
The Term Processor Kimwitu:A system for generating language-based softwarePeter van Eijk Axel Belinfante Henk Eertinkpve@cs.utwente.nlUniversity of Twente, Fac. Informatics7500 AE Enschede, NLAbstractWe present a new system to support the construction of language-based software.Its major innovation is open multi-paradigm programming. This allows such softwareto be described in an arbitrary variety of styles, and also facilitates integration oflanguage based tools. A large application and the impact on productivity of oursystem is discussed.1 IntroductionThe construction of language-based software, such as compilers and tools for the analysis ofprograms or speci�cations, is a rich semantic domain. There are a number of formalisms inuse to describe the functionality of such software. One sensible approach to implementingsuch software is to use a very high level programming language, of which the semanticmodel is closely related to the formalism in which the functionality is described. Examplesare attribute grammars and functional languages. This works �ne for prototypes of thesoftware, but does not always result in satisfactory space and time performance. Anotherapproach is to use a programming language that allows total control over the space andtime consumption of the software, such as C. Its disadvantage is that the gap betweenthe description of the functionality and the implementation of the functionality is large,implying a long, tedious, and error-prone implementation e�ort.Our system attempts to blend the advantages of both approaches, and bridge this gap.In essence, we allow open multi-paradigm programming. Multi-paradigm programmingallows to express each part of the implementation in the most appropriate language. It isa `best of both worlds' approach, where one uses a high-level language where possible, anda low-level language where necessary. `Open' in this context means that escape hatchesare provided to other implementation techniques. A basic common concept in the pro-gramming languages for language-based software is trees, or terms. This forms the basisof our system, so all formalisms operate on the same kind of structures. It turns out thatsuch an approach also facilitates tool integration.The contents of the rest of this paper is as follows. In Section 2 we analyse some existingformalisms for the construction of language based software and present the concept of aterm processor. In Section 3 a more technical discussion is given of our particular system,which is followed in Section 4 by a presentation of some existing applications. Section 51

discusses the strengths and weaknesses of our approach, and in Section 6 we draw someconclusions.2 Constructing Language-Based SoftwareIn this section we discuss a variety of systems that are used for the construction oflanguage-based software. Basic tools of course are Yacc and Lex, which are based oncontext-free grammars and regular expressions. They do not support any data type con-struction and allow functions to operate in a one-pass bottom-up way only. NewYacc[PC89]is a derivation of Yacc that retains the parse tree, and allows treewalks and unparsing def-initions to be described. It does not allow attribute evaluation speci�cations or directaccess to the parse tree.On the other side of the spectrum there are fully syntax-driven systems like theSG[TR89] and Linguist[Far84], which are based on attribute grammars, and CENTAUR[B+88],based on natural semantics. These systems are suitable for a wide range of realistic ap-plications, e.g. [vE89], but one cannot easily circumvent or escape their formalisms whenthat is necessary, e.g. for performance reasons.IDL (Interface De�nition Language)[Sno89] was initially developed for the descriptionof interfaces between ADA tools. It provides a large number of constructs to describeannotated trees, but little mechanism for the de�nition of functions over these trees.High-level programming languages such as PROLOG and ML have also been demon-strated to be suitable for some realistic language-based tools. Rewrite formalisms havebeen used for code generation [FW88]. Again, in each of these formalisms there are thingsthat cannot be easily or e�ciently expressed.There is some commonality in these formalisms, though. All of them, in one wayor another, allow trees (or terms) as a fundamental data structure. To some extent, allthese systems can be called term processors. Our system distinguishes itself by allowing avariety of formalisms.3 The Kimwitu SystemThe Kimwitu1 system is a term processor. The basis of our language is a notation todescribe a term algebra, which de�nes a set of terms and operations to construct terms.Computations over these terms can then be described through a variety of mechanisms,as explained below. Terms can be manipulated in a tool as well as exchanged betweentools. In this way tool integration is facilitated because the same term algebra describesboth the internal as well as the external representation of values.The input of the Kimwitu compiler is an abstract description of terms, annotated withimplementation directives, plus a description of functions on these terms. Examples of thelatter are simple function de�nitions and rewrite and unparse rules. The output consistsof a number of C �les, containing data structure de�nitions for the terms, a number ofstandard functions on the terms, and a translation (in C) of the function de�nitions andrewrite and unparse rules in the input. The standard functions can be used to create terms,compare them for equality, read and write them to �les and do manipulations like list1Kimwitu (pronounced `kee-mweetu') is pidgin-Swahili for `language of trees'.2

