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Abstract

We report a parallel algorithm applicable to a Euler–Lagrange model embedding four-way coupling. The model
describing the dispersed phase dynamics accounts for bubble–bubble collisions and is parallelized using a mirror domain

technique while the pressure Poisson equation for the continuous phase is solved using a domain decomposition technique
implemented in the PETSc library [S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes,
B.F. Smith, H. Zhang, PETSc Web page: http://www.mcs.anl.gov/petsc, 2001]. The parallel algorithm is verified and it
is found that it gives the same results for both phases as compared to the serial algorithm. Furthermore the algorithm
shows good scalability up to 32 processors. Using the proposed method, a homogeneous bubbly flow in a laboratory scale
bubble column can be simulated at very high gas hold-up (37%) while consuming a reasonable amount of calculation wall
time.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Bubble columns are encountered in a wide range of applications such as the Fischer–Tropsch process for
hydrocarbon synthesis, hydrogenation of unsaturated oil, oxidation of hydrocarbons, fermentation and (bio-
logical) wastewater treatment. Due to the simplicity in operation, low operating cost and the good mass, as
well as heat transfer characteristics, bubble columns are often preferred over other types of reactors. The deter-
mination of global parameters such as the integral gas hold-up is of primary importance for scale-up and
design purposes. Unfortunately the global parameters are strongly influenced by the local flow phenomena.
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Nomenclature

Notation

B set of bubbles, dimensionless
C model coefficient, dimensionless
d diameter, m
E eccentricity, dimensionless; efficiency, dimensionless
E€o Eötvös number, E€o ¼ ðql � qbÞgd2

b=r, dimensionless
F force vector, N
g gravity acceleration, m s�2

h film thickness, m
I unit tensor, dimensionless
m mass, kg
Mo Morton number, Mo ¼ gl4

1ðq1 � qbÞ=ðq2
1r

3Þ, dimensionless
N set of possible collision partners, dimensionless
O set of obstacles, dimensionless
p pressure, N m�2

P set of processors, dimensionless
R radius, m
r bubble position vector, m
Re Reynolds number, Re = ql|v � u|db/ll, dimensionless
S speed-up, dimensionless
S characteristic filtered strain rate, s�1

t time, s
T calculation time, s
u liquid velocity vector, m s�1

u liquid mean velocity, m s�1

u 0 liquid velocity fluctuation vector, m s�1

v bubble velocity vector, m s�1

v bubble velocity component, m s�1

V volume, m3

W set of neighbor list window, dimensionless
y distance to the wall, m

Greek letters

e volume fraction, dimensionless
dt time step, s
D subgrid length scale, m
c shear rate, s�1

U volume averaged momentum transfer due to interphase forces, N m�3

l viscosity, kg m�1 s�1

w Lagrangian quantity
W Eulerian quantity
q density, kg m�3

r interfacial tension, N m�1

s stress tensor, N m�2; film drainage time, s
x mapping function, dimensionless

Indices

b bubble
c coalescence
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D drag
e event
eff effective
G gravity
l liquid
L lift
n normal direction
P pressure
P processor
rel relative
s serial
S subgrid
T turbulent
VM virtual mass
W wall
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The behavior of bubble columns is quite complex and detailed understanding of its dynamics is lacking. As the
local properties in the two-phase flow have proven to be difficult to measure in industrial equipment, there is a
growing interest during the last decades to develop models which can accurately predict the detailed charac-
teristics of bubble columns.

Due to advances in computer hardware and numerical solution methods computational fluid dynamics
(CFD) has emerged as a powerful tool for both scientists and engineers. Two models are widely used for
describing hydrodynamics of bubble columns, i.e. the Euler–Euler (E–E) model and Euler–Lagrange (E–L)
model. The E–E model employs the volume or ensemble averaged mass and momentum conservation equa-
tions to describe the time dependent motion of both phases [2–4]. The number of bubbles present in a com-
putational cell is represented by a volume fraction and the information on the bubble size distribution is often
obtained by incorporating population balance equations, which take into account break-up and coalescence of
bubbles as well as growth or shrinkage of bubbles as a result of mass transfer.

The E–L model on the other hand adopts a continuum description for the liquid phase and additionally
tracks each individual bubble using Newtonian equations of motion taking into account the four-way inter-
action, i.e. the mutual bubble–liquid and the mutual bubble–bubble or bubble–wall interaction. This allows
for a direct consideration of additional effects related to bubble–bubble and bubble–liquid interaction. Mass
transfer with and without chemical reaction, bubble coalescence and re-dispersion can be incorporated directly
[3,5–7]. Unlike the E–E model, the E–L model does not require additional models to predict the bubble size
distribution since this information is already part of the solution.

One main limitation of the E–L model is the number of bubbles that can be treated since for each individual
bubble one equation of motion needs to be solved. Without taking into account direct bubble–bubble inter-
action Kitagawa et al. [8] and Sommerfeld et al. [9] have succeeded to simulate bubble columns with about 105

bubbles simultaneously present in the column. By neglecting the bubble–bubble interaction, however, bubbles
could overlap with each other. As a consequence, in dense swarms, considerable overlap between the bubbles
can prevail. If the superficial gas velocity is sufficiently high, the local gas fraction can approach unity leading
to numerical problems. Sommerfeld [10] claims that if the volume fraction of the gas exceeds 1 · 10�3, the
bubble–bubble interaction becomes so important in describing the fluid dynamics in the bubble column that
four-way coupling is needed. Furthermore, the bubble interaction is also required as a first step if bubble coa-
lescence needs to be considered.

By introducing direct bubble–bubble interaction into the model, the computational effort is dramatically
increased since the algorithm to solve the collision sequence is both CPU and memory intensive. Furthermore
the time step required in the bubble tracking algorithm is no longer determined by the numerical stability cri-
teria but by the time scale of the collision events, which normally are an order of magnitude smaller than the
bubble tracking time scale. With a collision model Darmana et al. [7] reported that typically only 104 bubbles
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can be simulated using a state of the art PC. In combination with the necessity to perform simulations in three
dimensions with sufficiently fine spatial and temporal resolution, the method proves to be computationally
very demanding and time consuming. On top of that, the model should be able to perform simulations over
a sufficiently long time to obtain reasonable statistics, as needed for proper analysis of the column dynamics.
This leads to the conclusion that this method is less attractive in handling large scale bubble columns.

Recently parallelization strategies have received considerable attention in the multiphase CFD community
[11,12]. By solving a problem in parallel, not only the time required to solve the problem can be reduced sig-
nificantly, also the problem size that can be handled is increased, since the memory requirements can be dis-
tributed. From a numerical point of view, the Eulerian part of the model is easier to solve in parallel since the
discretized form of the governing equations will lead to a large linear system of the form Ax = b where the
coefficient matrix A is usually sparse. This matrix problem can be solved in parallel efficiently using a domain
decomposition technique. Parallelization of the discrete part on the other hand is not straightforward due to
the serial nature of the event driven algorithm implemented for tracking bubble–bubble and bubble–wall col-
lisions [13].

In this paper a detailed parallelization strategy is presented for solving a 3D transient Euler–Lagrange
model taking into account the four-way interaction. The continuous phase is described using the volume-aver-
aged Navier–Stokes equations, whereas the dispersed phase is described by the Newtonian equations of
motion for each individual bubble. The exchange of momentum between the gas and the liquid as well as
the momentum exchange between the bubbles (four-way coupling) will be accounted for. The equations
describing the bubble motion will be presented in detail, incorporating all relevant forces acting on the bubble.
In order to prevent, physically impossible, bubble–bubble overlap, the highly optimized direct bubble–bubble
collision algorithm of Hoomans et al. [13] is implemented. The Eulerian part of the model is parallelized using
the well-known domain decomposition technique, whereas a so-called mirror domain technique is employed to
solve the Lagrangian part in a parallel fashion. To allow the parallel code to run in both distributed as well as
shared memory architecture, the massage passing interface (MPI) [14,15] paradigm is used.

2. Model formulation

The transient, three-dimensional Euler–Lagrange model described in this paper consists of two coupled
parts: a part describing the bubble motion and a part describing the liquid phase motion. The model requires
constitutive equations for the forces acting on a bubble. The interaction between the gas and the liquid phase
is incorporated via the liquid volume fraction and a source term in the liquid phase momentum equation.
The interaction between the bubbles is modeled via a collision model, including bubble bouncing and
coalescence.

