
A deductive and typed object-oriented language

Ren~ Bal and Herman Balsters*

Computer Science Department, University of Twente,
P.O. Box 217, 7500 AE Enschede,

The Netherlands

A b s t r a c t . In this paper we introduce a logical query language extended
with object-oriented typing facilities. This language, called DTL (from
DataTypeLog), can be seen as an extension of Datalog equipped with
complex objects, object identities, and multiple inheritance based on
Cardelli type theory. The language also incorporates a very general no-
tion of sets as first-class objects. The paper offers a formal description
of DTL, as well as a denotational semantics for DTL programs.

Keywords: Query languages, object-oriented databases, inheritance,
type theory, resolution, denotational semantics.

1 I n t r o d u c t i o n a n d r e s u l t s

In the last decade, the merge of object-oriented programming with object-oriented
data structuring principles has lead to a rapid increasement of new developments
in the field of databases and logical languages. Object-oriented databases have
the advantages of a clean conceptual design as well as the possibility of en-
forcing better software engineering. Systems equipped with subtyping facilities,
such as the Cardelli object-oriented type system (cf. [Card88]), offer a concise
and clear way to deal with (multiple) inheritance. Inheritance is a very powerful
modelling tool and forms the backbone of many object-oriented data models.
Also th'g availability of complex objects, such as records, lists, variants, and sets
offer a wide range of expressiveness. Examples of data models with facilities as
mentioned above are 02 (ILeal89]), Iris ([LyVi87]) and Machiavelli ([OhBB89]).

Object-orientation has also not left the field of logical languages untouched.
Languages like LIFE (lASt-K91]), F-Logic ([KiLW90]), and [BrLM90,IbCu90,
McCa92,MoPog0] are examples of such languages that make extensive use of
object-oriehted principles to enhance the field of logic programming with the
expressiveness and concise modelling possibilities, typical for the object-oriented
paradigm. Especially the use of subtyping makes logic programs more structured
and easier to understand. In short, the combination of logic programming and
object orientation is very promising.

Relational databases and logic programming have been combined resulting in
so-called deductive databases. Deductive databases highlight the ability to use a

* Our E-mai l addresses are, resp.: r e n e ~ c s . u t w e n t e , n l , b a l s t e r s � 9 u t w e n t e . n l

341

logic programming style for expressing deductions concerning the contents of the
database. Examples of such languages are Datalog [CeGTg0] and LDL [NaTs89].
These languages have gained considerable popularity due to the ease in which it
is possible to specify very complex queries.

Recently, research interest has started to arise in the combination of object ori-
entation, databases and logical languages. For example, research initiatives have
been started aimed at extending Datalog with object-oriented concepts. In such
extensions, the logical component is used to specify the schema of the database,
and a distinction is made between base relations and derived relations. Examples
of such systems are LOGRES [CCCTg0], and Complex Datalog [GrLR92]. Other
examples are object-oriented logical languages primarily used for the querying of
object-oriented databases, such as [AbKa89,Abitg0,AbGr88] and LLO [LoOz91].

The language described in this paper is called DTL, which stands for DataType-
Log. DTL is designed as a query language for a database specified in a language
called TM. TM ([BaBZ93]) is a high-level specification language for object-
oriented database schemas, and has all the facilities that one would expect from
a state-of-the-art object-oriented data model. The main novelties of the TM
language are the incorporation of predicative sets as first-class objects, and the
possibility of defining static constraints of different granularity (i.e. at the ob-
ject level, class level, and database level), and this in the context of multiple
inheritance and full static typecheckability.

In DTL we have taken an approach which sometimes differs considerably from
existing object-oriented query languages. For example, answers to DTL queries
result in a set of homogeneous elements, in the sense that these elements all have
the same so-called minimal type w.r.t, subtyping. This means that if a query asks
for persons, then the answer should consist of persons and not, for example,
also specializations of persons, say employees. This approach differs from the
one followed by F-logic and LIFE, where basically there is no distinction made
between types and instantiations of types. Our approach is also different from the
one followed by IQL, ILOG ([HuYo90]), LOGRES and LLO, where the answer
results in a collection of object identifiers. The object identifiers in these cases are
related to o-values by means of an o-value assignment (to employ terminology
taken from IQL), and in this way the answers actually include specializations of
the requested original type.

As mentioned before, DTL incorporates general set constructions, including
predicatively defined sets, as first-class objects; i.e. such sets are actual terms
in the language. Languages like LOGRES, IQL and LLO also support sets, be
it that these sets are restricted to enumerated sets as actual terms in the lan-
guage. A distinct feature of DTL is its powerful usage of combining predicates
and (multiple) inheritance; languages like LLO, LIFE and F-logic also offer a
notion of inheritance, but in combination with predicates the version in DTL is
less restricted. Yet another feature of DTL is the possibility to navigate freely
through the terms by successive projection on attribute components. In other
systems like LOGRES, Complex Datalog, IQL and LLO such a navigation is

342

also possible, be it that the process of navigation in these languages is more
complicated than in DTL.

The rest of the paper is organized as follows. We first give an impression of the
TM datamodel and offer an example of a TM database specification. After that
we wilt offer an introduction to the DTL language. In section 3 we shall give
a more thorough account of DTL including matters concerning typing and the
combination of using types and predicates in programs. In section 4 we will give
a denotational semantics for DTL programs, and we end with some conclusions
and suggestions for future research.

2 T h e d a t a m o d e l T M

DTL is meant as a well-founded query language for TM, and within this paper
we will only discuss those aspects of TM which are relevant for DTL. For more
details on TM the reader is referred to [BaBB92,BaBZ93,BaBV92].

The TM language is a high-level object-oriented datamodel that has been de-
veloped at the University of Twente in cooperation with the Politecnico di Mi-
lano. The TM language is designed for describing conceptual schemas of object-
oriented databases. The TM language contains all of the elements that one would
expect from a state-of-the-art object-oriented model, but with important new
features, namely the incorporation of

1. predicative descriptions of sets (predicative sets as complex values)
2. static constraints of different granularity (object level, class level, database

level)

The strength of TM stems from its richness as a specification language and its
formal, type-theoretic background. The TM language is founded in FM, which is
based on a typed lambda calculus extended with logic and sets. The subtyping
is based on the ideas of the Cardelli type system [Card88], which has been given
a set-theoretical semantics in [BaFo91,BaVrgl]. TM has complex objects formed
from arbitrarily nested records, variant records, sets, and lists. Furthermore,
TM is equipped with object identity, multiple inheritance, methods and method
inheritance, and this in the context of full static typecheckability. Classes in TM
specifications have an extension in the database; the prefix with extension
in a TM Class declaration is followed by the name of the class extension in
the database. For more details on TM and its relation to other object-oriented
database languages, we refer to [BaBZ93].

