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A b s t r a c t .  In this paper we introduce a logical query language extended 
with object-oriented typing facilities. This language, called DTL (from 
DataTypeLog), can be seen as an extension of Datalog equipped with 
complex objects, object identities, and multiple inheritance based on 
Cardelli type theory. The language also incorporates a very general no- 
tion of sets as first-class objects. The paper offers a formal description 
of DTL, as well as a denotational semantics for DTL programs. 
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1 I n t r o d u c t i o n  a n d  r e s u l t s  

In the last decade, the merge of object-oriented programming with object-oriented 
data structuring principles has lead to a rapid increasement of new developments 
in the field of databases and logical languages. Object-oriented databases have 
the advantages of a clean conceptual design as well as the possibility of  en- 
forcing better software engineering. Systems equipped with subtyping facilities, 
such as the Cardelli object-oriented type system (cf. [Card88]), offer a concise 
and clear way to deal with (multiple) inheritance. Inheritance is a very powerful 
modelling tool and forms the backbone of many object-oriented data models. 
Also th'g availability of complex objects, such as records, lists, variants, and sets 
offer a wide range of expressiveness. Examples of data models with facilities as 
mentioned above are 02 (ILeal89]), Iris ([LyVi87]) and Machiavelli ([OhBB89]). 

Object-orientation has also not left the field of logical languages untouched. 
Languages like LIFE (lASt-K91]), F-Logic ([KiLW90]), and [BrLM90,IbCu90, 
McCa92,MoPog0] are examples of such languages that make extensive use of 
object-oriehted principles to enhance the field of logic programming with the 
expressiveness and concise modelling possibilities, typical for the object-oriented 
paradigm. Especially the use of subtyping makes logic programs more structured 
and easier to understand. In short, the combination of logic programming and 
object orientation is very promising. 

Relational databases and logic programming have been combined resulting in 
so-called deductive databases. Deductive databases highlight the ability to use a 
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logic programming style for expressing deductions concerning the contents of the 
database. Examples of such languages are Datalog [CeGTg0] and LDL [NaTs89]. 
These languages have gained considerable popularity due to the ease in which it 
is possible to specify very complex queries. 

Recently, research interest has started to arise in the combination of object ori- 
entation, databases and logical languages. For example, research initiatives have 
been started aimed at extending Datalog with object-oriented concepts. In such 
extensions, the logical component is used to specify the schema of the database, 
and a distinction is made between base relations and derived relations. Examples 
of such systems are LOGRES [CCCTg0], and Complex Datalog [GrLR92]. Other 
examples are object-oriented logical languages primarily used for the querying of 
object-oriented databases, such as [AbKa89,Abitg0,AbGr88] and LLO [LoOz91]. 

The language described in this paper is called DTL, which stands for DataType- 
Log. DTL is designed as a query language for a database specified in a language 
called TM. TM ([BaBZ93]) is a high-level specification language for object- 
oriented database schemas, and has all the facilities that one would expect from 
a state-of-the-art object-oriented data model. The main novelties of the TM 
language are the incorporation of predicative sets as first-class objects, and the 
possibility of defining static constraints of different granularity (i.e. at the ob- 
ject level, class level, and database level), and this in the context of multiple 
inheritance and full static typecheckability. 

In DTL we have taken an approach which sometimes differs considerably from 
existing object-oriented query languages. For example, answers to DTL queries 
result in a set of homogeneous elements, in the sense that these elements all have 
the same so-called minimal type w.r.t, subtyping. This means that if a query asks 
for persons, then the answer should consist of persons and not, for example, 
also specializations of persons, say employees. This approach differs from the 
one followed by F-logic and LIFE, where basically there is no distinction made 
between types and instantiations of types. Our approach is also different from the 
one followed by IQL, ILOG ([HuYo90]), LOGRES and LLO, where the answer 
results in a collection of object identifiers. The object identifiers in these cases are 
related to o-values by means of an o-value assignment (to employ terminology 
taken from IQL), and in this way the answers actually include specializations of 
the requested original type. 

As mentioned before, DTL incorporates general set constructions, including 
predicatively defined sets, as first-class objects; i.e. such sets are actual terms 
in the language. Languages like LOGRES, IQL and LLO also support sets, be 
it that these sets are restricted to enumerated sets as actual terms in the lan- 
guage. A distinct feature of DTL is its powerful usage of combining predicates 
and (multiple) inheritance; languages like LLO, LIFE and F-logic also offer a 
notion of inheritance, but in combination with predicates the version in DTL is 
less restricted. Yet another feature of DTL is the possibility to navigate freely 
through the terms by successive projection on attribute components. In other 
systems like LOGRES, Complex Datalog, IQL and LLO such a navigation is 
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also possible, be it that the process of navigation in these languages is more 
complicated than in DTL.  

The rest of the paper is organized as follows. We first give an impression of the 
TM datamodel and offer an example of a TM database specification. After that 
we wilt offer an introduction to the DTL language. In section 3 we shall give 
a more thorough account of DTL including matters concerning typing and the 
combination of using types and predicates in programs. In section 4 we will give 
a denotational semantics for DTL programs, and we end with some conclusions 
and suggestions for future research. 

2 T h e  d a t a m o d e l  T M  

DTL is meant as a well-founded query language for TM, and within this paper 
we will only discuss those aspects of TM which are relevant for DTL. For more 
details on TM the reader is referred to [BaBB92,BaBZ93,BaBV92]. 

