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ABSTRACT 

This paper presents a real-time monitoring and control 

system for low voltage grids built with Smart State 

Technology’s (SST) LV-Sensors and their open platform 

together with the TRIANA energy management 

methodology. This platform uses synchronized real-time 

measurement data from various locations in the grid. The 

presented control system uses this real-time data to resolve 

deviations in power consumption from a given planning. 

Based on this solution, necessary actions can be taken to 

avoid grid overloading and enhance the Quality of Service 

(QoS) to customers. The control system, implemented 

using DEMKit, runs on the SST LV-Sensors modules. 

Initial integration tests show that the solution works stable 

and resolves prediction errors to ensure QoS. 

INTRODUCTION 

The energy transition brings various challenges to low-
voltage (LV) distribution grids, such as an increased risk 
of over/under voltage and grid overloading. With the 
ongoing electrification, this stress on the LV grid is 
expected to increase. Especially in the Netherlands, which 
aims to phase out the usage of natural gas rapidly, the 
expected shift to electric based space heating using heat 
pumps will have a significant effect on the load in these 
LV networks. Furthermore, with the integration of electric 
mobility, more service interruptions are expected as shown 
in [1]. Upgrading existing LV networks to cope with these 
developments is not an economically appealing solution. 
Instead, we aim for a low-cost solution based on modular 
real-time measurement units targeted for LV grids, such as 
presented in [2]. An energy management system (EMS) 
runs on top of such modules and controls flexibility offered 
by end-users to perform peak shaving, and thereby avoids 
grid overloading and service interruptions. Possible forms 
of flexibility are delaying the charging of electric vehicles 
(EV) or preheating rooms.  
 
In this work we propose a sophisticated EMS that handles 
high frequency measurement data from various locations 
in an LV grid. Such an EMS must balance local energy 
production and consumption, and at the same time uses 
real-time measurements to maintain power quality and 
resolve overloading problems. We develop such a system  
within the Open Real Time Development Platform for 
Smart Grids (ORTEP) project, by combining the TRIANA 

concepts [3], implemented  in DEMKit [4], with the open 
platform and LV-Sensors from Smart State Technology 
(SST) [5]. An overview of this system is given in the next 
section. The following sections present initial integration 
tests and performance evaluation of running DEMKit 
software on the SST open platform hardware. Furthermore 
an evaluation of the integrated control system itself is 
presented. At the end we draw conclusions and present 
future work to improve the solution. 

SYSTEM OVERVIEW 

The envisioned EMS combines optimized plannings of 
flexibility with real-time measurements from the LV-
Sensors. A newly developed control mechanism combines 
both information streams to control attached devices. An 
overview of this system is depicted in Figure 1, which will 
be explained in this section. 
 

Smart State Technogy LV-Sensors 

The used SST LV-Sensors provide high frequency 
measurement data at a sampling rate of up to 128 KHz.  
Two flavours of the LV-Sensors are available, one for 
currents and one for voltages. Multiple sensor nodes can 
be deployed in a grid, where the common system 
architecture consists of a time beacon, voltage sensors, 
current sensors and data aggregation. The measurement 
samples are synchronized in time using the GPS time 
beacon which broadcasts GPS pulse per second (PPS) 
information to LV-Sensors distributed throughout the grid 
using a 5.8 GHz analogue transmitter. A schematic 
overview of a possible setup is shown in Figure 2. 

Figure 1: Overview of the proposed system for ORTEP 
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Each LV-Sensor incorporates an ARM-based low-power 
embedded system running Linux. Currently, the LV-
Sensors make use of an embedded Orange Pi embedded 
computer with and ARM processor. Although multiple 
variants are possible, we restrict the evaluation to an 
Orange Pi Zero with an Allwinner H2 Quadcore SoC and 
256MB of RAM. Connected to the Orange Pi is a shield 
that contains an advanced multichannel ADC (with 
simultaneous sampling capability up to 128KHz), a 
digitally programmable clock oscillator, a micro-
controller, and the PPS transceiver circuitry. The voltage 
sensors have a measurement range of 600V (230V 
nominal) and make use of signal transformers, while the 
current sensors use of split-core CTs and have a 
measurement range up to 600A. 
 
