
  

  

Abstract—  
Obstructive Sleep Apnea (OSA) is recognized as an 
increasing health risk, leading to daytime sleepiness and 
various medical conditions, such as hypertension and heart 
failure.  Polysomnography (PSG), the gold standard to 
diagnose OSA, is a resource-intensive and expensive 
investigation confined to the hospital. 
 
Portable home monitoring, i.e. pulse oximetry, may become 
an acceptable OSA screening method. The novel nasal pulse 
oximeter sensor (Xhale Alar) adds the possibility of 
combining pulse oximetry (SpO2) with airflow analysis by an 
integrated thermistor, which might increase the diagnostic 
accuracy. 
 
In the Alar pilot study, 39 adults were measured during an 
overnight PSG recording together with the Alar sensor. This 
study aims to investigate the additional value of an airflow 
signal compared to SpO2 analysis in OSA screening. Both 
time and spectral features were extracted from SpO2 and 
airflow signals recorded with the Alar sensor. Leave one out 
cross-validation was used to develop Random Forest models 
in screening for apnea-hypopnea index (AHI) thresholds 5 
and 10. Using both AHI ≥ 5 and AHI ≥ 10 as the diagnostic 
cutoff, the airflow signal shows respectively an AUC of 89% 
and 80% compared to 78% and 77% with SpO2 analysis, 
showing a higher performance using an airflow signal in 
screening adults for OSA.  

I. INTRODUCTION 

Obstructive sleep apnea (OSA) is the most common type of 
sleep disordered breathing and is characterized by frequent 
complete (apnea) or partial (hypopnea) cessations of 
breathing during sleep. OSA is recognized as an increasing 
health risk due to its high prevalence (around 10% and 
increasing[1]) and serious associated consequences, including 
daytime sleepiness, personality changes, intellectual 
deterioration, and various other medical conditions such as 
hypertension, arrhythmias, heart failure, and stroke.[2], [3] 
In-laboratory polysomnography (PSG), the gold standard to 
diagnose OSA, is accurate with a low failure rate, but is 
confined to the hospital, resource intensive and expensive.[4] 
Portable home monitoring devices might develop into  
acceptable methods of screening or even diagnosing OSA.[5] 
 
 

A variety of ambulatory devices have been developed and 
several studies show reasonable accuracy of portable 
monitors in OSA screening. Pulse oximetry is such a simple 
tool, a non-invasive method of measuring the 
photoplethysmographic signal (PPG), which visualizes the 
peripheral blood volume variations in tissue and the 
peripheral blood oxygen saturation (SpO2). Previous research 
showed that combining SpO2 analysis with heart rate 
variability analysis, improved the OSA screening 
performance compared to SpO2 analysis alone.[6], [7] 
 
The Xhale Alar sensor is an innovative nasal pulse oximetry 
sensor that integrates a thermistor allowing the monitoring of 
two physiological signals; pulse oximetry and respiration. 
This novel simple sensor can be connected to a mobile phone 
to create a portable home monitoring tool to screen for 
patients with OSA. During this study, we measured both pulse 
oximetry and airflow signals with the Alar sensor 
simultaneously with the gold standard PSG. 
The goal of this study is to investigate the additional value of 
an airflow signal compared to SpO2 analysis in the screening 
of adults with OSA. 
 

II. ALAR DATASET 

The Alar pilot dataset was created to validate and investigate 
the improvement of sleep apnea screening using a nasal pulse 
oximeter. In this paper we focus on the performance of 
airflow measurements compared to SpO2 signals in the 
screening of patients with sleep apnea. The Alar dataset was 
collected at the Medical Spectrum Twente (MST). Following 
ethics approval of the study protocol (K17039), 42 adults 
referred for overnight PSG measurement were recruited 
between November 2017 and July 2018. Exclusion criteria 
were known arrhythmia, abnormal hemoglobin or insomnia. 
 

A. Data acquisition 
The data acquisition was carried out in specialized sleep 
chambers at the MST, where the overnight PSG recordings 
were recorded by using BrainRT™ equipment (OSG, Rumst, 
Belgium). PSG measurement included: electrocardiogram 
(ECG), electroencephalogram (EEG), leg electromyogram 
(EMG), chest movements, pulse oximetry, nasal and oral 
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airflow, audio and video recordings.  
Simultaneously with the PSG measurement, nasal pulse 
oximetry was measured with the Xhale Alar nasal pulse 
oximeter. The Xhale Alar nasal pulse oximeter was connected 
to a mobile device (Motorola Moto C Plus). The signals 
recorded with the Alar sensor, SpO2 ( 0.01% resolution), PPG 
(32 bit resolution) and respiration (0.001 resolution), were 
sampled at 80, 80 and 160 Hz, respectively. 
 