2.1. Bubble dynamics

The motion of each individual bubble is computed from the bubble force balance. The liquid phase contri-
butions are taken into account by the interphase momentum transfer experienced by each individual bubble.
For an incompressible bubble, the equations can be written as:
mb
dv

dt
¼
X

F ð1Þ

dr

dt
¼ v ð2Þ
The net force acting on each individual bubble is calculated by considering all the relevant forces. It is assumed
that the net force is composed of separate, uncoupled contributions due to, respectively, gravity, pressure,
drag, lift, virtual mass and wall forces:
X

F ¼ FG þ FP þ FD þ FL þ FVM þ FW ð3Þ
A brief introduction of these forces will be given here. A more detailed discussion of these forces can be found
in the review papers of Magnaudet and Eames [16] and Jakobsen et al. [17,18].
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The gravity force acting on a bubble in a liquid is given by:
FG ¼ qbV bg ð4Þ

The far field pressure force incorporates contributions of the Archimedes buoyancy force, inertial forces and
viscous strain and is given by:
FP ¼ �V brp ð5Þ

The drag exerted on a bubble rising through a liquid is expressed as:
FD ¼ �
1

2
CDqlpR2

bjv� ujðv� uÞ ð6Þ
where the drag coefficient is given by the following relation:
CD ¼ max min
16

Re
ð1þ 0:15Re0:687Þ; 48

Re

� �
;
8

3

E€o
E€oþ 4

� �
ð7Þ
This drag relation is based on an extensive number of bubble rise velocity measurements and was derived for
10�2 < E€o < 103; 10�14 < Mo < 107 and 10�3 < Re < 105, where the Eötvös number, E€o ¼ ðql � qbÞgd2

b=r rep-
resents the dimensionless size, the Morton number, Mo ¼ gl4

l ðql � qbÞ=ðq2
l r

3Þ is a dimensionless parameter
describing the system properties, and the Reynolds number, Re = ql|v � u|db/ll represents the dimensionless
velocity. In this work we use an air–water system, i.e. Mo = 2.52 · 10�11 and bubble sizes ranging from 4
to 10 mm, i.e. 2:1 < E€o < 13:4. The steady relative velocity, vrel = |v � u| can straightforwardly be obtained,
when only the gravity, pressure force and drag force are considered, leading to:
CD

1

2
qlv

2
rel

pd2
b

4
¼ ðql � qbÞgz

pd3
b

6
ð8Þ
For air bubbles of this size rising in water, the drag coefficient given in Eq. (7) reduces to:
CD ¼
8

3

E€o
E€oþ 4

ð9Þ
When Eq. (9) is substituted in Eq. (8), the following relation for the rise velocity is obtained:
vrel ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2r

dbql

þ ðql � qbÞgzdb

2ql

s
ð10Þ
For an air–water system and bubble sizes as indicated earlier, rise velocities of vrel � 0.25 m/s are obtained,
corresponding to Reynolds numbers in the range of 1000–2500. Note that the influence of shape deformations
for large bubbles is implicitly accounted for through the drag relation.

A bubble rising in a non-uniform, liquid flow field experiences a lift force due to vorticity or shear in this
flow field. The shear induced lift force acting on a bubble is usually written as [19]:
FL ¼ �CLqlV bðv� uÞ � r � u ð11Þ

In this work we use the lift coefficient CL that was derived for 1:39 6 E€o 6 5:74; 5.5 6 log10 Mo 6 �2.8; and
shear rates c < 8.3 s�1 by Tomiyama et al. [20]:
CL ¼
min½0:288 tanhð0:121ReÞ; f ðE€odÞ�; E€od < 4

f ðE€odÞ; 4 < E€od 6 10

�0:29; E€od > 10

8><
>: ð12Þ
with
f ðE€odÞ ¼ 0:00105E€o3
d � 0:0159E€o2

d � 0:0204E€od þ 0:474 ð13Þ

and
E€od ¼
E€o

E2=3
; E ¼ 1

1þ 0:163E€o0:757
ð14Þ
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where E€od is a modified Eötvös number using the horizontal diameter of the bubble that is obtained from the
bubble aspect ratio E, which was determined experimentally by Wellek et al. [21] for E€o < 40 and Mo 6 10�6.
It is stressed here that small bubbles will tend to move towards the side of low liquid velocities, i.e. wall peak-
ing, whereas large bubbles deform and due to wake effects tend to laterally move in the opposite direction, i.e.
core peaking. It is noted here that although Eq. (12) is not strictly valid for the Morton numbers studied in this
work, it is considered the best available closure for relatively large bubbles.

Accelerating bubbles experience a resistance, which is described as the virtual mass force [19]:
FVM ¼ �CVMqlV b

Dbv

Dbt
�Dlu

Dlt

� �
ð15Þ
where the D/Dt operators denote the substantiative derivatives pertaining to the respective phases. In this
work it is assumed that the virtual mass force does not depend on the local void fraction and a virtual mass
coefficient of CVM = 0.5 is used.

Bubbles in the vicinity of a solid wall experience a force referred to as the wall force [22]:
FW ¼ �CW

d
2

1

y2
� 1

ðL� yÞ2

" #
qljðv� uÞ � nzj2nw ð16Þ
where nz and nw, respectively, are the normal unit vectors in the vertical and wall normal direction, L is the
dimension of the system in the wall normal direction, and y is the distance to the wall in that direction. Finally,
the wall force coefficient CW is given by:
CW ¼
expð�0:933E€oþ 0:179Þ; 1 6 E€o 6 5

0:007E€oþ 0:04; 5 < E€o 6 33

�
ð17Þ
2.2. Liquid phase hydrodynamics

The liquid phase hydrodynamics is described by the volume-averaged Navier–Stokes equations, which con-
sist of continuity and momentum equations. The presence of the bubbles is reflected by the liquid phase vol-
ume fraction el and the interphase momentum transfer rate U:
o

ot
ðelqlÞ þ O � elqlu ¼ 0 ð18Þ

o

ot
ðelqluÞ þ O � elqluu ¼ �elOp � O � elsl þ elqlgþ U ð19Þ
The liquid phase is assumed to be Newtonian, thus the stress tensor sl can be represented as:
sl ¼ �leff ;l ððOuÞ þ ðOuÞTÞ � 2

3
IðO � uÞ

� �
ð20Þ
where leff,l is the effective viscosity. In the present model the effective viscosity is composed of two contribu-
tions, the molecular viscosity and the turbulent viscosity:
leff ;l ¼ lL;l þ lT;l ð21Þ
where the turbulent viscosity lT,l is calculated using the subgrid scale (SGS) model of Smagorinsky [23]:
lT;l ¼ qlðCSDÞ2jSj ð22Þ
where CS represents a model constant with a typical value of 0.1, S the characteristic filtered strain rate and
D = (Vcell)

1/3 the SGS length scale.

2.3. Collision model

In this paper a hard sphere collision model resembling the model developed by Hoomans et al. [13] is used to
process the sequence of collisions between bubbles or between bubble and both internal and external obstacles
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(i.e. walls) in the computational domain. This model can be illustrated as follows: consider a set of bubbles con-
sisting of Nb bubbles in total with index B ¼ f0; 1; . . . ;Nb � 1g and a set of obstacles O. For every bubble ‘ 2 B
we can define a set of possible collision partners Nð‘Þ as:
Nð‘Þ :¼ ðB [ OÞ n f‘g ð23Þ

Using the relation reported by Allen and Tildesley [24], we can determine the time required for a bubble ‘ to
collide with a collision partner m 2Nð‘Þ from their initial positions and velocities (i.e. the collision time):
dt‘;m ¼
�r‘m � v‘m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr‘m � v‘mÞ2 � v2

‘mð�r2
‘m � ðR‘ þ RmÞ2Þ

q
v2
‘m

ð24Þ
where r‘m = r‘ � rm and v‘m = v‘ � vm. Note that if r‘m Æ v‘m > 0 the bubbles are moving away from each other
and will not collide. Furthermore it is assumed that the relative velocity is constant during dt‘,m.

