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Land Cover Classification Using Extremely
Randomized Trees: A Kernel Perspective

Azar Zafari , Raul Zurita-Milla , and Emma Izquierdo-Verdiguier

Abstract— The classification of the ever-increasing collections
of remotely sensed images is a key but challenging task. In this let-
ter, we introduce the use of extremely randomized trees known as
Extra-Trees (ET) to create a similarity kernel [ET kernel (ETK)]
that is subsequently used in a support vector machine (SVM) to
create a novel classifier. The performance of this classifier is
benchmarked against that of a standard ET, an SVM with both
conventional radial basis function (RBF) kernel, and a recently
introduced random forest-based kernel (RFK). A time series of
Worldview-2 images over smallholder farms is used to illustrate
our study. Four sets of features were obtained from these images
by extending their original spectral bands with vegetation indices
and textures derived from gray-level co-occurrence matrices. This
allows testing the performance of the classifiers in low- and
high-dimensional problems. Our results for the high-dimensional
experiments show that the SVM with tree-based kernels provide
better overall accuracies than with the RBF kernel. For prob-
lems with lower dimensionality, SVM-ETK slightly outperforms
SVM-RFK and SVM-RBF. Moreover, SVM-ETK outperforms
ET in most of the experiments. Besides an improved overall
accuracy, the main advantage of ETK is its relatively low
computational cost compared to the parameterization of the RBF
and RFK. Thus, the proposed SVM-ETK classifier is an efficient
alternative to common classifiers, especially in problems involving
high-dimensional data sets.

Index Terms— Image classification, random forest, smallholder
agriculture, support vector machine (SVM), very high spatial
resolution satellite images.

I. INTRODUCTION

W ITH the advent of new sensors and open data policies,
large data sets are becoming available. This includes

large collections of remotely sensed (RS) images that often
need to be classified to support their use in various domains
and applications [1]. Yet, traditional classification methods
cannot properly deal with the challenge of handling large
and complex data sets [2]. Moreover, access to images with
higher spatial, spectral resolutions facilitates the extraction of
extra features from RS images. These features are required
because elements in the scene may appear at various scales
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and orientations because of variable weather and lighting
conditions [3]. Extra features often lead to high dimensionality,
which is the most important challenge in recent RS image
classification tasks [2].

Kernel methods can efficiently deal with nonlinear and
high-dimensional problems. Support vector machine (SVM)
is one of the most representative kernel-based classification
methods, and radial basis function (RBF) is the most common
kernel used with this classifier [4]. Using an SVM-RBF
classifier requires optimization of two parameters (i.e., RBF
bandwidth and SVM regularization parameters) through a
computationally demanding cross-validation process [4]. This
is a limitation of SVM-RBF [5]. Another limitation to accuracy
and efficiency of SVM-RBF is experienced when the number
of features increases for a certain amount of training data [6].
The reason for this is the curse of dimensionality, also called
the Hughes phenomenon. Moreover, the RBF kernel is typ-
ically computed with all of the available features assuming
that they are all informative. High-dimensional problems often
require to select the most important features, and SVM-RBF
cannot directly select the most important features. This is
another known limitation of SVM-RBF [6], [7]. Another well-
known classifier for high-dimensional problems is random
forest (RF) [8]. RF grows trees based on recursive partitioning
of nodes, and it generally uses the Gini index to select the
best split in a node. RF is fast, not sensitive to the choice of
parameters, produces good results with relatively low amounts
of training samples, and is resistant to noise in training samples
and to overfitting [9]. These characteristics alongside with
its tree-based structure make it a suitable classifier to draw
partitions in the data and to obtain an RF-based kernel (RFK)
that quantifies similarities between samples [5], [10]. The
pairwise similarities between the samples reflect whether they
fall in the same end node or not [11]. By using default values
for the RF parameters, the classification results of SVM-RFK
are comparable to those obtained by SVM-RBF as shown
for an AVIRIS data set often used in benchmarking studies
(i.e., Salinas) and for a time series of Worldview-2 images
over Sukumba, Mali [5]. Hence, RFK is an effective alternative
to RBF, particularly when combined with RF-based feature
selection methods [5]. Nevertheless, the structure of this kernel
is highly dependent on the training labels since it is built
based on classification results of RF. This means that the
RFK can overfit to the training data especially when the
number of features is low since the structure of trees would
be correlated [12]. Moreover, RFK is negatively impacted by
possible mislabeled samples in the training data. To overcome
these downsides, the randomization level of the RF ensemble
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should be increased to have trees that are less correlated.
This can be achieved by using extremely randomized trees,
a method commonly known as Extra-Trees (ET) [13]. The
ET also generates an ensemble of unpruned decision trees,
but it splits nodes by choosing cut points fully at random
and it uses all training sample rather than bootstrap subsets
to grow the trees [13]. In extreme cases, ET builds totally
randomized trees (ToRT). The structure of these trees is
independent of the training labels [13]. The randomization
level can be adjusted to the problem at hand by selecting
suitable parameters [13]. Several articles have applied ET
classifier for land cover classification and have shown that
ET can outperform RF and SVM-RBF in terms of overall
accuracy (OA) [14], [15]. Besides OA, the main strong point
of ET is its computational efficiency [13]. Like RF, the tree-
based structure of the ET can be used to create partitions in
the data and to generate an ET kernel (ETK) that encodes
similarities between samples based on these partitions [13].
Using ETK as an alternative to RBF and RFK, one can
avoid the computational cost associated with parametrizing the
RBF kernel and reduce the probability of getting an overfitted
kernel. The main goal of this letter is to present and evaluate a
novel classifier created by combining an ET-based kernel and
SVM (SVM-ETK). We evaluate our approach by comparing
it against ET, SVM-RFK, and SVM-RBF. Our evaluation is
illustrated with a time series of very high spatial resolution
data acquired over agricultural lands.

