor concentration showing the effect of changes in the system temperature. A cooling over AT = 75 K in 0.01 s was adopted with
starting temperature 77 = 275 K (solid), Ty = 265 K (dash-dot), and T = 255 (dash)

N with decreasing cooling rate, this implies that fewer but larger droplets are being formed at lower cooling rates.
In order to quantify this we compute the evolution of the droplet size d, as defined in (27) in time. This is shown
in Fig. 9. We observe a slower rate at which N grows initially. More striking is the final size the aerosol droplets
reach asymptotically. We notice a nearly six-fold increase when the cooling rate is reduced by a factor 16 in this
example. Hence, careful control of the cooling rate is a very sensitive measure for managing the ultimate size of
the droplets that are being formed.

As a further illustration of the extended classical nucleation approach we consider an example of a composite
system containing up to five alcohols in air. We compare the aerosol formation process as well as changes in size
and composition of the aerosol droplets. In many applications involving various species, several of the species
are only ‘residual’, i.e., these species represent only a small fraction of the total mass in the system. In order
to mimic this situation of dominant species next to additional ‘residual’ species we consider a saturation vector
S =1[1,1/2,1/4,1/8, 1/16] for the five alcohols ethanol, propanol, butanol, pentanol, and hexanol respectively. In
the sequel we adopt a temperature drop of AT = 75 K in 0.02 s, starting from an initial temperature of 275 K. Of
course, the selection of this saturation vector is for illustration purposes only, other situations may apply in specific
applications. However, once the thermo-physical characterization of the constituents is available, the present method
can be applied to predict the aerosol formation.
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Fig. 8 Evolution of the number density N (per m3) of aerosol droplets (a) and ethanol: Y> vapor concentration (b) showing the effect
of changes in the temperature cooling rate. Cooling by AT = 75 K during 0.02 s (solid), 0.04 s (dash), 0.08 s (dash-dot), and 0.16 s
(solid with dot filled circle). The initial temperature 77 = 255 K

Fig. 9 Evolution of the size
dm (in m) of the droplets
showing the effect of
changes in the temperature
cooling rate. Cooling by
AT =75 K during 0.01 s
(solid), 0.02 s (dash), 0.04 s
(dash-dot), 0.08 s (dot filled
circle), and 0.16 s (solid

with dot filled circle). The g
initial temperature =
T; =255K

0 0.01 0.02 0.03 0.04 0.05

In Fig. 10a, the transfer of the various vapors to their liquid phase is illustrated in case all five alcohols are present
in the mixture. We observe a somewhat similar dependence on time for all vapor concentrations. In the selected
nucleation setting, there is a clear phase of about 0.002 s in which the mixture is not undergoing nucleation yet. After
this a short period of rapid vapor consumption is observed in which all ¥; show an approximately exponential decay.
This lasts for about 0.001 s for ethanol to about 0.004 s for hexanol. Subsequently a slower, also approximately
exponential decay sets in until almost full depletion of all vapors around ¢ = 0.02 s. The dependence of the vapor
consumption on the constitution of the mixture is illustrated in Fig. 10b in terms of the evolution of the dominant
ethanol concentration. We observe that removal of the ’higher alcohols’ leads to a further delay of the onset of
nucleation, from the mentioned 0.002 s in the full mixture up to about 0.004 s in case of pure ethanol. The decay
rate following the onset of nucleation is largely insensitive to the constitution of the mixture, and after about 0.007 s
all decay curves are seen to merge and continue independently of the initial differences in the mixture.
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Fig. 10 Evolution of vapor fractions showing the individual species in case of five alcohols (a) with ethanol (solid), (dash), (dash-
dot), (dot), (solid and dot filled circle), and the effect of removing ‘residual’ species on the ethanol concentration (b). Lines are
labeled according to the saturation vector S = [1, 1/2, 1/4,1/8, 1/16] (solid), S = [1, 1/2, 1/4, 1/8, 0] (dash), S = [1, 1/2,1/4, 0, 0]
(dash-dot), S = [1,1/2,0,0, 0] (dot filled circle), S = [1, 0, 0, 0, 0] (solid and dot filled circle)
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Fig. 11 Evolution of the number concentration (a) and droplet size (a) for increasing number of contributing species according
to the saturation vector S = [1,1/2,1/4,1/8,1/16] (solid), S = [1,1/2,1/4,1/8,0] (dash), S = [1,1/2,1/4,0, 0] (dash-dot),
S =1[1,1/2,0,0, 0] (dot filled circle), S = [1, 0, 0, 0, 0] (solid and dot filled circle)

