
Practical Abstractions for Automated
Verification of Message Passing

Concurrency

Wytse Oortwijn(B) and Marieke Huisman(B)

University of Twente, Enschede, The Netherlands
{w.h.m.oortwijn,m.huisman}@utwente.nl

Abstract. Distributed systems are notoriously difficult to develop cor-
rectly, due to the concurrency in their communicating subsystems. Sev-
eral techniques are available to help developers to improve the reliability
of message passing software, including deductive verification and model
checking. Both these techniques have advantages as well as limitations,
which are complementary in nature. This paper contributes a novel verifi-
cation technique that combines the strengths of deductive and algorith-
mic verification to reason elegantly about message passing concurrent
programs, thereby reducing their limitations. Our approach allows to
verify data-centric properties of message passing programs using concur-
rent separation logic (CSL), and allows to specify their communication
behaviour as a process-algebraic model. The key novelty of the approach
is that it formally bridges the typical abstraction gap between programs
and their models, by extending CSL with logical primitives for proving
deductively that a program refines its process-algebraic model. These
models can then be analysed via model checking, using mCRL2, to rea-
son indirectly about the program’s communication behaviour. Our veri-
fication approach is compositional, comes with a mechanised correctness
proof in Coq, and is implemented as an encoding in Viper.

1 Introduction

Distributed software is notoriously difficult to develop correctly. This is because
distributed systems typically consist of multiple communicating components,
which together have too many concurrent behaviours for a programmer to
comprehend. Software developers therefore need formal techniques and tools
to help them understand the full system behaviour, with the goal to guaran-
tee the reliability of safety-critical distributed software. Two such formal tech-
niques are deductive verification and model checking, both well-established in
research [2,7] and proven successful in practice [12,14]. Nevertheless, both these
techniques have their limitations. Deductive verification is often labour-intensive
as it requires the system behaviour to be specified manually, via non-trivial code
annotations, which is especially difficult for concurrent and distributed systems.
Model checking, on the other hand, suffers from the typical abstraction gap [28]
c© Springer Nature Switzerland AG 2019
W. Ahrendt and S. L. Tapia Tarifa (Eds.): IFM 2019, LNCS 11918, pp. 399–417, 2019.
https://doi.org/10.1007/978-3-030-34968-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34968-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-34968-4_22

400 W. Oortwijn and M. Huisman

1 send (〈4, 7, 5〉, 1);
2 xs := recv 2;
3 assert xs = 〈4, 5, 6, 7, 8〉;

(a) Thread 1

4 while (true) {
5 (ys, t) := recv;
6 if (t = 1) then
7 send (ys + 〈8, 6〉, 3);
8 else send (ys, 2);
9 }

(b) Thread 2

10 while (true) {
11 (zs, t) := recv;
12 zs ′ :=
13 send (zs ′, t);
14 }

(c) Thread 3

Fig. 1. Our message passing example, consisting of three communicating threads.

(i.e., discrepancies between the program and the corresponding model), as well
as the well-known state-space explosion problem.

This paper contributes a scalable and practical technique for automated ver-
ification of message passing concurrency that reduces these limitations, via a
sound combination of deductive verification and model checking. Our verification
technique builds on the insight that deductive and algorithmic verification are
complementary [3,32,34]: the former specialises in verifying data-oriented prop-
erties (e.g., the function sort(xs) returns a sorted permutation of xs), while
the latter targets temporal properties of control-flow (e.g., any send must be
preceded by a recv). Since realistic distributed software deals with both com-
putation (data) and communication (control-flow), such a combination of com-
plementary verification techniques is needed, to handle all program aspects.

More specifically, our verification approach uses concurrent separation logic
(CSL) to reason about data properties of message passing concurrent programs,
and allows to specify their communication behaviour as a process-algebraic
model. The key innovation is that CSL is used not only to specify data-oriented
properties, but also to formally link the program’s communication behaviour to
the process-algebraic specification of its behaviour, thereby bridging the typi-
cal abstraction gap between programs and their models. These process-algebraic
models can then be analysed algorithmically, e.g., using mCRL2 [8,13], to rea-
son indirectly about the communication behaviour of the program. These formal
links preserve safety properties; the preservation of liveness properties is left as
future work. This approach has been proven sound using the Coq proof assistant,
and has been implemented as an encoding in the Viper concurrency verifier [22].

Running Example. To further motivate the approach, consider the example
program in Fig. 1, consisting of three threads that exchange integer sequences
via synchronous message passing. The goal is to verify whether the asserted
property in Thread 1’s program holds. This program is a simplified version of a
typical scenario in message passing concurrency: it involves computation as well
as communication and has a complicated communication pattern, which makes
it difficult to see and prove that the asserted property indeed holds.

Clarifying the program, Thread 1 first sends the sequence 〈4, 7, 5〉 to the envi-
ronmental threads as a message with tag 1, and then receives any outstanding

Practical Abstractions for Verifying Message Passing Concurrency 401

integer sequence tagged 2. Thread 2 continuously listens for incoming messages
of any tag with a wildcard receive, and redirects these messages, possibly with
slightly modified content depending on the message tag. Thread 3 is a computing
service: it sorts all incoming requests and sends back the result with the original
tag. ParSort is assumed to be the implementation of an intricate, heavily opti-
mised parallel sorting algorithm. Note that the asserted property holds because
the send on line 7 is always executed, no matter the interleaving of threads.

Two standard potential approaches for verifying this property are deductive
verification and model checking. However, neither of these approaches provides
a satisfying solution. Techniques for deductive verification, e.g., concurrent sep-
aration logic, have their power in modularity and compositionality: they require
modular independent proofs for the three threads, and allow to compose these
into a single proof for the entire program. This would not work in our example
scenario, as the asserted property is inherently global. One could attempt to
impose global invariants on the message exchanges [38], but these are generally
hard to come by. Finding a global invariant for this example would already be
difficult, since there is no obvious relation between the contents of messages and
their tags. Other approaches use ideas from assume-guarantee reasoning [30,36]
to somehow intertwine the independent proofs of the threads’ programs, but
these require extra non-trivial specifications of thread-interference and are diffi-
cult to integrate into (semi-)automatic verifiers.

Alternatively, one may construct a model of this program and apply a model
checker, which fits more naturally with the temporal nature of the program’s
communication behaviour. However, this does not give a complete solution
either. In particular, certain assumptions have to be made while constructing
the model, for example that ParSort is correctly implemented. The correct-
ness property of ParSort is data-oriented (it relates the output of ParSort to
its input) and thus in turn fits more naturally with deductive verification. But
even when one uses both these approaches—deductive verification for verifying
ParSort and model checking for verifying communication behaviour—there still
is no formal connection between their results: perhaps the model incorrectly
reflects the program’s communication behaviour.