The TM language is a high-level object-oriented datamodel that has been de- 
veloped at the University of Twente in cooperation with the Politecnico di Mi- 
lano. The TM language is designed for describing conceptual schemas of object- 
oriented databases. The TM language contains all of the elements that one would 
expect from a state-of-the-art object-oriented model, but with important new 
features, namely the incorporation of 

1. predicative descriptions of sets (predicative sets as complex values) 
2. static constraints of different granularity (object level, class level, database 

level) 

The strength of TM stems from its richness as a specification language and its 
formal, type-theoretic background. The TM language is founded in FM, which is 
based on a typed lambda calculus extended with logic and sets. The subtyping 
is based on the ideas of the Cardelli type system [Card88], which has been given 
a set-theoretical semantics in [BaFo91,BaVrgl]. TM has complex objects formed 
from arbitrarily nested records, variant records, sets, and lists. Furthermore, 
TM is equipped with object identity, multiple inheritance, methods and method 
inheritance, and this in the context of full static typecheckability. Classes in TM 
specifications have an extension in the database; the prefix with extension 
in a TM Class declaration is followed by the name of the class extension in 
the database. For more details on TM and its relation to other object-oriented 
database languages, we refer to [BaBZ93]. 

Example 1. An example of a database specification within TM. 

Class Person with  extension PERS 
attributes 

name : string 

age : integer 

spouse : Person 
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gender : string 
object c o n s t r a i n t s  

cl : genderf"Male" or genderf"Female" 
c2 : spouse.spouse=self 

class c o n s t r a i n t s  
key name end Person 

Class Employee ISA Person with extension F_~ 
attributes 

colleagues : ~Employee 
salary : (re_salary:real) 

object c o n s t r a i n t s  
c3 : salary.m_salary > 3000 and salary.m_salary < 10000 

end Employee 

Class Manager ISA Employee with extension MAN 
attributes 

salary : (m_salary:real, r_expenses:real) 
department : string 

end Manager 

Class Secretary ISA Employee with extension SEC 
attributes 

boss : Manager 
end Secretary 

In the example above, a generalization hierarchy is defined for Persons, Employees, 
Managers and Secre ta r i es .  This generalization hierarchy is defined by means 
of the statement C ISA C', occurring in the head of a class definition. It means 
that for every object e occurring in the extension of C, there is an object e' 
occurring in C' such that e' is a generalization of e; hence, the extension of C is 
a specialized subset of the extension of C'. In our example this means that gen- 
e~tlizations of Managers occurring in the extension MAN also occur as Employee 
in EMP; .i.e., the extension MAN contains specializations of a subset of EMP. 

In TM, objects have an object identifier used for referential integrity, for sharing 
and for implementation of recursive data structures. They are, however, not 
directly visible in TM, although there are operations to inspect the value of 
the object identifiers. As already stated, TM is formally founded in FM. In 
FM the object identifier is just a label of a record expression. For example, the 
FM representation of a Person is (id:oid, name:string, age:int, spouse:old, 
gender:string), along with certain additional constraints ensuring that the oid- 
values correctly refer to their corresponding objects. For example, to enforce 
that the spouse of a Person corresponds to some Person, we shall add at the 
database level the following referential integrity constraint 

Vy 6 P E R S  3x 6 P E R S  y.spouse = x.id 
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For more details on such a translation from TM specifications to its FM-counterpart, 
we refer to [BaBZ93]. 

DTL is a user language which can be considered as a sugared version the for- 
mal language FDTL. Before presenting the formal language we first give a few 
example queries specified in DTL. The examples throughout this paper are all 
related to the TM specification in example 1 

Example 2. Give all Employees in the database, which have a spouse who is the 
Sec re ta ry  of a Manager earning more than 8000, and this Manager~ is to be a 
colleague of the Employee in question. 

This query could easily be translated to the following DTL specification, where 
we use the predicate symbol p for the specification of the required Employees 

p(X) +- EMP(X), Y isaX.spouse,  SEC(Y), 
Y.boss.salary.m_salary > 8000, Y.boss in X-colleague.s. 

? p(X(Employee)). 

Here the predicates EMP and SEC are used to denote that the variables X and Y 
reside in the extensions EMP and SEC, respectively. Furthermore, since the types 
of these extensions are known, the types of the variables occurring within the 
definition of the predicate can be omitted. In the formal language FDTL, we will 
use a special predicate, the db-predicate, to express that an expression denotes 
an object residing in the database. By using the db-predicate, explicit usage of 
extension names will not be necessary in FDTL programs. 

The dot notation, as usual, denotes record projection; hence, X.spouse de- 
notes a Person object being a spouse of Employee X. Another interesting pred- 
icate used in example 2 is the isa-predicate; this predicate is used to com- 
pare specializations with corresponding generalizations. Hence, the predicate 
Y (Secre ta ry)  isa X(Employee).spouse, informally, evaluates to true if Y is in- 
deed a specialization of the spouse of Employee X. 

The query of example 2 could also be defined by making use of more than 
one predicate. First we introduce a predicate which defines a relation between 
Secretaries and Managers earning over 8000, after which we could use the 
predicate in the body of a rule instantiated by arguments of a super- or sub- 
type. In the example below, the predicate is instantiated by a Person and an 
Employee, both of which have types that are~supertypes of the original types 
Sec re t a ry  and Manager. 

secr_wpnaan(X(Secretary), Y(Manager)) ~- SEC(X), X.boss=Y, 
Y.salary.m_salary > 8000. 

p(X) +- secr_wpnnan(X.spouse, Y(Employee)), Y in X.colleagues, 
EMP(X). 