For each bubble ‘ the individual minimum collision time with other partners
dtN‘;n ¼ minðdt‘;mÞ 8m 2Nð‘Þ ð25Þ
is determined, where n is the corresponding partner. Subsequently the global minimum collision time dte
a;b is

determined from all individual minimum collision times:
dte
a;b ¼ minðdtN‘;nÞ 8‘ 2 B ð26Þ
where dte
a;b represents the time to the next collision event e. First, all bubble positions will be updated to the

instant of the collision, using a simple first-order integration:
r‘ðt þ dte
a;bÞ ¼ r‘ðtÞ þ v‘dte

a;b ð27Þ
Following the movement of all bubbles, collision partners a and b are touching and the corresponding colli-
sion event is treated subsequently. Two types of collision events can take place: the collision partners can
bounce or they can coalesce. The former process will be explained in this section while the latter will be
explained in Section 2.4. When the bubbles bounce, the momentum is exchanged based on conservation of
momentum. In this case, the velocities of both bubbles are divided into a normal and a tangential component
with respect to the line connecting the centers of mass of both bubbles (see Fig. 1). The tangential component
does not change due to a collision while the normal component is changed according to the following relation
(elastic bouncing):
v�a ¼ 2
mava þ mbvb

ma þ mb
� va ð28Þ
Updating the velocities of the pair a,b following a collision concludes one cycle of a collision event.
Fig. 1. Configuration of bubble bounce following a collision event.
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2.4. Coalescence model

Incorporation of the bubble coalescence mechanism into Euler–Lagrange modeling has been undertaken by
Sommerfeld et al. [9] and Van den Hengel et al. [25]. Sommerfeld et al. [9] predicted the collision using a sto-
chastic inter-bubble collision model. Coalescence is incorporated directly by comparing the contact time with
the film drainage time. In the approach adopted by Van den Hengel et al. [25] bubble collisions are directly
calculated using the method given in the previous section while the coalescence process is predicted using a
stochastic approach based on the model of Chesters [26] and Lee et al. [27]. In the present study Sommerfeld’s
approach to determine coalescence in combination with direct calculation of collision is used. The implemen-
tation is straightforward: for a given bubble collision pair a and b predicted by the collision mechanism
explained in the previous section the film-drainage time for coalescence to occur is calculated based on the
model of Prince and Blanch [28] as follows:
sab ¼

ffiffiffiffiffiffiffiffiffiffiffi
R3

abql

16r

s
ln

h0

hf

� �
ð29Þ
where the initial film thickness for an air–water system was taken as h0 = 10�4 m [29] and the final film thick-
ness just before film breakage was taken as hf = 10�8 m [28,29]. The equivalent bubble radius for a system of
two different sized bubbles is obtained from [30]:
Rab ¼ 2:0
1

Ra
þ 1

Rb

� ��1

ð30Þ
The contact time between two bubbles is calculated by assuming that it is proportional to a deformation dis-
tance divided by the normal component of the collision velocity [9] (see illustration in Fig. 2):
tc
ab ¼

CcRab

jvn
a � vn

bj
ð31Þ
where Cc represents the deformation distance normalized by the effective bubble radius and should be consid-
ered as a (calibration) factor. When the contact time is less than the film breakage time ðtc

ab < sabÞ coalescence
will not occur and the bubbles will bounce. In all other cases ðtc

ab P sabÞ coalescence will commence and the
properties of the new bubble are obtained from the encounter rules summarized in Table 1.

It is noted that despite a vast amount of the literature on this topic, there is still no consensus on the exact
formulation of such model. In this work we have made a modest attempt to put together a coalescence model
that includes the most important aspects of the coalescence process (i.e. film drainage) employing as much as
possible information available from the model (i.e. bubble sizes and approach velocity). The simulations pre-
sented in this work should therefore be considered as a demonstration of the possibilities a discrete bubble
model offers to study coalescing flows and to demonstrate the impact the inclusion of a coalescence model
has on the resulting hydrodynamics. Further research on the closure model for coalescence is still required.
Fig. 2. Configuration of bubble collision and deformation uses in coalescence model (adapted from [9]).



Table 1
Change of bubble properties in a coalescence event

Parameter Before coalescence After coalescence

Index a, b (a < b) a

Mass ma, mb m�a ¼ ma þ mb

Volume Va, Vb V �a ¼ V a þ V b

Position ra, rb r�a ¼ ramaþrbmb
m�a

Velocity va, vb v�a ¼ vamaþvbmb
m�a
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3. Numerical solution method

In this section the numerical technique employed to solve the model presented in Section 2 is described.

3.1. Time step

To resolve the time-dependent motion of the gas and the liquid phases, the discrete bubble model employs
three different time scales (see Fig. 3). The biggest time step dtflow is used to solve the Navier–Stokes equations
to obtain the liquid phase flow field taking into account the interphase coupling. The flow time step is divided
into a fixed number of smaller bubble time steps, dtbub. During this time step the forces experienced by each
individual bubble are determined. Based on the net force, Eq. (2) is used to determine the bubble acceleration,
which is required to obtain the bubble velocity at the end of the bubble time step. Within each bubble time
step, the velocity of the bubbles is assumed to change only due to binary collisions between bubbles. Subse-
quently, an even smaller collision time step dta,b is used to resolve the direct bubble–bubble and bubble–wall
interaction. The size of this time step is not fixed and is determined by the sequence of collision events
explained in Section 3.3.

3.2. Interphase coupling

The coupling between the gas and the liquid phases appears through the liquid volume fraction el and the
interphase momentum transfer U. Since the liquid phase and the bubbles are defined in different reference
frames (i.e., respectively, Eulerian and Lagrangian), a mapping technique which couples the two reference
frames is required. This mapping technique translates the Lagrangian bubble quantities to the Eulerian grid,
which are required as closure for the liquid phase equations and vice versa (Euler to Lagrange and Lagrange
to Euler).

Kitagawa et al. [8] give the following criteria for the mapping function:

(1) It should be a smooth function, i.e. the first derivatives should be continuous.
(2) It should have an absolute maximum around the position where the variable is transferred.
,

Fig. 3. Schematic representation of the three time steps employed in the Euler–Lagrange discrete bubble model.
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(3) For practical reasons it should have a finite domain. At the boundaries of the domain, the function
should be zero.

(4) The integral of the function over the entire domain should equal to unity to ensure the conservation of
variable being transferred.

Kitagawa et al. [8] propose to use a Lagrangian template function which converts the dispersed phase vol-
ume fraction to a spatially differentiable distribution. Using Gaussian and goniometric functions they found
that false numerical velocity fluctuations can be removed and the velocity fluctuation of the continuous phase
due to the migration of dispersed elements (bubbles) through the Eulerian frame can be accurately captured.
Using the same line of thought, Deen et al. [31] proposed to use a fourth-order polynomial function to obtain
liquid quantities at the bubble position since the integration of this function is cheaper compared to a Gauss-
ian function or the function proposed by Peskin [32]. They found that by employing this technique, a grid
independent solution can be obtained.

Following the successful application of the Lagrangian template technique in the Euler–Lagrange frame-
work, we adopt this technique for our model in the present study as well. The template function used is a
clipped fourth-order polynomial function following the work of Deen et al. [31]:
xð‘Þ ¼ xðx� r‘Þ ¼
15
16
ðx�r‘Þ4

n5 � 2 ðx�r‘Þ2
n3 þ 1

n

h i
; �n 6 ðx� r‘Þ 6 n

0; otherwise

(
ð32Þ
where 2n is the width of the mapping window.
Fig. 4 schematically shows how the Euler–Lagrange two-way coupling is carried out. The template function

is constructed at the center mass of a bubble ‘. This template is moving along with the bubble. In any com-
putational cell j the integral of this function,

R
Xj

xð‘ÞdX represents the influence of bubble ‘ on cell j or the
influence of the Eulerian value in cell j on bubble ‘. Note that in 3D space the integral is evaluated as follows:
Z

Xj

xð‘ÞdX ¼
Z

Xj;z

Z
Xj;y

Z
Xj;x

xðx� r‘;xÞxðy � r‘;yÞxðz� r‘;zÞdxdy dz ð33Þ
Given bubble ‘ and the width of the mapping window 2n, the liquid volume fraction in computational cell j is
calculated using the following formula:
elðjÞ ¼ 1�
P
8‘2BV bð‘Þ

R
Xj

xð‘ÞdX

V cell

ð34Þ
The momentum transfer rate from the bubbles to the liquid in a computational cell j, U(j), can be calculated as:
UðjÞ ¼
P
8‘2B/ð‘Þ