Contributions and Outline. This paper contributes a novel approach that
allows to make such formal connections, by extending CSL with primitives
for proving that a program refines a process-algebraic model, with respect to
send/receive behaviour. Section 2 introduces the syntax and semantics of pro-
grams and process-algebraic models. Notably, our process algebra language is
similar to mCRL2, but has a special assertion primitive of the form ?b, that
allows to encode Boolean properties b into the process itself, as logical assertions.
These properties can be verified via a straightforward reduction to mCRL2, and
can subsequently be used (relied upon) inside the deductive proof of the pro-
gram, via special program annotations of the form query b, (allowing to “query”
for properties b proven on the process level). Section 3 illustrates in detail how
this works on the example program of Fig. 1, before Sect. 4 discusses the under-

402 W. Oortwijn and M. Huisman

lying logical machinery and its soundness proof. This soundness argument has
been mechanised using Coq, and the program logic has been encoded in Viper.
Section 5 discusses various extensions of the approach. Finally, Sect. 6 relates our
work to existing approaches and Sect. 7 concludes.

2 Programs and Processes

This section introduces the programming language (Sect. 2.1) and the process
algebra language of models (Sect. 2.2) that are used to formalise the approach.

2.1 Programs

The syntax of our simple concurrent pointer language, inspired by [6,25], is as
follows, where x, y, z, · · · ∈ Var are variables and v, w, · · · ∈ Val are values.

Definition 1 (Expressions, Conditions, Commands)

e ∈ Expr ::= v | x | e + e | e − e | · · ·
b ∈ Cond ::= true | false | ¬b | b ∧ b | e = e | e < e | · · ·
C ∈ Cmd ::= skip | C;C | C ‖ C | x := e | x := [e] | [e] := e | send (e, e) |

(x, y) := recv | x := recv e | x := alloc e | dispose e |
if b then C else C | while b do C | atomic C | query b

This language has instructions to handle dynamically allocated memory, i.e.,
heaps, as well as primitives for message passing, to allow reasoning about both
shared-memory and message passing concurrency models, and their combination.

The notation [e] is used for heap dereferencing, where e is an expression
whose evaluation determines the heap location to dereference. Memory can be
dynamically allocated on the heap using the alloc e instruction, where e will be
the initial value of the fresh heap cell, and be deallocated using dispose.

The command send (e1, e2) sends a message e1 to the environmental threads,
where e2 is a message tag that can be used for message identification. Messages
are received in two ways: x := recv e receives a message with a tag that matches
the expression e, whereas (x, y) := recv receives any message and writes the
message tag to the extra variable y, i.e., a wildcard receive.

The specification command query b is used to connect process-algebraic
reasoning to deductive reasoning: it allows the deductive proof of a program to
rely on (or assume) a Boolean property b, which is proven to hold (or guaranteed)
via process-algebraic analysis. This is a ghost command that does not interfere
with regular program execution.

The function fv : Expr → 2Var is used to determine the set of free variables
of expressions as usual, and is overloaded for conditions. Substitution is written
e1[x/e2] (and likewise for conditions) and has a standard definition: replacing
each occurrence of x by e2 in e1.

Practical Abstractions for Verifying Message Passing Concurrency 403

(send (e1, e2), h, σ)
send([[e1]]σ,[[e2]]σ)−−−−−−−−−−−→ (skip, h, σ)

((x, y) := recv, h, σ)
recv(v,v′)−−−−−−→ (skip, h, σ[x �→ v, y �→ v′])

(x := recv e, h, σ)
recv(v,[[e]]σ)−−−−−−−→ (skip, h, σ[x �→ v]) (query b, h, s)

qry−−→ (skip, h, s)

(C1, h, σ)
send(v1,v2)−−−−−−−→ (C′

1, h, σ) (C2, h, σ)
recv(v1,v2)−−−−−−−→ (C′

2, h, σ′)

(C1 ‖ C2, h, σ)
comm(v1,v2)−−−−−−−−→ (C′

1 ‖ C′
2, h, σ′)

Fig. 2. An excerpt of the small-step operational semantics of programs.

Semantics. The denotational semantics of expressions [[e]]σ and conditions [[b]]σ
is defined in the standard way, with σ ∈ Store � Var → Val a store that gives
an interpretation to variables. Sometimes [[e]] is written instead of [[e]]σ when e
is closed, and likewise for [[b]].

The operational semantics of commands is defined as a labelled small-step
reduction relation ·−−→ ⊆ Conf × Label × Conf between configurations Conf �
Cmd × Heap × Store of programs. Heaps h ∈ Heap � Loc ⇀fin Val are used to
model shared memory and are defined as finite partial mappings, with Loc ⊆ Val
an infinite domain of heap locations. The transition labels represent the atomic
(inter)actions of threads, and are defined as follows.

l ∈ Label ::= send(v, v) | recv(v, v) | comm(v, v) | cmp | qry
Transitions labelled send(v, v′) indicate that the program sends a value v

from the current configuration, together with a tag v′. These can be received by a
thread, as a transition labelled recv(v, v′). By doing so, the sending and receiving
threads communicate, represented by the comm label. Internal computations that
are not related to message passing are labelled cmp, e.g., heap reading or writing.
The only exception to this are the reductions of query commands, which are
given the label qry instead, for later convenience in proving soundness.

Figure 2 gives an excerpt of the reduction rules for message exchanging. All
other rules are standard in spirit [21,35] and are therefore deferred to [1]. For
ease of presentation, a synchronous message passing semantics is used for now.
However, our approach can easily be extended to asynchronous message passing.

2.2 Processes

In this work the communication behaviour of programs is specified as a process
algebra with data, whose language is defined by the following grammar.

Definition 2 (Processes)

P,Q ::= ε | δ | send(e, e) | recv(e, e) | ?b | b : P | P ·P | P +P | P ‖ P | Σx P | P ∗

404 W. Oortwijn and M. Huisman

Fig. 3. An excerpt of the small-step operational semantics of processes.

Clarifying the standard connectives, ε is the empty process without
behaviour, and δ is the deadlocked process that neither progresses nor termi-
nates. The process Σx P is the infinite summation P [x/v0] + P [x/v1] + · · ·
over all values v0, v1, ... ∈ Val . Sometimes Σx0,...,xn

P is written to abbrevi-
ate Σx0 · · · Σxn

P . The guarded process b : P behaves as P if the guard b holds,
and otherwise behaves as δ. The process P ∗ is the Kleene iteration of P and
denotes a sequence of zero or more P ’s. The infinite iteration of P is derived to
be Pω � P ∗ · δ.