Example 1. An example of a database specification within TM.

Class Person with extension PERS
attributes

name : string

age : integer

spouse : Person

343

gender : string
object c o n s t r a i n t s

cl : genderf"Male" or genderf"Female"
c2 : spouse.spouse=self

class c o n s t r a i n t s
key name end Person

Class Employee ISA Person with extension F_~
attributes

colleagues : ~Employee
salary : (re_salary:real)

object c o n s t r a i n t s
c3 : salary.m_salary > 3000 and salary.m_salary < 10000

end Employee

Class Manager ISA Employee with extension MAN
attributes

salary : (m_salary:real, r_expenses:real)
department : string

end Manager

Class Secretary ISA Employee with extension SEC
attributes

boss : Manager
end Secretary

In the example above, a generalization hierarchy is defined for Persons, Employees,
Managers and Secre ta r i es . This generalization hierarchy is defined by means
of the statement C ISA C', occurring in the head of a class definition. It means
that for every object e occurring in the extension of C, there is an object e'
occurring in C' such that e' is a generalization of e; hence, the extension of C is
a specialized subset of the extension of C'. In our example this means that gen-
e~tlizations of Managers occurring in the extension MAN also occur as Employee
in EMP; .i.e., the extension MAN contains specializations of a subset of EMP.

In TM, objects have an object identifier used for referential integrity, for sharing
and for implementation of recursive data structures. They are, however, not
directly visible in TM, although there are operations to inspect the value of
the object identifiers. As already stated, TM is formally founded in FM. In
FM the object identifier is just a label of a record expression. For example, the
FM representation of a Person is (id:oid, name:string, age:int, spouse:old,
gender:string), along with certain additional constraints ensuring that the oid-
values correctly refer to their corresponding objects. For example, to enforce
that the spouse of a Person corresponds to some Person, we shall add at the
database level the following referential integrity constraint

Vy 6 P E R S 3x 6 P E R S y.spouse = x.id

344

For more details on such a translation from TM specifications to its FM-counterpart,
we refer to [BaBZ93].

DTL is a user language which can be considered as a sugared version the for-
mal language FDTL. Before presenting the formal language we first give a few
example queries specified in DTL. The examples throughout this paper are all
related to the TM specification in example 1

Example 2. Give all Employees in the database, which have a spouse who is the
Sec re ta ry of a Manager earning more than 8000, and this Manager~ is to be a
colleague of the Employee in question.

This query could easily be translated to the following DTL specification, where
we use the predicate symbol p for the specification of the required Employees

p(X) +- EMP(X), Y isaX.spouse, SEC(Y),
Y.boss.salary.m_salary > 8000, Y.boss in X-colleague.s.

? p(X(Employee)).

Here the predicates EMP and SEC are used to denote that the variables X and Y
reside in the extensions EMP and SEC, respectively. Furthermore, since the types
of these extensions are known, the types of the variables occurring within the
definition of the predicate can be omitted. In the formal language FDTL, we will
use a special predicate, the db-predicate, to express that an expression denotes
an object residing in the database. By using the db-predicate, explicit usage of
extension names will not be necessary in FDTL programs.

The dot notation, as usual, denotes record projection; hence, X.spouse de-
notes a Person object being a spouse of Employee X. Another interesting pred-
icate used in example 2 is the isa-predicate; this predicate is used to com-
pare specializations with corresponding generalizations. Hence, the predicate
Y (Secre ta ry) isa X(Employee).spouse, informally, evaluates to true if Y is in-
deed a specialization of the spouse of Employee X.

The query of example 2 could also be defined by making use of more than
one predicate. First we introduce a predicate which defines a relation between
Secretaries and Managers earning over 8000, after which we could use the
predicate in the body of a rule instantiated by arguments of a super- or sub-
type. In the example below, the predicate is instantiated by a Person and an
Employee, both of which have types that are~supertypes of the original types
Sec re t a ry and Manager.

secr_wpnaan(X(Secretary), Y(Manager)) ~- SEC(X), X.boss=Y,
Y.salary.m_salary > 8000.

p(X) +- secr_wpnnan(X.spouse, Y(Employee)), Y in X.colleagues,
EMP(X).

? p(X(Employee)).

345

Analogously, we can use this kind of predicate inheritance to ask for all S e c r e t a r i e s
which fulfill the requirement p. The query then becomes

? p(X), SEC(X).

If we want all Persons satisfying the predicate p, the query becomes

? p(X(Person)).

The instantiation of a predicate employing specialization or generalization is
treated in more detail below.

3 The language FDTL

DTL is meant as a typed logical query language for TM which is able to deal with
subtyping and inheritance. In the previous section a few example DTL queries
were presented. These queries could easily be translated to the formal language
FDTL treated below. The object identifiers which are invisible within D~TL are
used explicitly within FDTL. Furthermore, we have no classes in FDTL, but
only types; hence, FDTL is defined on the FM representation of the database.
After the definition of the language FDTL is given, we will discuss its semantics
informally.

3.1 T h e de f in i t i on of FDTL

FDTL supports arbitrarily nested records, variant records, sets and lists. Within
this paper, however, we will only deal with records and sets for reasons of a clean
exposition. Formal definitions of the full language can be found in [Bal92].

T h e T y p e s . We assume that the basic types are in a postulated set B. This
set contains, among others, the s tandard types b o o l , i n t , r e a l , s t r i n g , c h a r and
old. The subtype relation defined on B x B is the identity, i.e. we have no
subtype relation between different basic types, since this will lead to problems
related to resolution in FDTL programs. We furthermore assume that we have
a set of labels L, totally ordered and with lower bound id (such an ordering of
labels enforces a canonical form for records and record types). We let a vary over
L.