II. ET KERNEL

ET grows an ensemble of unpruned decision trees using the
classical top–down procedure through randomly recursively
splitting the data into child nodes until reaching the termi-
nal nodes defiend by a stopping criterion [13]. ET differs
from other decision-tree-based ensembles, such as RF in
two cases [14]. First, ET does not search extensively for
an optimized cut point in the nodes; this causes the tree
structures to be independent of the target variable values of
the learning samples [14]. Second, it uses the same training
sample for growing all trees rather than a bootstrap replica.
The explicit randomization of cut point and feature combined
with ensemble averaging reduces the variance among the
trees. Using full training samples rather than bootstrapped
samples reduces the bias [13]. Furthermore, the computational
load of training for ET is less than that required to train
RF since it does not search intensively for an optimal cut
point [13]. ET has three parameters in common with RF. Like
RF, a random subset of all the available features is evaluated
when looking for the best split point. The number of features
in the subset is controlled by the user and is typically called
mtry. The second common parameter is Nt that is the number
of the decision trees to be generated. It has been shown
that for ET and RF, the prediction error is a monotonically
decreasing function of a number of trees [12], [13]. The third
common parameter is nmin that is the minimum sample size
for splitting a node with the default value of one (or two)
[12], [13]. The optimal value for nmin increases depending
on the level of mislabeled samples in training data [13].
The higher values for this parameter result in smaller trees,

smaller variance, and higher bias [12], [13]. In addition to
mtry, Nt , and nmin, the specific parameter to ET is the
number of random cut points (Ncp) to consider for each
selected feature in splitting a node. In the most extreme case,
ET randomly picks a single feature (i.e., mtry is one) and a
single cut point at each node [13]. This is typically called
ToRT, and its structure is independent of the labels of training
samples. However, the level of randomization can be optimized
to the problem with mtry and Ncp parameters [13], [14].
When ET uses more than one feature or/and random cut point
in splitting the nodes, such as RF, it uses the Gini index or
normalization of information gain to select the best cut point
out of the randomly selected splits [13].