Next to the provided hardware, the LV-Sensors also 
provide an open platform, which allows third parties to 
directly access real-time measurement data from the LV-
Sensors, both locally and remotely. A major part of the 
LV-Sensors open platform concept is the DSP-framework. 
The DSP framework ensures that data, measurements and 
signal events can easily be exchanged between various 
sensors and aggregation units distributed throughout the 
grid, as well as between various algorithms. For efficient 
communication, the open platform makes use of two 
libraries: Zero Messaging Queue (ZMQ), and the 
structured binary format CBOR. Users of the system can 
run their applications directly on the hardware platform. 
This results in low-cost sensors suitable for LV wide area 
monitoring with synchrophasor based measurements and 
calculations suitable for e.g. remote monitoring, (dynamic) 
state estimation, and congestion management. 
 

DEMKit 

To implement an EMS on top of the open platform LV-
Sensors, we use the DEMKit simulation and 
demonstration toolkit developed at the University of 
Twente [4]. DEMKit provides a software platform with the 
necessary tools for researchers to develop and validate new 
optimization algorithms and control mechanisms for the 
smart grid. The software is written in Python3 to benefit 
from object oriented programming, while being flexible to 
rapidly create prototypes of new control concepts. 
 
A library with components is provided with DEMKit to 
allow the creation of such smart grid scenarios. These 
components include grid assets (cables and transformers), 

generic device classes and optimization algorithms. A 
scenario is a composition of multiple individual modelling 
components. With the modular setup, it is possible to 
easily create a scenario and compare various control and 
optimization algorithms. Furthermore, components that 
model the behaviour of virtual devices can be replaced by 
components that interact with their real world counterpart. 
This way, it is possible to perform hardware-in-the-loop 
(HIL) simulations or deploy demonstrators with the 
DEMKit software for validation. The main goal of this 
paper is to show the results of running DEMKit simulation 
scenarios in real life and to find bottlenecks in this 
approach. 
 

Combining LV-Sensors and DEMKit 

In this paper we use the TRIANA energy management 
methodology [3]. This methodology employs a model 
predictive control (MPC) approach by based on 
predictions of the energy profile and possible flexibility. 
The predictions are used as input for a mathematical 
optimization framework to create a near optimal planning 
for usage of flexibility for e.g. the next day. Such a 
planning often uses discrete time intervals of 15 minutes. 
Real-time measurements from the LV-Sensors are used to 
take proper control actions, given the planning and the 
current state of the grid. 
 
For planning, the Profile Steering approach [4] is used. It 
optimizes the energy profile using a predefined desired 
energy profile with minimum and maximum bounds (e.g. 
congestion limits) as target. In an iterative fashion, it 
updates device profiles to minimize the Euclidean distance 
between the desired profile and the planned profile.  
Furthermore, tailor made device optimization algorithms, 
see e.g. [6], are used to create a planning for each 
individual device. The use of MPC allows the control 
system to make informed decisions concerning short- and 
long-term objectives and available flexibility. Thereby it 
avoids greedy use of flexibility, which potentially leads to 
larger problems in the future. An example is discharging a 
battery too greedily now, which may result in an empty 
battery that cannot resolve severe overloading problem in 
the future. Such a situation would result in a reduced 
Quality of Service (QoS) to end-users by either performing 
load-shedding or a service interruption.  
 
Such a situation is what our solution aims to prevent. 
However, as  predictions are never completely accurate, a 
mechanism to deal with prediction errors is required. 
Prediction errors occur in both the time domain (e.g. a 
cloud passing by later, affecting PV production) and the 
energy domain (e.g. total produced energy is lower than 
predicted). In [4] it is shown that an event-driven variant 
of Profile Steering is able to adequately deal with 
prediction errors from both domains. This method 
continuously incorporates updated predictions and 
performs partial re-planning to keep the overall power 
profile as close as possible to the original planned profiles. 
The Profile Steering algorithms form the green right hand 
block of TRIANA in Figure 1. 
 
The LV-Sensors open platform aggregates data from 
multiple sensors in the grid. All incoming samples are 

Figure 2: Example of multiple LV-Sensors in an LV network 
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synchronized and optionally signal processing is 
performed. The resulting output samples are streamed via 
ZMQ to the TRIANA methodology. 
 