D e f i n i t i o n 1. The set T (of types) is defined as follows

1. T 6 T, whenever T 6 B
2. (al : T1,. . . ,am :Tm)6 T, whenever ai 6 L, n 6 T (1 < i < m), al < a2 <

. . . < a m and m > 0.
3.]PT 6 T, whenever r 6 T

We let p, ~r and T over T.

We distinguish two subsets of the set of types. These are the object types and the
ordinary types. The object types Tobj are all record types for which the first label
is id : old. The ordinary, or non-object, types T~oT are all expressions which do
not contain any component of type old.

346

S u b t y p i n g . The subtyping relation is defined, conform the well-known Cardelli
type theory [CaWe85,Card84,Card88], on the set of object types and on the set
of ordinary types, and is extended to the set of all types. The reason for this
approach is that we do not want an object type to be a subtype of an ordinary
type.

De f in i t i on 2. The relation _< on T x T is defined by induction as follows

1. ~ _< ~3, whenever ~ e B
2. (a l : ~ l , . . . , a , ~ : ~ , ~) <_ (a j l : T j l , . . . , a j ~ :Tj~), whenever j l , . . . , j ~ is a

(not necessarily contiguous) sub-sequence of 1 , . . . , m, c~j, < rj~ (1 < i < n)
and al = id iff ajl : id

3.]Pa _<]P~-, whenever a _<

Example 3. We have (age:int, name:string, address:string)_~ (age:int, name:string)
since the former type has all properties of the latter type, but also an ex-
tra property, namely the additional address field. However (id:oid, name:string,
address:string)~ (age:int, name:string) since the former type is an object type,
while the latter is an ordinary type.

T h e Terms . The terms of FDTL are very similar to the expressions defined
in TM and FM. We have constants, variables, records, variants, lists and sets.
As explained earlier, we will not deal with lists and variant records within this
paper,:and furthermore, we will also not deal with aggregate operations defined
on sets. The operations which we will discuss in this paper are the projection
operation defined on records and the usual operations defined on sets.

For each r E T let C~ be a (possibly empty) set (of constants), mutually disjoint.
We let c~ vary over C~. C b o o l = { t r u e , f a l s e } . Furthermore, for each T 6 T let
X~ be a set (of variables), mutually disjoint, countably infinite and disjoint from
the sets C~ (a 6 T). We let X('r) vary over X~.

Def in i t i on 3. The set E (of terms) is defined inductively as follows

1. c~ C E, whenever ~- 6 T, c~ 6 C~
2, X(T)6 E, whenever z 6 T, X(T)6 X~
3.;(al =tl,...,a,~=t,~)e E, whenever ai 6 L, ti 6 E (1 _< i <_ m) and

al < a2 < . . . < am and m > 0
4. t.a 6 E, whenever t 6 E, a 6 L
5. { t i , . . . , t m } e E, whenever ti 6 E (1 < i < m) and m >__ 0
6. tl set_opt2 E E, whenever t l , t2 C E and set_op 6{ union , intersect , minus }

We let t vary over E.

The typing rules are often defined by means of minimal typing, since expressions,
i.e. terms, can have more than one type, due to the subtyping environment 2.

2 This kind of type polymorphism is obtained by the following rule

347

Fortunately, every term also has a unique minimal type denoted by "::". Our
definition of minimal typing [BaFo91] is basically the same as the one given
in [Reyn85], and satisfies the following important properties: soundness (t ~:: a
=~ t : a), completeness (t : ~- =~ t :: a, for some a 6 T), and minimality
(t : r , t : : a =~ a_<~-)

D e f i n i t i o n 4. The typing rules for terms

1. c~ �9 C~
C~- :: T

ti :: n (1 < i < m)
3.

4.

6.

(al = t l , . . . , a ,~ = t , ~) :: (a l : r l , . . . , a ,~ : r ,~)

t :: (al : r l , . . . , t ,~ : r,~) (1 _< j _< m)
(t . a j) :: r~

X(r) �9 X~
2.

X(r) :: r

t ~ : : v (l < i < m)
5.

{t l , . . . ,t,~} :: l e t

tl ::]Pr t2 :: IP~" set_op 6 { union , intersect , minus }
(tl set_op t2) ::]P'r

Let E* denote the set of all well-typed terms. E* C_ E

If a is a type then]Pa denotes the powertype of a. Intuitively, a powertype]Pa
denotes the collection of all sets of terms t of type a. Note that the semantics of
a powertype as well as elements thereof can be infinite, depending on the specific
underlying type. The powertype constructor resembles the construction of the
powerset 7~(V) of a set V in ordinary set theory. A term t in our language is
called a set if it has a powertype as its type; i.e., t :]Pa, for some type a. We
stress here that a set in our theory is a term and not a type; i.e. we add to the
set of types special types called powertypes, and, in addition, we add to the set
of terms special terms called sets.

The typing rules 5 and 6 concerning set expressions are a direct consequence of
the typing rules for equality, discussed in subsection 3.1. Therefore, we will defer
the t reatment of these rules until the typing rule for equality is discussed.

A subset of the well-typed terms are the basic terms EB. This subset consists
of all terms not containing operations, i.e. such terms contain only constants,
variables and enumerated sets.

The operation Var is defined on all terms and returns the set of variables oc-
curring within a particular term.

T h e A t o m s . For each n 6 N let Pred,~ be a set (of n-ary predicate symbols)
mutually disjoint, countably infinite and disjoint from the sets of constants and
the sets of variables. We let p and q vary over Pred,~.

D e f i n i t i o n 5. The set Arm (of atomic formulas) is defined as follows

- If p is an n-ary predicate symbol and t l . . . t ~ 6 E*, then p (t l . . . ~) is an
atomic formula, or more simply, an atom.

348

We let A vary over Atm.

We distinguish two kinds of predicates, the ordinary predicates and the built-
in predicates. In addition to the standard built-in predicates which are also
used within Datalog [CeGT90], FDTL also has a database predicate, an i sa -
predicate, a membership predicate, and a subset predicate. The database pred-
icate, db, is used to denote that objects are taken from the database. Fur-
thermore, since the typing rules for the equality predicate are very severe , an
isa -predicate is defined to allow for a more liberal comparison of specialized

expressions with generalized ones. Similar rules are offered for the membership
predicate and subset predicate defined for sets; i.e. we have a strict form, and a
more liberal form dealing with specializations and generalizations.