Tree-based models, such as RF and ET, can be used to
generate kernels using a feature space defined by the termi-
nal nodes of the trees; this is comprehensively proven and
explained in [13]. The characteristics of ET, and consequently
of the ETK, make it less dependent on the training labels
than RF and its kernel version. This reduces the probability of
getting an overfitted kernel. The dependence of the ETK on the
training labels can be controlled with the randomization level,
which can be adjusted to the problem at hand by selecting
suitable ET parameters. Mathematically, ETK is a square
matrix with the size of the training set, where the element
(i, j) contains a number of times that the samples i and j fall
in the same terminal node normalized by the number of trees
in the ensemble. In other words, if two samples are fallen in
the same terminal node of a tree, the similarity is equal to one;
otherwise, it is zero. The similarity of each tree [Ktn(xi , x j )]
is obtained by [13], [14]

Ktn (xi , x j ) = I [ q(xi) = q(x j )] (1)

where q is a terminal node and tn is the nth tree of the ET.
Then, the ETK matrix is calculated by the average of tree
kernel matrices

ETK = 1

Nt

Nt∑

tn=1

Ktn (2)

where Nt is the number of trees used in the ET. ETK is the
average of kernel matrices obtained with all trees and can be
used in kernel-based methods, such as SVM (i.e., SVM-ETK).

III. DATA AND EXPERIMENTS

A. Data and Study Area

The study area is located near Sukumba in Mali, West
Africa. A time series of WorldView-2 images is used to
illustrate this study. This data set includes seven multi-
spectral images that cover the cropping season of 2014
[16]. Ground-truth labels for five common crops including
cotton, maize, millet, peanut, and sorghum were collected
for nine fields per crop (45 fields) through fieldwork. The
Sukumba images are atmospherically corrected and coregis-
tered, and trees and clouds are masked [16]. These images
and the corresponding ground data are part of the STARS
project. The Sukumba data set originally contains 56 bands
(i.e., seven images with eight bands each). The number of
features was extended by obtaining the normalized difference
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TABLE I

EXPERIMENTS DESCRIPTION (N f : NUMBER OF FEATURES)

vegetation index (NDVI), the difference vegetation index
(DVI), the ratio vegetation index (RVI), the soil-adjusted
vegetation index (SAVI), the modified soil-adjusted vegeta-
tion index (MSAVI), the transformed chlorophyll absorption
reflectance index (TCARI), and the enhanced vegetation index
(EVI). The data set, the study area, a list, and a short explana-
tion of VIs used in this study can be found in [5]. Furthermore,
the pairwise band combinations by means of the difference,
ratio, and normalization between bands 2 and 8 were gener-
ated increasing the number of the features until 525. Next,
the number of features for Sukumba data set was extended by
adding the gray-level co-occurrence matrix (GLCM) textures
to the spectral features and VIs. These GLCM-based features
capture spatial relationships across the pixels [17]. The GLCM
textures derived from the Sukumba data set are also presented
and explained comprehensively in [5] and [18]. Stacking all
the spectral, VIs, and GLCM features of VIs, the total number
of features reached 9450. This number further was increased
by including extra features, namely, green leaf index (GLI) and
local binary pattern (LBP) [18]. With this addition, the final
number of features available for the case ALL reached 10 584.
Table I shows the subsets and quantity of the features that are
used in four tests to examine the proposed method in this letter.
In such large data sets in last two experiments (i.e., BVITVI
and ALL), there are many correlated features, and some of
them might be not helpful for the classification task at hand
(i.e., noise).

B. Experimental Setup

First, the polygons representing farms were split into
four subpolygons. Two subpolygons were used to choose
the training samples and the other two, the test samples.
Then, the train and test sets were split into ten random
subsets, with a balanced number of samples per class
(130 and 100 samples per class for training and test, respec-
tively). Final results were obtained by averaging the results
obtained with ten subsets available for each spectral case
(see Table I). To investigate the influence of ET parameters
on ET kernel performance, the ranges {100, 300, 500} and
{1, 2, 3, 4, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50} are used for Nt

and Ncp, respectively. The mtry parameter is set to its default
value of the square root of the number of features. The nmin
parameter is also set to its default (i.e., nmin = 1) because a
moderate level of mislabeled samples is expected [13]. More-
over, ToRT results are obtained by setting mtry and Ncp to 1.
To obtain RFK, Nt and mtry parameters in RF were set to their
default values of 500 trees and the square root of the number of
features because this stabilizes the error of the classification in
the most applications [5]. The optimization of RF parameters
for obtaining the RFK is skipped because of the marginal