The left hand TRIANA block in Figure 1 concerns the 
online control algorithm. As events in the smart grid play 
on much smaller time scales than the 15 minute interval 
planning, we use an online control concept similar to [7]. 
The control mechanism continuously tries to minimize the 
error between the planned power consumption and the 
measured power consumption by updating the power 
output of a controllable asset. On the longer time-scale, the 
event-based Profile Steering algorithm makes sure that 
sensible trade-offs are made to keep the operation of the 
grid within bounds for the longer term. On the other hand, 
if the asset has insufficient flexibility to resolve dangerous 
situations, the controller does as much as it can and 
immediately signals other controllers for assistance. Such 
a signal could be used to e.g. perform load-shedding as a 
last resort to prevent e.g. overloading. 

EXPERIMENT 1: INTEGRATION TESTS 

Within the ORTEP project, we further develop the 
capabilities of DEMKit to operate in demonstration 
projects. Among those developments is the addition of 
ZMQ interfaces for distributed optimization across 
multiple control nodes. Furthermore, for the online control 
mechanism we use the real-time measurements from the 
LV-Sensors as input. Hereby, the distribution of SST LV-
Sensors in a grid matches the decentralized architecture of 
the Profile Steering approach. 
 

Test 1: control-loop performance 

The first step to real deployment of such a system is the 
ability to receive the measurement data in the control 
system itself. As the data must be processed at a high rate, 
we developed a new component for the DEMKit software, 
which runs in a separate process. This in contrast to other 
components that run synchronized with the discrete time 
intervals used in simulations. This component reads the 
data signal from the LV-Sensors by subscribing to the 
ZMQ channels defined in the open platform specification. 
The online control process steers a controllable asset as 
quickly as possible to match the planned power value.  
 
To test the integration, we realized the execution of the 
algorithm directly on the LV-Sensors hardware. For this 
test, we did not have a controllable asset available, so we 
used a modelled battery within the DEMKit simulation 
environment instead. The controller received real 
measurement data from an external SST LV-Sensors 
module in the grid.  In this test we evaluated the amount of 
samples the system is able to process within an hour using 
the online algorithm on the system. Furthermore we 
evaluated how fast new control actions can be executed. 
The simple method just reads data and calculates the 
control action. In an extended version of the test we sent a 
control signal back to an external system (in our case a 
home automation platform) to check the rate at which 
external systems can be controlled through an HTTP 
REST API. The used control rule for this test is a simple 
feed-back loop: 

𝑃𝑡
𝑐𝑜𝑛𝑡𝑟𝑜𝑙 =  𝑃𝑡

𝑡𝑎𝑟𝑔𝑒𝑡
− 𝑃𝑡

𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 + 𝑃𝑡−1
𝑐𝑜𝑛𝑡𝑟𝑜𝑙  

 
Here, the setpoint for the controlled power (𝑃𝑡

𝑐𝑜𝑛𝑡𝑟𝑜𝑙) in 
time interval t depends on the current target (the result 
from the offline optimization) and measured value from 
the sensors. This gives the difference that must be added 
to the previous control action 𝑃𝑡−1

𝑐𝑜𝑛𝑡𝑟𝑜𝑙.  
 

 
Case 

CPU 
[%] 

Memory 
[%] 

Samples 
in total 

Samples 
/second 

NoComm 40-50 9.3 170856 47.46 
Comm 100 9.4 152677 42.41 

Table 1: Results of the control-loop performance evaluation 

Profiling of the tests (Table 1) shows that the system is 
highly capable of performing this test. Without control to 
an external system (NoComm), it is able to process 47.46 
samples per second on average out of the maximum 
achievable 50.00. The load on the CPU is around 40-50% 
and memory utilisation is around 9.3%. When sending 
control signals to a second system via an HTTP REST API 
(Comm), the CPU load increases to 100%. This also results 
to a slight decrease in handled samples. The RMSE with 
respect to the target is calculated to be 30.96 W. Figure 3 
also shows that the system is capable of responding 
quickly to rapid power consumption changes by providing 
a smooth overall power profile in general. 

 
Figure 3: Resulting mean total power and 5th and 95th percentile 

deviation from target 

We note that the test software is written in Python3 scripts, 
which allows for fast deployment of the concept, but 
leaves room for performance improvement using compiled 
code instead. Furthermore, it is likely that assets are also 
limited in the rate at which they accept control signals. 