The reasons for adopting strict typing rules for the equality predicate, as well
as for typing of object-oriented sets in our theory, are rather technical and are
explained in detail in [BaVrgl]. Informally, however, one could say that if two
terms are to be equal, then they should be equal in all aspects; i.e., they should
also have exactly the same typing possibilities in the context of subtyping. This
leads us to our typing rule for equality of two terms: the predicate tl = t2
is correctly typed and of type bool, iff t l , t2 have exactly the same typing
possibilities; i.e., tl and t2 have the same minimal type.

For sets we also make a distinction between severe and more liberal typing rules,
similar to the situation with the equality predicate. For example, we have a strict
form of set membership (in) stating that a term is to be exactly equal to some
element of a set, and we have a more liberal form (sin) stating that a term
is to be equal to a specialization of some element of a set. Again, the reader is
referred to [BaVr91] for more details.

D e f i n i t i o n 6. The built-in predicates AtmB C Arm and their typing rules are
defined as follows

t ::6r o ' E T o b j tl ::o" t2 ::o" o" 6 { i n t , r e a l , s t r i n g , cha r}
1 2.

d b (t) t l o p t2 op 6 {<,<_,>, >_}

3. tl ::o- t2 ::o" o P e I = , # ~ 4 . t l s t 2 : :T O-_<~-
t t op t2 tl isa t2

5. t l : :o - t2 ::]PEr 6. t l : : a t2::]PT O'<T
tl in t2 t I s in t2

7. tl ::~lPo- t 2 ::]Po 8. tl ::]DO" t2 ::]PT O" <(T
tl s u b s e t t2 tl s s u b s e t t2

Let Atm* denote the set of well-typed atoms. Arm* c Arm.

Example~. T h e isa-predicate has the possibility to compare specializations
with generalizations. The atom (name=" Mary" , age--18) |sa (name--"Mary") is
true, because the first argument is a specialization of the second argument.
Analogously, the s in-predicate could be used to check if there exists a gen-
eralization of the expression occurring on the left-hand side, which occurs in the

349

set expression on the right-hand side, for instance (name="Mary", age=18) sin
{(name="Mary"), (name--"Jane"}}. Analogously, the ssubset -predica te could
be used for sets; for example, EMP ssubse t PERS, in example 1.

A FDTL P r o g r a m . A FDTL program is a sequence of Horn clauses.

De f in i t i on 7. A Horn clause H is of the form A0 *- A1, . . . A~. , where Ai E
Arm* and A0 r A~mB(0 < i < n)i The variables appearing within a Horn clause
are assumed to be universally quantified. There are two notions defined on H:
Head(H) = Ao and Body(H) = A1, . . . A~.

As usual, the scope of a variable is the Horn clause in which it appears. We will
assume that each occurrence of a variable within a Horn clause has the same type;
the type of the variable is therefore only stated once. Allowing occurrences of the
variables to have different types does not have any effect on the expressiveness of
FDTL; it doesl however, have a serious effect on the semantics and the resolution
of FDTL-programs (and on the readability of programs).

A set of Horn clauses forms a program, albeit not necessarilY a correct program.
In the next subsection constraints are defined for correct programs, as well as the
(albeit informal) meaning of a correct program. For this reason, some additional
definitions are presented below.

De f in i t i on 8. A program P is a set of Horn clauses (sometimes Horn clauses
are also called clauses or rules). We let r vary over the rules in a program P.

Def in i t i on 9. The set of Horn clauses in a program P with the same predicate
symbol q in the head is called the definition of q.
Defp(q) -- {r e P] predicate symbol of Head(r) is q}

De f in i t i on 10. Let A be an atom, then the type of A is defined by

- Type(A) = (T1 , . . . ,~) , whenever A = p (t l , . . . , t ~) and ti :: T~ (1 < i < n).

The subtyping relation is extended in a straightforward manner to this Cartesian
product construct.

Definit ion 11. Let P be a program and r be a rule occurring in Defp(q), then
we say predicate q is associated with Type(Head(r)).

3.2 The meaning and correctness of an FDTL program

Due to typing and subtyping, it turns out that not every set of Horn clauses
forms a correct program. Within this section we work towards the definition of
a correct program, and we shall also provide for an informal semantics of correct
programs. We shall start with a simple example and from then on work towards
more complex situations.

350

First consider a situation where the arguments of a predicate all just have a
basic type. As already stated there is no subtype relationship between different
basic types, which means that for predicates having only arguments of a basic
type, there is no possibility to use predicate inheritance. By predicate inheritance
we mean that a predicate originally associated with a specific type, can also be
used in the body of a rule by instantiating that predicate with specialized or
generalized expressions w.r.t, the original type. We assume that a predicate
is associated with one unique Cartesian product type. Later on we shall also
experiment with a more liberal rule; it will turn out, however, that this more
liberal rule gives rise to unexpected query results. This means that predicates
associated with basic types can only be used by instantiating arguments of the
same type as those for which the predicate was originally defined.

A more complex situation occurs when the arguments of predicates are associ-
ated with object types. In contrast to the situation sketched above, where only
basic types play a rSle, concepts like inheritance are a major issue.

There are several ways to integrate inheritance into FDTL. One way to try to
model inheritance, is to also put all specializations of a particular atom in the
Herbrand model; i.e. if p(e) is true and e' is a specialization of e, then p(e')
is also true. Hence, if p(e) is in the model of an FDTL-program and e t isa e,
then p(e r) occurs also in the model of the FDTL-program. This seems a rather
natural rule; if a predicate is valid for a specific relation it is also valid for a
specialization of this relation. Such an incorporation of specializations into the
model, however, can lead to technical problems as illustrated in the following
example

paid_6OOO(X(employee)) ~- X.ealary=(m_salary=6000).

Here, it is not possible to instantiate the variable X (employee) by an expression e
of type manager, because then the equality predicate becomes incorrectly typed,
since managers are specialized on the salary attribute. Therefore this way to
integrate inheritance is not suitable for FDTL.