gain in OA of SVM-RFK compared to added computational
cost [5]. Thus, the performances of the kernels derived from
RF and ET are compared using models trained with default
parameters for both methods. For the RBF kernel, the optimum
bandwidth was found using the range [0.1, 0.9] of the quantiles
of the pairwise Euclidean distances (D = ‖x − x ′‖2) between
the training samples, and the optimal C value was found in the
range of [5, 500]. For the RBF kernel, fivefold cross-validation
was used to find the optimal bandwidth and C values. Fivefold
cross-validation was also used to optimize C for the RFK and
ETKs. In all the cases, the one-versus-one multiclass strategy
implemented in LibSVM was used [19]. Classification results
are compared in terms of their average OA (OA) and Cohen’s
kappa index (κ̄). Next, crop classifications maps are obtained
through the classifiers pertinent to the set of train and test
samples, which provides the highest test OA between the other
ten sets of train and test samples. For visibility reasons, two
classified fields per crop are shown for each classifier. In the
end, OA and κ of the top-performing classifiers are obtained
for all available labeled samples in the 45 fields.

IV. RESULTS AND DISCUSSION

Fig. 1 displays OAs of ten test subsets versus different
parameters configurations for ET and SVM-ETK classifiers.
Fig. 1 shows that SVM-ETK always outperforms ET for
all the cases with VIs (see Table I) and irrespective of the
value of Nt and Ncp. For the experiment with B features,
OA of SVM-ETK and ET overlaps in some ranges of Ncp.
Yet, SVM-ETK outperforms ET in most ranges particularly
for small values of Ncp. We can also observe in Fig. 1 that
the peaks of OA for SVM-ETK correspond to higher levels
of randomization (i.e., Ncp equal or less than 10). Nonethe-
less, the difference between OAs obtained with the default
(i.e., 1) and the best value of Ncp is less than 1% for the
SVM-ETK classifier. For ET, lower levels of randomization
lead to the best OAs and optimizing the Ncp results in 1%
improvement in OA for the experiments with BVITVI and
ALL features. Fig. 1 also shows that the higher number of
trees (i.e., 300 and 500) generates higher OAs for both ET
and SVM-ETK.

Table II compares OA and κ̄ of the best and configurations
of SVM-ETK with SVM-RBF, SVM-RFK, and ET classifiers.
In Table II, the classifiers with the best parameters are shown
with ∗ and with the default parameters are shown with d
(i.e., ET∗ and ETd ). Focusing on the experiment with B
features, the SVM-ETKs with an OA of 83.38% slightly out-
perform both SVM-RFK and SVM-RBF with OAs of 80.68%
and 82.08%, respectively. The default values of 500 and
1 for Nt and Ncp parameters of SVM-ETK give the best OA
obtained in the tested ranges. Thus, the results for SVM-ETKd

and SVM-ETK∗ are the same for this experiment.
Focusing on the experiment with BVI features, SVM-ETKs

and SVM-RBF perform almost equally considering OA and
SD of test subsets, and these two classifiers outperform ET
and SVM-RFK. Increasing the number of features to 8498 in
the experiment with BVITVI features results in a decrease
of 6.62% in OA for SVM-RBF, while it slightly improves
the results of ET∗, SVM-ETKs, and SVM-RFK. Using the
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Fig. 1. OA for SVM-ETK and ET classifiers versus the number of random cut points for each candidate feature (Ncp) for the four experiments.

TABLE II

CLASSIFICATION RESULTS FOR DIFFERENT CASES AND CLASSIFIERS. Nt
AND Ncp ARE, RESPECTIVELY, THE NUMBER OF TREES AND THE

NUMBER OF RANDOM CUT POINTS PER CANDIDATE FEATURE. ∗
AND d ARE, RESPECTIVELY, THE BEST AND DEFAULT CONFIG-

URATIONS

tree-based kernels in an SVM for this experiment gives almost
equal results considering their OA and SD.

In the fourth experiment with 10 584 features, the
SVM-ETKs and SVM-RFK perform almost equally and they
considerably outperform ET and SVM-RBF. Our results show
that SVM-RBF for the possibly noisy high-dimensional exper-
iments (i.e., BVITVI and ALL) does not generate competitive
results compared to the tree-based classifiers. The highest OA
is 85.70% and obtained for SVM-ETK∗ with all features.