Test 2: Prediction and control algorithms performance 

The second test is to run the optimization and control 
algorithms of a typical household on the LV-Sensors 
hardware. With this test we evaluate whether the hardware 
is powerful enough to serve as a Home Energy 
Management System (HEMS). A simulation scenario of a 
household is loaded in DEMKit to run on the LV-Sensor 
hardware. This scenario includes all components of a 
future smart household and corresponding optimization 
algorithms to investigate whether the hardware is able to 
provide the required computation power. As setup, the 
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standard single-house scenario of DEMKit is used, which 
includes the following components: 

• a static uncontrollable load, 
• a PV panel setup, 
• a controllable washing machine, 
• a controllable dishwasher, 
• battery storage system, 
• electric vehicle, 
• thermal model with a heat pump. 

The simulation step-size is set to 60 seconds and one week 
(7 days) is simulated. 
 

 Test 2 Test 3 
CPU usage 100 % 38 % 

Memory usage 10.1-10.7 % 16.4-17.0 % 
Model training 9.8 s 10182.9 s  

Controllers 44.1 s 35.3 s 
Device sim. 157.4 s 227.4 s 

Writing output 1332.3 s 3630.0 s 
Table 2: System load and time spent in different functions during 

test 2 and test 3 

The profiling results (Table 2, Test 2) show that the 
hardware platform is capable of acting as a HEMS. The 
single-threaded simulation requires between 10.1% and 
10.7%  of memory and takes in total 1544 seconds to 
complete. This leaves enough computation time for the 
real-time control loop and to deliver a smooth user 
experience. The statistics also reveal that most time (1332 
seconds, 86%) is spent in storing data. The pure control 
algorithms require only 44 seconds (3%). In comparison, 
the same test requires approximately 50 seconds in total on 
a desktop with an Intel Core i7 3770.  
 

Test 3: Optimization algorithms performance 

The third integration test is similar to the second test. This 
test focusses on a use-case with real historical data to 
evaluate the required computation time to train the models 
used for predictions on the LV-Sensors hardware. 
Furthermore, this test is used to validate whether 
algorithms run fast enough to provide a seamless user-
experience. For this we run the system for 10 hours using 
an interval length of 10 seconds. This scenario consists of 
the following components:  

• prediction algorithms for the uncontrollable load 
using historical data, 

• model training and prediction algorithms for the 
power production of a solar panel, 

• optimization of a battery. 
 
The results of running the system for 10 hours are provided 
in Table 2 (Test 3). From these results it is immediately 
clear that the algorithms to train the models using historical 
data are the main bottleneck. This is explained by the 
heavy interaction with an external database and the fact 
that the code of these algorithms have not been optimized 
yet. However, they can easily run in a separate thread. The 
control and device interfacing code only require modest 
processing time (35.3 and 227.4 seconds respectively), 
which is less than 1% of the discrete time interval length 
of 10 seconds on average. Hence, enough processing 
power is left to run the synchronized parts of DEMKit at 

interval lengths of 1s and provide the computation power 
for a smooth user experience. 

EXPERIMENT 2: DEMONSTRATOR SETUP 

Next to integrating DEMKit with the LV-Sensors, it is also 
important to validate that the envisioned control 
mechanism operates stable. The algorithms are backed by 
mathematical proofs and are extensively tested in various 
case studies [4, 6]. However, these have not been tested in 
a practical setting where more prediction errors may occur 
compared to synthetic data used in the aforementioned 
case studies. Furthermore, when deploying the system as a 
HEMS, users also interact with the system. Hence, to 
validate the system in a realistic environment, we have set 
up DEMKit as a demonstrator in a pilot household. Within 
this scenario all components of the proposed EMS are 
deployed. 
 
For this demonstration setup, a scenario was created in 
DEMKit, such that it can be used to validate it before real 
deployment. The scenario contains the following 
components: 

• uncontrollable load with historical data, 
• PV setup with historical power and weather data, 
• a virtual battery, 
• a controllable (deferrable) washing machine. 