? p(X(Employee)). 
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Analogously, we can use this kind of predicate inheritance to ask for all S e c r e t a r i e s  
which fulfill the requirement p. The query then becomes 

? p(X), SEC(X). 

If we want all Persons satisfying the predicate p, the query becomes 

? p(X(Person)). 

The instantiation of a predicate employing specialization or generalization is 
treated in more detail below. 

3 The language FDTL 

DTL is meant as a typed logical query language for TM which is able to deal with 
subtyping and inheritance. In the previous section a few example DTL queries 
were presented. These queries could easily be translated to the formal language 
FDTL treated below. The object identifiers which are invisible within D~TL are 
used explicitly within FDTL. Furthermore, we have no classes in FDTL, but 
only types; hence, FDTL is defined on the FM representation of the database. 
After the definition of the language FDTL is given, we will discuss its semantics 
informally. 

3.1 T h e  de f in i t i on  of  FDTL 

FDTL supports arbitrarily nested records, variant records, sets and lists. Within 
this paper, however, we will only deal with records and sets for reasons of a clean 
exposition. Formal definitions of the full language can be found in [Bal92]. 

T h e  T y p e s .  We assume that  the basic types are in a postulated set B. This 
set contains, among others, the s tandard types b o o l , i n t , r e a l , s t r i n g , c h a r  and 
old. The subtype relation defined on B x B is the identity, i.e. we have no 
subtype relation between different basic types, since this will lead to problems 
related to resolution in FDTL programs. We furthermore assume that we have 
a set of labels L, totally ordered and with lower bound id  (such an ordering of 
labels enforces a canonical form for records and record types). We let a vary over 
L. 

D e f i n i t i o n  1. The set T (of types) is defined as follows 

1. T 6 T, whenever T 6 B 
2. (al : T1,. . .  ,am :Tm)6 T, whenever ai 6 L, n 6 T (1 < i < m), al < a2 < 

. . .  < a m and m > 0. 
3. ]PT 6 T, whenever r 6 T 

We let p, ~r and T over T. 

We distinguish two subsets of the set of types. These are the object types and the 
ordinary types. The object types Tobj are all record types for which the first label 
is id  : old. The ordinary, or non-object, types T~oT are all expressions which do 
not contain any component of type old. 
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S u b t y p i n g .  The subtyping relation is defined, conform the well-known Cardelli 
type theory [CaWe85,Card84,Card88], on the set of object types and on the set 
of ordinary types, and is extended to the set of all types. The reason for this 
approach is that we do not want an object type to be a subtype of an ordinary 
type. 

De f in i t i on  2. The relation _< on T x T is defined by induction as follows 

1. ~ _< ~3, whenever ~ e B 
2. ( a l : ~ l , . . . , a , ~ : ~ , ~ )  <_ ( a j l : T j l , . . . , a j ~  :Tj~), whenever j l , . . . , j ~  is a 

(not necessarily contiguous) sub-sequence of 1 , . . . ,  m, c~j, < rj~ (1 < i < n) 
and al = id  iff ajl : id  

3. ]Pa _< ]P~-, whenever a _< 

Example 3. We have (age:int, name:string, address:string)_~ (age:int, name:string) 
since the former type has all properties of the latter type, but also an ex- 
tra property, namely the additional address field. However (id:oid, name:string, 
address:string)~ (age:int, name:string) since the former type is an object type, 
while the latter is an ordinary type. 

T h e  Terms .  The terms of FDTL are very similar to the expressions defined 
in TM and FM. We have constants, variables, records, variants, lists and sets. 
As explained earlier, we will not deal with lists and variant records within this 
paper,:and furthermore, we will also not deal with aggregate operations defined 
on sets. The operations which we will discuss in this paper are the projection 
operation defined on records and the usual operations defined on sets. 

For each r E T let C~ be a (possibly empty) set (of constants), mutually disjoint. 
We let c~ vary over C~. C b o o l = { t r u e  , f a l s e } .  Furthermore, for each T 6 T let 
X~ be a set (of variables), mutually disjoint, countably infinite and disjoint from 
the sets C~ (a 6 T). We let X('r) vary over X~. 

Def in i t i on  3. The set E (of terms) is defined inductively as follows 

1. c~ C E, whenever ~- 6 T, c~ 6 C~ 
2, X(T)6 E, whenever z 6 T, X(T)6 X~ 
3.;(al =tl,...,a,~=t,~)e E, whenever ai 6 L, ti 6 E (1 _< i <_ m) and 

al < a2 < . . .  < am and m > 0 
4. t.a 6 E,  whenever t 6 E, a 6 L 
5. { t i , . . . , t m }  e E,  whenever ti 6 E (1 < i < m) and m >__ 0 
6. tl  set_opt2 E E, whenever t l , t2 C E and set_op 6{ union , intersect , minus } 

We let t vary over E. 

The typing rules are often defined by means of minimal typing, since expressions, 
i.e. terms, can have more than one type, due to the subtyping environment 2. 

2 This kind of type polymorphism is obtained by the following rule 
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Fortunately, every term also has a unique minimal type denoted by "::". Our 
definition of minimal typing [BaFo91] is basically the same as the one given 
in [Reyn85], and satisfies the following important  properties: soundness (t ~:: a 
=~ t : a), completeness (t : ~- =~ t :: a, for some a 6 T),  and minimality 
( t : r ,  t : : a  =~ a_<~-) 

D e f i n i t i o n  4. The typing rules for terms 

1. c~ �9 C~ 
C~- :: T 

ti :: n (1 < i < m) 
3. 