R
Xj

xð‘ÞdX

V cell

ð35Þ
where / is the reaction of the momentum transfer exerted on the bubbles, / ¼ �
P

F.
Fig. 4. Lagrangian and Eulerian two-way coupling using a template window function.
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The calculation of the force exerted on the bubbles requires Eulerian quantities such as the liquid pressure
and velocity to be defined at the position of the bubbles. However, since these quantities are stored in the
Eulerian computational cell, again a mapping function should be defined. Using the Lagrangian template
function, the Eulerian quantity W at a bubble ‘ position, w(‘) is calculated as:
wð‘Þ ¼
X
8j2C

WðjÞ
Z

Xj

xð‘ÞdX ð36Þ
3.3. Bubble dynamics

Solving for the bubble dynamics requires the calculation of the force closures given in Section 2.1. The
liquid quantities at the position of bubbles required to calculate this force are determined using the Euler
to Lagrange mapping function defined in Eq. (36). Using an explicit first-order scheme, the bubble velocity
at the new time level is calculated as follows:
vnþ1 ¼
P

Fn

mb
dtbub þ vn ð37Þ
Next, the bubble volume as well as the interphase force for each bubble is mapped to the Eulerian grid using
the relation given in Eqs. (34) and (35), respectively, to obtain the liquid phase volume fraction el and the vol-
umetric interphase momentum transfer rate U.

Subsequently bubbles are moved by taking into account the interactions between bubbles or between bub-
bles and confining walls. The method as explained in Section 2.3 is sufficient for this task, however, it is
(unnecessarily) expensive for three reasons:

� The set of possible collision partners Nð‘Þ consists of all bubbles and obstacles in the entire domain, how-
ever, partners which are located far away from the bubble ‘ are unlikely to collide in an immediate event.
� According to Eq. (26) dt‘,m is determined twice since dt‘,m is equal to dtm,‘.
� Given Ne collision events during bubble time step dtbub, using the method described in Section 2.3 one

should perform Ne · Nb bubble movements as given by Eq. (27) and evaluate Ne times the new global min-
imum collision time dte

a;b. This procedure also implies that bubbles that are not involved in collisions will
(unnecessarily) be moved Ne times on a straight line.

To increase the algorithm efficiency in finding dte
a;b for every collision event, we used the concept of a

neighbor list window. Using this concept a dynamic set of Wð‘Þ 	Nð‘Þ is introduced, which consists of
the neighboring possible collision partners of bubble ‘ that are located within a finite region close to the
bubble:
Wð‘Þ :¼Wð‘Þ 	Nð‘Þj8m 2Nð‘Þ; kr‘mk < Rw ð38Þ

To ensure that dt‘,m is not calculated twice, we use a simple restriction rule that bubbles with lower index will
only ‘‘see’’ neighboring bubbles or obstacles with higher index but not the other way around. Using this rule,
Wð‘Þ is divided into two unique subsets, namely Wð‘Þþ and Wð‘Þ� where neighbors with index less and great-
er than index of bubble ‘ are, respectively, stored (see Fig. 5 for illustration of the neighbor list window
concept).

Using the concept of neighbor list window, we redefine the global minimum collision time given by Eq. (25)
as follows:
dtN‘;n ¼ minðdt‘;mÞ 8m 2Wð‘Þþ ð39Þ
From this point the definition given in Eq. (39) is used instead of Eq. (26) to calculate the individual minimal
collision time dtNl;n unless mentioned otherwise. Next, the procedure to move bubbles can be optimized by only
moving the bubbles which are actually involved in a collision event and recalculate the individual minimum
collision times for the partners that just collided as well as all members of their neighbor list. Using this tech-
nique, bubbles will have different timeframes, as the ones which take part in a collision will be moved and their



Fig. 5. The neighbor list of bubble ‘, Wð‘Þ (shown as grey bubble) consists of all bubbles (or obstacles) within radius Rw from bubble ‘.
The number represents the index of the bubble relative to bubble ‘. In the right picture, the neighbor list is divided based on the index
higher or lower than the index ‘.
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time will be advanced to the present time whereas the other bubbles remain at their original times and
positions.

To keep track of the timeframe for each individual bubble, we introduce a variable t‘; 0 6 t‘ < dtbub 8‘ 2 B
while te; 0 6 te < dtbub is used to account for the accumulation of the global minimum collision time for the
whole sequence of collision events e occurred in the time interval dtbub. Furthermore the individual minimum
collision time given in Eq. (25) is modified accordingly by taking into account the latest time and positions of
the bubbles to calculate the new individual minimum collision time following collision event e:
dtN�‘;n ¼ te þminðdt�‘;mÞ 8m 2Wð‘Þþ ð40Þ
where dt�‘;m is the collision time between bubbles ‘ and m evaluated for the bubble position at time te.
After all the collisions have been resolved, the time and positions for all bubbles are updated to the time

level dtbub, which concludes the calculation procedure for the bubbles dynamics. For the sake of clarity the
reader can refer to Algorithm 1 for the complete procedure of the optimized bubble dynamics.

3.4. Liquid phase numerical scheme

The numerical solution of the liquid phase conservation equations is based on the SIMPLE algorithm [33]
and applied to solve the volume averaged Navier–Stokes equation. The computational cells are labelled by
indices (i, j,k) which are located at the cell center and a staggered grid is employed to prevent numerical insta-
bility. Using this arrangement the scalar variables are defined at the cell centers whereas the velocities are
defined at the cell faces.

Applying first-order time differencing and fully implicit treatment of the convective fluxes, the discretized
form of the continuity equation for the continuous phase (Eq. (18)) becomes:
ðelqlÞ
nþ1
i;j;k � ðelqlÞ

n
i;j;k þ

dt
dx

elqluxh inþ1
iþ1

2;j;k
� elqluxh inþ1

i�1
2;j;k

n o
þ dt

dy
elqluy

� 	nþ1

i;jþ1
2;k
� elqluy

� 	nþ1

i;j�1
2;k

n o

þ dt
dz

elqluzh inþ1
i;j;kþ1

2
� elqluzh inþ1

i;j;k�1
2

n o
¼ 0 ð41Þ
where the superscripts n and n + 1 indicate the old and the new time level, respectively. For the discretization
of mass and momentum convection terms, the second-order accurate Barton scheme [34] is applied.
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Algorithm 1. Optimized bubble dynamics algorithm.

Initialize by setting te ¼ 0; t‘ ¼ 0 8‘ 2 B
Calculate interphase force, velocity and up-list neighbor: 8‘ 2 B)

P
Fð‘Þ; vð‘Þ;Wð‘Þþ

Map bubble volume and interphase momentum to Eulerian cell:
8‘ 2 B) V bð‘Þ ! el; Fð‘Þ ! U
Calculate individual collision time: 8‘ 2 B) dtN‘;n
Determine global minimum collision time: dte

a;b

while ðte þ dte
a;bÞ < dtbub do
Advance time: te ¼ te þ dte
a;b

Update position and time for the collision pair:
8‘ 2 fa; bg ) r‘ðteÞ ¼ r‘ðt‘Þ þ v‘ � ðte � t‘Þ; t‘ ¼ te

Process collision between pair a and b

Calculate new individual collision time:
8‘ 2 fa; b;WðaÞ�;WðbÞ�g ) dtN�‘;n

Determine new global minimum collision time: dte
a;b

endwhile

Move all bubbles: 8‘ 2 B calculate r‘(dtbub) = r‘(t‘) + v‘ Æ (dtbub � t‘)

In the discretization of the momentum equation (Eq. (19)) the terms associated with the continuous phase
pressure gradients are treated fully implicitly while the interphase momentum transfer and other terms are
treated explicitly. The discretization of the continuous phase momentum equation (Eq. (19)) in each direction
is, respectively, given by:
ðelqluxÞnþ1
iþ1

2;j;k
¼ An

iþ1
2;j;k
� ðelÞnþ1

iþ1
2;j;k

dt
dx
ðpÞnþ1

iþ1;j;k � ðpÞ
nþ1
i;j;k

n o
ð42Þ

ðelqluyÞnþ1
i;jþ1

2;k
¼ Bn

i;jþ1
2;k
� ðelÞnþ1

i;jþ1
2;k

dt
dy
ðpÞnþ1

i;jþ1;k � ðpÞ
nþ1
i;j;k

n o
ð43Þ

ðelqluzÞnþ1
i;j;kþ1

2
¼ Cn

i;j;kþ1
2
� ðelÞnþ1

i;j;kþ1
2

dt
dz
ðpÞnþ1

i;j;kþ1 � ðpÞ
nþ1
i;j;k

n o
ð44Þ
where momentum convection, viscous interaction, gravity and interphase momentum transfer have been col-
lected in the explicit terms An, Bn and Cn.