concatenation. All generated functions contain assert statements that check dynamicallyfor NULL pointers and type mismatches. Type mismatches, by the way, can also bedetected by Lint. Additionally, analysis and statistics gathering functions are generated.The functions that read and write terms from and to a �le use the `structure' �le formatthat is used by editors generated by the SG. These functions can be used to pass termsbetween Kimwitu generated tools and SG-generated editors if the phyla of the exchangedterm are de�ned in the involved tools.3.1 TermsThe input structure of terms is borrowed from the SG Speci�cation Language SSL. Amongthe prede�ned phyla are int and string. An example declaration is the following.expr: Plus(expr expr)| Const(int) ;exprlist: list expr;This declares two phyla, or types, or nonterminals, depending on your viewpoint. Eachof these denote a set of terms. As shown, there are two ways of constructing a phylum. Oneis by enumerating its variants, each of which is an operator applied to a list of phyla. Theother is by declaring it as a list phylum, which has, apart from its brevity, the advantagethat it instructs the system to generate additional, list-speci�c functions. The example(exprlist) is e�ectively equivalent to the following right-recursive phylum.exprlist: Nilexprlist()| Consexprlist(expr exprlist) ;Attributes can be added to the phyla. In our system, attributes are only a way todecorate trees with values. The actual decoration is up to the user, who can use any treewalking scheme for decoration. In this example an integer attribute value is added to thephylum expr.expr: { int value = 0; };The type of the attribute can be any C type, including one that results from a phy-lum declaration. Attributes can be initialised by giving the initial value in the attributedeclaration. Attributes do not appear in structure �les.For each phylum,Kimwitu generates a C data type with the same name and C functionsto construct and otherwise manipulate objects of such a type. Technically, the datastructure is a pointer to a structure containing the attributes, a variant selector (cf. theoperator), and a union of structures. Note that this scheme allows type checking by Lintover C programs to check if a term is constructed from the correct phyla.An additional generated data type is YYSTYPE, technically a union of all phyla,which can be used in Yacc-generated parsers to construct terms. This makes it relativelyeasy to combine the use of Yacc, Lex and Kimwitu.By default, each operator `application' just yields a new `memory cell' containingpointers to the arguments of the operator, with initialised attributes. However, if thestorage option `uniq' is speci�ed for a phylum, the system guarantees that if an operator is3

called once with a certain set of arguments, each additional call with the same argumentswill yield a pointer to the cell that was created by the �rst call. As a result, commonsubterms are automatically shared, resulting in a directed acyclic graph. Hashing is used toimplement this uniqueness of representation property. A property of uniquely representedterms is that checking for structural equivalence of two terms, is equivalent to pointercomparison. The unique storage property, in combination with attributes, can be usedto implement a symbol table, or more generally function caching[Pug88], without muchprogramming e�ort.3.2 Pattern MatchingAlthough the generated data types have a fairly regular structure and can be accessedby arbitrary C code, it is more convenient to make explicit use of structure induction inthe de�nition of functions. Kimwitu gives the user
exibility in the manipulation of termsthrough the use of patterns over terms in several ways: in function de�nitions, rewriterules and unparse rules.3.3 Function De�nitionsThe syntax of the body of a function de�nition is C, extended with with-statements inwhich pattern matching can be expressed. As an example, the following function returnsthe value of its argument expression.int get_value(e) expr e;{ with(e) {Const(i): { return i; }Plus(e, e): { return (2*get_value(e)); }Plus(e1, e2): { return (get_value(e1) + get_value(e2)); }} }The function does a case analysis on the argument of the with-statement. For eachpattern, a piece of C code is given between curly brackets, in which the variables boundin the pattern can be used.An alternative notation for pattern matching is useful and more concise for certainspecial cases. If a parameter (e.g. of a function) is pre�xed with a dollar symbol, animplicit `with' can be used, as in the following example. The components of a productionare then referenced as $i. The previous example then translates into the following.int get_value($e) expr e;{ Const: { return $1; }Plus: { return (get_value($1) + get_value($2)); }}In addition to the with-statement, there is also a foreach-statement through which onecan enumerate over lists. To illustrate this, suppose we add the following production toexpr to denote a sum of expressions.| Sigma(exprlist) 4