4. 

6. 

(al = t l , . . . ,  a ,~  = t , ~ )  :: ( a l  : r l , . . . ,  a ,~  : r ,~ )  

t :: (al : r l , . . . , t ,~  : r,~) (1 _< j _< m) 
( t . a j )  :: r~ 

X(r) �9 X~ 
2. 

X(r) :: r 

t ~ : : v ( l < i < m )  
5. 

{t l , . . .  ,t,~} :: l e t  

tl :: ]Pr t2 :: IP~" set_op 6 { union , intersect  , minus } 
(tl set_op t2) :: ]P'r 

Let E* denote the set of all well-typed terms. E* C_ E 

If a is a type then ]Pa denotes the powertype of a. Intuitively, a powertype ]Pa 
denotes the collection of all sets of terms t of type a. Note that  the semantics of 
a powertype as well as elements thereof can be infinite, depending on the specific 
underlying type. The powertype constructor resembles the construction of the 
powerset 7~(V) of a set V in ordinary set theory. A term t in our language is 
called a set if it has a powertype as its type; i.e., t : ]Pa, for some type a. We 
stress here that  a set in our theory is a term and not a type; i.e. we add to the 
set of types special types called powertypes, and, in addition, we add to the set 
of terms special terms called sets. 

The typing rules 5 and 6 concerning set expressions are a direct consequence of 
the typing rules for equality, discussed in subsection 3.1. Therefore, we will defer 
the t reatment  of these rules until the typing rule for equality is discussed. 

A subset of the well-typed terms are the basic terms EB. This subset consists 
of all terms not containing operations, i.e. such terms contain only constants, 
variables and enumerated sets. 

The operation Var is defined on all terms and returns the set of variables oc- 
curring within a particular term. 

T h e  A t o m s .  For each n 6 N let Pred,~ be a set (of n-ary predicate symbols) 
mutually disjoint, countably infinite and disjoint from the sets of constants and 
the sets of variables. We let p and q vary over Pred,~. 

D e f i n i t i o n  5. The set Arm (of atomic formulas) is defined as follows 

- If p is an n-ary predicate symbol and t l . . . t ~  6 E*, then p ( t l . . . ~ )  is an 
atomic formula, or more simply, an atom. 
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We let A vary over Atm. 

We distinguish two kinds of predicates, the ordinary predicates and the built- 
in predicates. In addition to the standard built-in predicates which are also 
used within Datalog [CeGT90], FDTL also has a database predicate, an i sa -  
predicate, a membership predicate, and a subset predicate. The database pred- 
icate, db,  is used to denote that  objects are taken from the database. Fur- 
thermore, since the typing rules for the equality predicate are very severe , an 
isa -predicate is defined to allow for a more liberal comparison of specialized 

expressions with generalized ones. Similar rules are offered for the membership 
predicate and subset predicate defined for sets; i.e. we have a strict form, and a 
more liberal form dealing with specializations and generalizations. 

The reasons for adopting strict typing rules for the equality predicate, as well 
as for typing of object-oriented sets in our theory, are rather technical and are 
explained in detail in [BaVrgl]. Informally, however, one could say that if two 
terms are to be equal, then they should be equal in all aspects; i.e., they should 
also have exactly the same typing possibilities in the context of subtyping. This 
leads us to our typing rule for equality of two terms: the predicate tl  = t2 
is correctly typed and of type bool,  iff t l ,  t2 have exactly the same typing 
possibilities; i.e., tl and t2 have the same minimal type. 

For sets we also make a distinction between severe and more liberal typing rules, 
similar to the situation with the equality predicate. For example, we have a strict 
form of set membership ( in ) stating that  a term is to be exactly equal to some 
element of a set, and we have a more liberal form ( sin ) stating that  a term 
is to be equal to a specialization of some element of a set. Again, the reader is 
referred to [BaVr91] for more details. 

D e f i n i t i o n  6. The built-in predicates AtmB C Arm and their typing rules are 
defined as follows 

t ::6r o ' E T o b j  tl ::o" t2 ::o" o" 6 { i n t , r e a l ,  s t r i n g ,  cha r}  
1 ..... 2. 

d b ( t )  t l o p  t2 op 6 {<,<_,>, >_} 

3. tl  ::o- t2 ::o" o P e I = , #  ~ 4 . t l  s t 2 : :T  O-_<~- 
t t  op t2 tl  isa t2 

5. t l : :o -  t2 ::]PEr 6. t l : : a  t2::]PT O'<T 
tl in t2 t I s in  t2 

7. tl  ::~lPo- t 2 :: ]Po 8. tl  :: ]DO" t2 :: ]PT O" <( T 
tl s u b s e t  t2 tl s s u b s e t  t2 

Let Atm* denote the set of well-typed atoms. Arm* c Arm. 

Example~. T h e  isa-predicate has the possibility to compare specializations 
with generalizations. The atom (name=" Mary" , age--18) |sa (name--"Mary") is 
true, because the first argument is a specialization of the second argument. 
Analogously, the s in-predicate  could be used to check if there exists a gen- 
eralization of the expression occurring on the left-hand side, which occurs in the 
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set expression on the right-hand side, for instance (name="Mary", age=18) sin 
{(name="Mary"), (name--"Jane"}}. Analogously, the ssubset -predica te  could 
be used for sets; for example, EMP ssubse t  PERS, in example 1. 