Another attempt at modelling predicate inheritance in FDTL is to have a more
elaborate type system for variables. Instead of defining exactly the minimal
type of the expressions which could be used to instantiate the variable, only an
upperbound is specified. For example, if p(e) is a fact and e ::employee, then it
is possible to query the predicate p by ? p (X (person)). The informal semantics
of such a query is: Give all instances for X having type person and that satisfy
condition p. Hence, the term e is a correct instantiation of the variable X having
upperbound person. This technique is used in, for example Login, F-logic and
LLO. In our theory, based on Cardelli subtyping extended with set constructs,
such an approach will give rise to answers of queries consisting of a set of terms
that are not necessary all equipped with the same minimal type. Such sets of
heterogeneously typed elements, however, lead to inconsistencies (cf. [BaVrgl]),
which makes such a liberal approach using upperbounds unfit for our purposes.

We have therefore chosen for another approach, which is also more powerful
than the approaches sketched above. First let us consider how we could specify

351

predicate inheritance in an explicit manner. Assume that a predicate is defined
for a specific record type, then this predicate could be used to define predicates
or terms having a sub- or supertype by using the built-in lea-predicate, as
shown below.

well_paid_emp(X(employee)) ~-

well_paid_man(Y(manager)) ~-

well_paid_pers(Z(person)) +--

.... X.salary.m_salary _> 6000.

Y isa X(employee),
well_paid_emp (X)

X(employee) isa Z,
well_paid_emp (X)

It is clear that such situations may occur often and therefore we would like to in-
tegrate this kind of inheritance within FDTL without having to explicitly specify
isa -predicate instantiations. We will now explain how this can be achieved-.

Suppose that we have the following rule (pertaining to example 1)

well_paid(X(employee)) ~- db(X(employee)),
X.salary.m_salary > 6000.

Informally, the predicate well_paid defines a set of employees occurring in the
database which also have a monthly salary greater than 6000. Analogous to
a typed logical language without subtyping it is possible to query this simple
program by means of a goal where the predicate is equipped with a variable which
has the same type as for which the predicate was originally defined. However,
by using predicate inheritance we would also like to ask for well&aid managers,
for example:

? well_paid (X (manager)).

This query can now be seen as shorthand for the query below, where only sub-
stitutions for the variable X (manager) are taken into consideration.

? wel l_paid(Y(employee)) , X(manager) isa Y(employee).

The substitutions for Y (employee) could be eliminated by employing some addi-
tional dummy predicate. In this case, the query ? well_paid(X(manager)) can
be seen as shorthand for

dummy (X (manager)) ~--

? dummy (X (manager)).

well_paid (Y (employee)),
X(manager) isa Y(employee).

It should be noted that the goal ? dlmmy(X(manager)) would result in infinitely
many substitutions for the variable X(manager), since the only requirement
stated is that the manager occurs as an employee in the database. This will
give rise to infinitely many substitutions for the department attribute, since this
attribute is not available for employees. In order to make this query safe, the
variable X(manager) should be bound in some manner. This can be done by
means of another predicate, for example a database predicate as in

352

? well_paid(X(manager)), db(X(manager)).

This query has the same meaning as

dl,r, my (X (manager)) ,-- well_paid(Y(employee)),
X(manager) isa Y(employee).

? dlmmy (X (manager)), db (X (manager)).

The answer to this query results in the set of managers occurring in the database
which, as an employee, earn more than 6000 (it is assumed that we have, concep-
tually, a fully replicated database, i.e. all managers also occur as an employee
in the database).

The same strategy as described above could also be used to obtain generaliza-
tions, as in

? well_paid(X(person)).

This query is then shorthand for

dummy (X (person)) +--

? dummy(X(person)).

well~aid(Y(employee)),
Y(employee) isa X(person).

Hence, analogous to specializations, this technique can be extended to general-
izations. The meaning of such a query is defined by considering these queries as
shorthand for a query invoking a dummy predicate. Predicates are not only used
within queries, they could also be used within bodies of rules defining other pred-
icates. In that case there is no need for an additional dummy predicate; instead
the body of the defined predicate can be extended with an extra isa -predicate.

Consider the following example using the well_paid predicate (defined for employees)

satisfied(X(person)) +-- well_paid(X(person))

Analogous to queries, this rule can be regarded as shorthand for

satisfied(X(person)) +-- well_paid(Y(employee)) ,
Y(employee) isa X(person)

We assumed earlier on that predicates were only allowed to be defined by using
one fixed t~pe declaration; i.e. even if a predicate is defined by dii~erent rules in
some programs, it is defined by using the same type declaration in all of those
rules. We will now clarify in more detail why we have chosen for this assumption.
Consider the situation where we have more than one rule defining a predicate,
and that the predicate is defined for more than one Cartesian product type, as
in

well_paid(X(employee)) *-- db (X(employee)),
X.salary.m_salary > 6000.

353

well_paid(X(manager)) +- db(X(manager)),
X.salary.m_salary > 9000.

In the case of the following query

? well_paid(X(manager)).

we unfortunately not on)y get managers which are well paid as a manager and
earn more than 9000 as answer, but also all managers which are well paid as
an employee and earn more than 6000! The reason for this is that the query is
actually shorthand for

dummy(X(manager)) ~-- well_paid(X(manager)).

dummy(X(manager)) ~- well_paid(Y(employee)),
X(manager) isa Y(employee).

? dnmmy(X(manager)).

which will result in an answer being against our intuition. What we would expect
are all well paid managers; i.e. well paid as a manager, and not the managers
which are well paid as an employee. It is, however, impossible to query the
predicate associated with one particular type, i.e. it is not possible to ask for
well paid managers, which are solely well paid as a manager. In particular, if a
predicate is defined by multiple rules and having different types, then this will
often lead to unexpected results. Furthermore, apart from this problem, there
exists also another problem of a more formal nature. A query results in a set
of answers, and in our object-oriented theory dealing with sets, each set will
contain elements all of the same minimal type. If we now allow a predicate to
be defined for more then one Cartesian product type, then by querying such a
predicate we will obtain a set of answers with different minimal types. This is
therefore yet another reason to not allow for predicates defined by multiple rules
having different Cartesian product types associated to them.