Since processes are used to reason about send/receive behaviour, this process
algebra language exclusively supports two actions, send(e1, e2) and recv(e1, e2),
for sending and receiving data elements e1, together with a message tag e2.

Finally, ?b is the assertive process, which is very similar to guarded processes:
?b is behaviourally equivalent to δ in case b does not hold. However, assertive
processes have a special role in our approach: they are the main subject of
process-algebraic analysis, as they encode the properties b to verify, as logical
assertions. Moreover, they are a key component in connecting process-algebraic
reasoning with deductive reasoning, as their properties can be relied upon in the
deductive proofs of programs via the query b ghost command.

The function fv is overloaded to determine the set of unbound variables in
process terms. As always, any process P is defined to be closed if fv(P) = ∅.

Semantics. Figure 3 presents the operational semantics of processes, which is
defined in terms of a labelled binary reduction relation ·−−→ ⊆ Proc×ProcLabel ×

Practical Abstractions for Verifying Message Passing Concurrency 405

Proc between processes. The labels of the reduction rules are defined as follows.

α ∈ ProcLabel ::= send(v, v) | recv(v, v) | comm(v, v) | assn
The labels send, recv and comm are used in the same manner as those of

program transitions, whereas assn indicates reductions of assertional processes.
The reduction rules are mostly standard [10,13]. Processes are assumed to

be closed as a well-formedness condition, preventing the need to include stores.
Moreover, it is common to use an explicit notion of successful termination in
process algebras with ε [4]. The notation P ↓ intuitively means that P has the
choice to have no further behaviour and thus to behave as ε. The send and recv
actions communicate in the sense that they synchronise as a comm transition.

The property of interest for process-algebraic verification is to check for
absence of faults. Any closed process P exhibits a fault, denoted P −→ �, if
P is able to violate an assertion. Furthermore, any process P is defined to be
safe, written P �, if P can never reach a state that exhibits a fault, while fol-
lowing the reduction rules of the operational semantics.

Definition 3 (Process safety). The � predicate is coinductively defined such
that, if P � holds, then P �−→ �, and P

α−−→ P ′ implies P ′ � for any α and P ′.

Given any closed process P , determining whether P � holds can straight-
forwardly and mechanically be reduced to an mCRL2 model checking problem.
This is done by modelling an explicit fault state that is reachable whenever an
assertive process is violated, as a distinctive � action. Checking for fault absence
is then reduced to checking the μ-calculus formula [true∗ ·�]false on the translated
model, meaning “no faulty transitions are ever reachable”.

Process bisimilarity is defined as usual, and preserves faults and termination.

Definition 4 (Bisimulation). A binary relation R ⊆ Proc × Proc is a bisim-
ulation relation over closed processes if, whenever PRQ, then

– P ↓ if and only if Q ↓.
– P −→ � if and only if Q −→ �.
– If P

α−−→ P ′, then there exists a Q′ such that Q
α−−→ Q′ and P ′RQ′.

– If Q
α−−→ Q′, then there exists a P ′ such that P

α−−→ P ′ and P ′RQ′.

Two closed processes P and Q are defined to be bisimilar, or bisimulation
equivalent, denoted P ∼= Q, if there exists a bisimulation relation R such that
PRQ. Any bisimulation relation constitutes an equivalence relation. In our Coq
encoding [1], we have proven soundness of various standard bisimulation equiv-
alences for this language. As usual, bisimilarity is a congruence for all process-
algebraic connectives. Moreover, process safety is closed under bisimilarity.

3 Verification Example

Before discussing the logical details of our approach, let us first demonstrate it
on the example program of Fig. 1. Application of the technique consists of the
following three steps:

406 W. Oortwijn and M. Huisman

1. Constructing a process-algebraic model that captures the program’s
send/recv behaviour;

2. Analysing the model to determine whether the value received by Thread 1 is
always the sorted sequence 〈4, 5, 6, 7, 8〉, via a reduction to an mCRL2 model
checking problem; and

3. Deductively verifying whether the program correctly implements the process-
algebraic model with respect to send/receive behaviour, by using concurrent
separation logic.

The remainder of this section discusses each of these three steps in detail.

Step 1: Constructing a Process-Algebraic Model. The communication
behaviour of the example program can straightforwardly be captured as a process
P = P1 ‖ P2 ‖ P3 (assuming that the expression language is rich enough to
handle sequences), so that Pi captures Thread i’s send/receive behaviour, where

P1 � send(〈4, 7, 5〉, 1) · Σxs recv(xs, 2) · ?(xs = 〈4, 5, 6, 7, 8〉)
P2 � P′ω

2 , with P′
2 � Σys,t recv(ys, t) ·

(t = 1 : send(ys ++ 〈8, 6〉, 3) + t �= 1 : send(ys, 2))

P3 � P′ω
3 , with P′

3 � Σzs,t recv(zs, t) · send(sort(zs), t)
Observe that P1 encodes the property of interest as the assertion ?(xs =

〈4, 5, 6, 7, 8〉). The validity of this assertion is checked by mCRL2 on the trans-
lated model, as described in the next paragraph. Moreover, sort is assumed
to be the functional description of a sorting algorithm. Such a description can
axiomatically be defined in mCRL2. The sort mapping can easily act as a func-
tional specification for the implementation of more intricate sorting algorithms
like ParSort. Deductive verifiers are generally well-suited to relate such func-
tional specifications to implementations via pre/postcondition reasoning:
1 ensures \result = sort(xs);
2 seq〈nat〉 ParSort(seq〈nat〉 xs) { · · · }

Step 2: Analysing the Process-Algebraic Model. The composite process
P can straightforwardly be translated to mCRL2 input and be analysed. Our
translation can be found online at [1]. This translation has been done manually,
yet it would not be difficult to write a tool that does it mechanically (we are
actively working on this).

Notably, assertive processes ?b are translated into check(b) actions. The
action check(false) can be seen as the encoding of �. Checking for process
safety P� can be reduced to checking the μ-calculus formula φ = [true∗ ·
check(false)]false, stating that no check(false) action can ever be performed, or
equivalently that the process is free of faults. mCRL2 can indeed confirm that
P is fault-free by checking φ, and thus that the asserted property holds. In Step
3 we formally prove that the program adheres to the communication behaviour
described by P, which allows to project these model checking results onto pro-
gram behaviour.