A FDTL P r o g r a m .  A FDTL program is a sequence of Horn clauses. 

De f in i t i on  7. A Horn clause H is of the form A0 *- A1, . . .  A~. , where Ai E 
Arm* and A0 r A~mB(0 < i < n)i The variables appearing within a Horn clause 
are assumed to be universally quantified. There are two notions defined on H: 
Head(H) = Ao and Body(H) = A1, . . .  A~. 

As usual, the scope of a variable is the Horn clause in which it appears. We will 
assume that  each occurrence of a variable within a Horn clause has the same type; 
the type of the variable is therefore only stated once. Allowing occurrences of the 
variables to have different types does not have any effect on the expressiveness of 
FDTL; it doesl however, have a serious effect on the semantics and the resolution 
of FDTL-programs (and on the readability of programs). 

A set of Horn clauses forms a program, albeit not necessarilY a correct program. 
In the next subsection constraints are defined for correct programs, as well as the 
(albeit informal) meaning of a correct program. For this reason, some additional 
definitions are presented below. 

De f in i t i on  8. A program P is a set of Horn clauses (sometimes Horn clauses 
are also called clauses or rules). We let r vary over the rules in a program P. 

Def in i t i on  9. The set of Horn clauses in a program P with the same predicate 
symbol q in the head is called the definition of q. 
Defp(q) -- {r e P ] predicate symbol of Head(r) is q} 

De f in i t i on  10. Let A be an atom, then the type of A is defined by 

- Type(A) = (T1 , . . . ,~ ) ,  whenever A = p ( t l , . . . , t ~ )  and ti :: T~ (1 < i < n). 

The subtyping relation is extended in a straightforward manner to this Cartesian 
product construct. 

Definit ion 11. Let P be a program and r be a rule occurring in Defp(q), then 
we say predicate q is associated with Type(Head(r)). 

3.2 The meaning and correctness of  an  FDTL program 

Due to typing and subtyping, it turns out that  not every set of Horn clauses 
forms a correct program. Within this section we work towards the definition of 
a correct program, and we shall also provide for an informal semantics of correct 
programs. We shall start with a simple example and from then on work towards 
more complex situations. 
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First consider a situation where the arguments of a predicate all just have a 
basic type. As already stated there is no subtype relationship between different 
basic types, which means that for predicates having only arguments of a basic 
type, there is no possibility to use predicate inheritance. By predicate inheritance 
we mean that a predicate originally associated with a specific type, can also be 
used in the body of a rule by instantiating that predicate with specialized or 
generalized expressions w.r.t, the original type. We assume that a predicate 
is associated with one unique Cartesian product type. Later on we shall also 
experiment with a more liberal rule; it will turn out, however, that this more 
liberal rule gives rise to unexpected query results. This means that predicates 
associated with basic types can only be used by instantiating arguments of the 
same type as those for which the predicate was originally defined. 

A more complex situation occurs when the arguments of predicates are associ- 
ated with object types. In contrast to the situation sketched above, where only 
basic types play a rSle, concepts like inheritance are a major issue. 

There are several ways to integrate inheritance into FDTL. One way to try to 
model inheritance, is to also put all specializations of a particular atom in the 
Herbrand model; i.e. if p(e) is true and e' is a specialization of e, then p(e') 
is also true. Hence, if p(e) is in the model of an FDTL-program and e t isa e, 
then p(e r) occurs also in the model of the FDTL-program. This seems a rather 
natural rule; if a predicate is valid for a specific relation it is also valid for a 
specialization of this relation. Such an incorporation of specializations into the 
model, however, can lead to technical problems as illustrated in the following 
example 

paid_6OOO(X(employee)) ~- X.ealary=(m_salary=6000). 

Here, it is not possible to instantiate the variable X (employee) by an expression e 
of type manager, because then the equality predicate becomes incorrectly typed, 
since managers are specialized on the salary attribute. Therefore this way to 
integrate inheritance is not suitable for FDTL. 

Another attempt at modelling predicate inheritance in FDTL is to have a more 
elaborate type system for variables. Instead of defining exactly the minimal 
type of the expressions which could be used to instantiate the variable, only an 
upperbound is specified. For example, if p(e) is a fact and e ::employee, then it 
is possible to query the predicate p by ? p (X (person)).  The informal semantics 
of such a query is: Give all instances for X having type person and that satisfy 
condition p. Hence, the term e is a correct instantiation of the variable X having 
upperbound person. This technique is used in, for example Login, F-logic and 
LLO. In our theory, based on Cardelli subtyping extended with set constructs, 
such an approach will give rise to answers of queries consisting of a set of terms 
that are not necessary all equipped with the same minimal type. Such sets of 
heterogeneously typed elements, however, lead to inconsistencies (cf. [BaVrgl]), 
which makes such a liberal approach using upperbounds unfit for our purposes. 

We have therefore chosen for another approach, which is also more powerful 
than the approaches sketched above. First let us consider how we could specify 
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predicate inheritance in an explicit manner. Assume that a predicate is defined 
for a specific record type, then this predicate could be used to define predicates 
or terms having a sub- or supertype by using the built-in lea-predicate, as 
shown below. 

well_paid_emp(X(employee)) ~- 

well_paid_man(Y(manager)) ~- 

well_paid_pers(Z(person)) +-- 

.... X.salary.m_salary _> 6000. 

Y isa X(employee), 
well_paid_emp (X) ..... 