The additional case in body of get value can then be written as follows.Sigma(e2): { int sum=0;foreach(e3; exprlist e2) {sum +=get_value(e3);}return sum;}The parameters of the foreach clause include, in that order, the for variable, and thetype and name of the list value that the body cycles through.A variant of the foreach clause has a pattern in the place of the for variable, whichacts as a �lter on the list elements. The body will only be applied on the list elementsthat match the pattern.3.4 Rewrite rulesRewrite rules can also be used to specify computations over terms. An example rewriterule is:Plus(Const(i), Const(j)) -> Const(cplus(i,j));The left-hand side of a rewrite rule is a pattern, which binds variables that can be usedin the right-hand side. The right-hand side is a term, consisting of operators (e.g. Const),and C function calls (e.g. cplus). In a pure rewrite rule, the right-hand side consists ofonly operators.From the collection of rewrite rules, for each phylum a function rewrite phylum thatreturns the normal form of the argument, is generated. The currently implemented rewritestrategy is left-most inner-most.3.5 Unparse rulesUnparse rules describe treewalks that can be used to derive textual representations ofterms. Each unparse rule consists of a pattern, a list of views and a list of unparse items.The patterns are the same as those in function de�nitions and rewrite rules. Views canbe used to specify several textual representations for the same term. An unparse item canbe any of the following: a string denotation, a piece of arbitrary C code in which patternvariables can be used, a pattern variable or an attribute of a pattern variable. Fromthe collection of unparse rules, for each phylum a function unparse phylum is generated.These functions take three arguments: the phylum that will be unparsed, a (void) printerfunction (to be supplied by the user) that will be applied to each string denotation, andthe view to be used. Each unparse item de�nes a part of an unparse phylum function.The relation between unparse items and generated code is as follows: a string denotationis mapped to an invocation of the printer function, the C code is copied, and a patternvariable, or attribute, maps to a call of the corresponding unparse phylum function.The following example demonstrates how pattern matching can be used to handle listseparators. The number of separators is one less than the number of list elements.Nilexprlist() -> [:];Consexprlist(ex, Nilexprlist()) -> [: ex];Consexprlist(ex, rest) -> [: ex ", " rest];5

4 ExperiencesOur main experience with Kimwitu is from the work on LOTOS [ISO88] tools. This workwas either carried out at the University of Twente or elsewhere in Lotosphere, an EspritII project involving 16 partners in 7 countries.In the LotosPhere project an integrated toolset is being built for LOTOS. Every tool inthis toolset works on a central object, which is a representation of a LOTOS speci�cation.This object is formally described in 525 lines of Kimwitu input. Kimwitu generates datastructures and I/O routines from this description. This makes changes to the structureof the interface object rather easy | in most cases programs only have to be recompiled.The fact that the speci�cation of the central object is used for both the external and theinternal representation simpli�es the production of tools that work on the central object.In one case, a person with no experience in C or Kimwitu produced a conversion tool inone week.A compiler for equational systems into code for specialised abstract term rewriting andnarrowing machines [Wol90] has been produced using Kimwitu in a three man-months,which was about half of the planned development time. This system is described in 2900lines of Kimwitu input. In particular the automatic management of symbol tables provedvery helpful. The speed of the resulting program is comparable with earlier versions, whichwere written in C. The interpreters for the abstract machines were written in 2600 linesof C-code.A full LOTOS simulator (called Smile) has been built in 6 man-months. This simulatordoes extensive manipulation of complex data structures. The size of Kimwitu code is about4000 lines (112 Kb) with an additional 1200 lines of C-code for the X-Window based user-interface. These numbers do not include the abstract data type part mentioned previously.A previous system, Hippo [vEVD89], built by di�erent persons, was implemented in20,000 lines of Yacc, Lex and C, of which 5000 lines are devoted to the abstract data typepart. Its development took 18 man-months. It is now hard to extend and maintenance onit has been stopped.Generally speaking, Smile has more functionality than Hippo: it is fully symbolic andits abstract data type part is much more advanced. The memory consumption of Smile isless and the execution speed is better (both by a factor of at least 2 to 3), on a comparablerun.The following gives an indication of the performance of the generated code. A 3195 lineLOTOS speci�cation results in a structure �le of 780 Kb, containing approximately 200,000operator applications. Reading this object, initialising the simulator, and compiling theabstract data types takes 18 seconds of cpu-time on a SparcStation.5 DiscussionIn this section we discuss why we are pleased with the system and what its weaknessesare. The system improves productivity, is relatively easy to learn, and produces e�cientcode.Software productivity appears to be related to the number of lines written per month,independent of the notation. This implies that a more compact notation, in principle,allows a certain amount of functionality to be produced in less time. Our notation is6