Practical Abstractions for Verifying Message Passing Concurrency 407

1 {Proc(P1)}
2 send (〈4, 7, 5〉, 1);
3 {Proc(Σx recv(x, 2) · ?(x = 〈4, 5, 6, 7, 8〉))}
4 xs := recv 2;
5 {Proc(?(xs = 〈4, 5, 6, 7, 8〉))}
6 query xs = 〈4, 5, 6, 7, 8〉;
7 {Proc(ε) ∗ xs = 〈4, 5, 6, 7, 8〉}
8 assert xs = 〈4, 5, 6, 7, 8〉;
9 {Proc(ε) ∗ xs = 〈4, 5, 6, 7, 8〉}

(a) Proof of Thread 1’s program

1 {Proc(P3)}
2 while (true) invariant Proc(P′ω

3) {
3 {Proc(P′ω

3)}
4 {Proc(P′

3 · P′ω
3)}

5 (zs, t) := recv;
6 {Proc(send((zs), t) · P′ω

3)}
7 zs ′ := (zs);
8 {Proc(send((zs), t) · P′ω

3) ∗
9 zs ′ = (zs)}

10 send (zs ′, t);
11 {Proc(P′ω

3)}
12 }

(b) Proof of Thread 3’s program

Fig. 4. Proofs for Threads 1 and 3 of our example. Thread 2 is proven likewise.

Step 3: Connecting Processes to Program Behaviour. The final step is
to deductively prove that Fig. 1’s program refines P, with respect to commu-
nication behaviour, using CSL. To do this, we extend CSL with predicates of
the form Proc(P), which express that the remaining program will communi-
cate as prescribed by the process P—the program’s model. More specifically,
the proof system enforces that every send (e, e′) instruction must be prescribed
by a Proc(send(e, e′) · P) predicate in the logic, and likewise for recv, thereby
enforcing that the process-algebraic model can perform a matching send or recv
action. These actions are then consumed in the logic, while following the struc-
ture of the program. Similarly, query b annotations must be prescribed by a
Proc(?b · P) predicate, and allow to assume b in the logic as result of Step 2, by
which ?b is consumed from the Proc predicate.

Figure 4 illustrates this, by giving the intermediate steps of the proofs of
Threads 1 and 3. An extra query annotation has been added in Thread 1’s
program for obtaining the asserted property from P1. Moreover, the annotated
invariant in Thread 3 is a loop invariant that states that Proc(P′ω

3) prescribes
the communication behaviour of every loop iteration.

Another feature of the logic is that Proc(P) predicates can be split and
merged along parallel compositions inside P , in the style of CSL. This is used in
the top-level proof of the example program, shown in Fig. 5. The ∗ connective
is the separating conjunction from separation logic, which now expresses that
different threads will use different parts of the model. This makes the approach
both modular and compositional, by allowing the program’s top-level proof to
be composed out of the individual independent proofs of its threads.

We encoded the program logic into the Viper concurrency verifier and used
it to fully mechanise the deductive proof of the example program. The Viper
files are available online at [1]. This encoding primarily consists of an axiomatic
domain for processes, containing constructors for the process-algebraic connec-
tives, supported by standard axioms of process algebra (which we have proven

408 W. Oortwijn and M. Huisman

{Proc(P1 ‖ P2 ‖ P3)}
{Proc(P1) ∗ Proc(P2) ∗ Proc(P3)}

{Proc(P1)} {Proc(P2)} {Proc(P3)}
Thread 1’s program Thread 2’s program Thread 3’s program

{Proc(ε)} {Proc(P′ω
2) ∗ false} {Proc(P′ω

3) ∗ false}
{Proc(ε) ∗ Proc(P′ω

2) ∗ false ∗ Proc(P′ω
3) ∗ false}

{false}

Fig. 5. The top-level specification of the example program.

sound in our Coq encoding). The Proc assertions are then encoded as unary
predicates over these process types. Viper can verify correctness of the example
program in under 3 s.

4 Formalisation

This section discusses the assertion language and entailment rules of the pro-
gram logic (Sect. 4.1), the Hoare-triple rules for message passing and querying
(Sect. 4.2), and their soundness (Sect. 4.3).

4.1 Program Logic

The program logic extends intuitionistic concurrent separation logic [17,35],
where the assertion language is defined by the following grammar.

Definition 5 (Assertions)

P,Q ::= b | ∀x.P | ∃x.P | P ∨ Q | P ∗ Q | P −∗Q | e ↪→π e | Proc(P) | P ≈ Q

The assertion e1 ↪→π e2 is the standard heap ownership assertion and
expresses the knowledge that the heap holds the value e2 at heap location e1.
Moreover, π ∈ (0, 1]Q is a fractional permission in the style of Boyland [5] and
determines the type of ownership: write access to e1 is provided in case π = 1,
and read access is provided in case 0 < π < 1.

The P ∗ Q connective is the separating conjunction from CSL, and expresses
that the ownerships captured by P and Q are disjoint, e.g., it is disallowed that
both express write access to the same heap location. The −∗ connective is known
as the magic wand and describes hypothetical modifications of the current state.

The assertion Proc(P) expresses the ownership of the right to send and receive
messages as prescribed by the process P . Here P may contain free variables and
may be replaced by any process bisimilar to P . To handle such replacements,
the assertion P ≈ Q can be used, which expresses that P and Q are bisimi-
lar in the current context. To give an example, one may wish to deduce that
Proc(0 < x : P) ∗ x = 2 entails Proc(P). Even though 0 < x : P has free vari-
ables, it is used in a context where x equals 2, and therefore 0 < x : P ≈ P can
be established. We now discuss the entailment rules for these deductions.

Practical Abstractions for Verifying Message Passing Concurrency 409

↪→-split-merge
e1 ↪→π1+π2 e2 �	 e1 ↪→π1 e2 ∗ e1 ↪→π2 e2

Proc-split-merge
Proc(P ‖ Q) �	 Proc(P) ∗ Proc(Q)

Proc-≈
Proc(P) ∗ P ≈ Q 	 Proc(Q)

≈-bisim
P ∼= Q

	 P ≈ Q

≈-refl
	 P ≈ P

≈-symm
P ≈ Q 	 Q ≈ P

≈-trans
P ≈ Q ∗ Q ≈ R 	 P ≈ R

≈-cond-true
b 	 b : P ≈ P

≈-cond-false
b 	 ¬b : P ≈ δ

Fig. 6. An excerpt of the entailment rules of the program logic.