X(employee) isa Z, 
well_paid_emp (X) ..... 

It is clear that such situations may occur often and therefore we would like to in- 
tegrate this kind of inheritance within FDTL without having to explicitly specify 
isa -predicate instantiations. We will now explain how this can be achieved-. 

Suppose that we have the following rule (pertaining to example 1) 

well_paid(X(employee)) ~- db(X(employee)), 
X.salary.m_salary > 6000. 

Informally, the predicate well_paid defines a set of employees occurring in the 
database which also have a monthly salary greater than 6000. Analogous to 
a typed logical language without subtyping it is possible to query this simple 
program by means of a goal where the predicate is equipped with a variable which 
has the same type as for which the predicate was originally defined. However, 
by using predicate inheritance we would also like to ask for well&aid managers, 
for example: 

? well_paid (X (manager) ). 

This query can now be seen as shorthand for the query below, where only sub- 
stitutions for the variable X (manager) are taken into consideration. 

? wel l_paid(Y(employee)) ,  X(manager) isa Y(employee). 

The substitutions for Y (employee) could be eliminated by employing some addi- 
tional dummy predicate. In this case, the query ? well_paid(X(manager)) can 
be seen as shorthand for 

dummy (X (manager) ) ~-- 

? dummy (X (manager)). 

well_paid (Y (employee)), 
X(manager) isa Y(employee). 

It should be noted that the goal ? dlmmy(X(manager)) would result in infinitely 
many substitutions for the variable X(manager), since the only requirement 
stated is that the manager occurs as an employee in the database. This will 
give rise to infinitely many substitutions for the department attribute, since this 
attribute is not available for employees. In order to make this query safe, the 
variable X(manager) should be bound in some manner. This can be done by 
means of another predicate, for example a database predicate as in 
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? well_paid(X(manager)), db(X(manager)). 

This query has the same meaning as 

dl,r, my (X (manager) ) ,-- well_paid(Y(employee)), 
X(manager) isa Y(employee). 

? dlmmy (X (manager)), db (X (manager)). 

The answer to this query results in the set of managers occurring in the database 
which, as an employee, earn more than 6000 (it is assumed that we have, concep- 
tually, a fully replicated database, i.e. all managers also occur as an employee 
in the database). 

The same strategy as described above could also be used to obtain generaliza- 
tions, as in 

? well_paid(X(person)). 

This query is then shorthand for 

dummy (X (person)) +-- 

? dummy(X(person)). 

well~aid(Y(employee)), 
Y(employee) isa X(person). 

Hence, analogous to specializations, this technique can be extended to general- 
izations. The meaning of such a query is defined by considering these queries as 
shorthand for a query invoking a dummy predicate. Predicates are not only used 
within queries, they could also be used within bodies of rules defining other pred- 
icates. In that case there is no need for an additional dummy predicate; instead 
the body of the defined predicate can be extended with an extra isa -predicate. 

Consider the following example using the well_paid predicate (defined for employees) 

satisfied(X(person)) +-- well_paid(X(person)) ..... 

Analogous to queries, this rule can be regarded as shorthand for 

satisfied(X(person)) +-- well_paid(Y(employee)) , 
Y(employee) isa X(person) ..... 

We assumed earlier on that predicates were only allowed to be defined by using 
one fixed t~pe declaration; i.e. even if a predicate is defined by dii~erent rules in 
some programs, it is defined by using the same type declaration in all of those 
rules. We will now clarify in more detail why we have chosen for this assumption. 
Consider the situation where we have more than one rule defining a predicate, 
and that the predicate is defined for more than one Cartesian product type, as 
in 

well_paid(X(employee)) *-- db (X(employee)), 
X.salary.m_salary > 6000. 
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well_paid(X(manager)) +- db(X(manager)), 
X.salary.m_salary > 9000. 

In the case of the following query 

? well_paid(X(manager)). 

we unfortunately not on)y get managers which are well paid as a manager and 
earn more than 9000 as answer, but also all managers which are well paid as 
an employee and earn more than 6000! The reason for this is that the query is 
actually shorthand for 

dummy(X(manager)) ~-- well_paid(X(manager)). 

dummy(X(manager)) ~- well_paid(Y(employee)), 
X(manager) isa Y(employee). 

? dnmmy(X(manager)). 

which will result in an answer being against our intuition. What we would expect 
are all well paid managers; i.e. well paid as a manager, and not the managers 
which are well paid as an employee. It is, however, impossible to query the 
predicate associated with one particular type, i.e. it is not possible to ask for 
well paid managers, which are solely well paid as a manager. In particular, if a 
predicate is defined by multiple rules and having different types, then this will 
often lead to unexpected results. Furthermore, apart from this problem, there 
exists also another problem of a more formal nature. A query results in a set 
of answers, and in our object-oriented theory dealing with sets, each set will 
contain elements all of the same minimal type. If we now allow a predicate to 
be defined for more then one Cartesian product type, then by querying such a 
predicate we will obtain a set of answers with different minimal types. This is 
therefore yet another reason to not allow for predicates defined by multiple rules 
having different Cartesian product types associated to them. 

Let us now consider predicates associated to ordinary types. The interesting 
thing is that the strategy developed above for the treatment of predicates asso- 
ciated to object types is equally applicable to predicates associated to ordinary 
(i.e. non-object) types. For example, consider the following program 

p ((name="Paul", age=20)). 

p ((name="Eric", age=20)). 

and the query 

? p(X((age:int)). 