compact for two reasons. Some code does not have to be written at all, e.g. C struc-tures and generated functions, and there is
exibility in choosing the most appropriate(=more compact) paradigm. Furthermore, productivity is improved if less time is spenton debugging. Lines that do not have to be written cannot contain errors. The generatedcode also contains the assert statements which programmers are usually too lazy to write.Since Kimwitu automates the process of interfacing between tools, hardly any integrationproblems occur.Our experiences con�rm this expectation. It is always hard to compare two competingapproaches to software construction. A controlled experiment is methodologically hard todo and very expensive. There is some experimental result, though, if the remake of a toolhas more functionality and is developed in less time, by di�erent persons. For example,in comparison with Hippo, Smile has more functionality, better performance, and wasproduced in half the time, using half the number of lines of code.Can one a�ord to use Kimwitu? One aspect of this is the learning e�ort required.The entire manual [vEB90], including cookbook style examples, contains only 32 pages.This is partly due to the care we took in designing a small language. Another aspect ofa�ordability is the performance of the generated programs. As we have shown earlier, thisis quite acceptable.What are the weaknesses? We have not been able to �nd, despite repeated attempts,a way to describe polymorphic functions that can be mapped easily to C. This is partlydue to the C language. Furthermore, the system generates a number of functions foreach phylum. Not all these functions are used in a typical application, which results inexecutables that contain super
uous code. A global analysis at link-time would be ableto remove this.6 ConclusionThe novelty of our approach is to allow a variety of formalisms to be used in the con-struction of language-based software. We do not claim novelty in the formalisms used,but rather in their combination. We believe that our system is a signi�cant tool in theimplementation of programming and speci�cation languages.We would like to thank the users that gave us feedback on the system, in particularRobert Elbrink of PTT Research Netherlands, Dietmar Wolz of the Technical Universityof Berlin, and Eric Madelaine of INRIA Sophia-Antipolis. Albert Nijmeijer made helpfulcomments on this paper.References[B+88] P. Borras et al. CENTAUR: the system. SIGPLAN, 24(2):14{24, Nov 1988.[Far84] Rodney Farrow. Generating a production compiler from an attribute grammar.IEEE Software, 1(4):77{93, Oct 1984.[FW88] C. W. Fraser and A. L. Wendt. Automatic generation of fast optimizing codegenerators. SIGPLAN, 23(7):79{84, July 1988.7

[ISO88] ISO. IS 8807 information processing systems - Open Systems Interconnection- the de�nition of the speci�cation language LOTOS, 1988.[PC89] James J. Purtilo and John R. Callahan. Parse-tree annotations. CACM,32(12):1467{1477, Dec 1989.[Pug88] William Pugh. Incremental Computation and the Incremental Evaluation ofFunction Programs. PhD thesis, Cornell University, Ithaca, N.Y., 1988.[Sno89] Richard Snodgrass. The Interface Description Language: De�nition and Use.Computer Science Press, Rockville, MD, 1989.[TR89] T. Teitelbaum and T. W. Reps. The Synthesizer Generator - A System forConstructing Language-Based Editors. Springer-Verlag, New York, 1989.[vE89] Peter van Eijk. LOTOS tools based on the cornell synthesizer generator. InH. Brinksma, G. Scollo, and C. A. Vissers, editors, Proceedings of the ninthinternational symposium on protocol speci�cation, testing and veri�cation, Am-sterdam, 1989. North-Holland.[vEB90] Peter van Eijk and Axel Belinfante. The termprocessor kimwitu, manualand cookbook. Technical Report INF-90-45, University of Twente, EnschedeNetherlands, 1990.[vEVD89] P.H.J. van Eijk, C. A. Vissers, and M. Diaz, editors. The Formal DescriptionTechnique LOTOS - results of the ESPRIT/SEDOS project. North-Holland,Amsterdam, 1989.[Wol90] D. Wolz. Design of a compiler for lazy pattern driven narrowing. In Unknown,editor, Proc. of the 7th international workshop on speci�cations of abstract datatypes, Wusterhausen-Dosse, pages ?{?, Berlin, 1990. Springer-Verlag. LectureNotes in Computer Science ???

8
View publication statsView publication stats

https://www.researchgate.net/publication/2257040