Let us now consider predicates associated to ordinary types. The interesting
thing is that the strategy developed above for the treatment of predicates asso-
ciated to object types is equally applicable to predicates associated to ordinary
(i.e. non-object) types. For example, consider the following program

p ((name="Paul", age=20)).

p ((name="Eric", age=20)).

and the query

? p(X((age:int)).

This query can be regarded as shorthand for

dummy(X((age:int))) , - p(Y((name:str ing, a g e : i n t))) , YisaX.

? d.mmy(X((age: int))).

354

Hence, we have defined a simple, but powerful mechanism to use predicate inher-
itance within an object oriented logical query language. The constraints specified
for correct programs can now be defined more formally.

Defini t ion 12 Type correctness of predica te definitions. Le tq be an or-
dinary predicate defined in an FDTL program P. Program P should then satisfy
the following requirement

Vr, r' �9 Defp(q) Type(Head(r)) = Type(Head(r'))

Defini t ion 13 Type correctness for usage of predicates . Let q be an or-
dinary predicate defined in an FDTL program P, and let A be a literal with
predicate symbol q. Program P should then satisfy the following requirement

Vr �9 P (A �9 Body(r) =~ 3r' �9 Defp(q)

(Type(A) <_ Type(Head(r')) V Type(gead(r')) <_ Type(A)))

Defini t ion 14. Let P be a correct program, and let q be an ordinary predicate
defined in P. The type of q in P, conform definition 3.15, is then defined by

Typp(q) = Type(Head(r)), where r �9 Defp(q)

4 A semant ics of FDTL

In the previous section it has been demonstrated how inheritance of predicates
can be integrated within FDTL by employing the isa -predicate. Furthermore it
has been discussed how, by using shorthand notation, the isa-predicate could
be omitted in some cases. We shall define a transformation Tfp which translates
a correct program P into a program P' where all abbreviations are removed and
inheritance is made explicit by means of isa-predicates. For such an explicit
FDTL-program we shall provide proper semantics.

Defini t ion 15. The transformation Tfp , which transforms a correct program
P into a program P~, is defined as follows

Tfp =while 3Ai E Body(r), r E P, Ai = q(~l,... ,t,~), q is an ordinary predicate
symbol, Typp(q)=(~-l,...,T~) and 3tj (l < j < n) tj : : ~ , aCTj

do
replace Aiby: q(tl , . . . , t j- l ,X(Tj), t j+l, . . . , t~) where X(rj) •Var(r);
if Tj ~ a
then add: tj isa X(~-j) to the body ofr
else add" X(Tj) isa tj to the body oft

The semantics of an FDTL program should provide a link between FM and
FDTL. In this way, in contrast to other logical languages, we define an actual
denotational semantics for terms in FDTL. This denotational semantics is used
to obtain a typed Herbrand model of an FDTL program. The definitions of the
denotational semantics are derived from [BaFo91]

355

P o s t u l a t i o n 16. For fl �9 B, let Eft]] be a non-empty set. Let [[bool] = { t r u e ,
false}

Def in i t i on 17. For each r �9 T, a set IT] is defined by induction on the structure
of T as follows

1. ~fi~ is postulated
2. [(a l : T1 , . . . , a ,~ : Tm)] = {(ai, di) I 1 < i < m A d, �9 ITi]]}
3. []Pr] = 7~([T]), where :P denotes the power set operator

We let d vary over any ~T~

Def in i t i on 18. U = U~eT ITS, the universe in which the semantics of both types
and expressions will find their place.

The subtyping relation and a conversion function on the semantics is now defined
formally as follows.

De f in i t i on 19. For each pair a, T �9 T with a _< T we define a function cv~<~ �9
[a~ --* ~ by induction as follows

1. For each fl �9 B:
- cv~<_~ = ident i ty~ �9 [$~ ~ ~

2. Let a = (al : a l , . . . , a m :a,~) and ~ = (ajl : T j l , . . . , a i m : Tim); i f j l , . . . , j ~
is a (not necessarily contiguous) sub-sequence of 1 , . . . , m and aj~ < ~-j~ (1 <
i < n) then:

- cv~<~({(ai,di) l(1 < i < m}) = {(aj,,cv~j,<_=j,(dj,)) 1 < i < n}
3. Let a =]Pa r and T =]PT'; if a ' < r ' then:

- cv~<r(S) = {cv~,<,,(d) I d �9 S} for S �9 [a~

Def in i t i on 20. A database state db is a record (al = { t l ~ , . . , tl,~ } , . . . , a,~ =
{ t ~ , . . . , t~,m }), where each label ai (1 < i < m) corresponds to the extension
name of a table, and each tij (1 < j < hi) (1 <_ i _< m) denotes an object
occurring in the extension ai.

Example 5. The database of example 1 has minimal type (PERS :]Pperson,
EMP :]Pemployee, MAN :]Pmanager, SEC :]Psec r e t a ry) . For more details we re-
fer to [BaBZ93].

The typed Herbrand interpretation I for an FDTL program P belonging to
database state db is given by the following:

1. The domain of I is the universe U
2. An assignment of an element d of U, to each ground term g in P.
3. An assignment of an n-ary predicate PI, to each n-ary relation < t l , . . . , ~n >

in P.

De f in i t i on 21. An assignment A is a family of functions A~ 6 X~ ~ [[r], (T E
T). 'For assignment A, ~- E T, X(~-) 6 X~, d 6 [TI we define the assignment
A[x ~ d] for all a �9 T, Y(~) �9 X# by

356

(A[x ~ d])~(Y(a)) = A ~ (Y (a)) , if~r # ~- or Y(a) # X(~')
= d , i f a = T and Y(a) = X(~-)

D e f i n i t i o n 22 M i n i m a l s e m a n t i c s . Let A be an assignment. A part ial func-
t ion [~ e E ~ U is defined as follows by induct ion on the derivat ion of the
minimal type of its a rgument