The numerical solution of the discretized model equations evolves through a sequence of computational
cycles, or time steps, with a duration dt. For each computational cycle the advanced (n + 1)-level values at
time t + dt of all key variables have to be calculated through the entire computational domain. This calcula-
tion requires the old n-level values at time t, which are known from either the previous computational cycle or
the specified initial conditions. Then each computational cycle consists of two distinct phases:

� Calculation of the explicit terms An, Bn and Cn in the momentum equation for all interior cells.
� Implicit computation of the pressure for the entire computational mesh with an iterative procedure. This

implicit procedure consists of several steps.

The first step involves the calculation of the mass residuals for the liquid phase Di,j,k from the continuity
equations (Eq. (18)), for each interior cell:
D�i;j;k ¼ ðelqlÞ
�
i;j;k � ðelqlÞ

n
i;j;k þ

dt
dx

elqluxh i�iþ1
2;j;k
� elqluxh i�i�1

2;j;k

n o
þ dt

dy
elqluy

� 	�
i;jþ1

2;k
� elqluy

� 	�
i;j�1

2;k

n o

þ dt
dz

elqluzh i�i;j;kþ1
2
� elqluzh i�i;j;k�1

2

n o
ð45Þ
where the superscript (*) refers to the most recently obtained values. If the convergence criterion:
D�i;j;k < epsðelqlÞ
�
i;j;k ð46Þ
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is not satisfied simultaneously for all internal computational cells, then a whole field pressure correction is cal-
culated using the following relation:
J n
i�1;j;kdpnew

i�1;j;k þ J n
iþ1;j;kdpnew

iþ1;j;k þ J n
i;j�1;kdpnew

i;j�1;k þ J n
i;jþ1;kdpnew

i;jþ1;k þ J n
i;j;k�1dpnew

i;j;k�1

þ J n
i;j;kþ1dpnew

i;j;kþ1 þ J n
i;j;kdpnew

i;j;k ¼ �D�i;j;k ð47Þ
where Jn represents the Jacobi matrix which contains the derivative of defect D with respect to the liquid pres-
sure at time level n and has been obtained analytically from the continuity equation for the liquid phase in
combination with the momentum equations. Applying Eq. (47) for all internal computational cells results
in a set of linear equations that can be assembled in the matrix form as:
Jn � dpnew ¼ �D� ð48Þ
To save computational effort the elements of the Jacobi matrix are evaluated at the old time level. By solving
Eq. (48), a pressure correction term is obtained and new pressure is subsequently calculated followed by cal-
culation of the new velocity field.

Provided that the corresponding estimates of the mass residual (Eq. (45)) do not meet the convergence cri-
teria simultaneously for all interior computational cells, the pressure correction equation (Eq. (47)) is again
calculated using the updated velocity field to compute the mass residual D for all cells. This iterative process
is repeated until the convergence criteria is satisfied or the specified maximum allowable number of iterations
reached.
4. Model validation

Model validation for the Euler–Lagrange code used in the present study has been conducted by Delnoij
et al. [35]. The authors have shown that the model can correctly predict the terminal rise velocity of a single
bubble for a given drag coefficient. Validation for bubble plumes was made by Darmana et al. [7] by compar-
ing calculation results from the model with experimental measurement data obtained with particle image
velocimetry (PIV) by Deen et al. [31]. The PIV measurements were performed in a 3D bubble column filled
with distilled water. The column has a square cross-section (W · D) of 0.15 · 0.15 m2 and a height (L) of
0.45 m. Air with a superficial gas velocity of 4.9 mm/s was introduced into the system through a perforated
plate. The plate contained 49 holes with a diameter of 1 mm, which were positioned in the middle of the plate
at a square pitch of 6.25 mm.

Fig. 6 shows the comparison taken from Darmana et al. [7]. It can be seen here that both instantaneous and
time averaged liquid velocities predicted by the model are in good agreement with the experimental data. Fur-
thermore the correctly predicted velocity fluctuations indicate that the experimentally observed meandering of
the bubble plume is well predicted by the present model.

5. Parallelization strategy

The dynamic nature of bubbles makes their spatial distribution non-uniform. This implies that the number
of collisions is considerably higher in more dense regions when compared with dilute regions [36] which
implies that partitioning of the model based on bubble position (i.e. the domain decomposition) cannot give
a high parallel efficiency.

In the present model, parallelization for the disperse phase is carried out using a so-called mirror domain

technique. Contrary to the domain decomposition technique, where each processor holds a unique computa-
tional subdomain and synchronizes the data only at the subdomain boundary, each processor in the mirror
domain technique holds an identical complete computational dataset (i.e. data is mirrored through all proces-
sors). Unique data subsets are determined for each processor and calculations are conducted by each proces-
sor only for this subset of data. Since the calculations on each processor are done only for unique portion of
data, the data is no longer identical throughout the processors, hence synchronization by interchanging data
between processors (creating a new complete mirror dataset) is required after each calculation step. The main
advantage of the mirror domain technique as compared to traditional domain decomposition techniques is
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Fig. 6. Figure taken from Darmana et al. [7]. (a–c) Comparison of simulated and experimental liquid profiles, respectively: vertical
average velocity ðuzÞ, vertical velocity fluctuations ðu0zÞ and horizontal velocity fluctuations ðu0xÞ at height of z/H = 0.56 and a depth
y/W = 0.5. (d) Time history of the vertical liquid velocity (uz) at the same position.
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that it enables a proper load balancing of the calculations of the Lagrangian variables, since the computational
tasks are explicitly evenly divided over the available processors.

This section describes the parallelization strategy of the numerical method explained in Section 3. The
model is partitioned and distributed over a set of processors P ¼ f0; 1; . . . ;NP � 1g using the mirror domain
technique for the dispersed phase while a domain decomposition technique is adopted in solving the contin-
uous phase. The interprocessor communications are carried out using the message passing interface (MPI)
paradigm.

5.1. Discrete phase

Using the mirror domain technique for the disperse phase, we exploit the fact that for a given identical ini-
tial data set of bubble positions and velocities as well as the continuous phase flow field across the processors,
the calculation of the bubble dynamics can be performed independently for each individual bubble in a effec-
tive parallel fashion. Data uniformity throughout processors is maintained by either calculating part of the
data locally and interchange between processors or execute an identical procedure on identical data locally
on each processor.

The serial algorithm shown in Algorithm 1 is modified using the mirror domain concept. The resulting par-
allel algorithm executed on each processor P is given in Algorithm 2. First the initialization procedure is exe-
cuted. Subsequently a local bubble list BP 
 B is determined. Two types of bubble partitioning are used:
based on memory location and based on bubble index using a round-robin rule. To calculate the interphase
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force and velocity, the first partitioning technique is used in view of the fact that the message passing interface
can transfer continuous data in memory much faster than repeatedly transferring single data. The bubble par-
titioning using round-robin is used in determining the collision time, since bubbles only see other bubbles with
a higher index, thus partitioning based on the memory location would only result in poor parallel performance
as the processors with a higher index will calculate bubbles with a higher index with less associated possible
bubble neighbors, while processors with a lower index will calculate bubbles with a lower index with more
bubble associated neighbors.

For all local bubbles, the interphase forces, velocities and up-list neighbors are calculated next, as is illus-
trated in Fig. 7. The bubble velocities previously calculated locally are combined to obtained a complete set of
bubble velocities in all processors. Subsequently the local interphase forces and the bubble volume is mapped
to the local Eulerian grid to obtained local liquid volume fraction and interphase momentum transfer. Using
the sum operator available in MPI, these local quantities are combined and redistributed to all processors to
obtain the global liquid volume fraction and interphase momentum transfer rate.

Subsequently the collision sequence is determined, as illustrated in Fig. 8. First the individual collision time
is calculated for all local bubbles partitioned in a round-robin manner. For all local individual collision times
previously calculated, the local minimum collision time is determined. By making use of the minimum oper-
ator available in MPI, the local minimum collision times of all processors are compared to determine the glo-
bal minimum collision time and distribute the result to all processors. While the accumulated event time te is
smaller than the bubble time step, all processors execute an identical procedure which consecutively consists of
updating the accumulated event time, updating the positions and individual times for the collision partners,
and process the collision between partners a and b.