The McNemar test at 5% significance level shows that the
difference between the classification results of SVM-ETK∗,
SVM-ETKd , and SVM-RFK is not statistically significant for
higher dimensional cases, including the experiment with BVI
features. For the experiment with B features, the McNemar test
shows that the results of both SVM-ETK∗ and SVM-ETKd are
statistically significant compared to the results of SVM-RFK.
This confirms that RFK and ETKs perform equally well for
higher dimensional experiments, but ETKs outperform RFK
for the lowest dimensional case.

The OA and κ̄ results for ToRT and ToRT kernel in an
SVM (SVM-ToRTK) are shown in Table III. These results

TABLE III

CLASSIFICATION RESULTS OF TORT AND TORT
KERNELS IN AN SVM (I.E., SVM-TORTK)

were only obtained for 300 and 500 trees considering the
results of the experiments shown in Fig. 1. Table III shows
that using 300 and 500 trees generates similar results. These
results show that SVM-ToRTK outperforms ToRTK. Compar-
ing Tables II and III, SVM-ToRTK, SVM-ETKs, and SVM-
RBF yield similar OA and κ̄ for the experiment with B
features. For the experiment with BVI features, SVM-ToRTK
also gives competitive results compared to the other classi-
fiers, but for the higher number of features, the performance
of SVM-ToRTK decreases significantly. ToRT acts like an
unsupervised classifier and results in a label independent
kernel that cannot deal with high-dimensional noisy problems,
but it can be used as an alternative to RBF, RFK, and ET
when the number of features is low. This will also reduce
the computational load for obtaining the kernel compared
to ETK. Thus, increasing the level of randomization in ET
to its most extreme case (i.e., ToRT) is only preferred for
the smaller number of features since it slightly improves
the results (improving OA and reducing its pertinent SD in
comparison with ETK) and reduces the computational cost.

Finally, we present maps, OA, and κ̄ (see Table IV)
corresponding to the whole available ground-truth labels in
all 45 fields in the study area. The classification maps are
obtained with B features and through the trained classifier
corresponding to the set of train and test with the highest OA.
Looking into Table IV, all classifiers perform good and at
about same level when obtained based on B features and when
applied to the whole study area, while SVM-ETK slightly
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TABLE IV

OA AND κ̄ OVER THE 45 FIELDS IN THE STUDY AREA

Fig. 2. Crop field per ground-truth class along with their OA obtained for
the different classifiers using B and OAs for five fields on top.

outperforms by improving OA and κ̄. For visibility reasons,
we only present classified fields. In particular, Fig. 2 shows
one field for each of the classes considered. Looking into
polygons individually, SVM-ETK significantly improves OA
for the fields with the class Sorghum compared to ET, SVM-
RBF, and SVM-RFK. In general, the SVM-ETK classifier
slightly outperforms other classifiers in terms of OAs for these
polygons, and SVM-RBF gives the lowest OA.

V. CONCLUSION

In this letter, we present and evaluate a novel classifier:
SVM-ETK. The evaluation is done by comparing its perfor-
mance against that of standard ET, SVM-RBF, and SVM-RFK.
For this, we use a high spatial resolution time series over
smallholder African farms expanded to create various dimen-
sionality levels (from 56 to 10 584 features). In the experiments
with low dimensionality, the average classification metrics
show that the classifiers perform at about the same level
although SVM-ETK slightly outperforms the results of the
other classifiers. In the high-dimensional experiments, the tree-
based kernels led to considerably higher overall accuracies
compared to RBF while reducing the cost of the classifica-
tion. Using ToRT (i.e., ET with the most extreme level of
randomization) to create a kernel gives competitive results
when the number of features is relatively low. This kernel
reduces the computational costs, but being totally independent

of the labels, it fails in our high-dimensional experiments.
Overall, our results show that ET-based kernels are efficient
and effective alternatives to the top-performing kernels used
by the RS community. Further studies are required to eval-
uate the performance of the proposed methods on various
benchmarking data sets.
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