The consequences of the mixture composition on the number concentration and size of the developing aerosol
are illustrated in Fig. 11. The asymptotic number concentration in Fig. 11a is seen to decrease by up to about 1/3
by simplification of the mixture. This has also consequences for the size of the developing aerosol droplets. As
may be observed in Fig. 11b, simplification of the mixture leads to slightly delayed nucleation and smaller droplets
initially, while asymptotically the droplet size is seen to be higher for the simplified mixtures.

5 Concluding remarks

The problem of multi-component nucleation was formulated in terms of an Euler—Euler model with continuous
velocity, temperature, and components fields, both for the vapor and the liquid phases. In the classical multi-
component approach as provided by the Becker-Déring theory [1], it is challenging to treat systems with large
numbers of components. The current state of the art [5] is limited to modest numbers of components. Recent model
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studies discussed systems with up to five components [3,5]. Experimentally, binary and ternary species nucleation
is a challenging topic of ongoing investigations. We addressed the fully coupled classical nucleation theory as
put forward in [3,4] and developed a computational model that is capable of treating systems of considerably
higher complexity being aware of the limitations concerning predictions coming from the classical nucleation
theory. The current method can be used to treat systems with many components, as illustrated by the evaluation
of the multispecies nucleation rate Jy and the characteristics of the critical cluster in case up to 25 species were
incorporated.

No principal nor computational reason appears not to include more complex vapor mixtures—application to
environmental aerosols and to aerosols stemming from the processing of biomass and food products come within
reach as soon as the thermo-physical basic information of the individual species is available. Nucleation of mul-
tispecies gas mixtures from oversaturated vapors is a very challenging topic. Experimental results display a wide
range of prediction. Moreover, it is well known that the introduction of certain additives/traces may significantly
alter the nucleation process [26]. Such aspects are not taken into account in classical nucleation theory. Hence,
application of classical nucleation theory must be considered with care, particularly for systems with many species.
Mathematically, our approach does not have limitations in the number of species as for example presented in
[27] and certainly more sophisticated methods can be used for the time-stepping algorithms as it can be found
in [28].

The level of complexity required to capture a certain fraction of the total mass of components in the droplets
can be illustrated by considering the convergence of the critical cluster as function of the number of components
retained in the model. Where one might be tempted to take a rather small number of components in the model
in view of practical limitations, the extended classical nucleation approach allows to compute many species and
identify the number 7 of components needed to describe the aerosol formation with sufficient accuracy. This is
basic to developing coarsened descriptions of aerosol-forming vapor mixtures that include a very large number of
species, e.g., in atmospheric conditions over urban areas or in consumption of smoking articles and tobacco-related
research. The Newton iteration that was used to solve the mole fraction equation was found to converge to machine
accuracy within 5-8 iterations. For a wide range of characteristic nucleation conditions, the convergence was found
to be quite independent of the number of species that was included in the problem.

In order to capture the wide range of time scales in the system, a simple adaptive time-stepping method was
developed and used in conjunction with Euler forward time integration. A range of 5—6 orders of magnitude between
the size of the initial time-steps and time-steps that can be used after the nucleation burst, in case condensation
and coalescence dominate, was found to be achievable, leading to a significant saving of computation time. Further
improvements may be possible by combination of higher-order time-stepping and the inclusion of specific physical
simplifications that provide accurate approximations during certain stages of the evolution, e.g., during the late
stages of dominant condensation/coalescence, but also during the initial phase where nucleation characterizes the
full response to the employed cooling.

The illustration of the effects of (a) temperature level, (b) cooling rate, and (c) mixture composition on the
properties of the developing aerosol show that the extended classical nucleation approach adopted in this paper
can be used effectively for spatially homogeneous systems. This capability will be integrated with laminar flow
of the aerosol-forming species and hence constitute a comprehensive computational model with which physical
experiments conducted in LFDC equipment can be simulated. This is subject of ongoing research and will provide
a full comparison with experimental data, allowing a validation of the method.
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