Algorithm 2. The parallel algorithm executed on each processor P for the optimized bubble dynamics using
the mirror domain concept.

Initialize by setting: te ¼ 0; t‘ ¼ 0 8‘ 2 B
Determine local bubble set: BP 
 B
Calculate local interphase force, velocity and up-list neighbor: 8‘ 2 BP )

P
Fð‘Þ; vð‘Þ;Wð‘Þþ

8‘ 2 BP gather and scatter v(‘)
Map local bubble volume and local interphase momentum to the Eulerian cell:
8‘ 2 BP ) V bð‘Þ ! el; Fð‘Þ ! U
Gather (with sum operator) and scatter: el and U
Calculate local individual collision time: 8‘ 2 BP ) dtN‘;n
Determine local minimum collision time: dte

a;b

Gather (with minimal operator) and scatter to obtain global minimum collision time: dte
a;b

while ðte þ dte
a;bÞ < dtbub do
Advance time: te ¼ te þ dte
a;b

Update position and time for the collision pair:
8‘ 2 fa; bg ) r‘ðteÞ ¼ r‘ðt‘Þ þ v‘ � ðte � t‘Þ; t‘ ¼ te

Process collision between pair a and b

Calculate new local individual collision time:
8‘ 2 ffa; b;WðaÞ�;WðbÞ�g

T
BPg ) dtN�‘;n

Determine new local minimum collision time: dte
a;b

Gather (with minimal operator) and scatter to obtain new global minimum collision time: dte
a;b

end while

Locally move all bubbles: 8‘ 2 BP ) r‘ðdtbubÞ ¼ r‘ðt‘Þ þ v‘ � ðdtbub � t‘Þ
8‘ 2 BP gather and scatter r(‘)

Subsequently, the new local individual collision times are determined for the collision pair and all their
down-list neighbors. The calculations however, are carried out only on the processors associated with the con-
sidered bubbles. Based on all local individual collision times a new local minimum collision time is determined.
Again, using the MPI minimum operator the global minimum collision time is determined and distributed to
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Fig. 7. Illustration of parallel strategy for bubble force calculation, Euler to Lagrange mapping and Lagrange to Euler mapping:
(a) mirrored bubble data at all processors Pn; (b) new data for unique subsets of bubbles are calculated in parallel on each processor Pn;
(c) updated local data is gathered and mirrored through all processors.

(a) (b) (c)

, ,

Fig. 8. Illustration of parallel strategy for bubble encounter detection: (a) mirrored bubble velocity and position data at all processors Pn;
(b) each processor Pn calculates the local minimum encounter time for a unique subset of bubbles; (c) processor local minimum encounter
times are compared to find the global minimum encounter time dte

a;b followed by updating the bubble positions at all processors by dte
a;b.

232 D. Darmana et al. / Journal of Computational Physics 220 (2006) 216–248
all processors. These steps are repeated until the next accumulated event time is exceeding the bubble time
step. Finally all processors locally move the bubbles to time level dtbub and gather the bubble positions from
other processors to obtain a complete set of bubbles positions.

Using the present approach, a total of 4 · Nv variables defined on the Eulerian grid (U in three direc-
tions + el) and 6 · Nb variables defined on the Lagrangian bubble positions (velocities and positions in three
directions) have to be interchanged between processors outside the while loop for every dtbub, while for every
collision event 3 variables consisting of the local minimum collision time and collision partners have to be
interchanged. All communications except the ones inside the while loop are carried out in a non-blocking fash-
ion (i.e. overlapping with the calculation) to reduce the effective communication time. The amount of data that
has to be communicated for every collision event is very small hence cannot benefit from overlapping commu-
nication with calculation. It is noted that there is no memory reduction for the main bubble variables such as
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positions and velocities, as these variable have to be known on each processor, however, significant memory
reduction arises from the up-list neighbor requirements. For a maximum number of NþW up-list neighbors per
bubble, a total of Nb � NþW memory blocks should be allocated in a serial calculation. Whereas for a number
of NP

b local bubbles, only NP
b � NþW memory blocks are required on each processors for the parallel calcula-

tion. As the number of main bubble variables is much less than NþW, one might expect to have a memory
reduction factor of �NP by running a simulation in parallel with NP number of processors.

5.2. Continuous phase

The continuous phase calculation is parallelized by making use of the PETSc library version 2.3.0 [1,37,38].
PETSc is a suite of data structures and routines for the scalable (parallel) solution of scientific applications
modeled by partial differential equations. It employs the MPI standard for all message-passing communica-
tion. PETSc has been used for a wide variety of applications, including computational fluid dynamics, struc-
tural dynamics, materials modeling and econometrics. Many of the solvers are appropriate for problems
discretized using either structured grids or unstructured grids. In the present study we consider PETSc as a
black box hence it will only briefly be discussed. Interested readers are referred to the PETSc user manual
or publications on application simulations developed by PETSc users [39–42].

The discrete bubble model uses the linear solver component of PETSc to solve the pressure correction equa-
tion given in Eq. (48) and uses the efficient parallel data formats provided by PETSc to store the Jacobian
matrix and the defect vector. As the parallel calculation for the discrete phase requires that complete data sets
of the liquid velocity and pressure are known on all of the processors, solving the pressure correction matrix
using PETSc is straightforward. For instance, one can divide the hepta-diagonal matrix in several block rows
according to the number of processors involved in the calculation and fill the corresponding blocks locally as
shown in Fig. 9. By calling the PETSc linear solver command in each processor the matrix is solved iteratively
in parallel by taking into account coupling with other matrix elements which reside on the other processors.
After convergence is reached, the solution block of the linear equations (i.e. the pressure correction terms) are
available locally. Subsequently each processor can interchange their local pressure correction terms to obtain a
complete set of pressure corrections followed by the calculation of new pressure and velocities for the whole
domain.

PETSc provides interfaces to various Krylov methods, such as conjugate gradient (CG), generalized min-
imal residual (GMRES), biconjugate gradient (BCG), etc. It also provides access to various preconditioners
such as Jacobi, block Jacobi, additive Schwartz, etc. Several tests have been conducted using various combi-
nation of the Krylov methods and the associated preconditioners. It was found that the combination of the
Fig. 9. Illustration of the decomposition of an hepta-diagonal matrix resembling the three-dimensional pressure correction equations into
4 block rows.
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conjugate gradient Krylov method with the block Jacobi preconditioner gives the best performance for the
present model. The number of subdomain blocks for the block Jacobi is set to one (default value) so that each
processor gets a complete subdomain of the problem and does a single local incomplete factorization on the
Jacobian corresponding to this subdomain [42]. To increase convergence rate, elements in the off diagonal
block matrix which are responsible for the coupling terms between processors should be minimized. Therefore
in the present study the matrix is arranged in such way that each block rows correspond with the physical
domain partition which gives fewest elements in off-diagonal blocks. By rearranging the matrix structures
in this way, the solution is obtained about 20% faster compared to regular matrix partition as shown in Fig. 9.

6. Parallel algorithm verification and benchmark

In this section the parallel algorithm is subject to verification and benchmarking. A homogeneous bubbly
flow in a square lab-scale bubble column with medium to high gas hold-up is selected as a test case since it
represents a previously ‘‘beyond reach’’ case to simulate with an Euler–Lagrange model. The simulation con-
ditions are summarized in Table 2. Air is injected from 625 nozzles located at the bottom of the column into an
initially quiescent liquid. The boundary conditions are imposed to the column using the flag matrix concept of
Kuipers et al. [43] as illustrated in Fig. 10. The definition of each boundary condition is given in Table 3. The
Table 2
Simulation conditions for the simulation of homogeneous bubbly flow in a lab-scale bubble column

Physical domain 0.2 m · 0.2 m · 0.6 m
Computational cell 60 · 60 · 180
dtflow 10�3 s
dtbub 10�4 s
Liquid density 103 kg/m3

Liquid viscosity 10�3 Pa s
Gas density 1 kg/m3

Surface tension 0.073 N/m
Gravitational acceleration 9.81 m/s2

Initial bubble diameter 4 · 10�3 m
Size of window mapping 3db m
Number of gas nozzle 625 (uniformly arranged with 8 mm2 pitch distance)

Fig. 10. Typical boundary conditions used in simulations with the discrete bubble model. The vertical plane is at j = NY/2 while the
horizontal plane is at k = NZ.