This query can be regarded as shorthand for 

dummy(X((age:int))) , -  p(Y((name:str ing,  a g e : i n t ) ) ) ,  YisaX. 

? d.mmy(X((age: int))). 
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Hence, we have defined a simple, but powerful mechanism to use predicate inher- 
itance within an object oriented logical query language. The constraints specified 
for correct programs can now be defined more formally. 

Defini t ion 12 Type  correctness  of  predica te  definitions.  Le tq  be an or- 
dinary predicate defined in an FDTL program P. Program P should then satisfy 
the following requirement 

Vr, r' �9 Defp(q) Type(Head(r)) = Type(Head(r')) 

Defini t ion 13 Type  correctness  for usage of  predicates .  Let q be an or- 
dinary predicate defined in an FDTL program P, and let A be a literal with 
predicate symbol q. Program P should then satisfy the following requirement 

Vr �9 P (A �9 Body(r) =~ 3r' �9 Defp(q) 

(Type(A) <_ Type(Head(r')) V Type(gead(r')) <_ Type(A))) 

Defini t ion 14. Let P be a correct program, and let q be an ordinary predicate 
defined in P. The type of q in P, conform definition 3.15, is then defined by 

Typp(q) = Type(Head(r)), where r �9 Defp(q) 

4 A semant ics  of FDTL 

In the previous section it has been demonstrated how inheritance of predicates 
can be integrated within FDTL by employing the isa -predicate. Furthermore it 
has been discussed how, by using shorthand notation, the isa-predicate could 
be omitted in some cases. We shall define a transformation Tfp  which translates 
a correct program P into a program P'  where all abbreviations are removed and 
inheritance is made explicit by means of isa-predicates. For such an explicit 
FDTL-program we shall provide proper semantics. 

Defini t ion 15. The transformation Tfp ,  which transforms a correct program 
P into a program P~, is defined as follows 

Tfp =while 3Ai E Body(r), r E P, Ai = q(~l,... ,t,~), q is an ordinary predicate 
symbol, Typp(q)=(~-l,...,T~) and 3tj ( l < j < n )  tj : : ~ , aCTj  

do 
replace Aiby: q(tl , . . . , t j- l ,X(Tj), t j+l, . . . , t~) where X(rj) •Var(r); 
if Tj ~ a 
then add: tj isa X(~-j) to the body ofr 
else add" X(Tj) isa tj to the body oft 

The semantics of an FDTL program should provide a link between FM and 
FDTL. In this way, in contrast to other logical languages, we define an actual 
denotational semantics for terms in FDTL. This denotational semantics is used 
to obtain a typed Herbrand model of an FDTL program. The definitions of the 
denotational semantics are derived from [BaFo91] 
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P o s t u l a t i o n  16. For fl �9 B, let Eft]] be a non-empty set. Let [[bool] = { t r u e ,  
false} 

Def in i t i on  17. For each r �9 T, a set IT] is defined by induction on the structure 
of T as follows 

1. ~fi~ is postulated 
2. [ ( a l :  T1 , . . . , a ,~ :  Tm)] = {(ai, di) I 1 < i < m A d, �9 ITi]]} 
3. []Pr] = 7~([T]), where :P denotes the power set operator 

We let d vary over any ~T~ 

Def in i t i on  18. U = U~eT ITS, the universe in which the semantics of both types 
and expressions will find their place. 

The subtyping relation and a conversion function on the semantics is now defined 
formally as follows. 

De f in i t i on  19. For each pair a, T �9 T with a _< T we define a function cv~<~ �9 
[a~ --* ~ by induction as follows 

1. For each fl �9 B: 
- cv~<_~ = ident i ty~ �9 [$~ ~ ~ 

2. Let a = (al : a l , . . . , a m  :a,~) and ~ = (ajl : T j l , . . . , a i m  : Tim); i f j l , . . . , j ~  
is a (not necessarily contiguous) sub-sequence of 1 , . . . ,  m and aj~ < ~-j~ (1 < 
i < n) then: 

- cv~<~({(ai,di) l(1 < i < m})  = {(aj,,cv~j,<_=j,(dj,)) 1 < i < n} 
3. Let a = ]Pa r and T = ]PT'; if a '  < r '  then: 

- cv~<r(S)  = {cv~,<,,(d) I d �9 S} for S �9 [a~ 

Def in i t i on  20. A database state db is a record (al = { t l ~ , . . ,  tl,~ } , . . . ,  a,~ = 
{ t ~ , . . . ,  t~,m }), where each label ai (1 < i < m) corresponds to the extension 
name of a table, and each tij (1 < j < hi) (1 <_ i _< m) denotes an object 
occurring in the extension ai. 

Example 5. The database of example 1 has minimal type (PERS : ]Pperson,  
EMP :]Pemployee,  MAN :]Pmanager, SEC : ]Psec r e t a ry ) .  For more details we re- 
fer to [BaBZ93]. 

The typed Herbrand interpretation I for an FDTL program P belonging to 
database state db is given by the following: 

1. The domain of I is the universe U 
2. An assignment of an element d of U, to each ground term g in P.  
3. An assignment of an n-ary predicate PI, to each n-ary relation < t l , . . . ,  ~n > 

in P.  