Proof Rules. Figure 6 shows an excerpt of the proof rules, which are given as
sequents of the form � P and P � Q. All other proof rules are deferred to [1].
The notation P �� Q is shorthand for P � Q and Q � P. All proof rules are
sound in the standard sense.

The ↪→-split-merge rule expresses that heap ownership predicates can be
split (in the left-to-right direction) and merged (right-to-left) along π, allowing
heap ownership to be distributed over different threads. Likewise, Proc-split-
merge allows to split and merge process predicates along the parallel compo-
sition, to allow different threads to communicate as prescribed by the different
parts of the process-algebraic model. Process terms inside Proc predicates may
be replaced by bisimilar ones via Proc-≈. This rule can be used to rewrite pro-
cess terms to a canonical form used by some other proof rules. The ≈ connective
enjoys properties similar to ∼=: it is an equivalence relation with respect to ∗, as
shown by ≈-refl, ≈-symm and ≈-trans, and is a congruence for all process-
algebraic connectives. Finally, ≈ allows to use contextual information to resolve
guards, via ≈-cond-true and ≈-cond-false.

Semantics of Assertions. The semantics of assertions is given as a mod-
elling relation ι, σ, P |= P, where the models are abstractions of program states
(these can also be seen as partial program states). These state abstractions con-
sist of three components, the first being a permission heap. Permission heaps
ι ∈ PermHeap � Loc ⇀fin (0, 1]Q × Val extend normal heaps by associating a
fractional permission to each occupied heap cell. The second component is an
ordinary store σ, and the last component is a closed process P that determines
the state of the process-algebraic model that may be described by P.

The semantics of assertions relies on the notions of disjointness and disjoint
union of permission heaps. Two permission heaps ι1, ι2 are said to be disjoint,
written ι1 ⊥ ι2, if they agree on their contents and the pairwise addition of the
fractional permissions they store are again valid fractional permissions. Further-
more, the disjoint union of ι1 and ι2, which is written ι1 � ι2, is defined to be
the pairwise union of all their disjoint heap cells.

410 W. Oortwijn and M. Huisman

Definition 6 (Disjointness of permission heaps)

ι1 ⊥ ι2 � ∀� ∈ dom(ι1) ∩ dom(ι2) . ι1(�) ⊥cell ι2(�), where

(π1, v1) ⊥cell (π2, v2) � v1 = v2 ∧ π1 + π2 ∈ (0, 1]Q

Definition 7 (Disjoint union of permission heaps)

ι1 � ι2 � λ� .

⎧
⎪⎨

⎪⎩

ι1(�) if � ∈ dom(ι1) \ dom(ι2)

ι2(�) if � ∈ dom(ι2) \ dom(ι1)

(π1 + π2, v) if ι1(�) = (π1, v) ∧ ι2(�) = (π2, v) ∧ π1 + π2 ∈ (0, 1]Q

As one would expect, � is associative and commutative, and ⊥ is symmetric.
Intuitively, if ι1 ⊥ ι2, then ι1 � ι2 does not lose information w.r.t. ι1 and ι2.

The semantics of assertions also relies on a closure operation for clos-
ing process terms. The σ-closure of any process P is defined as P [σ] �
P [x/σ(x)]∀x∈fv(P).

Definition 8 (Semantics of assertions). The interpretation of assertions
ι, σ, P |= P is defined by structural induction on P, such that

ι, σ, P |= b iff [[b]]σ
ι, σ, P |= ∀x.P iff ∀v . ι, σ[x �→ v], P |= P
ι, σ, P |= ∃x.P iff ∃v . ι, σ[x �→ v], P |= P
ι, σ, P |= P ∨ Q iff ι, σ, P |= P ∨ ι, σ, P |= Q
ι, σ, P |= P ∗ Q iff ∃ι1, P1, ι2, P2 . ι1 ⊥ ι2 ∧ ι = ι1 � ι2 ∧ P ∼= P1 ‖ P2 ∧

ι1, σ, P1 |= P ∧ ι2, σ, P2 |= Q
ι, σ, P |= P −∗Q iff ∀ι′, P ′ . (ι ⊥ ι′ ∧ ι′, σ, P ′ |= P) ⇒ ι � ι′, σ, P ‖ P ′ |= Q
ι, σ, P |= e1 ↪→π e2 iff ∃π′ . ι([[e1]]σ) = (π′, [[e2]]σ) ∧ π ≤ π′

ι, σ, P |= Proc(Q) iff ∃Q′ . P ∼= Q[σ] ‖ Q′

ι, σ, P |= Q1 ≈ Q2 iff Q1[σ] ∼= Q2[σ]

All assertions are interpreted intuitionistically in the standard sense [35],
except for the last two cases, which cover the process-algebraic extensions. Both
cases rely on σ-closures to resolve any free variables that may have been intro-
duced by some other proof rules (e.g., the Hoare rule for recv may do this).

Process ownership assertions Proc(Q) are satisfied if there exists a (neces-
sarily closed) process Q′, which is the “framed” process that is maintained by
the environmental threads, such that P is bisimilar to Q[σ] ‖ Q′. The intuition
here is that P must have at least the behaviour that is described by Q. Finally,
Q1 ≈ Q2 is satisfied if Q1 and Q2 are bisimilar with respect to the current state.

4.2 Program Judgments

Judgments of programs are of the usual form I � {P}C {Q} and indicate partial
correctness of the program C, where I ∈ Assn is known as the resource invari-
ant [6]. Their intuitive meaning is that, starting from an initial state satisfying

Practical Abstractions for Verifying Message Passing Concurrency 411

ht-send
I 	 {Proc(send(e1, e2) · P)} send (e1, e2) {Proc(P)}

ht-recv
x �∈ fv(I) ∪ fv(P) y �∈ fv(e)

I 	 {Proc(Σy recv(y, e) · P)} x := recv e {Proc(P [y/x])}
ht-recv-wildcard

x1, x2 �∈ fv(I) ∪ fv(P) {x1, y1} ∩ {x2, y2} = ∅
I 	 {Proc(Σy1,y2 recv(y1, y2) · P)} (x1, x2) := recv {Proc(P [y1/x1][y2/x2])}

ht-query
I 	 {Proc(?b · P)}query b {Proc(P) ∗ b}

Fig. 7. An excerpt of the proof rules for program judgments.

P ∗ I, the invariant I is maintained throughout execution of C, and any final
state upon termination of C will satisfy Q ∗ I.

Figure 7 gives an overview of the new proof rules that are specific to handling
processes. All other rules are standard in CSL and are therefore deferred to [1].