Table 3
Cell flags and corresponding cell types used in defining boundary conditions

Flag Boundary conditions

1 Interior cell, no boundary conditions specified
2 Impermeable wall, free slip boundary
3 Impermeable wall, no slip boundary
4 Prescribed pressure cell, free slip boundary
5 Corner cell, no boundary conditions specified
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configuration of boundary conditions used in the simulations has been carefully investigated. The prescribed
pressure cells close to the column surface wall are required as inlet as well as outlet channel to compensate for
the change of liquid volume due to bubbles entering and leaving the column. The width of this pressure cell slit
is one-third of the total width of the column and located in the middle. It was found that this configuration
avoids instabilities developing at the top surface of the column [7].

The simulation was conducted on an SGI Altix 3700 system, consisting of total 416 CPUs (Intel Itanium 2,
1.3 GHz, 3 Mbyte cache each). Every node in the Altix is a CC-NUMA machine (i.e. cache-coherent non-uni-
form memory access). In the CC-NUMA model, the system runs one operating system and shows only a single
memory image to the user eventhough the memory is physically distributed over the processors. Since proces-
sors can access their ‘own’ memory (i.e. memory on the same physical board as the processor) much faster
than that of other processors, memory access is non-uniform (NUMA). In the present simulation, the domain
partitioning in the continuous phase calculation was applied in the z direction only as can be seen in Fig. 11.
This partition configuration has been selected since it gives the smallest inter-domain connection, which min-
imizes data communication between processors.

6.1. Parallel verification

For verification and benchmarking purposes a superficial gas velocity of 3 cm/s is used. The verification is
performed by comparing the simulation results obtained by the serial and parallel algorithms. The liquid
phase velocity in the vertical direction is compared, moreover we also compare the mapped bubble vertical
velocity. For this comparison series of simulations were conducted from identical initial conditions. The com-
parison was made after the flow has evolved during 500 flow time steps. Fig. 12 (top) shows the vertical liquid
velocity along the vertical center-line of the column while Fig. 12 (bottom) shows the mapped bubble vertical
velocity on the same line. As we can see, after 500 flow time steps, there are no significant differences between
the serial and parallel solutions.
Processor 1

Processor 0

Processor 2

Processor 3

Processor 0

Processor 1

Processor 0

Fig. 11. Domain partitioning for parallel flow solver calculation using 1, 2 and 4 processors.
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The parallelization of the parallel bubble solver algorithm is verified by comparing the time series of the l2
norm of the consecutive event contact points. The event contact point between collision partners a and b is
determined using the following relation:
xc ¼ xa þ fRa þ 0:5ðjxabj � ðRa þ RbÞÞg �
xab

jxabj
ð49Þ
with xab = xb � xa the translation vector between collision partners a and b. Fig. 13 shows the comparison of
the event contact point between collision partners recorded in the simulation using the serial and parallel
algorithms. As we can see, the differences between sequential and parallel solution are not observable, which
implies that similar events are obtained using both algorithms.
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6.2. Parallel performance

According to Ferziger and Peric [44], the analysis of the performance of parallel programs can be charac-
terized by the speed-up factor and the efficiency defined, respectively, by:
Sn ¼
T s

T n
ð50Þ
and
En ¼
T s

nT n
ð51Þ
where Ts is the execution time for the best serial algorithm on a single processor and Tn is the execution time
for the parallelized algorithm using n processors.

In this study the measurement of calculation times was conducted after the flow was fully developed, which
can be assessed by monitoring the number of bubbles present in the column. When the column reaches a
steady state condition (in the terms of bubble hold-up) the number of bubbles entering and leaving the column
is more or less similar. For the present study, the steady state is reached 10 s after the bubbles have entered the
column.

Fig. 14 (top) shows the speed-up obtained with 1, 2, 4, 8, 16 and 32 processors while Fig. 14 (bottom) shows
the corresponding efficiency. As can be seen from these figures, the proposed parallel algorithm demonstrates
good scalability. Using 32 processors a speed-up of more than 20 can be reached while the corresponding effi-
ciency is still relatively high. The performance of the total model in terms of speed-up and efficiency is a
weighted average of the underlying dispersed and the continuum parts. For this reason, the curves for the total
model always lie in between the curves for the two separate parts.

7. Application to bubbly flow

In this section, the proposed method is applied to simulate the buoyancy driven flow in a square bubble
column for an air–water system. The square bubble column introduced in Section 6.1 is used as a base con-
figuration. Two cases are simulated; a case with and without coalescence model, to investigate the influence of
coalescence on the bubble size distribution and the hydrodynamic characteristics.
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Air is injected through 625 individual nozzles into an initially quiescent liquid as shown in Fig. 15. Shortly
after the bubbles are released, they start to rise in the column and drag the liquid upwards. For the case that
the nozzles are only present in the center area of the column, Darmana et al. [7] observed a mushroom-shaped
bubble plume during the initial period of bubble injection. In the present simulation this shape is not observed
due to the uniform aeration, which induces a uniform liquid flow. Instead of generating a mushroom-shaped
bubble plume, the bubbles rise in a uniform fashion.

After about 3 s the first bubble escapes from the column. Liquid vortices are generated close the surface of
the column with upward direction in the center region and downward direction close the corners of the column.
These type of liquid vortices are normally responsible for creating large scale fluctuations as they will travel
downwards in a region close to the wall and influence the bubbles close to the inlet region. However in the pres-
ent configuration, the down-flow which is developed near the wall region is counteracted by the bubbles moving
upward in that region resulting in suppression of the liquid down-flow and a local bubble velocity reduction.



Fig. 15. Series of corresponding liquid velocity fields, bubble velocity fields and bubble positions obtained from the simulation of an non-
coalescing air–water bubble column at different times after the air flow was switched on. Gas superficial velocity = 3 cm/s. The gas volume
fraction is approximately 15%.
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A fully developed flow condition is reached after about 10 s of operation. A typical snapshot of the flow
structures after the flow has become fully developed is shown in Fig. 16(a). The figure clearly depicts that
the bubble trajectories are rectilinear in the small region close to the inlet region of the column. In this region,
bubble velocities are mainly directed vertically resulting in a smooth path of bubbles. However as the bubbles
move further from the inlet, interaction with the liquid as well as interaction with the other bubbles becomes
more pronounced which turns the bubble trajectory into a non-smooth path. In this situation the horizontal
components of the bubble velocities become more significant resulting in non-smooth bubble trajectories. The
pronounced liquid agitation which prevails during the first few seconds of the simulation has disappeared and
is replaced by various small vortices, which are distributed randomly in the liquid phase. These vortices are not
strong enough to influence the bubbles trajectory in general as can be seen in the figure showing the bubble
Fig. 16. Snapshots of instantaneous bubble positions, bubble velocities and corresponding liquid velocities at t = 65 s (a) and the
corresponding averaged quantities of the gas phase volume fraction, bubble velocity and liquid velocity (b). Averaging is taking place for
the last 45 s. Simulation results with a gas superficial velocity of 1 cm/s and the coalescence model turned off.
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path-way. A weak down-flow is observed in the vicinity of each corner of the column which slightly reduces
the bubble velocities in these areas.

The time-averages of the gas phase volume fraction, bubbles velocity and the liquid velocity of the column
are shown in Fig. 16(b) The time-average of quantity / is calculated as:
/ ¼ 1

N t

XNt

i¼1

/i ð52Þ
where Nt is the number of time steps used in the averaging.
The time-averaged quantities clearly show that the column exhibits uniform behavior. The gas volume frac-

tion is uniform almost everywhere except close to the corner regions where there are slightly less bubbles pres-
ent. Variation of the gas volume fraction can also be observed close to the inlet region. In this region stripes
corresponding to higher and lower volume fractions are discernible as a direct result of the rectilinear bubble
motion in this region.

On average the bubble velocity is relatively uniform except close to the corner area where the bubble veloc-
ity is lower than in the rest of the column. A very low average liquid velocity is observed in the entire column.
A weak large scale circulation pattern is observed in the upper half region of the column where up-flow is
located in the center region while down-flow is located in the corners. The down-flow however terminates
to exist at about one third of the column height.