B. Scoring 
All PSG measurements were evaluated by a specialized sleep 
technician who determined the apnea-hypopnea index 
(AHI), which is the gold standard measure of OSA severity. 
This AHI is computed by counting the total number of apnea 
and hypopneas for every hour of recorded sleep. Following 
the American Academy of Sleep medicine (AASM) 
guidelines, an apnea was defined as a complete cessation of 
breathing for longer than 10 seconds, and hypopneas were 
defined by a more then 50% reduction in airflow signal. 
 

1) Demographic information:  
Table 1 summarizes the demographic information for the Alar 
pilot dataset, as well as the AHI index derived from the PSG. 
A positive OSA diagnosis was defined as an AHI greater or 
equal to either 5 or 10 apnea/hypopnea events per hour. Only 
subjects containing a total duration of PSG and Alar 
recordings longer than 3 hours of reliable data were included. 
There were no statistically significant differences between 
both groups in demographics, age, BMI and total sleep time 
(TST) during PSG. 
 
TABLE I 
Demographic information of the Alar-database (mean +- std), comparing 
OSA and non-OSA groups at two AHI thresholds of 5 and 10. 

  AHI threshold ≥ 5 AHI threshold ≥ 10 
 Total OSA Non-OSA OSA Non-OSA 
Adults (n) 39 23 16 19 20 
Male (Female) 23 (16) 15 (8) 8 (8) 13 (6) 9 (11) 
Age 47 (12) 48.6 (13.4) 43.4 (9.7) 48.3 (12.9) 45.4 (11.6) 
BMI 27.6 (5.6) 28.2 (5.9) 26.3 (4.7) 28.3 (6.4) 26.6 (4.5) 
AHI 10.0 (8.8) 16.0 (6.3) 1.6 (1.5) 17.7 (6.0) 3.0 (4.5) 
TST (hours) 10.4 (1.3) 10.3 (1.5) 10.5 (0.4) 10.5 (0.2) 10.3 (2.0) 
 
III. METHODS 

Overnight SpO2 and respiration signals recorded with the 
Alar sensor were used for the extraction of features and 
creating a random forest model for OSA screening. All Alar 
signals were characterized in both time and frequency 
domain. Data analyses were performed offline in Matlab 
2017a (Mathworks Inc, Natick, USA). 
 

A. SpO2 characterization 
The SpO2 samples below 50% or above 100% and SpO2 

changes between consecutive samples higher than 4%, were 
considered physiological impossible and consequently 
excluded from further analysis. An overall signal quality 
percentage of the SpO2  signal was determined by 
calculating the percentage of the night the SpO2 signal was 

above 50%. Time domain features derived from the SpO2 

signals were: mean, median, std and iqr of SpO2, lowest 
SpO2 and two oxygen desaturation indexes (ODI3 and ODI4, 
number of desaturations from baseline below 3% and 4% 
respectively), the Delta variability index, and the cumulative 
time spent between or below a certain percentage (t100-95, 
t95-90 and t90). Frequency domain features were 
characterized using a power spectral density (PSD), 
extracting three spectral parameters: 1) the normalized power 
in the modulation frequency band (consisting of a frequency 
interval of 0.02 Hz centered around the modulation peak 
located between 0.005 and 0.1 Hz.),  2) the total power, 3) the 
ratio between the modulation power and the total power. 

 

B. Airflow characterization 
To exclude those parts of the signal consisting of artefacts, the 
signal quality was evaluated using an algorithm previously 
applied on PPG signals.[8] The PPG signal was evaluated 
using this algorithm which is based on pulse segmentation and 
cross-correlation of consecutive pulses. The signal quality 
index (SQI) assigns values between 0 and 100 (with 100 being 
the best quality) and was applied to the airflow signal. Airflow 
signal segments containing a good SQI (at least 30 seconds 
with a SQI higher then 40) were used for further analysis and 
feature extraction. Time domain features derived from the 
airflow signals were: mean, median, std and iqr of the airflow 
signal. For the frequency domain features, a frequency band 
of interest was defined between 0.025 Hz and 0.050 Hz, 
corresponding to events lasting 20 to 40 seconds (reported as 
the typical range in duration of apnea events [9]). Four 
spectral features were extracted from this 0.025-0.050 Hz 
band from the power spectrogram: mean median, std and iqr. 
 

C. Data analysis 
Two multivariate logistic regression models were developed  
and validated using leave one out cross-validation (LOOCV) 
to classify adults at AHI cutoffs of 5 and 10. Given the size of 
the dataset, we perform LOOCV, where all observations 
except one subject are used for training and the remaining 
subject is used for testing the models. A stepwise selection 
method was applied to select the most relevant features for 
classifying adults with or without OSA, using a Random 
Forest classifier. All statistical analysis was conducted using 
R v3.2.0 (R Foundation for Statistical Computing, Vienna, 
Austra).  
 