The ht-send rule expresses that, as a precondition, any send command
in the program must be prescribed by a matching send action in the process-
algebraic model. Furthermore, it reduces the process term by ensuring a Proc(P)
predicate, with P the leftover process after the performance of send. The ht-
recv rule is similar in the sense that any x := recv e instruction must be
matched by a recv(y, e) action, but now y can be any message. Process-algebraic
summation is used here to quantify over all possible messages to receive, and in
the post-state of ht-recv this message is bound to x—the received message.
For wildcard receives both the message and the tag are quantified over using
summation. Finally, ht-query allows to “query” for properties that are verified
during process-algebraic analysis.

4.3 Soundness

The soundness statement of the logic relates axiomatic judgments of programs
(Sect. 4.2) to the operational meaning of programs (Sect. 2.1). This soundness
argument guarantees freedom of data-races, memory safety, and compliance of
pre- and postconditions, for any program for which a proof can be derived. The
proof rules of Fig. 7 ensure that every proof derivation encodes that the program
synchronises with its process-algebraic model. To formulate the soundness state-
ment, this axiomatic notion of synchronisation thus needs to have a matching
operational notion of synchronisation. This is defined in terms of an instrumented
semantics that executes programs in lock-step with their process-algebraic mod-
els. The transition rules are shown in Fig. 8 and are expressed as a labelled binary
reduction relation · l−−→→ · between extended program configurations.

412 W. Oortwijn and M. Huisman

P
send(v1,v2)−−−−−−−→ P ′

(C, h, σ)
send(v1,v2)−−−−−−−→ (C′, h′, σ′)

(C, P, h, σ)
send(v1,v2)−−−−−−−→→ (C′, P ′, h′, σ′)

P
recv(v1,v2)−−−−−−−→ P ′

(C, h, σ)
recv(v1,v2)−−−−−−−→ (C′, h′, σ′)

(C, P, h, σ)
recv(v1,v2)−−−−−−−→→ (C′, P ′, h′, σ′)

P
comm(v1,v2)−−−−−−−−→ P ′

(C, h, σ)
comm(v1,v2)−−−−−−−−→ (C′, h′, σ′)

(C, P, h, σ)
comm(v1,v2)−−−−−−−−→→ (C′, P ′, h′, σ′)

P
assn−−→ P ′

(C, h, σ)
qry−−→ (C′, h′, σ′)

(C, P, h, σ)
qry−−→→ (C′, P ′, h′, σ′)

(C, h, σ)
cmp−−→ (C′, h′, σ′)

(C, P, h, σ)
cmp−−→→ (C′, P, h′, σ′)

Fig. 8. The lock-step execution of programs and process-algebraic models.

The semantics of program judgments is defined in terms of an auxiliary pred-
icate safe(C, ι, σ, P, I,Q), stating that C: (i) executes safely for any number of
execution steps with respect to the abstract program state (ι, σ, P); (ii) will
preserve the invariant I throughout its execution; and (iii) will satisfy the post-
condition Q upon termination. To elaborate on (i), a safe execution of C means
that C is race free, memory-safe, and synchronises with P with respect to ·−−→→.

To relate abstract program state to concrete state, a concretisation operation
� · � : PermHeap → Heap is used. The concretisation �ι� of a permission heap ι
is defined to be the heap λ� . �ι(�)�cell, with �(π, v)�cell � v for any π.

Definition 9 (Execution safety). The safe predicate is coinductively defined
so that, if safe(C, ι, σ, P, I,Q) holds, then

– If C = skip, then ι, σ, P |= Q.
– C cannot perform a data-race or memory violation from the current state

(the exact formal meaning of these notions are deferred to [1]).
– For any ιI , ιF , PI , C

′, h′, σ′ and l, if
i. ι ⊥ ιI and ι � ιI ⊥ ιF , and
ii. ¬locked(C) implies ιI , σ, PI |= I, and
iii. (P ‖ PI) � and (C, �ι � ιI � ιF �, σ) l−−→ (C ′, h′, σ′),
then there exists ι′, ι′I , P

′, P ′
I such that

1. ι′ ⊥ ι′I and ι′ � ι′I ⊥ ιF and h′ = �ι′ � ι′I � ιF �, and
2. ¬locked(C ′) implies ι′I , σ, P ′

I |= I, and

3. (P ′ ‖ P ′
I) � and (C,P ‖PI , �ι � ιI � ιF �, σ) l−−→→ (C ′, P ′ ‖P ′

I , h
′, σ′), and

4. safe(C ′, ι′, σ′, P ′, I,Q).

The above definition is based on the similar well-known inductive notion of
configuration safety of Vafeiadis [35]. Vafeiadis’s definition however is coinductive
rather than inductive, as this matches more naturally with the coinductive defi-
nitions of bisimilarity and process safety. Moreover, it encodes that the program

Practical Abstractions for Verifying Message Passing Concurrency 413

refines the process with respect to send/receive behaviour: any execution step of
the program (iii) must be matched by the model (3), and vice versa, by definition
of ·−−→→. Furthermore, the locked(C) predicate determines whether C is locked.
Any program is defined to be locked if it executes an atomic (sub)program.

Definition 10 (Semantics of program judgments)

I |= {P}C {Q} � ∀ι, σ, P . P � =⇒ ι, σ, P |= P =⇒ safe(C, ι, σ, P, I,Q).

Theorem 1 (Soundness). I � {P}C {Q} =⇒ I |= {P}C {Q}.
The soundness proof has been fully mechanised using Coq. The Coq devel-

opment can be found online at [1].

5 Extensions

So far the presented approach only deals with synchronous message passing.
However, the principles of the approach allow for easy extensions to also reason
about asynchronous message passing, message loss and duplication, and collec-
tive operations like barriers and broadcasts, in MPI style [20].

The semantics of asynchronous message passing is that sends do not block
while waiting for a matching recv, but instead push the message onto a message
queue that is accessible by both threads. The specification language of mCRL2
is rich enough to model such queues, for example as a separate process Queue(η)
with η some data-structure that stores messages in order (e.g., a mapping). Then,
rather than letting send and recv communicate directly, they should instead com-
municate with Queue to push and pop messages into η. So to lift the verification
approach to programs with an asynchronous communication semantics, one only
has to make minor changes to the mCRL2 translation of processes.