 
Furthermore, multiple scenarios are created to evaluate the 
added value of the proposed solution with online-control 
using LV-Sensors measurements. These are: 
ORTEP Control (OC): The system as presented in the 
paper with real-time measurements and online control. 
Greedy Control (GC): No optimization used, only a 
greedy control strategy for the battery. 
No Control (NB): Business as usual without a battery 
 
To test the system in real, with the different scenarios in 
parallel, we use a micro-server (Intel Celeron J4105 with 
8GB of RAM) to avoid processing power bottlenecks for 
this test. The simulation scenario is copied to the target 
system and only minimal effort was required to convert the 
simulation scenario into a real demonstration by replacing 
a few components in the scenario and adjusting some 
DEMKit parameters. This shows that the simulation 
scenario can be transferred to the real test-bed easily. One 
drawback of this approach is that DEMKit is still mostly 
single-threaded at this moment. Therefore, we reduced the 
control action speed by using discrete time intervals of 10 
seconds to provide computing time for the (re-)planning 
algorithms. 
 
To monitor its operation, the control system connected to 
a home automation system (Home Assistant). This 
automation system allows us to control a non-smart 
washing machine using a controllable switch between its 
power cord and the wall socket. For this, the power supply 
to the washing machine is cut off as soon as its starts its 
program. An interface is created in Home Assistant to set 
a deadline for the washing machine, such that the 
optimization algorithm can find the optimal start time that 
respects the user comfort constraints. When this optimized 
time is reached, the control system toggles the switch to 
power the machine, which then continues its operation. 
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Demonstrator setup results 

Figure 4 shows the overall resulting profile of the three 
tested scenarios during the 18th and 19th of December 2018. 
As can be expected, OC results in the flattest profile, 
followed by GC. The lack of predictive control with GC 
results in an empty battery and hence a power peak, around 
8:00 on the first day and 20:00 on the second. The 
predictive control of the proposed solution (OC) prevents 
this by leaving approximately 1kWh of energy left in the 
battery to be able to shave this peak. As a result, the GC 
strategy results in the same high peaks as NB since it 
cannot deliver flexibility when it matters. These worst-
case power values for the three cases are given in Table 3. 

 
Figure 4: Final power consumption for three scenarios 

 OC GC NB 
Max. power [W] 122 2352 2555 
Min. power [W] -132 -1 -1590 

Table 3: Worst case power consumption 

Looking at the control actions used with OC (Figure 5), it 
is clear that, despite forecasting errors in the PV 
production, the control mechanism is able to closely 
follow the day-ahead planning (planning). Most notable is 
the event-based adaption of the planning around 13:00 on 
the first day. At this point new weather predictions 
indicated a lower irradiation forecast. This results in a 
higher intra-day planning (realization) with a higher target 
power. As a result, the control system makes sure that 
enough energy is stored to perform peak-shaving during 
the evening peak the next day. The measured profile (with 
virtual battery) matches the intra-day planning accurately. 
 

 
Figure 5: Control actions with the OC case 

CONCLUSIONS AND OUTLOOK 

In this paper we presented a smart distributed monitoring 
solution based on the SST LV-Sensors open platform. 
Connected to this platform is the TRIANA methodology 
for smart grids. The presented approach safeguards the 
operation of future low-voltage grids to guarantee a high 
quality of service to end-users while mitigating the effects 

of further electrification. For the implementation of the 
control mechanism, we used the DEMKit simulation and 
demonstration toolkit. The integration tests show that the 
LV-Sensors hardware delivers the required computational 
performance for the proposed solution. Furthermore, the 
total solution is capable of processing the real-time 
measurements adequately. A live test of the proposed 
control algorithm shows that the system runs stable and 
adapts the control setpoints adequately to prevent peaks in 
the power usage. Furthermore deploying a DEMKit 
scenario in reality, as well as integrating it with and onto 
the SST LV-Sensors open platform, did not cause major 
hurdles. 
  
Some aspects remain to be researched and implemented 
for a full deployment of the presented system. Firstly, we 
need to extend the DEMKit software with multi-threading 
capabilities. The current, simulation oriented, single-
threaded implementation hinders the user experience as 
interaction is blocked during the optimization process. The 
challenge here is to implement a solution that works well 
in both simulations and real-world deployment to 
minimize the time-to-deployment and ensures feedback 
from demonstrators is available for future simulations. For 
the offline planning, including the expected accuracy of 
the predictions is considered to increase the robustness of 
the resulting planning. Finally, the real-time control loop 
may be extended with some filtering algorithm to avoid 
that short term phenomena affect the online-control system 
in a negative way. 
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