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EXTENDED ABSTRACT 

Introduction 

Design optimizations in flexure based precision engineering are time consuming. The best mechanical properties of the system 

in undeformed and deformed configuration have to be found for many designs. An essential step in this analysis involves 

obtaining the deformed configuration which requires an iterative nonlinear procedure that takes a lot of computation time. 

Therefore it is advantageous to increase the computational efficiency of this step.  

The efficiency can be improved by approximating the deformed configuration by as few parameters as possible, such that it can 

be obtained fast. This configuration can be used as a starting point to obtain an accurate deformed configuration for the full 

system. The Global Model Parameterization method [1,2] uses a similar technique in dynamics. This method describes the 

displacements as a part with large (mainly rigid) displacements, which is described by a few parameters. On this part small 

(mainly elastic) displacements can be substituted. These small displacements are assumed to be linear such that they can be 

reduced by a model order reduction technique. 

One of the main challenges of this technique is to select appropriate parameters to approximate the configuration. This selection 

can be made by applying Proper Orthogonal Decomposition [3] on data of previous performed simulations of the full system. 

This method is appropriate for control purposes, but is not applicable in design optimizations because simulation data of all 

designs that are analyzed should be available. 

This paper shows a kinematic approach to approximate the deformed system that does not require information of the full system, 

but only requires information of the joints. Flexure mechanism typically contain joints that are standard compositions of flexures, 

which are designed to allow motion in a few directions and to constrain the other motions. This can be a cross flexure or a more 

advanced composition [4,5]. These compositions can be seen as building blocks of which information can be saved in a database, 

or obtained by a parameterization. 

Method 

Flexible manipulators are typically kinematically determinate, i.e. if each joint only deforms in its allowed direction, there is one 

possible configuration for a certain displacement of the end effector. This means that the full configuration of the manipulator 

can be found by kinematics. To do this, the exact kinematic behavior of each joint, deforming in the allowed direction, should 

be known, including the parasitic error motion. Because the flexible joints are often standard building blocks, the kinematic 

behavior of these systems can be saved in a database and reused during simulations. The method is applied on a two-dimensional 

fourbar mechanism of which the left bar is deformed by 60 degrees. The mechanism contains four cross flexure joints, of which 

the lower two are fixed to the ground. 

The method consist of three steps, schematically visualized in Figure 1. In the first step, a kinematic approach is used to 

approximate the deformed configuration. In this step each cross flexure is described as one element that only can deform in the 

allowed direction of the cross flexure. In the figure, this element is visualized by a single bar, but the underlying equations 

account for nonlinear kinematic effects like pivot shift. In the second step, the deformation of each cross flexure is used to 

approximate the internal displacements by means of the database. In Figure 1 this is illustrated for one flexure that is modelled 

by rigid parts and flexible beam elements. The result of this step is the full model, in which the displacements are close to the 

real deformed configuration. In the third step a few static iterations of the full model are used to obtain the real deformed 

configuration. 

 

Figure 1. Schematic overview of the three steps in the method for the fourbar mechanism. 



Results 

Results were obtained with the described method (“kinematic approach”) and with a full static simulation, i.e. starting from the 

undeformed configuration static computations were made with the full model (“conventional approach”). Both methods were 

implemented similarly in Matlab scripts to make simulation times comparable. The accuracy of the solution depends on the 

number of elements that is used to model each of the two flexures in the cross flexure. Earlier research has shown that for certain 

applications with large deformations, four elements per flexure resulted in sufficient accuracy [4]. To model more advanced 

flexure joints, more than 30 elements may be necessary [5]. 

To compute the deformed configuration of the mechanism with a 60° rotation of the left bar, a stepwise increase of the load is 

applied to avoid a divergent solution. Figure 2 shows the number of required load iterations. The system is described by 

independent and dependent coordinates. The independent coordinates are updated each load iteration. For every update of the 

independent coordinates, another iterative process updates the dependent coordinates. In the conventional approach, the number 

of load iterations that is required to keep the computation stable increases fast with the number of elements per flexure. In the 

kinematic approach, the number of iterations is almost constant. In all these kinematic cases, one iteration was sufficient to obtain 

the approximated configuration (step 1) and the remaining iterations were required to obtain the required accuracy (step 3). 

Figure 3 shows the average simulation time per iteration. For both methods, the simulation time increases with the used number 

of elements. The time per iteration in the conventional approach is higher. This is because it takes longer to update the dependent 

coordinates in the conventional approach, as the load steps in this approach are larger than the load steps in step 3 of the kinematic 

approach. The combined effect makes that the kinematic approach is 44 times faster than the conventional approach for five 

elements per flexure. 

 

Figure 2. The minimal required number of load 

iterations to obtain the deformed configuration. 

 

 

Figure 3. The average time per load iteration to 

obtain the deformed configuration. 

Conclusions 

Flexure mechanisms are designed to be kinematically determinate, such that the deformed configuration of a system can be 

approximated by kinematics. This behavior is exploited in the presented “kinematic” approach that requires a characterization 

of the kinematic behavior of all flexure joints in the system. The characterization of standard flexure joints is saved in a database 

and used during all simulations that contains these flexure joints. For the fourbar mechanism that was analyzed, the computation 

time was reduced by a factor of 44 with respect to the “conventional” approach, mainly because fewer iterations were required 

to solve the system. 

In the presented results only a simple cross flexure with fixed dimensions has been considered.  The authors are currently working 

on a method to characterize the kinematics of default joints by parameterization, such that it is independent of its dimensions. 

This makes the approach more suitable for design optimizations, as the dimensions vary during optimizations. 
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