Message loss can be integrated in a similar way, by introducing an extra
process that “steals” pending messages. For example, one could analyse the
process P ‖ (Σx,t recv(x, t))ω to reason about P ’s behaviour with the possibility
of message loss. Message duplication can be modelled likewise as an extra process
that sends multiple copies of any message it receives. Collective operations may
require some extra bookkeeping, for example to administer which threads have
already received a broadcasted message. However, all collective operations can be
implemented using only sends and receives [19], which means that our approach
also extends well to collective communication.

Finally, the current biggest limitation of our approach is that mCRL2 is
primarily an explicit-state model checker, which limits its ability to reason sym-
bolically about send/receive behaviour. Nonetheless, mCRL2 also comes with
a symbolic back-end [24] that, at the time of writing, can handle specifications
of limited complexity. We already have some preliminary results on reasoning
symbolically about process-algebraic models, and are actively collaborating with
the developers of mCRL2 to improve this.

414 W. Oortwijn and M. Huisman

6 Related Work

There are many modern program logics [9,23,29,33] that provide protocol-like
specification mechanisms, to formally describe how shared state is allowed to
evolve over time. Notably, Sergey et al. [31] employ this notion in a distributed
setting, by using state-transition systems combined with invariants as abstrac-
tions for the communication behaviour of distributed programs. All these pro-
gram logics are however purely theoretical, or can at best be semi-automatically
applied via a shallow embedding in Coq. Our approach distinguishes itself by
focusing on usability rather than expressivity and targets automated concur-
rency verifiers instead, like the combination of mCRL2 and Viper.

Francalanza et al. [11] propose a separation logic for message passing pro-
grams, where the assertion language has primitives for expressing the contents of
communication channels. However, their approach circumvents the need to rea-
son about different thread interleavings by targeting deterministic code, thereby
sidestepping an important issue that we address: most problems in realistic dis-
tributed programs are the result of intricate thread interleavings. Lei et al. [18]
propose a separation logic for modular verification of message passing programs.
They achieve modularity via assume-guarantee reasoning, but thereby require
users of the logic to manually specify thread interference, which is often non-
trivial and non-intuitive. Villard et al. [37] propose a similar approach also based
on separation logic, but here the main focus is on transferring heap ownership
between threads, using message passing techniques.

Also related are session types [15,16], which are a well-studied type discipline
for describing protocols of message passing interaction between processes over
communication channels (i.e., sessions). As with our approach, these protocols
are specifications of the communication behaviour of processes, and are usually
expressed using process algebra, most often (variants of) the π-calculus. How-
ever, our approach has a slightly different aim: it uses process algebra not only
to structure the communication behaviour, but also to reason about it, and to
combine this reasoning with well-known deductive techniques for concurrency
verification (viz. CSL) in a sound and practical manner.

This paper builds upon our earlier work [26,27], in which process-algebraic
abstractions are used to describe how the heap evolves over time in shared-
memory concurrent programs (befitting the notion of protocols given earlier).
However, in this paper the abstractions have a different purpose: they instead
capture message passing behaviour in a distributed setting. Our abstraction
language is therefore different, for example by supporting summation and primi-
tives for communication. Furthermore, in contrast to earlier work, this approach
allows to use the result of process-algebraic analysis at intermediate points in
the proof derivation of a program, via the novel query annotation.

7 Conclusion

This paper demonstrates how a combination of complementary verification tech-
niques can be used to reason effectively about distributed applications, by natu-

Practical Abstractions for Verifying Message Passing Concurrency 415

rally combining data-oriented reasoning via deductive verification, with temporal
reasoning using algorithmic techniques. The approach is illustrated on a small,
but intricate example. Our technique uses CSL to reason about data-centric
properties of message passing programs, which are allowed to have shared state,
and combines this with standard process-algebraic reasoning to verify proper-
ties of inter-thread communication. This combination of approaches is proven
sound using Coq, and can easily be extended, e.g., to handle asynchronous- and
collective communication, message loss, and message duplication.

As future work, we plan to extend process-algebraic reasoning to deal with a
reasonable subset of MPI [20], with the goal to develop a comprehensive verifi-
cation framework that targets real-world programming languages. Moreover, we
are actively collaborating with the mCRL2 developers to improve support for
symbolic reasoning. We will also apply our approach on larger case studies.

Acknowledgements. This work is partially supported by the NWO VICI 639.023.710
Mercedes project and by the NWO TOP 612.001.403 VerDi project.

References

1. Supplementary material for the paper. https://github.com/utwente-fmt/iFM19-
MessagePassingAbstr

2. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P., Ulbrich, M.: Deduc-
tive Software Verification - The KeY Book. Springer, Heidelberg (2016). https://
doi.org/10.1007/978-3-319-49812-6

3. Ahrendt, W., Chimento, J., Pace, G., Schneider, G.: Verifying data- and control-
oriented properties combining static and runtime verification: theory and tools.
FMSD 51(1), 200–265 (2017). https://doi.org/10.1007/s10703-017-0274-y

4. Baeten, J.: Process Algebra with Explicit Termination. Eindhoven University of
Technology, Department of Mathematics and Computing Science (2000)

5. Boyland, J.: Checking interference with fractional permissions. In: Cousot, R. (ed.)
SAS 2003. LNCS, vol. 2694, pp. 55–72. Springer, Heidelberg (2003). https://doi.
org/10.1007/3-540-44898-5 4

6. Brookes, S.: A semantics for concurrent separation logic. Theoret. Comput. Sci.
375(1–3), 227–270 (2007). https://doi.org/10.1016/j.tcs.2006.12.034

7. Brookes, S., O’Hearn, P.: Concurrent separation logic. ACM SIGLOG News 3(3),
47–65 (2016). https://doi.org/10.1145/2984450.2984457

8. Bunte, O., et al.: The mCRL2 toolset for analysing concurrent systems. In: Vojnar,
T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 21–39. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17465-1 2

9. Dinsdale-Young, T., Dodds, M., Gardner, P., Parkinson, M.J., Vafeiadis, V.: Con-
current abstract predicates. In: D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol.
6183, pp. 504–528. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14107-2 24

10. Fokkink, W., Zantema, H.: Basic process algebra with iteration: completeness of
its equational axioms. Comput. J. 37(4), 259–267 (1994). https://doi.org/10.1093/
comjnl/37.4.259

11. Francalanza, A., Rathke, J., Sassone, V.: Permission-based separation logic for
message-passing concurrency. Log. Methods Comput. Sci. 7, 1–47 (2011). https://
doi.org/10.2168/lmcs-7(3:7)2011

https://github.com/utwente-fmt/iFM19-MessagePassingAbstr
https://github.com/utwente-fmt/iFM19-MessagePassingAbstr
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/s10703-017-0274-y
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1016/j.tcs.2006.12.034
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1007/978-3-030-17465-1_2
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1007/978-3-642-14107-2_24
https://doi.org/10.1093/comjnl/37.4.259
https://doi.org/10.1093/comjnl/37.4.259
https://doi.org/10.2168/lmcs-7(3:7)2011
https://doi.org/10.2168/lmcs-7(3:7)2011