De f in i t i on  21. An assignment A is a family of functions A~ 6 X~ ~ [[r], (T E 
T). 'For assignment A, ~- E T, X(~-) 6 X~, d 6 [TI we define the assignment 
A[x ~ d] for all a �9 T, Y(~) �9 X# by 
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(A[x ~ d])~(Y(a) )  = A ~ ( Y ( a ) ) ,  if~r # ~- or Y(a)  # X(~') 
= d , i f a  = T and Y(a)  = X(~-) 

D e f i n i t i o n  22 M i n i m a l  s e m a n t i c s .  Let  A be an assignment.  A part ial  func- 
t ion [ ~  e E ~ U is defined as follows by induct ion on the derivat ion of the 
minimal  type  of its a rgument  

1. [[c~.~=[[c], whenever  c e C~- 
2. [X(~-)]]~ = Ar(X(T) ) ,  whenever  X(T) e X~- 
3. [(a~ = t~ , . . . ,  am = t,~)]*A = {(a~, [t~]~) I 1 < i < m}, whenever  t~ :: 7"~ 
4. it.a]* A = f(a),  where f = [t]~t, whenever  t :: (a~:  T~ , . . . , a ,~  : T,~), a = aj 

for some j ,  1 < j _< m 
5. = { i t , l L . . . ,  whenever :: (1 < i < m) 
6. ~t~ u n i o n  t2]~t = ~t~]~ t2 [t2]~t , whenever  t l ,  t~ :: ]P~- 
7. [t~ i n t e r s e c t  t2]*A = [t~*A N [t~]*A, whenever  t t ,  t2 :: ]P7 
8. [t~ m i n u s  t2]~t = [t~]~t \ [t~]~, whenever  t t ,  t~ :: ]PT 

D e f i n i t i o n  23. The  semantics of a Car tes ian produc t  type  (which is used for 
the typing of predicates)  is defined as follows 

[(T1...,T,~)]]~ = { ( d l , . . . , d ~ ) I d ~  6 ~ril*A (1 < i < n)} 

For a predicate  q 6 P ,  this yields (cf. definit ion 14): 

[q~*A C_ [Typp(q)~* A 

D e f i n i t i o n  24. For a given formula  F ,  its t ru th  under  assignment A with database  
s ta te  db for I ,  wr i t ten  as I ~A,db F is induct ively defined by 

- if p ( t l , . . . ,  t~) is an atomic formula and p is an ord inary  predicate  symbol  
then  

�9 I ~A,db d b ( t )  iff there  exists a table a in the da tabase  db, such tha t  
it]* A 6 [db.a~* A, whenever  t :: 7", t 6 EB and T e Tobj 

�9 I ~A,db tl | iff [ t l ]~  | [ t 2 ~ ,  whenever  t l , t2 6 EB and | 6 {_<, <, _> 
, >} and t l , t2 :: •  or t l , t2 :: r e a l  or t l , t2 :: s t r i n g ,  or t l , t2 :: c h a r  

�9 I ~A,db tl  = t2 iff [ t l ]~  = [t2]~, whenever  t l ,  t2 :: ~" and t l ,  t2 6 EB 
�9 I ~A,db tl r  iff [ t l ~  # [t2)]~,  whenever  t l , t2 :: T and t l , t~ 6 EB 

t * �9 I ~A,ab t l  i sa  t~ iff CV~<~([tl]*A) = ~ 2]A, whenever  t l  :: a ,  t2 :: T and 
~r _< "r and tl ,  t2 6 EB 

�9 I i n t 2  iff [[tl]].~ 6 [t2]~4, whenever  t l , t2 :: ]PT- and t l , t2 6 En 
�9 I s in  t2 iff Cv~<~([tl]*A) 6 ~t21*A, whenever  tl  :: cr, t2 :: ]P'r and 

a tl,  t2 6 EB 
�9 s u b s e t  t2 if~ ~t l~ ~ ~t2]~4, whenever  t l ,  t2 :: ]PT and t l ,  t2 6 

~A,db tl 
~A,db tl 
< ~" and 

I ~a,db t l  
EB 
I ~A,db tl s s u b s e t  t2 iff cvlp~<]pr([[tl]]*A) C [t2]~, whenever  tl  :: IP~, 
t2 :: ]PT and ~ <_ T and t l , t2 6 "EB 
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- I ~A,db t rue ,  whenever not  I ~A,db false, 
- if F and G are formulas then 

I ~A,db not  F if[ not I ~A,db F 
I ~A,db F V G iff I ~A,db F or I ~A,db G 
I ~A,db VxF iff I ~(A,db)[=/~] F for all t E D where x :: a ~ t :: a. 

This definition is straightforward (cf. Lloyd [Lloy87]). 

5 C o n c l u s i o n s  a n d  f u t u r e  w o r k  

We have defined a logical language, called DTL which can be considered as a far 
reaching extension of Datalog equipped with complex objects, object identities, 
and multiple inheritance based on an extension of Cardelli type theory. The DTL 
language also incorporates a very general notion of sets as first-class objects. It 
has furthermore been explained how this language could be used to q~ery an 
object-oriented database specified along the lines of a state-of-the-art data model 
called TM. In DTL we have defined a simple, yet powerful way of combining 
multiple inheritance with predicates in logic programs. Furthermore, we have 
offered a simple denotational semantics for DTL programs. Though we have 
not described our evaluation strategy for DTL programs in this paper, we do 
mention that this strategy has been proven to be sound and complete. For details 
concerning the resolution of DTL programs we refer to [Ba192,BaBa93] 

As far as future research is concerned, we are presently interested in imple- 
mentation issues related to DTL. We mention that a TM-based DBMS prototype 
has been realized in the logical language LIFE, and that we are currently inves- 
tigating implementation possibilities of DTL along similar lines. 
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