1. [[c~.~=[[c], whenever c e C~-
2. [X(~-)]]~ = Ar(X(T)) , whenever X(T) e X~-
3. [(a~ = t~ , . . . , am = t,~)]*A = {(a~, [t~]~) I 1 < i < m}, whenever t~ :: 7"~
4. it.a]* A = f(a), where f = [t]~t, whenever t :: (a~: T~ , . . . , a ,~ : T,~), a = aj

for some j , 1 < j _< m
5. = { i t , l L . . . , whenever :: (1 < i < m)
6. ~t~ u n i o n t2]~t = ~t~]~ t2 [t2]~t , whenever t l , t~ ::]P~-
7. [t~ i n t e r s e c t t2]*A = [t~*A N [t~]*A, whenever t t , t2 ::]P7
8. [t~ m i n u s t2]~t = [t~]~t \ [t~]~, whenever t t , t~ ::]PT

D e f i n i t i o n 23. The semantics of a Car tes ian produc t type (which is used for
the typing of predicates) is defined as follows

[(T1...,T,~)]]~ = { (d l , . . . , d ~) I d ~ 6 ~ril*A (1 < i < n)}

For a predicate q 6 P , this yields (cf. definit ion 14):

[q~*A C_ [Typp(q)~* A

D e f i n i t i o n 24. For a given formula F , its t ru th under assignment A with database
s ta te db for I , wr i t ten as I ~A,db F is induct ively defined by

- if p (t l , . . . , t~) is an atomic formula and p is an ord inary predicate symbol
then

�9 I ~A,db d b (t) iff there exists a table a in the da tabase db, such tha t
it]* A 6 [db.a~* A, whenever t :: 7", t 6 EB and T e Tobj

�9 I ~A,db tl | iff [t l]~ | [t 2 ~ , whenever t l , t2 6 EB and | 6 {_<, <, _>
, >} and t l , t2 :: • or t l , t2 :: r e a l or t l , t2 :: s t r i n g , or t l , t2 :: c h a r

�9 I ~A,db tl = t2 iff [t l]~ = [t2]~, whenever t l , t2 :: ~" and t l , t2 6 EB
�9 I ~A,db tl r iff [t l ~ # [t2)]~, whenever t l , t2 :: T and t l , t~ 6 EB

t * �9 I ~A,ab t l i sa t~ iff CV~<~([tl]*A) = ~ 2]A, whenever t l :: a , t2 :: T and
~r _< "r and tl , t2 6 EB

�9 I i n t 2 iff [[tl]].~ 6 [t2]~4, whenever t l , t2 ::]PT- and t l , t2 6 En
�9 I s in t2 iff Cv~<~([tl]*A) 6 ~t21*A, whenever tl :: cr, t2 ::]P'r and

a tl, t2 6 EB
�9 s u b s e t t2 if~ ~t l~ ~ ~t2]~4, whenever t l , t2 ::]PT and t l , t2 6

~A,db tl
~A,db tl
< ~" and

I ~a,db t l
EB
I ~A,db tl s s u b s e t t2 iff cvlp~<]pr([[tl]]*A) C [t2]~, whenever tl :: IP~,
t2 ::]PT and ~ <_ T and t l , t2 6 "EB

357

- I ~A,db t rue , whenever not I ~A,db false,
- if F and G are formulas then

I ~A,db not F if[not I ~A,db F
I ~A,db F V G iff I ~A,db F or I ~A,db G
I ~A,db VxF iff I ~(A,db)[=/~] F for all t E D where x :: a ~ t :: a.

This definition is straightforward (cf. Lloyd [Lloy87]).

5 C o n c l u s i o n s a n d f u t u r e w o r k

We have defined a logical language, called DTL which can be considered as a far
reaching extension of Datalog equipped with complex objects, object identities,
and multiple inheritance based on an extension of Cardelli type theory. The DTL
language also incorporates a very general notion of sets as first-class objects. It
has furthermore been explained how this language could be used to q~ery an
object-oriented database specified along the lines of a state-of-the-art data model
called TM. In DTL we have defined a simple, yet powerful way of combining
multiple inheritance with predicates in logic programs. Furthermore, we have
offered a simple denotational semantics for DTL programs. Though we have
not described our evaluation strategy for DTL programs in this paper, we do
mention that this strategy has been proven to be sound and complete. For details
concerning the resolution of DTL programs we refer to [Ba192,BaBa93]

As far as future research is concerned, we are presently interested in imple-
mentation issues related to DTL. We mention that a TM-based DBMS prototype
has been realized in the logical language LIFE, and that we are currently inves-
tigating implementation possibilities of DTL along similar lines.

6 R e f e r e n c e s

[AbKa89]

[Abit90]

[AbGr883

[Ai't-K91]

S. Abiteboul & P. C. Kanellakis, "Object identity as a query language primitive,"
in Proceedings of ACM-SIGMOD 1989 International Conference on Management of
Data, Portland, OR, May 31-Jane 2, 1989, J. Clifford, B. Lindsay & D. Maier, eds.,
ACM Press, New York, NY, 1989, 159-173, (also appeared as SIGMOD RECORD~
18, 2, June, 1989).

S. Abiteboul, "Towards a deductive object-oriented database language," Data &
Knowledge Engineering 5 (1990), 263-287.

S. Abiteboul & S. Grumbach, "COL: A LogiC-based Language for Complex Ob-
jects," in Advances in Database Technology--EDBT '88, J. W. Schmidt, S. Ceri &
M. Missikoff, eds., Springer-Verlag, New York-Heidelberg-Berlin, 1988, 271-293,
Lecture Notes in Computer Science 303.

H. A~t-Kaci, "An overview of LIFE," in Next Generation Information System Tech-
nology, J. W. Schmidt & A. A. Stogny, eds., Proceedings of the First International
East/West Data Base Workshop, Kiev, USSR, October 1990, Springer-Verlag, New
York-Heidelberg-Berlin, 1991, 42-58, Lecture Notes in Computer Science # 504.

358

[Bal92]

[BaBa93]

[BaBB92]

[BaBZ93]

[BaBV92]

[BaFo91]

[BaVr91]

[BrLM90]

[CCCT90]

[CaWe85]

[Card84]

[Card88]

[CeGTg0]

[GrLR92]

[HuYo90]

[IbCu90]

R. Bal, "DataTypeLog a deductive object-oriented query language," University of
Twente, Technical Report INF92-79, Enschede, 1992.

R. Bal & H. Balsters, "DTL: A deductive and typed object-oriented language,"
Universiteit Twente, INF93-41, Enschede, The Netherlands, 1993.