416 W. Oortwijn and M. Huisman

12. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4 16

13. Groote, J.F., Mousavi, M.R.: Modeling and Analysis of Communicating Systems.
MIT Press, Cambridge (2014)

14. Grumberg, O., Veith, H. (eds.): 25 Years of Model Checking: History, Achieve-
ments, Perspectives. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-69850-0

15. Honda, K., et al.: Structuring communication with session types. In: Agha, G., et al.
(eds.) Concurrent Objects and Beyond. LNCS, vol. 8665, pp. 105–127. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-44471-9 5

16. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline
for structured communication-based programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998). https://doi.org/
10.1007/BFb0053567

17. Hur, C., Dreyer, D., Vafeiadis, V.: Separation logic in the presence of garbage
collection. In: LICS, pp. 247–256 (2011). https://doi.org/10.1109/LICS.2011.46

18. Lei, J., Qiu, Z.: Modular reasoning for message-passing programs. In: Ciobanu,
G., Méry, D. (eds.) ICTAC 2014. LNCS, vol. 8687, pp. 277–294. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-10882-7 17

19. Luo, Z., Zheng, M., Siegel, S.: Verification of MPI programs using CIVL. In:
EuroMPI. ACM (2017). https://doi.org/10.1145/3127024.3127032

20. MPI: A Message-Passing Interface standard. http://www.mpi-forum.org/docs.
Accessed Apr 2019

21. Milner, R.: Communication and Concurrency. Prentice-Hall Inc., Upper Saddle
River (1989)

22. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5 2

23. Nanevski, A., Ley-Wild, R., Sergey, I., Delbianco, G.A.: Communicating state tran-
sition systems for fine-grained concurrent resources. In: Shao, Z. (ed.) ESOP 2014.
LNCS, vol. 8410, pp. 290–310. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-54833-8 16

24. Neele, T., Willemse, T.A.C., Groote, J.F.: Solving parameterised Boolean equation
systems with infinite data through quotienting. In: Bae, K., Ölveczky, P.C. (eds.)
FACS 2018. LNCS, vol. 11222, pp. 216–236. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-02146-7 11

25. O’Hearn, P.: Resources, concurrency and local reasoning. Theoret. Comput. Sci.
375(1–3), 271–307 (2007). https://doi.org/10.1007/978-3-540-28644-8 4

26. Oortwijn, W., Blom, S., Gurov, D., Huisman, M., Zaharieva-Stojanovski, M.: An
abstraction technique for describing concurrent program behaviour. In: Paskevich,
A., Wies, T. (eds.) VSTTE 2017. LNCS, vol. 10712, pp. 191–209. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2 12

27. Oortwijn, W., Blom, S., Huisman, M.: Future-based static analysis of message pass-
ing programs. In: PLACES, pp. 65–72 (2016). https://doi.org/10.4204/EPTCS.
211.7

28. Peled, D., Gries, D., Schneider, F. (eds.): Software Reliability Methods. Springer,
New York (2001). https://doi.org/10.1007/978-1-4757-3540-6

https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-540-69850-0
https://doi.org/10.1007/978-3-662-44471-9_5
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1109/LICS.2011.46
https://doi.org/10.1007/978-3-319-10882-7_17
https://doi.org/10.1145/3127024.3127032
http://www.mpi-forum.org/docs
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-642-54833-8_16
https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1007/978-3-030-02146-7_11
https://doi.org/10.1007/978-3-540-28644-8_4
https://doi.org/10.1007/978-3-319-72308-2_12
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.4204/EPTCS.211.7
https://doi.org/10.1007/978-1-4757-3540-6

Practical Abstractions for Verifying Message Passing Concurrency 417

29. da Rocha Pinto, P., Dinsdale-Young, T., Gardner, P.: TaDA: a logic for time and
data abstraction. In: Jones, R. (ed.) ECOOP 2014. LNCS, vol. 8586, pp. 207–231.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44202-9 9

30. de Roever, W., et al.: Concurrency Verification: Introduction to Compositional and
Noncompositional Methods. Cambridge University Press, Cambridge (2001)

31. Sergey, I., Wilcox, J., Tatlock, Z.: Programming and proving with distributed pro-
tocols. In: POPL, vol. 2 (2017). https://doi.org/10.1145/3158116

32. Shankar, N.: Combining model checking and deduction. Handbook of Model
Checking, pp. 651–684. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8 20

33. Svendsen, K., Birkedal, L., Parkinson, M.: Modular reasoning about separation of
concurrent data structures. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS,
vol. 7792, pp. 169–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-37036-6 11

34. Uribe, T.E.: Combinations of model checking and theorem proving. In: Kirchner,
H., Ringeissen, C. (eds.) FroCoS 2000. LNCS (LNAI), vol. 1794, pp. 151–170.
Springer, Heidelberg (2000). https://doi.org/10.1007/10720084 11

35. Vafeiadis, V.: Concurrent separation logic and operational semantics. MFPS,
ENTCS 276, 335–351 (2011). https://doi.org/10.1016/j.entcs.2011.09.029

36. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74407-8 18

37. Villard, J., Lozes, É., Calcagno, C.: Proving copyless message passing. In: Hu, Z.
(ed.) APLAS 2009. LNCS, vol. 5904, pp. 194–209. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-10672-9 15

38. Wolper, P., Lovinfosse, V.: Verifying properties of large sets of processes with
network invariants. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 68–80.
Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-52148-8 6

https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1145/3158116
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-319-10575-8_20
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/978-3-642-37036-6_11
https://doi.org/10.1007/10720084_11
https://doi.org/10.1016/j.entcs.2011.09.029
https://doi.org/10.1007/978-3-540-74407-8_18
https://doi.org/10.1007/978-3-642-10672-9_15
https://doi.org/10.1007/3-540-52148-8_6

	Practical Abstractions for Automated Verification of Message Passing Concurrency
	1 Introduction
	2 Programs and Processes
	2.1 Programs
	2.2 Processes

	3 Verification Example
	4 Formalisation
	4.1 Program Logic
	4.2 Program Judgments
	4.3 Soundness

	5 Extensions
	6 Related Work
	7 Conclusion
	References