IV. RESULTS 
Forty two adults agreed to participate in the Alar pilot study. 
Of these subjects, one subject had no saved PSG recording 
and thus no AHI information and two subjects had no Alar 
data stored on the phone, all three subjects were removed 
from data collection. The remaining 39 patients were 
recruited, containing 23 OSA and 16 non-OSA at an AHI 
threshold of 5. The sleep studies of nine additional subjects 
were excluded due to minimal recording or sleep time (<3 
hours, mainly due to early removal of the nasal sensor (n=4) 
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or connection loss between sensor and phone (n=2)) or signals 
with low signal quality (n=3). Of the remaining subjects, 30 
adults had a full data collection consisting of both PSG and 
Alar recordings.  
 
Figures 1 and 2 show the ROC curves for classifying adults at 
AHI cutoffs of 5 and 10 respectively using SpO2 (red) and 
airflow (blue) analysis. The optimal model was selected using 
a Random Forest model, with an average of 5 features 
selected to build the model. At an AHI threshold of 5, the 
AUC obtained from the SpO2 and airflow signals was 78% 
and 89%, respectively. At a higher AHI threshold of 10, the 
AUC obtained from the SpO2 and airflow signals was 77% 
and 80%, respectively. For both AHI thresholds, the airflow 
signals provides a higher AUC performance compared to the 
SpO2 signals, identifying adults with OSA. 
 
 

 
Figure 1 - ROC curve for AHI ≥ 5. The ROC was obtained using 
random forest with the most discriminating features applied to the 
Alar pilot dataset using Leave One Out cross-validation 

 
 

 
Figure 2 - ROC curve for AHI ≥ 10. The ROC was obtained using 
random forest with the most discriminating features applied to the 
Alar pilot dataset using Leave One Out cross-validation 

 
 

V. DISCUSSION 
This study presents the Alar pilot study consisting of 42 
recordings of adults, measured with the Xhale Alar sensor 
simultaneously with PSG. This pilot study investigates the 
preliminary use of a nasal sensor in the screening of adults 
with OSA, specifically the performance of  airflow analysis 
using an integrated thermistor from nasal pulse oximetry 
recordings. 
According to the AASM, a minimum of heart rate, oxygen 
saturation, and airflow analysis is required for at home sleep 
testing. [11] Previous at-home research showed the use of 
traditional finger pulse oximetry, recording both SpO2 and 
PPG signals, for oxygen saturation and pulse rate variability 
(PRV) analysis. The use of PRV (surrogate of heart rate 
variability) derived from the PPG signal recorded with a 
finger pulse oximeter has been shown to increase at home 
OSA detection compared to SpO2 analysis alone. [10],[12] 
Looking at combining multiple signals, it is also know that a 
cessation of breathing is best measured using an airflow 
signal, therefore in this study, we were interested in the 
screening potential of airflow signals compared to SpO2 
analysis using a nasal pulse oximeter sensor. In order to assess 
the use of the Alar nasal pulse oximetry sensor as a screening 
tool for OSA, this study explored the use of two signals 
extracted from this sensor, SpO2 and airflow.  
 
Using both AHI ≥ 5 and AHI ≥ 10 as the gold standard cutoff 
for the diagnosis of OSA, the airflow signal recorded with the 
thermistor shows a higher performance in screening adults for 
OSA compared to SpO2 analysis (respectively AUC of 89% 
and 80% for airflow analysis, compared to 78% and 77% for 
SpO2 analysis).  
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Although the addition of airflow in OSA screening seems to 
add valuable information to improve the performance, future 
event-by-event comparison with apnea/hypopnea events from 
the PSG can show a more quantitative view on whether each 
apnea event can be accurately detected with only one nasal 
thermistor.  
 
The real setting for the proposed OSA screening tool is at 
home. This device is a portable, easy-to-use sensor, which 
was not experienced as unpleasant by the patients. A future 
study will concentrate on repeated measures with the Alar 
device both at the hospital and at home. This way the 
comparison can be made between hospital and at home 
measurement, and the performance of the proposed method 
can be investigated in the real at home environment. 
 
This study described the use of a novel nasal pulse oximeter 
and multivariate random forest models using both SpO2 and 
airflow signals to screen adults for OSA. The information 
provided by an airflow signal provides additional information 
to identify adults with OSA, underlying the potential for nasal 
pulse oximetry to improve the at-home OSA screening 
compared to conventional finger pulse oximetry.  
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