Next, the influence of coalescence on the flow structures is investigated. A fully developed flow condition in
the column which was obtained from the model without coalescence was used as the initial condition. After
the coalescence model was turned on, the simulation was run for another 10 s to allow the column to reach its
new fully developed condition. A typical snapshots of a fully developed flow structure when the bubble coa-
lescence model is taken into account is given in Fig. 17(a). It can be seen that the column exhibits different flow
structures compared to the case without coalescence. First of all a non-uniform bubble size distribution is
obtained as a direct result of the coalescence process. The variation of the bubble size automatically induces
a variation of the bubble velocities. As the speed of a bubble increases, it will catch the slower bubbles on its
path, leading to a continuous growth of the bubbles as they ascend.

The lift coefficient, which initially tends to disperse the bubbles towards the wall, changes sign as the bub-
bles are getting bigger and as a consequence cause to move the bubbles toward the center of the column
instead. This behavior produces a narrowing of the bubble swarm near the top region of the column as
can be observed in Fig. 17(a). The bubble size distribution also influences the liquid velocity as the fast moving
bubbles will induce a higher liquid velocity as well. The snapshots clearly show that the liquid velocity grad-
ually turns into a irregular pattern as the mean bubble size increases. In the corner regions where there are less
bubbles, strong downward liquid flow is developed. This flow appears to push the bubble dispersion toward
the center column even further.

The corresponding time-averaged flow field of the coalescence case is given in Fig. 17(b). The average gas
volume fraction clearly shows the narrowing behavior of the bubble dispersion. The average bubble velocity is
higher compared to the case without coalescence and increases further with increasing height. Furthermore,
the regions in the corners with low bubble velocity are wider compared to the non-coalescencing case. The
average liquid velocity clearly shows large scale circulation patterns with upward flow in the center of the col-
umn and downward flow in the corners.

A more quantitative comparison is obtained by comparing the time-average liquid and bubbles velocities
along the horizontal axis at a height of h = 0.45 m. Fig. 18(a) and (b) shows the lateral profiles of the liquid
and bubble velocity, respectively. As can be seen from this figure, without coalescence model, the average
liquid velocity is very small. In the central region of the column the averaged liquid velocity is �1 cm/s while
a maximal velocity of 4 cm/s is observed in the region close to the wall. When the coalescence model is turned
on, the averaged liquid velocity is dramatically changed as the averaged liquid velocity now shows velocities of
about 12.5 cm/s in the central part of the column. A similar picture emerges for the average bubble velocity as
the velocity at the center of the column is increased from 20 cm/s for the case without coalescence to 35 cm/s
for the case with coalescence.

The influence of coalescence on the average liquid velocity fluctuations is shown in Fig. 19. The average
liquid velocity fluctuations are calculated as:



Fig. 17. Snapshots of instantaneous bubble positions, bubbles velocities and corresponding liquid velocities (a) and the averaged
quantities of the gas phase volume fraction, bubble velocity and liquid velocity (b). Simulation results with a gas superficial velocity of
1 cm/s and the coalescence model turned on.
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u0 ¼ 1

N t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNt

i¼1

ðui � uÞ2
vuut ð53Þ
As can be seen from Fig. 19, the coalescence model also amplifies the velocity fluctuations. The fluctuations in
the vertical direction which was formerly uniform has doubled in the center region of the column and in-
creased by a factor of three near the wall when the coalescence is taken into account. A similar result is ob-
tained for the fluctuations in the horizontal direction where the fluctuations are increased four times over
almost the entire width of the column. The amplification of the velocity fluctuations arises since the coales-
cence leads to the formation of regions with lower gas hold-up where liquid vortices start to develop. These
vortices in turn will influence the bubble motion and the induced velocity fluctuations.

Fig. 20 (top) shows the bubble size distribution in four different vertical regions of the column. The regions
are four non-overlapping, equally-sized compartments. All bubbles inside one particular compartment are
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grouped based on their volume resulting from binary coalescence events. Ten different bubble classes are used,
resembling bubble sizes resulting from 1 to 9 coalescence events. Furthermore, the tenth class contains bubbles
that experienced more than 9 coalescence events. The number of bubbles in each class is normalized by the
total number of bubbles in the compartment.

In the lower part of the column, the bubble size appears to be homogeneous with 90% of the bubbles having
the initial size of 4 mm, while about 10% of the bubble population has experienced one coalescence event. A
sudden change can be observed at h = 0.225 m as more than 50% of the bubbles in this region have already
coalesced (i.e. about 30% coalesced once while the rest of the bubbles coalesced more than once). At
h = 0.375 m only 30% of the total bubble population did not experience coalescence. This number is more
or less equal to the number of bubbles that already coalesced once while 15% of the bubbles in this region
coalesced twice. In this region we can also observe that about 5% of the bubbles coalesced more than 8 times.
In the two upper regions of the column the bubble distribution is more or less similar, however, we can clearly
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see that the number of bubbles that coalesced more than 9 times has doubled in the upper region compared to
the region below into more than 10%.

For each region the average of the bubble size distribution is represented by the Sauter mean diameter
which reflects the mean bubble size for all bubbles in the region averaged on basis of specific area and is given
as:
d32 ¼
XNb

i¼1

d3
i

d2
i

ð54Þ
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Fig. 20 (bottom) shows the Sauter mean diameter at six different locations measured from the bottom of the
column shown in Fig. 17(a). As can be seen for this particular case, due to coalescence the volume mean diam-
eter is increased almost linearly as a function of distance from the inlet. It also appears from this simulation
that due to coalescence the bubbles have doubled in size during their residence in the column.

With the present parallel algorithm, the limitation of the discrete bubble model on the gas hold-up that can
be treated has virtually been eliminated. In this study we use the model to predict the integral gas hold-up as a
function of the superficial gas velocity. Using a gas inlet consisting of multiple nozzles that are uniformly
arranged at the base of the column, Harteveld et al. [45] showed that a much higher gas hold-up can be
obtained compared to other types of inlets such as sintered or porous plates.

The column geometry and the nozzle arrangement explained in Section 6 is used as a base model. Without
the coalescence model taken into account, cases were run with superficial velocities ranging between 1 cm/s
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and 7 cm/s and the average integral gas hold-up under fully developed conditions is monitored and compared
with experimental measurement data of Harteveld et al. [45]. It is noted that the column used in the work of
Harteveld is cylindrical, whereas it is square in our work. This has an effect on the liquid down-flow, which
mostly takes place in the circumferential wall area and in the corners, respectively. It is believed however that
the flow in the core in the column is hardly affected by the geometry, which allows us to make a direct com-
parison. Fig. 21 shows the comparison between the simulation results and the experimental measurement data.
As can be seen a gas hold-up up to 37% can be obtained with the present model. The number of bubbles simul-
taneously present in the column ranges from about 3.3 · 104 at a superficial velocity of 1 cm/s to 2.7 · 105 at a
superficial velocity of 7 cm/s. The increase in gas hold-up with the superficial gas velocity is almost linear as
can be inferred from Fig. 21. The simulation results shows perfect agreement with the experimental
measurements.

8. Conclusions

In this study, a parallelization strategy for a two-phase Euler–Lagrange model for bubbly flow has been
successfully developed accounting for four-way coupling. A new mapping technique based on the work of
Kitagawa et al. [8] has implemented which relates data in the Eulerian and Lagrangian frame.

The implementation of the parallel algorithm was verified by comparing the computational results obtained
from the serial and parallel algorithms. It was demonstrated that both algorithms give the same results. Speed-
up and efficiency measurements were performed to investigate the performance of the parallel algorithm. A
maximum speed-up up to 20 can be reached using 32 processors.

Subsequently the proposed model was used to investigate the influence of coalescence on the hydrodynam-
ics of a bubble column. We found that the coalescence phenomenon changes the flow structures considerably,
furthermore the average velocities and velocity fluctuations of both phases are changed considerably. In the
present study break-up is not yet taken into account thus incorporation of coalescence in our calculations
admittedly tends to give overprediction in bubble size distribution.

Finally the model is used to predict the integral gas hold-up in a homogeneous bubble column as a
function of the gas superficial velocity. A maximum gas hold-up of 37% can be achieved with the present
model. A perfect agreement of our computations with the experimental data by Harteveld et al. [45] was
found for.
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