R. Bal~ H. Balsters & R. A. de By, "The TM typing rules," University of Twente,
Technical Report INF92-80, Enschede~ 1992.

H. Balsters, R. A. de By & R. Zicari, "Typed sets as a basis for object-oriented
database schemas," in ECOOP 1993 Kaiserslautern, 1993.

H. Balsters, R. A. de By & C. C. de Vreeze, "The TM Manual," University of
Twente, technical report INF92-81~ Enschede, 1992.

H. Balsters & M. M. Fokkinga~ "Subtyping can have a simple semantics," Theoret-
ical Computer Science 87 (September~ 1991), 81-96.

H. Balsters & C. C. de Vreeze, "A semantics of object-oriented sets," in The Third
International Workshop on Database Programming Languages: Bulk Types gg Per-
sistent Data (DBPL-3), August 27-30, 199I, Nafpllon, Greece, P. Kanellakis & J.
W. Schmidt, eds., Morgan Kaufmann Publishers, San Marco, CA, 1991, 201-217.

A. Brogi, E. Lamma & P. Mello, "Inheritance and hypothetical reasoning in logic
programming," in Ninth European Conference on Artificial Intelligence, L. C.
Aiello, ed., Stockholm, Sweden, 1990, 105-110.

F. Cacace, S. Ceri, S. Crespi-Reghizzi, L. Tanca & R. Zicari, "Integrating object-
oriented data modeling with a rule-based programming paradigm," in Proceedings
of ACM-SIGMOD 1990 International Conference on Management of Data, Atlantic
City) NJ, May 23-25, 1990, H. Garcia-Molina & H. V. Jagadish, eds., ACM Press,
New York, NY, 1990, 225-236, (also appeared as SIGMOD RECORD, 19, 2, June,
1990).

L. Cardelli & P. Wegner, "On understanding types, data abstraction, and polymor-
phism," Computing Surveys 17 (1985), 471-522.

L. Cardelli, "A semantics of multiple inheritance," in Semantics of Data Types,
G. Kahn, D. B. Macqueen & G. Plotkin, eds., Lecture Notes in Computer Science
~173, Springer-Verlag, New York-Heidelberg-Berlin, 1984, 51-67.

L. Cardelli, "Types for data-oriented languages," in Advances in Database Technology--
EDBT '88, J. W. Schmidt, S. Ceri & M. Missikoff, eds., Springer-Verlag, New
York-Heidelberg-Berlin, 1988, 1-15, Lecture Notes in Computer Science 303.

S. Ceri, G. Gottlob & L. Tanca, Logic Programming and Databases, Surveys in
Computer Science, Springer-Verlag, New York-Heidelberg-Berlin, 1990.

S. Greco, N. Leone & P. Rullo, "COMPLEX: An Object-Oriented Logical Program-
ming System," IEEE Transactions on Knowledge and Data Engineering 4 (august
1992), 344-359.
R. Hull & M. Yoshikawa, "ILOG: Declaritive Creation and Manipulation of Object
Identifiers," in Proceedings Sixth International Conference on Data Engineering,
Los Angeles, CA, February 5-9, 1990, IEEE Computer Society Press, Washington,
DC, 1990, 455-468.
M. H. Ibrahim & F. A. Cummins, "Objects with logic," in AMC 18th Annual
Computer Science Conference, Washington DC, 1990, 128-133.

359

[KiLW90]

[L~Risg]

[Lloy87]

[LoOz91]

[LyVi87]

[McCa92]

[MoPog0]

[NaTs89]

[OhBB89]

[Reyn85]

M. Kifer, G. Lausen & J. Wu, "Logical Foundations of Object-Oriented and Frame-
Based Languages," Dept. Comp. Sc. State University of New York at Stony Brook,
90/14, Stony Brook, 1990.

C. Ldcluse & P. Richard, "Modeling Complex Structures in Object-Oriented Databases,"
in ACM SIGACT-SIGMOD Symposium on Principles of Database Systems, 1989,
360-368.

J. W. Lloyd, Foundations of Logic Programming, Symbolic Computation, Springer-
Verlag, New York-Heidelberg-Berlin, 1987.

Y. Lou & M. Ozsoyoglu, "LLO: A Deductive Language with Methods and Method
Inheritance," in Proceedings of ACM-SIGMOD 1991 International Conference on
Management of Data, Denver, CO, May 29-31, 1991, J. Clifford & R. King, eds.,
ACM Press, New York, NY, 1991, 198-207, (also appeared as SIGMOD RECORD,
20, 2, June, 1991).

P. Lyngbaek & V. Vianu, "Mapping a semantic database model to the relational
model," in Proceedings of ACM-SIGMOD 1987 International Conference on Man-
agement of Data~ San Francisco, CA, May 27-29, 1987, U. Dayal & I. ~l~raiger, eds.r
ACM Press, New York, NY, 1987, 132-142, (also appeared as SIGMOD RECORD ' '
16, 3, December, 1987).

F. G. McCabe, Logic and Objects, International Series in Computer Science, Prentice-
Hall International, London, England~ 1992.

L. Monteiro & A. Porto, "A transformational view of inheritance in logic pro-
gramming," in Seventh International Conference on Logic Programming, D. H. D.
Warren & P. Szeredi, eds., MIT Press, Cambridge, MA, 1990, 481-494.

S. Naqvi & S. Tsur, A Logical Language for Data and Knowledge Bases, Principles
of Computer Science, Computer Science Press, Rockville, MD, 1989, 288 pp..

A. Ohori, P. Buneman & V. Breazu-Tannen, "Database programming in Machiavelli-
a polymorphic language with static type inference," in Proceedings of ACM-SIGMOD
1989 International Conference on Management of Data, Portland, OR, May 31-
June 2, 1989, J. Clifford, B. Lindsay & D. Maier, eds., ACM Press, New York, NY,
1989, 46-57, (also appeared as SIGMOD RECORD, 18, 2, June, 1989).

J. C. Reynolds, "Three Approaches to Type Structure," in Mathematical Founda-
tions of Software Development, H. Ehrig et al., ed., Lecture Notes in Computer
Science #185, Springer-Verlag, New York-Heidelberg-Berlin, 1985, 97-138.

